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AN ALGORITHM FOR MULTIPARAMETRIC
0-1- INTEGER PROGRAMMING PROBLEMS RELATIVE
TO A GENERALIZED MIN MAX OBJECTIVE FUNCTION

JosE Luis QUINTERO! AND ALEJANDRO CREMA 2

Abstract. The multiparametric 0-1-Integer Programming (0-1-IP)
problem relative to the objective function is a family of 0-1-IP prob-
lems which are related by having identical constraint matrix and right-
hand-side vector. In this paper we present an algorithm to perform a
complete multiparametric analysis relative to a generalized min max
objective function such that the min sum and min max are particular
cases.

Keywords. 0-1-Integer Programming, multiparametric programming,
Bottleneck problem.
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1. INTRODUCTION

Uncertainty in the data appears in most real 0-1-Integer Programming (0-1-IP)
problems. Researchers have proposed several ideas in the literature in order to
solve problems under uncertainty: stochastic programming and robust optimiza-
tion for example. An alternative approach is to use parametric programming,
which address the presence of an uncertain parameter, and multiparametric pro-
gramming which considers the presence of two or more uncertain parameters.
Greenberg [11] published an annotated bibliography for post-solution analysis in-
cluding parametric IP problems. Greenberg’s bibliography is available on the

Received October 17, 2007. Accepted July 3, 2008.

1 Departamento de Mateméticas Aplicadas, Facultad de Ingenierfa, Universidad Central de
Venezuela, Apartado 47002, Caracas 1041-A, Venezuela; quinterojl@tutopia.com

2 Escuela de Computacién, Facultad de Ciencias, Universidad Central de Venezuela, Apartado
47002, Caracas 1041-A, Venezuela; acrema@kuaimare.ciens.ucv.ve

Article published by EDP Sciences © EDP Sciences, ROADEF, SMAI 2009


http://dx.doi.org/10.1051/ro/2009002
http://www.rairo-ro.org
http://www.edpsciences.org

2 J.L. QUINTERO AND A. CREMA

World Wide Web (WWW) [12]. Another bibliography available on the WWW,
that includes references on parametric and multiparametric IP problems, is due to
Arsham [4]. A detailed literature review in parametric IP problems can be found
in Jenkins [17] and recently in Li and Ierapetritou [19] including multiparametric
IP problems.

Jenkins [14-16] has presented a very simple approach to solve parametric TP
problems based on Geoffrion and Nauss [10]. His methods work by solving an ap-
propriate sequence of non-parametric problems and joining the solutions to com-
plete the parametrical analysis.

We have used the Jenkins’s approach in order to design algorithms to solve
multiparametric 0-1-IP problems relative to the right-hand-side vector (Crema [6]),
the min sum objective function (Crema [7]) and the constraint matrix (Crema [8]).
The perturbation of the right-hand-side vector, the min sum objective function and
the constraint matrix was considered by Crema [9] for 0-1-IP problems and by Li
and lerapetritou [19] for Mixed Integer Programming (MIP) problems.

A theoretical and algorithmic study for parametric 0-1-IP problems relative to
the min sum objective function, including complexity results, have been written
by Thiongane et al. [28]. The multiparametric problem relative to the min max
objective function have been recently considered (Quintero and Crema [23]).

In this paper we present an approach, that can be viewed as a generalization
of our previous work (Quintero and Crema [23]), to solve multiparametric 0-1-IP
problems relative to a generalized min max objective function that includes the
min sum and min max as particular cases.

Let L € RP, U € R? with L < U, let D € R¥*?, d € RY and let Q2 = {# € R
L<O<UDO<d}letbeR” AcR™™andlet X = {ax: Axr <b, z¢€

{0,1}"}.

The multiparametric 0-1-IP problem relative to the objective function is a family
of 0-1-IP problems which are related by having identical constraint matrix and
right-hand-side vector. A member of the family is defined as

(P(#)) min ¢(0,z) st. ze€X

where ¢ is a continuous function on (2 for all x € X, 4 is the vector of parameters,
0 € Q C RP and X is the set of feasible solutions which does not depend on the
vector . Let us suppose that Q # () and X # 0.

