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INFINITE SYSTEM OF BROWNIAN BALLS WITH INTERACTION:
THE NON-REVERSIBLE CASE ∗

Myriam Fradon1 and Sylvie Rœlly2, 3

Abstract. We consider an infinite system of hard balls in Rd undergoing Brownian motions and
submitted to a smooth pair potential. It is modelized by an infinite-dimensional stochastic differential
equation with an infinite-dimensional local time term. Existence and uniqueness of a strong solution
is proven for such an equation with fixed deterministic initial condition. We also show that Gibbs
measures are reversible measures.
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Introduction

The aim of this paper is to construct and analyze an infinite system of interacting hard balls undergoing
Brownian motions in Rd and starting from a fixed initial condition.

R. Lang [5] constructed in a pioneer paper the reversible solution of an infinite gradient system of Brownian
particles (i.e. balls with radius 0, that is reduced to points) submitted to a smooth pair interaction. It is
a so-called equilibrium dynamics in statistical physics, since this process has a time-stationary distribution.
J. Fritz solved some years later in [3] the non-reversible case, which occurs when the initial distribution is no
more Gibbsian. For this type of systems, the main difficulty comes from a possible explosion (i.e. an infinite
number of particles can enter in a finite volume after a finite time).

On another side, a reversible system of infinitely many Brownian hard balls (without external potential) was
studied by H. Tanemura [8]. He constructs a unique solution to an infinite-dimensional Skohorod type equation
where the hard core situation – balls can not overlap – appears as a local time term in addition to the basic
Brownian motion. The (reversible) initial condition is ditributed like a Gibbs measure associated to the hard
core potential.

In the present paper, the model is a mixture of both Lang’s and Tanemura’s models. We deal with Brownian
motions submitted to the sum of a hard core potential and a smooth finite range pair potential. In [2] we proved
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France.

c© EDP Sciences, SMAI 2007

Article published by EDP Sciences and available at http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2007006

http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2007006


56 M. FRADON AND S. RŒLLY

existence and uniqueness of a reversible solution of equation (E), under the condition that the initial distribution
is Gibbs with a small mean density of spheres. We propose here the construction of a strong non-reversible
solution of (E), in the sense that the initial condition can be any deterministic configuration in a set of allowed
configurations which is clearly identified.

Although some techniques in the proof of the main results are similar to those in [2], we adopt a new pathwise
approach for the construction of the solution of (E) which is much finer than in [2], where the time-stationarity
of the solution was used at several places. Moreover we make explicit in Theorem 1.3 the set of allowed initial
configurations, and prove that any Gibbs measure associated with the dynamical interaction carries a.s. this
set.

In Section 1 we present the infinite dimensional equation (E) and we state the results. The sequence of
approximating solutions is built in Section 2.1. Furthermore, we prove in Section 2 technical estimates needed
in Section 3, for the convergence of the approximations. Finally, Section 4 is devoted to complete the proof of
the main results.

1. Dynamics and main results

1.1. Configuration spaces

The particles we deal with in the present paper move in Rd, for a fixed d� 2, endowed with the Euclidian
norm denoted by | |. B(y, ρ) will denote the closed ball centered in y ∈ Rd with radius ρ ≥ 0 and more generally,
for any A ⊂ Rd, we define

B(A, ρ) = {y ∈ Rd such that d(y,A)� ρ}
where d(y,A) denotes the Euclidian distance between y and A. The volume of a subset A in Rd is also denoted
by |A|.

The modelization of point configurations may be done in two equivalent ways. The first possibility is to
represent an n points configuration in Rd as a subset (with multiplicity) of cardinal n in Rd, that is as an
equivalence class on (Rd)n under the action of the permutation group Σn on {1, . . . , n}. The second possibility
is to modelize it as a point measure

∑n
i=1 δξi on Rd. More generally, the set of all point configurations in Rd

will be the set M of all point Radon measures on Rd:

M =

{
ξ =

∑
i∈I

δξi such that I ⊂ N, ξi ∈ Rd and for all Λ compact in Rd, ξ(Λ) < +∞
}
.

M is endowed with the topology of vague convergence. By simplicity, we will identify any point measure ξ ∈ M
with the subset of Rd {ξi, i ∈ I} corresponding to its support and with the representants of this subset in (Rd)I ,
writing for example ξΛ = ξ ∩ Λ for the restriction of this configuration to Λ ⊂ Rd, ξη for the concatenation of
both configurations ξ and η. M∩ (Rd)n is the set of all n points configurations.

A function g on M is called C1 if for each γ ∈ M, y �→ g(yγ) = g(δy + γ) is a C1-function on Rd. Dxg(xγ)
denotes its derivative at y = x.

We introduce the following notations.
• For Λ ⊂ Rd, NΛ is the counting variable on M: NΛ(ξ) = Card{i ∈ N, ξi ∈ Λ}.
• For Λ ⊂ Rd, BΛ is the σ-algebra on M generated by the sets {NA = n}, n ∈ N, A ⊂ Λ, A bounded.
• π (resp. πΛ) is the Poisson process on Rd (resp. on Λ) with intensity measure the Lebesgue measure

dy (resp. dy|Λ).
• For z > 0, πz (resp. πzΛ) is the Poisson process on Rd (resp. on Λ) with activity z, that is with intensity

measure z dy (resp. z dy|Λ).
The particles we deal with in this paper are not reduced to points but are hard balls or spheres of diameter r,
for a fixed r > 0. So the set of allowed configurations is the following subset of M:

A = {ξ ∈ M such that ∀i 	= j |ξi − ξj |�r} .
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Remark 1.1. We study here the evolution of a particles configuration under the influence of an interaction
potential with finite range R. Then a fixed particle can interact with at most a finite number N of particles.
N only depends on d and R/r and is clearly bounded by (R+r/2)d

(r/2)d = (1 + 2R/r)d.

