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LOCALLY BOUNDED k-COLORINGS OF TREES

C. BEnTZ! AND C. PICOULEAU?

Abstract. Given a tree T' with n vertices, we show, by using a dy-
namic programming approach, that the problem of finding a 3-coloring
of T respecting local (i.e., associated with p prespecified subsets of ver-
tices) color bounds can be solved in O(n®?~!logn) time. We also show
that our algorithm can be adapted to the case of k-colorings for fixed k.

Keywords. Bounded graph coloring, tree, dynamic programming.

Mathematics Subject Classification. 05C15, 90C39.

1. INTRODUCTION

An important combinatorial problem consists in coloring an undirected graph
G = (V,E) with n = |V| nodes and m = |E| edges. A k-coloring is a mapping
f:V — {1,...,k} such that f(z) # f(y) for every edge [z,y] € E. In other
words, f is a partition of V such that each class f;,1 < i < k, is an independent
set. It is well known that, for every fixed k£ > 3, the problem of deciding if a
k-coloring exists for a graph G is N P-complete (see [10]). Note that, for £ = 2, a
2-coloring exists if and only if G is bipartite, and a 2-coloring of a bipartite graph
can be obtained in linear time by using basic algorithmic arguments.

A k-coloring f is equitable if the size of each color class f; satisfies [n/k| < |f;| <
[n/k]. The equitable k-coloring problem, i.e., the problem of deciding whether
an equitable k-coloring exists, has been studied for a long time and a well known
result of Hajnal and Szemerédi is proved in [12]: G has an equitable k-coloring
for any k > A(G) +1 (A(G) denotes the maximum degree of a vertex of G); this
bound is sharp. A related problem is the b-bounded k-coloring problem defined as
follows: given G and a nonnegative integer b, decide whether a k-coloring f such
that |f;| < b for all colors 7,1 < i < k, exists. This problem was introduced in [13],
and in [4] authors prove that the b-bounded 3-coloring problem is N P-complete
for bipartite graphs (actually, their proof even shows the N P-completeness of the
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equitable 3-coloring problem in bipartite graphs), while it is tractable in this case if
b is fixed [4,13]. For trees, both problems, equitable and b-bounded k-coloring, are
studied in [1,5-7,14]; a linear-time algorithm that solves the b-bounded k-coloring
problem is designed in the first reference. In [3] it is shown that the equitable
k-coloring problem is polynomial-time solvable in bounded tree-width graphs but
that the precolored version becomes N P-complete, even in trees.

Actually, these two problems are special cases of the following problem MINEC:
find a k-coloring f that minimizes F'(|f1],...,|fk|), where F(-) is a function that
can be computed in polynomial time and |f;| is the size of the ith color class,
for each i. Indeed, the equitable k-coloring problem is equivalent to finding a k-
coloring f that minimizes the following function: F(|fi],...,|fx]) = 0if [n/k] <
|fil < [n/k] for each i, F(|f1],...,|fx]) = 1 otherwise. The b-bounded k-coloring
problem consists in finding a k-coloring f that minimizes the following function:
F(|f1],---,|fx]) = 0if | fi] < b for each i, F(|f1],...,|fx]) =1 otherwise. Another
subproblem of MINkC consists in finding a k-coloring such that | f;| < b; for each
i, i.e., that minimizes the function: F(|f1],...,|fx]) = 0 if |fi| < b; for each ¢,
F(|f1]s---,|fx]) = 1 otherwise. Note that in all these problems the b;’s are part
of the input. This corresponds to a variant of the problem studied by Baker
and Coffman [1]: in their problem, each color class corresponds to a set of tasks
(nodes) to be executed at a given time; therefore, the cardinality of each color class
is bounded by the total number of processors. In this new variant, each color class
can have a different bound: it emulates the case where some processors may be
unavailable at some times (because, for instance, they are in maintenance mode).

Moreover, when £ is fixed, MINEC is equivalent to the following problem EQ&C:
given k positive integers nq,...,ng, find a k-coloring such that |f;| = n; for each
i, with Zle n; = n. Indeed, one can solve an instance of MINEKC by testing, for
every k-tuple (ng,...,ng) with Zle n; = n, whether there exists a k-coloring f
such that |f;| = n; for each i (by solving an instance of EQkC), and, for each such
coloring, by computing its cost, F'(| f1],...,|fk|). The optimal solution is the best
solution obtained during this process. A polynomial-time dynamic programming
algorithm was designed in [11] to solve EQAC in bounded tree-width graphs when
k is fixed, by enumerating all the k-tuples (nq,...,ny) such that there exists a k-
coloring f that satisfies | f;| = n; for each i (the number of such k-tuples is O(n*~1),
while the number of k-colorings is O(k™)). Also note that the edge-coloring variant
of EQLC in trees was solved by de Werra et al. in [9].