The objective function considered in this paper is defined as follows:
o0, x) = max{(F(l)Q)t:c +dW'g 4+ c(l)tm, I (F(k)O)t:c +d®9 4 c(k)t:ﬂ}
where:

FU ¢ RP dW) ¢ RP ¢ € R® (j = 1,---,k) and k is the number of
functions used to define ¢ that depends on the particular case considered.
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The min sum and min max are particular cases as follows. Let & = 1,p =
n,d® =0,¢M) =0, FV) =T, then $(f, ) = 6’z and we have the min sum case.
Let k = n,p = n, (F9) = (0, 05,0 ,0),d9) = 0,eD) =0,(j =1,--- k),
then ¢(0, x) = max{6121,- - ,0,2,} and we have the min max case. We consider
other interesting cases in our computational experience.

Note that since X is a finite set then there exists an optimal solution for P(6)
for all 8 € 2. All the problems considered in this paper have optimal solutions.We
use the following standard notation: if 7" is an optimization problem v(7") denotes
its optimal value.

We say that (1), ... (") is a multiparametrical solution if:

(i) 2@ € X foralli =1,---,7;

(ii) v(P(#)) = min{p(8,zM), -, 4(0,2()} for all § € Q.

Note that the index r denotes the number of solutions used to define the multi-
parametrical solution.

In Section 2 we present the theory that allows us to design the algorithm pre-
sented in the same section. In Section 3 we present a general approach to write
as a 0-1-MIP problem a non-linear 0-1-MIP problem that appears if we use our
algorithm. Computational experience is presented in Section 4. A summary and
further extensions is given in Section 5.

2. THEORETICAL RESULTS AND THE ALGORITHM

This section is a summary of our previous results in solving multiparametric
0-1-IP problems relative to the objective function (Quintero and Crema [23]) that
are independent of the particular case of ¢ to be considered.

Suppose that () € X for all i = 1,--- ,r and let g(T)(O) be an upper bound
function of v(P(6)) defined by g™ (0) = min{¢(d, ), ---, (0, 2(")}. Note that
for all # € Q we have ¢(")(0) > v(P(#)) and if z"+1) € X then g *+1(9) < ¢(")(6).

Let Q") be a problem in (6, z,vy, 2) defined as:

QM) max y—z st. 0 eQ, ze€X

y=9g"(0)
z=¢(0,x)
y€eR,zeR.

Observe that 6 is a vector of decision variables in Q(").

Note that with Q") we are looking for the maximal difference between v(P(#))
and ¢(")(#). If the maximal difference is zero then we have found v(P(6)) for all
6 € © and the analysis was completed, otherwise our algorithm finds z("+1) and 6*
such that:
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(i) g tV(0) < g (0) for all § € Q

(i) gD (67) < g (6%).
Note that this approach has been presented in Crema [7] and Quintero and Cre-
ma [23] in a different context.

Lemma 2.1. (i) There exists an optimal solution for Q). (ii) v(Q) > 0.
(i5i) If v(Q)) = 0 then v(P(0)) = ¢g")(0) for all 0 € Q. (iv) If (6%, 20+ s
an optimal solution for Q") then x"tY) is an optimal solution for P(6*). (v) Let
(0, 2"*t)) be an optimal solution for Q). If v(QM)) > 0 then ) is not an
optimal solution for P(6*) for alli=1,--- ,r and g"+t1(0*) < ¢("(6%).

The proof of Lemma 2.1 may be seen in Quintero and Crema [23]. Since X

is a finite set, the lemma proves that the next algorithm (the multiparametric
algorithm) provide us a complete multiparametrical analysis:

Step 0. Find 6 € Q. Solve P(#())). Let (M) be an optimal solution.

Step 1. r=1

Step 2. Solve Q") and let (9*,30(7""1)) be an optimal solution.

Step 3. If v(Q(™) = 0 STOP (with v(P(0)) = g(")(0) for all § € Q), otherwise
let r = r 4+ 1 and return to step 2.