1.2. Interaction potential and associated Gibbs measures

For a complete description in a general framework of the concepts introduced in this subsection, we refer the
reader to [4].

We are dealing with hard balls with diameter r submitted to the action of a pair potential, which is a function
on Rd of class C2 with finite range R > r, i.e. satisfying ϕ(x) = 0 if |x|�R and ϕ(x) = ϕ(−x). Due to the hard
core situation the values of ϕ(x) may be chosen arbitrarily for |x| < r. In particular, one can assume without
restriction that ϕ vanishes in a neighborhood from 0 and that ∇ϕ(0) = 0. Since ϕ has compact support, it is
bounded from below: the smallest value of interaction between two particles is given by

ϕ = inf
|x|�r

ϕ(x) � 0.

If this real constant is zero there exists only repulsion between the balls; if it is negative there exists an attraction
domain around each ball.

The energy of a configuration ξ ∈ M submitted to the potential ϕ in the compact volume Λ ⊂ Rd with the
boundary condition η ∈ M is given by:

EΛ(ξ|η) =

⎧⎪⎨⎪⎩
1
2

∑
ξi,ξj∈Λ

ϕ(ξi − ξj) +
∑

ξi∈Λ,ηj∈Λc

ϕ(ξi − ηj) if ξΛηΛc ∈ A

+∞ otherwise
(1)

(the condition ξΛηΛc ∈ A corresponds to configurations for which ξΛ ∈ A, ηΛc ∈ A and no ball of ηΛc is
overlapping a ball of ξΛ). The energy is well defined since both sums contain no more than |B(Λ,r/2)|

|B(0,r/2)|N terms,
see Remark 1.1. Moreover, e−EΛ(ξ|η) vanishes as soon as the configuration ξΛηΛc is not allowed.

We now define the set G(z) of Gibbs measures on A associated to the potential ϕ with activity parameter
z ∈ R+. For each compact subset Λ of Rd, let us define a local density function with respect to the Poisson
process πzΛ by:

fzΛ(ξ|η) =
1

ZΛ,η
z

exp(−EΛ(ξ|η)) (2)

where the so-called partition function ZΛ,η
z is the renormalizing constant:

ZΛ,η
z = e−z|Λ|

(
1 +

+∞∑
n=1

zn

n!

∫
Λn

exp−EΛ(y1 · · · yn|η) dy1 · · ·dyn
)
.

Due to the hard core, the above series is only a finite sum and 0 < ZΛ,η
z < +∞.

Definition 1.2. A probability measure µ on M belongs to the set G(z) of Gibbs measures on hard balls with
activity z and associated potential ϕ if and only if, for each compact subset Λ ⊂ Rd,

dµ(ξ|BΛc)(η) = fzΛ(ξ|η) dπzΛ(ξ) for µ− a.e.η.

Remark that any Gibbs measure in G(z) has its support included in A. Dobrushin proved in [1], using compact-
ness argument, that there exists at least one element in G(z) when the potential contains a hard core component.
Furthermore the set G(z) is convex and compact. About the cardinality of G(z), remarking that the sum of
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the hard core and the smooth potential ϕ is superstable and lower regular in the sense of Ruelle [6], we do the
following remarks:

– If z is small enough Ruelle proved that uniqueness holds. In our case, a sufficient condition would be:
z ≤ eNϕ−1(|B(0, r)| + ∫ 1Ir<|y|<R|1 − e−ϕ(y)|dy)−1.

– For z large enough it is conjectured (see [4]) – but still not proved – that phase transition occurs:
Card G(z) > 1.

1.3. The stochastic equation (E) and statement of the main results

Let (Ω,F , P ) be a probability space with a right continuous filtration {Ft}t�0 such that each Ft contains
all P− negligible sets and let (Wi(t), t�0)i∈N be a family of Ft-adapted independent d-dimensional Brownian
motions.

Let us denote C(R+,M) (respectively C(R+,A)) the set of continuous M-valued (resp. A-valued) paths on
R+, endowed with the topology of uniform convergence on each compact time interval.

Let ϕ be the smooth pair potential with finite range R introduced in the previous subsection. We consider
the following infinite gradient system of stochastic equations satisfied by the Brownian balls:

(E)

⎧⎪⎨⎪⎩
For i ∈ N, t ∈ R+,

Xi(t) = Xi(0) +Wi(t) − 1
2

∑
j∈N

∫ t

0

∇ϕ(Xi(s) −Xj(s))ds +
∑
j∈N

∫ t

0

(Xi(s) −Xj(s))dLij(s)

where

• (Xi(t), t�0)i∈N ∈ C(R+,A) satisfies |Xi(t) −Xj(t)| � r for t�0 and i 	= j;
• (Lij(t), t�0)i,j∈N is a family of non-decreasing R+-valued continuous processes satisfying:

Lij(0) = 0, Lij ≡ Lji and Lij(t) =
∫ t

0

1I|Xi(s)−Xj(s)|=r dLij(s), Lii ≡ 0.