In this paper, we consider a generalization of EQkC, involving “local” (in-
stead of “global”) bounds on the cardinalities of the color classes. More pre-
cisely, given a partition Vi,...,V, of the vertex set V' and pk integral bounds
ML, .oy Mk M2, - - s M2k« -« Npl, « - -, Npp SUch that Zle n;; = |V;| for each 1,
the problem EQpkC consists in deciding whether there exists a k-coloring such
that, for each i € {1,...,p} and for each j € {1,...,k}, the number of vertices
having color j in V; is n;; (note that EQkC is equivalent to EQ1kC). One can also
define the associated variant of MINAC, named MINpkC: when &k and p are fixed,
EQpkC and MINpkC are equivalent. A natural subproblem of MINpkC (but not
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of MINkC) is the following generalization of the problem studied in [1]: given a
partition Vi,...,V, of V and pk bounds b1y, ..., by, decide whether there exists
a k-coloring such that, for each ¢ and j, the number of vertices having color j in
Vi is at most b;;. This corresponds to a variant of the problem studied by Baker
and Coffman where (i) the number of available processors can vary over time (be-
cause, for instance, some of them may break down) and (ii) each processor has an
associated type, and can execute only tasks of this type (the number of processors
of type ¢ at time j is then b;;).

Our main result is a polynomial-time algorithm to solve EQpkC in trees when
both p and k are fixed. For the sake of simplicity we first describe precisely
a dynamic programming approach that yields a polynomial-time algorithm for
solving EQ13C (and thus MIN13C) in trees. Then, we show briefly how this
approach can be generalized to solve EQpkC. Note that, it is not clear at all
whether the algorithm given in [11], which is much more complicated than ours
when G is a tree, could be adapted to EQpkC.

2. NOTATIONS AND PRELIMINARIES

We consider a tree T = (V, E) with n vertices. We begin by rooting the tree at
an arbitrary vertex r. For any vertex v we denote by T, the subtree rooted at v,
so the whole rooted tree is T;.. The level of a vertex in T, is its distance from r.
Let d, denote the number of children of a vertex v in 7)., and let these children
be uq,...,uq,. We also denote by T, (i) the partial subtree of T, containing the
vertex v and the subtrees Ty,,,...,T,,.

In the dynamic programming algorithm, we proceed level by level, starting with
the vertices with the highest level. This way, when we deal with a vertex v in level
[, we know that all its children, lying in level [ 4+ 1, have been examined.

Throughout this paper, a feasible 3-coloring corresponds to a triple (a,b,c)
where a, b, ¢ are the cardinalities of the three color classes (several 3-colorings can
correspond to the same triple): we shall call it a colorable triple.

We define X (v,1i) as the set of all the possible colorable triples for the subtree
T, (7). For a vertex v, we will compute successively the sets X (v,1), X (v,2),...,
X (v,dy). At the end of our algorithm, we will obtain X (r,d,), i.e., the set of all
possible colorable triples of the initial tree T'.

Now, for each i > 1, given X (v,1),...,X(v,i — 1), all we need is a way to
compute X (v,). In fact, for each j € {1,...,7 — 1} and for each colorable triple
in X(v,7), we also need to keep track of the colors in which v may be colored
in colorings associated with this colorable triple (there may be several possible
colors), which implies that the same information must be available for the possible
colorable triples of the subtree T),;, for each child u; of v (assume that this data
is stored, with the colorings, in the X’s). So, assume we know all that is needed
(we shall see later how to initialize the induction), and want to compute X (v, )
for some v and i > 2. More precisely, what is currently known is, on the one hand,
the set of all the possible colorable triples for the subtree T, (i — 1), and, for each
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colorable triple, the set of possible colors for v. On the other hand, for each child
u; of v, we know the set of all possible colorable triples for the subtree T’,; (as well
as the set of possible colors for u; in each colorable triple). We want to extend
these colorable triples to valid colorable triples for the partial subtree T, (7). Thus,
we have to combine the colorable triples in X (v,7—1) and in X (u;, dy,): this point
is explained in the next section. First, we need a few more definitions.