In the min sum case P(#()) is a 0-1-IP problem. With ¢ the objective function
considered in this paper P (9(1)) may be rewritten as a 0-1-MIP problem. In order

to use the algorithm based on Lemma 2.1 we need an algorithm to solve Q") that
was presented as a non-linear 0-1-MIP problem.

3. AN APPROACH TO SOLVE Q")

The main contribution of this paper is an approach to solve Q(") in the general
case presented.

Problem Q) to be solved was defined as follows:

QM) max y—z st. e, ze€X

y=9g"(0)
yeR,zeR.

We present a sequence of problems that are equivalent to Q) until we reach an
appropriate model to be solved as a 0-1-MIP problem.

We use the definition of the upper bound function, g(")(6), and the definition
of ¢(6,z) in order to rewrite Q") as follows:

(Ql(r)) max y—z st. 0€Q, re X
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y= min{max{(F(j)e)tx(i) +dD' 4 (DO cj=1,--k}:i=1,---,r}
z= max{(F(j)G)tx + A9’ + RO j=1,---,k}
yeR,zeR.
Let (Q2() be a problem in (8, z,y, z) defined as follows:

(Q2(T)) max y—z st. 0€Q, re X
y < (F(j)O)t:E(i) +dD'0 4+ D' for someje{l,---,k} (i=1,---,r)
2> (FO9) 2 +dD'9+cD's (G=1,--- k)
y€eR,zeR.

Since maximization is the optimization criterion then problems Q1(") and Q2(")
are equivalent: (6,z,%, z) is an optimal solution to Q1) if and only if (6, z,y, z)
is an optimal solution to Q2" and v(Q1(") = v(Q2™M).

Finally we use 0-1 auxiliary variables in order to rewrite the constraints relative
to 3. Let Q3(") be a problem in (0, z,y, z,w) defined as follows:

(Q3")) max y—=z st. 0e€Q, ze€X

k
y < Z((F(j)g)tx(i) N OL C(j)tx(i))wy) =1, ,r)
j=1

wj(-i)G{OJ} (izl,"'ﬂ“) (jzl,...,]f)

2> (FOO 2 +dD'9+ D' (j=1,--- k)
y€eR,zeR.
If (A, ,y,2,w) is an optimal solution to @3(") then (6, z,v, z) is an optimal solu-
tion to Q2. If (0, z,y, z) is an optimal solution to Q2(") then 0, z,y,z,w) is an
optimal solution to Q3" with w defined as follows:

(i) let s be an index such that:
max{(FD9)'z® +dD'g + D20 . j=1,... k} = (F®) 2
+ FION" + c(s)t:ﬂ(i)), with the ties broken arbitrarily,
(i) w =land w{’ = 0if j#s (i=1,-- ,rand j=1,-- k).
Hence, Q2(") and Q3(") are equivalent problems and v(Q2() = v(Q3(")). There-
fore Q) and Q3(") are equivalent problems and v(Q(") = v(Q3(™)
Note that Q3(") includes non-linear terms. However, all of them may be

rewritten with an standard method (Adams, Forrester and Glover [2]) in order
to solve Q3(") as a 0-1-MIP problem:
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Forall i =1,---,rand j = 1,--- ,k use ay)wj(-i) instead of (F(j)e)tac(i)wj(-i)
where ay) is a new continuous variable and add to @3 the constraints:

(4) (4) ) g Eo.(3) (4) (4) (4)
Vil —w;”) < (FYV0) ' — oy < S7(1—w;”)
(@), (2) (4) (1), (2)
Vitw;” < a7 < 85w
oV ER(i=1,-- 1) (=1, k)
where Vj(i) and S§i) are bounds such that:

() WROR
S0 > max{(FWg) 2z : g e Q}

(4) : WINROR
VY < min{(FD0) 2 : 9 € Q}.

Terms d(j)tﬂwy) and (F(j)ﬁ)tl:m may be replaced by using the same method for
3112217 ,T,j:17--- ,k andl:17... , M.