A solution of the system (E) with initial condition x ∈ A is a family (Xx
i (t), Lxij(t), t�0, i, j ∈ N) of processes

such that equation (E) is satisfied with X(0) = x.

The main results of this paper are the following theorems.

Theorem 1.3. The stochastic equation (E) admits a solution with values in A for any deterministic initial
configuration which belongs to the set A ⊂ A defined by A = {x ∈ A : P (Ωx0 ∩ Ωx1) = 1} (sets Ωx0 and Ωx1
are given in (15) and (23)). This solution is unique as element of C ⊂ C(R+,A), a subset of paths with some
regularity defined in Proposition 4.4.

Theorem 1.4. If the initial configuration of the stochastic equation (E) is random with distribution µ ∈ G(z)
for some z > 0 and µ(A) = 1, then this solution is time-reversible, that is its law is invariant with respect to
the time reversal.

Proposition 1.5. Let zc be a critical value of the activity given by: zc =
exp(2Nϕ)

(Rd−rd)|B(0,1)| . Any Gibbs measure
µ ∈ G(z) with 0 < z < zc has its support included in A.

Remark 1.6. The existence of a critical value for the activity z is related to the still open problem of per-
colation for the hard core continuous system. The critical value zc given here appears for technical reasons in
Corollary 2.5, where a percolation type estimate is computed.
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Figure 1. Particles of ηΛl
are represented; the grey area is the domain where ψl,η vanishes.

2. Approximating processes and estimates on the paths set

In this whole subsection, l ∈ N∗ is fixed. To simplify we restrict the study of the paths on the time interval
[0, 1]. It is obvious that all the results in the sequel hold true on any time interval [0, T ], T�1, up to a change
of constants.

2.1. Construction of approximating processes

We construct the approximating process X l,x in order that it “essentially” stays in the bounded cube Λl =
[−l, l]d (in a sense which will be clear soon). To obtain such a behavior, we introduce in the equation (E) a
supplementary gradient drift ∇ψl,η which vanishes in a subset of Λl and is repulsive outside of Λl.

More precisely, for any allowed configuration η ∈ A which support is disjoint to Λl, we fix a R+-valued
function ψl,η on Rd which is C2 with bounded derivatives and vanishes on each (and only on) y ∈ Λl such that
yη is an allowed configuration (see Fig. 1), that is

ψl,η(y) = 0 ⇔ y ∈ Λl = [−l, l]d and yη ∈ A ⇔ y ∈ Λl = [−l, l]d and d(y, η)�r.

We extend the definition of ψl,η to any configuration η ∈ A by: ψl,η = ψ
l,ηΛc

l . We also choose the family
(ψl,η)l such that, for every η ∈ A,

∑
l∈N∗

∫
Rd

1Iψl,η(y)>0 exp(−ψl,η(y)) dy � 1. (3)
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For η ∈ A and n ∈ N∗, let us now define the n-dimensional stochastic differential equation:

(E l,ηn )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∀i ∈ {1, . . . , n}, for 0 ≤ t ≤ 1,

dXi(t) = dWi(t) − 1
2

( ∑
j=1,...,n

∇ϕ(Xi(t) −Xj(t)) +
∑

j:ηj∈Λc

∇ϕ(Xi(t) − ηj)
)
dt

− 1
2
∇ψl,η(Xi(t))dt +

∑
j=1,...,n

(Xi(t) −Xj(t))dLij(t)

with Lij ≡ Lji for all i and j and Lij(t) =
∫ t
0 1I|Xi(s)−Xj(s)|=r dLij(s). (E l,ηn ) is a n-dimensional stochastic

differential equation reflected in A ∩ (Rd)n with gradient drift − 1
2∇βl,ηn where

βl,ηn (x1, . . . , xn) =
∑

i=1,...,n

(
ψl,η(xi) +

1
2

∑
j=1,...,n
j �=i

ϕ(xi − xj) +
∑

j:ηj∈Λc

ϕ(xi − ηj)
)
. (4)

Since the drift − 1
2∇βl,ηn is bounded and Lipschitz continuous, (E l,ηn ) admits a unique strong solution for each

initial n-point configuration x ∈ A ∩ (Rd)n (see Th. 5.1 of [7]). We denote this solution by X l,η,n(x, ·). For a
general initial configuration x ∈ A, we extend the above process as follows:

X l,x(·) = X l,η,n(xΛl
, ·)xΛc

l

where η = xΛc
l

and n = Card(x ∩ Λl). It is an M-valued (not necessarily A-valued) process with initial
configuration x. Particles which are initially in Λl move like the (E l,ηn )-dynamics and the other ones stay fixed
outside Λl.

The solution of (E l,ηn ) with initial distribution νl,ηn is reversible, where νl,ηn is the finite measure defined on
(Rd)n by

dνl,ηn (x1, . . . , xn) = exp(−βl,ηn (x1, . . . , xn)) 1IA(x1, . . . , xn) dx1 . . . dxn.
Ql,ηn denotes the time-reversible law of X l,η,n starting from νl,ηn :

Ql,ηn =
∫
P (X l,η,n(x, ·) ∈ .) dνl,ηn (x).