Given a vertex v and a colorable triple £ € X (v,4), we denote by A¢ the 3
dimensional vector whose ith component (denoted by A¢(7)) is equal to 1 if v
can be colored with the ¢th color in ¢ and to 0 otherwise. It can be viewed as
a characteristic vector: it contains the list of the color classes the vertex v can
belong to in colorings associated with this triple.

3. THE DYNAMIC PROGRAMMING ALGORITHM

We describe informally our approach. The main idea is that any colorable
triple in X (v,4), ¢ > 1, can be obtained by pairing the color bounds of a colorable
triple in X (v,7 — 1) and of a colorable triple in X (u;,d,,), and then merging
them. By trying all the possible combinations, we are sure to obtain all the
possible colorable triples in X (v,4). However, some combinations will lead to the
same resulting triple, so we have to merge them as well (see below for a detailed
explanation). Moreover, some combinations are forbidden, because v and u; belong
to two color classes merged together (and thus we do not obtain a valid coloring,
since there is an edge [u;,v]). An important remark is that we do not compute
X (v,dy) directly by using X (ui,dy,),. .., X (ud,,du,, ), i-e., without computing
X(v,1),...,X(v,d, — 1) first. It would be interesting to determine whether such
an approach is possible. Also note that the computations of X (v,4) and X (w, j)
for two distinct vertices v and w on the same level are independent; therefore,
one can compute them in parallel (if several processors are available, for instance),
and reduce the running time by a multiplicative factor of n/h(T") (h(T) being the
height of the tree T').

Formally, the main step, i.e., the computation of X (v,i), ¢ > 1, can be stated
as follows:

Given X (v,i— 1) and X (u;, dy,),

X(v,3) = {(E = (a1 + b1, az + ba, az + bs), \¢) where

(a17a27a3) S X(vﬂii 1)7 (b15b25b3) € X(uz’dul) and

VJ € {1’ 273} )‘f(]) = min(L)‘(al,az,aa)(j) X Z)‘(bhbmba)(h‘)) (1)
h#j

3
with Zkg(j) > 1}.
j=1
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Now, let us show how to initialize the induction (initialization step). For a leaf v,
we have three possible colorable triples: & = (1,0,0) = A¢,, & = (0,1,0) = Ag,
and &3 = (0,0, 1) = A¢,. It remains to describe how we compute X (v, 1) for a non-
leaf vertex v. Given a colorable triple £ = (a,b,¢) € X (u1,d,, ), we can define at
most three potential colorable triples for X (v,1): & = (a+1,b,¢), & = (a,b+1,¢)
and & = (a,b, c+1). Here are the conditions for these three combinations to define
feasible colorable triples:
o if \¢ # (1,0,0) then & is feasible, so we add & to X(v,1)
and set A, = (1,0,0);
o if \¢ # (0,1,0) then & is feasible, so we add & to X(v,1)
and set Ag, = (0,1,0);
o if \¢ # (0,0,1) then &3 is feasible, so we add & to X(v,1)
and set Ag, = (0,0,1).
Note that, in both steps, each time we examine a new combination, we have
to check whether it exists or not among the colorable triples already computed
in X(v,4) (i.e., we must not add twice a given triple obtained by two differ-
ent combinations of colorable triples, in order to store only a reasonable number
of triples). Therefore, we go through the colorable triples already computed in
X (v,4), and if we find a triple £ identical to our current combination 5/, we set
Ag(i) < min(1, A¢(i) + Ag (9)) for each i and do not add ¢ in X(v,i).

As an example, consider a vertex u with two possible colorable triples & =
(o, B,7) and & = (o, B+ 1,7 — 1) such that (for instance) A, = Ae, = (1,1,1).
If we want to extend these colorable triples for u to colorable triples for its father
v, we can, for example, start with & and color v with the second color (i.e., the
color associated with the color class of cardinality 3): this way, we obtain a triple
& = (o, B+ 1,7) with A¢;, = (0,1,0). Then, we consider & and color v with the
third color: we obtain a triple & = (a, B+ 1,7) with A¢, = (0,0,1). Since &3 = &y,
we cannot keep both of them: we store only &3 and set A¢y = (0,1, 1).

4. VALIDITY AND COMPLEXITY

In this section, we show the following theorem:

Theorem 1. Given a tree T, the algorithm defined in Section 3 enumerates all
the triples (a,b,c) such that there exists a 3-coloring f of T werifying |fi| = a,
|fa] = b and |f3] = c. Moreover, it runs in O(n®logn) time.