We present the standard method because it is appropriate to the general objec-
tive function considered, however, others methods, that depend on the particular
case of objective function, may be used to replace the non-linear terms (Adams
et al. [2], Adams and Forrester [1], Oral and Kettani [22]).

To the best of our knowledge there are no other algorithms to be applied in
the general case considered. Our algorithm may be implemented by using any
software capable of solving MIP problems.

4. COMPUTATIONAL EXPERIENCE

Previous computational experiences in the min sum case and min max cases
were presented in Crema [7] and Quintero and Crema [23]. The problems con-
sidered were the multiconstrained knapsack problem, with the min sum objective,
and the bottleneck generalized assignment problem, with the min max objective
function (Martello and Toth [20]). In both cases the linearization process of Q")
did not use the standard method presented in this paper because of the particular
objective function considered.

Our algorithm has been implemented in C++ by using the OSL package of
IBM [13,21] that uses a Branch and bound algorithm based on linear relaxations
to solve MIP problems. The new experiments with the general objective function
were performed on a PC Pentium IV with 2 Ghz and 256 MB of RAM.

The problem considered in this paper is the m-Bottleneck assignment (m-BA)
problem as follows:

Given n tasks and m agents, the penality, c;;, corresponding to the assignment
of the task j to agent ¢ and given a;; € {0, 1} such that the task j may be assigned
toagentiifandonlyifa;; =1 (i =1,--- ,mandj =1,---,n), the m-BA problem
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is to assign each task to one agent so that the maximum penality of the agents is
minimized where the penality of the agent i is computed as J assigned to i 0;5.

By introducing binary variables z;; with x;; = 1 if and only if task j is assigned
to agent 7, the problem can be formulated as follows:

n
min max{ g cijrijr 1=1,--- ,m} s.t.

j=1

m
Zaijxij =1 (j: 1,--- ,’I’L)
=1

xi; €4{0,1}, (i=1,---m) (j=1,---,n).
Let us suppose that some of the penalities are uncertain parameters and then we

rewrite the problem by using 6;; instead of ¢;;. Let K be the index set of elements
of the objective function that are uncertain parameters.

The experiments were designed with Q = {6;; : (1 — B)ci; < 60;; < (1 +
B)eij  for all (i,j) € K, 0;; = cij for all (i,j) ¢ K} where 0 < 8 < 1is
a parameter used to define the level of perturbation.

The indexes that belong to K were randomly selected from the set {(i,7) :
a;=1,i=1,---,nandj=1,---,m}.

In our experimets the elements c;; and a;; were generated as follows:

(i) Uncorrelated case: the elements ¢;; were drawn from a uniform distribu-
tion on [1,cmax] with cmax > 1. If ¢;,; < ¢j,; < -+ < ¢j,,; then we use
ajuj = ajpj =1 and ag; = 0if ¢ & {j1, j2}-

(ii) Correlated case: given n towns (the tasks) and m service centers (the
agents), the distance, d;;, from town j until service center 7 and the popula-
tion, P;, of town j,then the penality, c;;, corresponding to the assignment
of the town j to service center i is defined as ¢;; = d;; P;. The location
of town j and service center i were drawn from a uniform distribution on
the square [0,1] x [0, 1] and d;; is the euclidean distance from the location

of ¢ until the location of j (i =1,--- ,m and j =1,--- ,n). The elements
P; were drawn from a uniform distribution on [1, P max] with P max > 1.
If dj1j S dej S S djm,j then we use Q5,5 = Qjy5 = 1 and Qi = 0 if

i & {j1, 2}

The results are reported in Table 1 (uncorrelated case) and Table 2 (correlated
case). The notation used in the tables is as follows: p is an index to identify
the problem, r is the number of Q(") problems solved in order to complete the
multiparametrical analysis, Sil is the number of simplex iterations computed to
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TABLE 1. Computational experience to the uncorrelated case.

