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FROM L. EULER TO D. KÖNIG ∗

Dominique de Werra1

Abstract. Starting from the famous Königsberg bridge problem whi-
ch Euler described in 1736, we intend to show that some results ob-
tained 180 years later by König are very close to Euler’s discoveries.
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1. Introduction

After the celebration of the 300th anniversary of Euler’s birth (1707–1783) it
seems appropriate to recall a famous contribution of this scholar and to show how
it contained in an implicit form the essence of results to be discovered close to 180
years later by another famous graph theorist: König (1884–1944)(see Fig. 1). We
celebrated recently the 123rd anniversary of his birth.

To formulate the concepts needed we will use the graph theoretical definitions
of Berge [1]. For more information on the bridges of Königsberg, the reader is
referred to [5].

We insist that the purpose of this note is not to give a new algorithm for coloring
the edges of a bipartite multigraph but to show the close connection between two
famous results in elementary graph theory.

This connection is implicit in some papers which indeed use Eulerian decomposi-
tions to derive polynomial time algorithms for edge coloring bipartite multigraphs
(see for instance [4,8]).
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Figure 1. From Euler to König.

2. Eulerian partitions

In a multigraph G = (V, E) a chain (or a cycle) is Eulerian if it uses every edge
of E exactly once.

We give below the so called theorem of Euler; in fact it is well known that
Euler proved only the necessity of the condition and the final proof of sufficiency
(giving an algorithm for constructing a Eulerian cycle (or chain) was given by
Hierholzer [6]. The result is nevertheless often attributed to Euler.

Theorem 2.1 (Euler’s theorem [3]). A connected graph has a Eulerian cycle if
and only if all degrees are even.

Such a connected graph containing vertices of odd degree is usually called
Eulerian.

While Euler considered partitions of the edge set of a graph into a minimum
number of chains and cycles (possibly just one), more than a century later the
Hungarian mathematician Dénes König considered partitions of the edge set of a
bipartite multigraph G = (V, E) into a minimum number of matchings (sets of
mutually non adjacent edges). He showed in fact that this minimum number of
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matchings (now called the chromatic index) is equal to the maximum degree of
the vertices in the bipartite multigraph G:

Theorem 2.2 (König’s theorem [7]). The chromatic index of a bipartite multi-
graph is equal to the maximum degree of its vertices.

We shall now show how by means of a simple parity argument König’s theorem
can be derived from Euler’s theorem.

We shall need a preliminary property; if M ⊆ E is a set of edges in a multigraph
G = (V, E), m(v) will denote the number of edges in M which are incident to
vertex v.

Lemma 2.1 [2]. A connected multigraph G = (V, E) has a partition M1, M2 of
its edge set satisfying |m1(v) − m2(v)| ≤ 1 for every vertex v if and only if G is
not a Eulerian graph with |E| odd and all degrees even.

Proof. Let G = (V, E) be a connected multigraph. If every vertex of G has even
degree and |E| is even, then alternately coloring the edges of a Eulerian cycle with
colors 1 and 2 results in a partition (M1, M2) satisfying m1(v) = m2(v) for every
vertex v.

If G has vertices of odd degree, let G′ be the Eulerian graph obtained from G by
adding a new vertex vo and joining it to every such vertex. Coloring the edges of
G′ as above yields a partition (M ′

1, M
′
2) satisfying m′

1(v) = m′
2(v) for every vertex

if |E′| is even. If |E′| is odd we start numbering the edges from any edge incident
to the new vertex vo and we will have m′

1(v) = m′
2(v) for every vertex v �= vo

and m′
1(vo) − m′

2(vo) = 2. In any case the partition (M1, M2) of E induced by
(M ′

1, M
′
2) satisfies m1(v) = m2(v) for every even vertex and |m1(v) − m2(v)| = 1

for every odd vertex of G.
Conversely if G is a connected graph with all degrees even we must have m1(v) =

m2(v) for each vertex v, which implies |M1| = |M2|. This is clearly impossible
when |E| is odd. �

So numbering the edges in a Eulerian cycle and separating them according to
their parity will always give the required bicoloring in a bipartite graph. This is
the main role of Eulerian cycles in the following proof.

3. Using Eulerian partitions to derive the König’s
theorem

We now present a proof of König’s theorem based on lemma 2.3 and hence on the
use of Eulerian cycles. Consider a bipartite multigraph G = (V, E) with maximum
degree Δ(G) ≥ 2 Let M = (M1, M2, . . . , MΔ(G)) be a partition of E into subsets
M1, M2, . . . , MΔ(G) called color classes such that the following quantity ê(M) is
minimized.

We define ê(M) = maxv∈V e(v) where e(v) = maxp,q|mp(v) − mq(v)| ≥ 0.
If ê(M) ≤ 1 it follows that for each vertex v and for any two colors we have
|mp(v)−mq(v)| ≤ 1; since we have Δ(G) colors in the partition we must necessarily
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have mp(v) ≤ 1 for each vertex v and each color p. So the sets M1, . . . , MΔ(G) are
matchings and we are done.

So assume there is a vertex vo and two colors i, j such that ê(M) = e(vo) =
|mi(vo) − mj(vo)| ≥ 2.

Consider the connected component Cij(vo) of Mi

⋃
Mj containing vo; since G is

bipartite, Cij(vo) is not a connected graph with all degrees even and |E(Cij(vo))|
odd.

We can apply the above lemma to get (by recoloring of Cij(vo)) a new partition
M ′

i , M
′
j of Mi

⋃
Mj (keeping the same colors i, j outside of Cij(vo)); we have

|m′
i(v) − m′

j(v)| ≤ 1 for every vertex v in Cij(vo) and |m′
i(v) − m′

j(v)| = |mi(v) −
mj(v)| for all remaining vertices v. For vo we have |m′

i(vo) − m′
j(vo)| ≤ 1 <

|mi(vo)−mj(vo)|; we set M ′
k = Mk for all colors k �= i, j. So for every vertex v we

have e′(v) = maxp,q |m′
p(v)−m′

q(v)| ≤ maxp,q |mp(v)−mq(v)|. Furthermore for
vertex vo, the number of pairs p, q of colors for which |m′

p(vo)−m′
q(vo)| ≤ e(vo)−1

has increased by at least one (since for the pair i, j, we have |m′
i(vo) − m′

j(vo)| ≤
1 ≤ e(vo)−1. We can repeat this until we get a partition M′′ with e′′(vo) < e(vo).
Considering every vertex w with e(w) = ê(M) we can apply the same procedure
to obtain finally a partition M = M1, M2, . . . , MΔ(G) with ê(M) < ê(M) which
is a contradiction. So this case is not possible.

4. Final remarks

We remind the reader that the above proof technique is not meant to provide a
practical coloring algorithm; the reader will find in [8] an efficient procedure with
complexity O(Δ(G).|E(G)|).

The above proof based on the use of Eulerian cycles combined with a simple
parity argument shows in fact that for any number k ≥ 2 of colors a bipartite
multigraph G has an equitable edge k−coloring (M1, . . . , Mk), i.e., satisfying for
each vertex x and any two colors i, j

|mi(x) − mj(x)| ≤ 1 (see [2]).
The same technique (numbering of the edges in the Eulerian cycles constructed

in the above proof) shows also that such partitions (M1, . . . , Mk) can be found
with the additional property that

−1 ≤ |Mi| − |Mj | ≤ +1 for all pairs i, j of colors.

Acknowledgements. The author expresses his gratitude to the referees whose comments
have substantially contributed to emphasize the links between Euler’s and König’s the-
orems.
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