Proof. We first consider the initialization step. If A¢ = (1,0,0), then & = (a +
1,b, ¢) cannot be associated with a feasible coloring, because v and u; would belong
to the same color class in this case (both being in the first one). In the other
cases, u1 can belong to one of the two other color classes, and thus we obtain
a feasible coloring. The same argument can be used for £, and hence for ;.
Now, let us consider the main step. Formula (1) ensures that we examine all
the possible combinations of a colorable triple in X (v, — 1) and of a colorable
triple in X (u;, dy,). However, to check if a combination corresponds to a feasible
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coloring, we must also verify that v can belong to at least one color class (this
is why feasible combinations must satisfy Z?Zl Ae(j) > 1). Eventually, we detail
the computation of A¢(j). The jth color class in £ being obtained by merging the
jth color class in (aq1,as,a3) and the jth color class in (b1, ba, b3), v can belong to
this color class (i.e., A¢(j) = 1) if and only if v can belong to the jth color class
in (a1,a2,a3) (i.e., Ma,,as,05)(J) = 1) and u; can belong to a color class different
from the jth in (b1, b2,b3) (i-€., 2255 Aby ba,bs) () = 1)

Now, let us examine the running time. Sets X (v, %) are represented by balanced
binary trees like Red-Black trees or AVL (see [8]). So, denoting by n, (i) the num-
ber of vertices of T, (%), and considering that the number of triples (a, b, ¢) satisfying
a+b+c=nis O(n?), basic operations like search or insertion take O(logn?2(i)) =
O(log ny (7)) time in the worst case. If v, (i) denotes the number of colorable triples
in X(v,17), then the computation of X (v,4), ¢ > 1, from X (v,i — 1) in the main
step takes O(v, (i — 1) - vy, (dy, ) -log vy, (i) = O(ni (i) -logn,(i)) = O(n*logn) time
(since checking if a new triple ¢ is already in the current X (v, i) takes O(logn?(i))
time). The initialization step takes O(v,(1)-logv,(1)) = O(n%(1)-logn, (1)) time.
Note that since both the main and the initialization steps are performed O(n)
times, the whole running time of our algorithm is bounded by O(n° logn). g

Corollary 1. EQ3C can be solved in O(n®logn) time in trees, by using the algo-
rithm given in Section 3.

5. GENERALIZATION

We describe in this section how the algorithm given in Section 3 to solve EQ3C
can be adapted to EQpkC when both p and k are fixed. The general outline of
the approach is similar to the case where kK = 3 and p = 1; we consider colorable
pk-tuples instead of colorable triples, and the size of a characteristic vector ¢ is k.
For 1 <j<kand1l<i<p,the (k(: — 1)+ j)th component of a given colorable
pk-tuple equals the number of vertices of V; that have color j. The main step is
the same as for p = 1 and k = 3. The initialization step is as follows. For a leaf
v € V;, the jth of the k colorable pk-tuples associated with v has all its components
equal to 0, except from its (k(i — 1) + j)th component, which is equal to 1. For
a non-leaf vertex v € V;, given a colorable pk-tuple £ € X (u1,d,,), the jth of the
k potential colorable pk-tuples &1, . ..,& for X (v,1) is obtained by increasing the
(k(i — 1) + j)th component of £ by one.

It now remains to examine the whole running time. The number of pk-tuples
(a1, -..,apk) such that ajy + -+ + apr = n is at most O(nP*~1). Moreover,
using a Red-Black tree (see Sect. 4), each checking can be implemented within
(@) (10g (nk_l)) time. Hence, the whole running time is O (n (npk—l) (n”k_l)
log (npk—l)) =0 (nQ”k_l log (n”k_l)), i.e., O(n**=1logn) for fixed p,k. An
interesting open problem would be to determine whether this complexity may be
improved or not.
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6. CONCLUDING REMARKS

It can be noticed that our approach does not solve efficiently the case where k
is not fixed, but the problem of enumerating all the valid colorable k-tuples cannot
be tractable in this case, since the size of the solution (i.e., the number of k-tuples
associated with feasible k-colorings) would not be polynomial in n.

However, it is possible that, for particular problems (such as EQkC), one can
obtain faster algorithms. In particular, some of these problems might be solved
without enumerating all the colorable k-tuples, and so one may hope to obtain
efficient algorithms even for arbitrary values of k.

Since it has been shown that EQkC can be solved in polynomial time in bounded
tree-width graphs when £ is fixed, it would be interesting to establish whether our
approach can be adapted to EQpkC.
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