plm|n |ng|cmax | f r | Sil | N1 Si N t
1]12]10] 10 | 1000 |0.20| 2 | 18 | 7 1507 99 13.130
2 20 3132110 4317 332 356.149
3 30 4 | 58 | 19 | 926836 | 17577 | 9145.388
412|110 10 | 1000 | 0.05| 2 | 23| 9 456 22 4.032
5 010 2 | 22 | 10 617 25 12.167
6 0.15 4 | 25 | 11 832 31 13.672
7 025| 4 | 27|15 706 96 15.523
8 030 51211 9 3618 362 315.517
9 035|520 | 6 1622 92 25.512
10 040| 8 | 18 | 5 3526 331 427.735
112 (10} 5 | 1000 {020 2 | 19| 5 435 20 9.541
12 15 312419 945 45 24.478
13 20 4 124110 1566 91 36.376
1412 |10 10 10 {0203 |20 | 6 736 36 8.151
15 100 3119 3 625 28 6.292
16 10000 4 119 2 1240 46 15.261
1713 |20 | 10 | 1000 [ 0.20 | 7 | 35 | 12 | 934622 | 26333 | 9532.336
18| 5 10 | 69 | 25 | 1822633 | 61226 | 17457.672

solve P(0'), N1 is the number of nodes generated by the branch and bound al-
gorithm to solve P(#'), Si is the number of simplex iterations computed to solve
P(Hl),Q(l), .-Q. The number of nodes generated by the branch and bound
algorithm to solve P(A'),Q™,--- Q) is denoted with N and ¢ is the CPU time
in seconds to solve P(Hl),Q(l), --Q). Both, Sil and Si, include the number of
simplex iterations computed to solve the relaxations of subproblems in the branch
and bound algorithm.

Non-linear terms were replaced following a generalization of the procedure used
to the min max case (Quintero and Crema [23]) based on Oral and Kettanni [22],
instead of the standard method, in order to generate a model with fewer con-
straints.

The values of 92) were defined as follows:

6. = cij if (i,5) ¢ K and 6} = (1 — B)cy; if (i,j) € K (i=1,--- ,n),
(jz 1,... ,m).

Let ng be the cardinality of K. The experiments were designed in order to
evaluate the perfomance of the algorithm as m increases (problems 17-18 and
37-39), n increases (problems 1-3 and 19-23), nx increases (problems 11-13 and
31-33), cmax increases (problems 14-16), P max increases (problems 34-36), or
B increases (problems 4-10 and 24-30). As we can expect the effort increases
as the dimensions (m and n), the number of parameters (nx) and the level of
perturbation () increase. As we hope the uncorrelated problems seem to be more
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TABLE 2. Computational experience to the correlated case.

plm|n|nkg|Pmax| S r | Sil | N1 Si N t

19 3 ]10| 10 | 1000 [0.20| 5 | 51 | 21 6564 336 3.241
20 20 8 | 98 | 39 7031 521 6.127
21 30 10 | 265 | 76 | 13259 | 822 17.230
22 40 15| 411 | 95 | 21346 | 1336 234.216
23 50 17 1623 | 121 | 45165 | 3845 | 2561.377

24|13 (10| 10 | 1000 [0.05| 5 | 67 | 22 | 7126 429 5.040
25 010 7| 78 | 29 | 8655 784 9.954
26 015| 7| 92 | 26 | 11278 | 832 51.265
27 025] 6 | 54 | 17 | 9188 812 34.167

28 0.30 | 11| 99 | 27 | 19424 | 1239 191.637
29 0.35] 10| 156 | 34 | 17823 | 1038 125.527
30 0.40 | 14 | 178 | 36 | 21296 | 1495 | 436.163
3113 [10] 5 1000 | 0.20 | 5 | 55 | 19 | 7527 362 7.362
32 15 8 | 94 | 35 | 13349 | 923 74.396
33 20 15| 114 | 47 | 25562 | 2156 | 924.169
34|13 |10} 10 10 020 7 | 45 | 19 | 13636 | 938 7.321
35 100 8 | 56 | 17 | 16723 | 1326 54.252
36 10000 10 72 | 25 | 20362 | 1934 152.241
3715 (30] 10 | 1000 |0.20| 16| 158 | 37 | 56578 | 4020 | 932.241
3817 21 1466 | 64 | 96377 | 7625 | 9448.478
3919 26 | 593 | 91 | 674744 | 59272 | 23363.644

difficult than the correlated problems. However, more problems should be solved
to make definitive conclusions.