The probability measure µl,ηz on
+∞⋃
n=0

(Rd)n is defined for A0 ×A1 × · · · ×An × · · · by:

µl,ηz (A0 ×A1 × · · · ×An × · · · ) =
e−z2

dld

Z l,ηz

+∞∑
n=0

zn

n!
νl,ηn (An) (5)

where Zl,ηz =
+∞∑
n=0

zn

n!
νl,ηn ((Rd)n) (with the convention νl,η0 ({∅}) = 1).

Similarly, consider the probability measure on
+∞⋃
n=0

C([0, 1], (Rd)n) defined by

Ql,ηz =
e−z2

dld

Z l,ηz

+∞∑
n=0

zn

n!
Ql,ηn .
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This probability measure is time reversal invariant and has a support in A, as a mixing of A-supported measures.
We now want to prove that the probability of trajectories which interact too much, vanishes asymptotically

when l → +∞. We will use this result to construct the limit of (X l,x)l in the Section 3.
Regular paths are ω’s such that each particle interacts only with a finite number of particles during a finite

time interval ; X l,x(ω) is then the (unique) solution of a finite dimensional equation. Bad ω’s are paths such
that at least one particle interacts with a great number of other ones, either because it moves very fast (see
Sect. 2.2), or because it belongs to a large chain of particles where each one interacts with its neighbors (see
Sect. 2.3).

2.2. Paths with high velocity

We obtain here an estimate of the probability that a particle moves “too fast”. In order to establish such an
estimate, done in Proposition 2.2, we first compute the probability of fast motion between two fixed bounded
domains in Rd.

For every bounded subsets A0 and A1 of Rd and every ε > 0 and δ ∈ ]0, 1], let Fm(A0, A1, ε, δ) denote the
event “at least a particle goes from A0 to A1 with an oscillation greater than ε in a time interval smaller than
δ”, i.e.

Fm(A0, A1, ε, δ) = {X ∈ C([0, 1],A), ∃i s.t. Xi(0) ∈ A0, Xi(1) ∈ A1 and w(Xi, δ) > ε}
where w(Xi, δ) = sup

|t−s|<δ
0�s,t�1

|Xi(t) −Xi(s)| is the usual modulus of continuity of the path Xi on [0, 1].

Lemma 2.1. For each A0, A1 ⊂ Rd bounded, each ε > 0, δ ∈]0, 1], η ∈ A and n ∈ N∗, we have:

Ql,ηn (Fm(A0, A1, ε, δ))) =
∫
P (X l,η,n(x, ·) ∈ Fm(A0, A1, ε, δ)) dνl,ηn (x) (6)

� 41ne−2Nϕ νl,ηn−1((R
d)n−1)

1
δ

exp
(
− ε2

5δ

)∫
Rd

(1IA0 + 1IA1)e
−ψl,η

dy

and

Ql,ηz (Fm(A0, A1, ε, δ))) �
(
41 z e−2Nϕ

) 1
δ

exp
(
− ε2

5δ

)∫
Rd

(1IA0 + 1IA1)e
−ψl,η

dy. (7)

From this lemma proved below, we easily deduce an estimate of the probability, under Ql,ηz , that a particle
starting from B(0,K) moves too fast. For every K ∈ N∗, ε > 0 and δ ∈]0, 1], let Fm(K, ε, δ) be the following
event:

Fm(K, ε, δ) = {X ∈ C([0, 1],A) such that ∃i, Xi(0) ∈ B(0,K) and w(Xi, δ) > ε} .
Proposition 2.2. The following upper bounds hold:

∀K ∈ N∗ ∀ε > 0 ∀δ ∈]0, 1] ∀η ∈ A
Ql,ηn (Fm(K, ε, δ)) � n Cd e−2Nϕ νl,ηn−1((R

d)n−1)
1
δ

exp
(
− ε2

6δ

)
Kd

Ql,ηz (Fm(K, ε, δ)) � z Cd e−2Nϕ 1
δ

exp
(
− ε2

6δ

)
Kd

where Cd is a constant depending only on dimension d. Similarly one has:

∀K ∈ N∗ ∀ε > 0 ∀δ ∈]0, 1] ∀η ∈ A
Ql,ηn (Fm(K, ε, δ)) � 246 n e−2Nϕ νl,ηn−1((R

d)n−1)
1
δ

exp
(
− ε2

5δ

) ∫
Rd

e−ψ
l,η(y) dy

Ql,ηz (Fm(K, ε, δ)) � 246 z e−2Nϕ 1
δ

exp
(
− ε2

5δ

) ∫
Rd

e−ψ
l,η(y) dy.
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Proof of Lemma 2.1. We first need an estimate of Ql,ηn (Fm(A0, A1, ε, δ)).
Let (X l,η,n, Ll,η,n) denote the unique strong solution of (E l,ηn ) starting from νl,ηn , and recall that the distri-

bution Ql,ηn of X l,η,n is time reversible on [0, 1]. By construction, the processes:

Wi(t) = X l,η,n
i (t) −X l,η,n

i (0) +
1
2

∫ t

0

∇iβ
l,η
n (X l,η,n(s))ds

−
∫ t

0

∑
j=1,...,n

(X l,η,n
i (s) −X l,η,n

j (s))dLl,η,nij (s), 1�i�n, 0�t�1

and Ŵi(t) = X l,η,n
i (1 − t) −X l,η,n

i (1) +
1
2

∫ 1

1−t
∇iβ

l,η
n (X l,η,n(s))ds

−
∫ 1

1−t

∑
j=1,...,n

(X l,η,n
i (s) −X l,η,n

j (s))dLl,η,nij (s), 1�i�n, 0�t�1

are both n-dimensional Brownian motions starting from 0. Remarking that

∀t ∈ [0, 1] X l,η,n(t) −X l,η,n(0) =
1
2

(
W (t) + Ŵ (1 − t) − Ŵ (1)

)
and using the equality in law between (X l,η,n(1 − ·), Ŵ ) and (X l,η,n,W ), we obtain:

Ql,ηn (Fm(A0, A1, ε, δ)) =
∫

(Rd)n

P

⎛⎜⎝ ∃i�n s.t. X l,η,n
i (x, 0) ∈ A0, X

l,η,n
i (x, 1) ∈ A1 and

sup
|t−s|<δ
0�s,t�1

|Wi(t) −Wi(s) + Ŵ (1 − t) − Ŵ (1 − s)| > 2ε

⎞⎟⎠ dνl,ηn (x)

�
∫
P (∃i�n s.t. xi ∈ A0 and w(Wi, δ) > ε) dνl,ηn (x)

+
∫
P (∃i�n s.t. xi ∈ A1 and w(Wi, δ) > ε) νl,ηn (x).

The right hand side is smaller than

n∑
i=1

νl,ηn (xi ∈ A0) P (w(Wi, δ) > ε) +
n∑
i=1

νl,ηn (xi ∈ A1) P (w(Wi, δ) > ε)

� n P (w(W1, δ) > ε)
(
νl,ηn (x1 ∈ A0) + νl,ηn (x1 ∈ A1)

)
.

We know from Appendix 5 that

P (w(W1, δ) > ε) � 41
δ

exp
(
− ε2

5δ

)
·

According to the definition (4) of βl,ηn , since a particle interacts with at most N other particles (cf. Rem. 1.1):

βl,ηn (x1, . . . , xn)�ψl,η(x1) + 2Nϕ+ βl,ηn−1(x2, . . . , xn) (8)

which implies that

νl,ηn (x1 ∈ A0) =
∫

(Rd)n

1Ix1∈A0 1IA(x1, . . . , xn) e−β
l,η
n (x1,...,xn) dx1 · · · dxn

� e−2Nϕ νl,ηn−1((R
d)n−1)

∫
A0

e−ψ
l,η(y) dy (9)
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and the same result holds for A1. This leads to the estimate:

Ql,ηn (Fm(A0, A1, ε, δ))� n e−2Nϕ νl,ηn−1((R
d)n−1)

41
δ

exp
(
− ε2

5δ

)∫
Rd

(1IA0 + 1IA1)e
−ψl,η

dy;

by summing over n we obtain the desired result:

Ql,ηz (Fm(A0, A1, ε, δ))) =
e−z2

dld

Z l,ηz

+∞∑
n=1

zn

n!
Ql,ηn (Fm(A0, A1, ε, δ)) ∩ (Rd)n)

� 41
e−z2

dld

Z l,ηz
z

(
+∞∑
n=1

zn−1

(n− 1)!
νl,ηn−1((R

d)n−1)

)
e−2Nϕ 1

δ
exp

(
− ε2

5δ

)∫
(1IA0 + 1IA1)e

−ψl,η

dy

�
(
41 z e−2Nϕ

) 1
δ

exp
(
− ε2

5δ

)∫
Rd

(1IA0 + 1IA1)e
−ψl,η

dy. �

Proof of Proposition 2.2. For j in N, let aj = K +
√

ε2

δ + 5j. The sequence (aj)j increases from a0 = K + ε√
δ

to +∞. Now for Q = Ql,ηn or Q = Ql,ηz consider

Q(Fm(K, ε, δ)) = Q (∃i, |Xi(0)|�K and w(Xi, δ) > ε)
� Q (∃i, |Xi(0)|�K and w(Xi, δ) > ε and |Xi(1)|�a0)

+
+∞∑
j=0

Q (∃i, |Xi(0)|�K and aj < |Xi(1)|�aj+1)

But |Xi(0)|�K and |Xi(1)| > aj imply that w(Xi, 1) > aj −K, so this is smaller than

� Q (∃i, |Xi(0)|�K, |Xi(1)|�a0 and w(Xi, δ) > ε)

+
+∞∑
j=0

Q (∃i, |Xi(0)|�K, aj < |Xi(1)| < aj+1 and w(Xi, 1) > aj −K) .

Using Lemma 2.1 we obtain:

Q(Fm(K, ε, δ)) � C(Q)
1
δ

exp
(
− ε2

5δ

)∫ (
1IB(0,K) + 1IB(0,a0)

)
e−ψ

l,η

dy

+ C(Q)
+∞∑
j=0

exp
(
−1

5

(
ε2

δ
+ 5j

))∫ (
1IB(0,K) + 1IB(0,aj+1)�B(0,aj)

)
e−ψ

l,η

dy

� C(Q)
δ

exp
(
− ε2

5δ

)∫ (
1IB(0,K) + 1IB(0,a0) +

+∞∑
j=0

e−j
(
1IB(0,K) + 1IB(0,aj+1)�B(0,aj)

))
e−ψ

l,η

dy

with C(Ql,ηn ) = 41 n e−2Nϕ νl,ηn−1((R
d)n−1) and C(Ql,ηz ) = 41 z e−2Nϕ.

Moreover, for j�1:

∫
B(0,aj+1)�B(0,aj)

e−ψ
l,η(y) dy � (aj+1)d |B(0, 1)| � 3d Kd |B(0, 1)| max

(
1,

ε√
δ

)d √
5(j + 1)

d
(10)
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and similarly:

∫
1IB(0,a0) e−ψ

l,η(y) dy � (a0)d |B(0, 1)| � 2d Kd |B(0, 1)| max
(

1,
ε√
δ

)d
.

Since
+∞∑
j=0

e−j � 2 and
+∞∑
j=0

(
√
j + 1)d e−j � 2 this leads to:

Q(Fm(K, ε, δ)) � C(Q)
1
δ

exp
(
− ε2

5δ

)
|B(0,K)| 3 × 3dmax

(
1,

ε√
δ

)d√
5
d
.

Finally

Ql,ηn (Fm(K, ε, δ)) � n e−2Nϕ νl,ηn−1((R
d)n−1) Cd

1
δ

exp
(
− ε2

6δ

)
Kd

and Ql,ηz (Fm(K, ε, δ)) � z e−2Nϕ Cd
1
δ

exp
(
− ε2

6δ

)
Kd

where Cd = 41 |B(0, 1)| 3 × 3d
√

5
d

supx∈R+ e−x
2/5 max(1, x)dex

2/6.
An alternative bound for Q(Fm(K, ε, δ)) may be obtained using the fact that each indicator function is

smaller than one:

Q(Fm(K, ε, δ)) � C(Q)
1
δ

exp
(
− ε2

5δ

) ∫
Rd

6 e−ψ
l,η(y) dy.

This completes the proof. �

2.3. Large chains of interacting particles

Recall that two particles interact instantaneously only if the distance between their centers is smaller than
R, the range of the potential ϕ. But more generally, a particle can have an influence on several ones during any
small time interval. To modelize this, we introduce the notion of (R+ ε)-chain of particles.

Definition 2.3. Let x ∈ A and ε > 0. Each subset {x1, · · · , xn} of x verifying |x1 − x2| � R+ ε, · · · , |xn−1 −
xn| � R+ ε is called an (R + ε)-chain of particles of x.

Now, let us fix K ∈ N∗, M ∈ N∗ and ε > 0 and let Ch(K,M,R + ε) denote the event that there exists an
(R+ ε)-chain of M particles with one end inside of B(0,K), that is:

Ch(K,M,R+ε) =
{
x ∈ A, ∃{x1, · · · , xM} subset of x, |x1| < K and |x1−x2|�R+ε, · · · , |xM−1−xM |�R+ε

}
.

Our aim in this subsection is to estimate the µl,ηz -probability that such a chain exists.

Proposition 2.4. For every M ∈ N∗, ε > 0, l ∈ N∗, η ∈ A and K ∈ R+, we have:

µl,ηz

( +∞⋃
K=1

Ch(K,M,R+ ε)
)

�
(
z |B(0, 1)| exp(−2Nϕ) ((R+ ε)d − rd)

)M−1

.

From this proposition, we easily deduce the following corollary used in Section 2.4.
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Corollary 2.5. There exists a critical activity zc =
exp(2Nϕ)

(Rd−rd) |B(0,1)| such that for each z > 0, ε ∈]0, 1[ and
M ∈ N∗,

sup
l∈N∗

sup
η∈A

µl,ηz

( +∞⋃
K=1

Ch(K,M,R+ ε)
)

�
(
z

zc

(R+ ε)d − rd

Rd − rd

)M−1

.

In particular, for any z < zc there exists ε > 0 such that

lim
M→+∞

sup
l∈N∗

sup
η∈A

µl,ηz

( +∞⋃
K=1

Ch(K,M,R+ ε)
)

= 0 .

Proof of Proposition 2.4. Each configuration in (Rd)n ∩ Ch(K,M,R + ε) has exactly n!
(n−M)! representants in

(Rd)n such that (xn−M+1, . . . , xn) is a fixed M -uple verifying |xn−M+1| < K and |xn−M+1 − xn−M+2|�R +
ε, · · · , |xn−1 − xn|�R+ ε. Since βl,ηn (x1, . . . , xn) and 1IA(x1, . . . , xn) do not change by permutation of the xi’s,
this leads to:

νl,ηn (Ch(K,M,R+ ε))

=
n!

(n−M)!

∫
(Rd)n

1I|xn−M+1|<K 1IA(x1, . . . , xn) e−β
l,η
n (x1,...,xn)

n−1∏
i=n−M+1

1I|xi−xi+1|�R+ε dx1 · · · dxn.

Remarking that
1IA(x1, . . . , xn) � 1I|xn−xn−1|�r 1IA(x1, . . . , xn−1),

using again inequality (8) and integrating with respect to xn we obtain:

νl,ηn (Ch(K,M,R+ ε))

� n
(n− 1)!

((n− 1) − (M − 1))!