5. SUMMARY AND FURTHER EXTENSIONS

We designed and implemented an algorithm to solve the multiparametric 0-1-1P
problem relative to a very general objective function (min sum and min max are
particular cases). Computational experience was presented for m-BA problems
with uncorrelated and correlated data. Our algorithm works by choosing an ap-
propriate finite sequence of non-parametric MIP problems in order to obtain a
complete multiparametrical analysis and this explains that the computer storage
was not a problem for our algorithm, that is: if we can solve the non-parametric
P(G(l)) problem then we can expect no problems to perform a complete multi-
parametrical analysis. The algorithm may be implemented by using any software
capable of solving MIP problems. To the best of our knowledge there are no other
implementations of algorithms to solve the multiparametric min max 0-1-IP prob-
lem relative to the very general objective function considered and for this reason
we did not compare the performance of our algorithm with any other.

We prefer to think that the multiparametric algorihtm is a general metodology
and problems Q") would be solved with specialized algorithms associated to the
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structure of the non-parametric problems P(f) in order to solve hard problems
with higher dimensions and more parameters if necessary.

In a near future we will intend to develop a procedure to generate the non-
dominated set of a multiobjective 0-1-IP problem by using our multiparametric
algorithm. In order to present some basic theory of multiobjective programming
we use the presentation of Alves and Climaco [3] as follows:

Consider the following multiobjective 0-1-IP problem:

(P) max c(l)tx, e ,C(Q)tx st. z e X.

A solution 7 is efficient for problem P if and only if there is no x € X such that
@'y > ¢D'F for all i = 1,--- ,q and 'z > ¢D'F for at least one i.

Let Xg be the set of efficient solutions (Xg = {z € X : z is efficient}).

A solution T is weakly efficient for problem P if and only if there is no z € X

such that ¢’z > ¢’ for all i = 1,---,q.
Let Xy be the set of weakly efficient solutions (Xy = {z € X : x is weakly
efficient } ).

Let Z C R? be the image of the feasible set X in the objective functions
space (the criteria space). A point z corresponding to a efficient (weakly efficient)
solution z is called non-dominated (weakly non-dominated).

Let Zg be the non-dominated set defined as follows:

Zg ={z € R?: there exists x € X such that z; = 'y (i=1,---,9)}
Let Zw be the weakly non-dominated set defined as follows:
Zw = {z € 9 : there exists © € Xy such that z; = D'y (i=1,---,9)}

Let C denotes a reference point of the criteria space: C; > ¢’ for all z € X and
foralli=1,---,q

The §-weighted Tchebycheff norm computed in x € X is defined as: max{6;(C;—
c(i)tx) : i=1,---,q} where 0 € Q={0: #eRI, >0, > 6, =1}

Bowman [5] proved that the multiparametric analysis of:

(P(6)) min max{0;(C; —cD'z): i=1,--- ¢}
generates the non-dominated set as follows: for all Z € Zg there exists
6 € Q such that z; = 'z (t =1,---,q) where Z € Xp is an optinal solution

of P(0).

However, some weakly non-dominated solutions may appear if there exists 6 € Q

such that the optinal solution of P(0) is not an efficient solution.
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The generation of weakly non-dominated solutions is avoided by considering
the augmented 6-weighted Tchebycheff norm (Steuer and Choo [24]) and the cor-
responding multiparametric analysis:

q
(P(#) min max{0;(C; — c(i)t:c) - aZc(i)tz ci=1,---,q}
i=1

where « is small enough positive value.

As you can see our algorithm may be used to generate the non-dominated set.
However some computational experience suggests that the linearization method
must be carefully designed. Also, an approach to generate a representative subset
of the non-dominated set may be designed like in other generating methods (Sylva
and Crema [25], Sylva and Crema [26], Sylva and Crema [27], Laumanns et al. [18]).
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