∫
(Rd)n

1I|xn−M+1|<K

( n−2∏
i=n−M+1

1Ir�|xi−xi+1|�R+ε

)
1IA(x1, . . . , xn−1)

1Ir�|xn−xn−1|�R+εe−2Nϕ e−β
l,η
n−1(x1,...,xn−1) dx1 · · ·dxn

� n e−2Nϕ ((R + ε)d − rd) |B(0, 1)| νl,ηn−1(Ch(K,M − 1, R+ ε)).

By definition of µl,ηz (see (5))

µl,ηz (Ch(K,M,R+ ε)) =
e−z2

dld

Z l,ηz

∑
n�M

zn

n!
νl,ηn (Ch(K,M,R+ ε)). (11)

Using the above inequality and iterating the result on M , we obtain:

µl,ηz (Ch(K,M,R+ ε))

� e−2Nϕ ((R + ε)d − rd) |B(0, 1)| e−z2
dld

Z l,ηz
z
∑
n�M

zn−1

(n− 1)!
νl,ηn−1(Ch(K,M − 1, R+ ε)

� z e−2Nϕ ((R + ε)d − rd) |B(0, 1)| µl,ηz (Ch(K,M − 1, R+ ε))

�
(
z e−2Nϕ ((R + ε)d − rd)|B(0, 1)|

)M−1

.

Since the event Ch(K,M,R+ ε) increases as a function of K

µl,ηz

( +∞⋃
K=1

Ch(K,M,R+ ε)
)

�
(
z |B(0, 1)| exp(−2Nϕ) ((R+ ε)d − rd)

)M−1
. �



66 M. FRADON AND S. RŒLLY

2.4. Estimates on the set of regular paths

Let B(m, a, ε) denote the following set of bad paths, in which either a particle has a high oscillation in a
small time interval or belongs to a large chain of interacting particles:

∀m ∈ N∗ ∀a� 1 ∀ε > 0 B(m, a, ε) = B̃(m, a, ε) ∪ ˜̃B(m, ε)

where B̃(m, a, ε) =
{
X ∈ C([0, 1],A), ∃i, w(Xi,

1
m

) >
ε

4
and ∃t�1, |Xi(t)|�a+ 2m2

}

and ˜̃B(m, ε) =

{
X ∈ C([0, 1],A),

∃k ∈ {0, . . . ,m− 1}, there exists an
(R+ ε) − chain of particles of X( km )
with diameter greater than m−R− ε

}
.

Let us remark that a �→ B̃(m, a, ε) is non-decreasing but B̃(m, a, ε) is not monotone as a function of m and ε.
Our aim in this section is to estimate the probability of B(m, a, ε) under Ql,ηz .

Proposition 2.6. For each m ∈ N∗ and a� 1:

sup
l∈N∗

sup
η∈A

Ql,ηz (B̃(m, a, ε)) � z C′
d e−2Nϕ ad m2d exp

(
− ε2

96
m

)

where the constant C′
d only depends on dimension d. One also has, for m ∈ N∗:

sup
l∈N∗

sup
η∈A

Ql,ηz

(
˜̃B(m, ε)

)
� m

(
z |B(0, 1)| exp(−2Nϕ) ((R+ ε)d − rd)

)[ m
R+ε ]

.

If z < zc and ε is small enough (depending on z), this implies that the left hand side decreases exponentially
fast as a function of m.

Proof of Proposition 2.6.

Ql,ηz (B̃(m, a, ε)) � Ql,ηz

(
∃i, w(Xi,

1
m

) >
ε

4
and |Xi(0)|�a+ 3m2

)
+ Ql,ηz

(∃i, |Xi(0)| > a+ 3m2 and ∃t�1, |Xi(t)|�a+ 2m2
)
.

The second term of the sum is smaller than

+∞∑
j=1

Ql,ηz
(∃i, a+ (2 + j)m2 < |Xi(0)|�a+ (3 + j)m2 and w(Xi, 1) > jm2

)
.
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Thus using Proposition 2.2, we obtain:

Ql,ηz (B̃(m, a, ε)) � Ql,ηz

(
Fm

(
a+ 3m2,

ε

4
,

1
m

))
+

+∞∑
j=1

Ql,ηz
(Fm(a+ (3 + j)m2, jm2, 1)

)
� z Cd e−2Nϕ m exp

(
− ε2

96
m
)

(a+ 3m2)d

+
+∞∑
j=1

z Cd e−2Nϕ exp
(
− j2m4

6

)
(a+ (3 + j)m2)d

� z Cd e−2Nϕ

(
m exp

(
− ε2

96
m
)

(a+ 3m2)d +
+∞∑
j=1

exp
(
− j2m4

6

)
(a+ (3 + j)m2)d

)

� z Cd e−2Nϕ 8d ad m2d

(
exp

(
− ε2

96
m
)

+
+∞∑
j=1

exp
(
− j2m4

6

)
jd
)

� z Cd e−2Nϕ 8d ad m2d exp
(
− ε2

96
m
)(

1 +
+∞∑
j=1

jd exp
(
− j2

12

))
.

Defining the constant C′
d equal to Cd 8d

(
1 +

∑+∞
j=1 j

d exp
(
− j2

12

))
< +∞ we obtain

Ql,ηz (B̃(m, a, ε)) � z C′
d e−2Nϕ ad m2d exp

(
− ε2

96
m

)
.

We now have to find a similar estimate for

Ql,ηz

(
˜̃B(m, ε)

)
= Ql,ηz

(
∃k ∈ {0, . . . ,m− 1}, there exists an (R+ ε) − chain of particles

of X( km ) with diameter greater than m−R− ε

)
.

Thanks to the stationarity of Ql,ηz , this probability is smaller than

m−1∑
k=0

µl,ηz

(
x ∈ A, there exists an (R+ ε) − chain of particles

of x with diameter greater than m−R− ε

)
.

It is necessary to have at least [ m
R+ε ] + 1 particles ([x] denotes the integer part of x) to construct a chain of

length greater than m−R− ε where each particle is at distance smaller than (R+ ε) from its neighbors. Thus
the above quantity is smaller than m µl,ηz

(⋃+∞
K=1 Ch(K, [ m

R+ε ] + 1, R+ ε)
)
. Due to Proposition 2.4, this is

bounded from above by
m
(
z |B(0, 1)| exp(−2Nϕ) ((R + ε)d − rd)

)[ m
R+ε ]

. �

3. Convergence of the approximations

The aim of this section is to prove the convergence of the sequence (X l,x)l to a limit process X∞,x. We shall
check in the next section that X∞,x is a solution of (E).

We fix x ∈ A. As usual for infinite-dimensional stochastic equations, we study X l,x(ω) for each ω in a set
Ωx0 ⊂ Ω and prove that the set Ω � Ωx0 is negligible.

For each ρ ∈ N∗ and l�ρ− r + 1, let m(ρ, l) and a(ρ, l) denote the following integers:

m(ρ, l) =
[√

l − ρ− r
]
− 1 and a(ρ, l) = ρ+m(ρ, l). (12)
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Remark that
a(ρ, l) +m(ρ, l)2 + 1 < l − r (13)

and
∀C > 0

∑
l

a(ρ, l)d m(ρ, l)2d e−Cm(ρ,l) < +∞ . (14)

Let 1/N denote the set {1, 1/2, 1/3, · · ·} of real numbers ε such that 1/ε ∈ N. Let us now define the set Ωx0 as
follows:

Ωx0 =
{
ω ∈ Ω s.t. ∃ε0 ∈ 1/N ∀ε�ε0 ∀ρ ∈ N∗ ∃l0 ∈ N∗, ∀l�l0

X l,x(ω, ·) 	∈ B (m(ρ, l), a(ρ, l), ε) and X l+1,x(ω, ·) 	∈ B (m(ρ, l), a(ρ, l), ε)
}

(15)

= lim inf
ε→0

⋂
ρ∈N∗

lim inf
l→+∞

{
X l,x 	∈ B (m(ρ, l), a(ρ, l), ε)

} ∩ {X l+1,x 	∈ B (m(ρ, l), a(ρ, l), ε)
}
.

Proposition 3.1. For every x ∈ A, every ω in Ωx0 and every i ∈ N, the sequence of processes (X l,x
i (ω, t), Ll,xij (ω, t),

j ∈ N, t ∈ [0, 1])l∈N∗ elements of C([0, 1],Rd ×RN
+) converges in the sense of uniform convergence of continuous

paths to a limit denoted by (X∞,x
i (ω, t), L∞,x

ij (ω, t), j ∈ N, t ∈ [0, 1]). Moreover, this sequence is stationary: for
any x ∈ A, ω ∈ Ωx0 , i ∈ N

∃l0 ∀l�l0, X l,x
i (ω, ·) ≡ X∞,x

i (ω, ·) on [0, 1], and, ∀j ∈ N Ll,xij (ω, ·) ≡ L∞,x
ij (ω, ·) on [0, 1].

Proposition 3.2. For each Gibbs measure µ ∈ G(z) with z < zc one has
∫
M
P (Ωx0) dµ(x) = 1. This means

that defining A by A = {x ∈ A, P (Ωx0) = 1}, one has

∀z < zc ∀µ ∈ G(z) µ(A) = 1.

Proof of Proposition 3.2. Let us fix µ ∈ G(z). We want to prove that
∫
A P (Ω � Ωx0) dµ(x) = 0. By definition

of Ωx0

P (Ω � Ωx0) = P

(
∀ε0 ∈ 1/N, ∃ε�ε0 ∃ρ ∈ N∗ ∀l0 ∈ N∗ ∃l�l0, X l,x ∈ B (m(ρ, l), a(ρ, l), ε) or

X l,x ∈ B (m(ρ, l − 1), a(ρ, l− 1), ε)

)
�

∑
ε�ε0

∑
ρ∈N∗

P
(

lim sup
l→+∞

{
X l,x ∈ B (m(ρ, l), a(ρ, l), ε) ∪ B (m(ρ, l − 1), a(ρ, l− 1), ε)

})
for all ε0 ∈ 1/N. Thanks to Borel-Cantelli lemma, this vanishes as soon as there exists ε0 ∈ 1/N such that for
all ε � ε0 and ρ ∈ N∗

+∞∑
l=ρ+2

∫
A
P
(
X l,x ∈ B (m(ρ, l), a(ρ, l), ε) ∪ B (m(ρ, l− 1), a(ρ, l− 1), ε)

)
dµ(x) < +∞ . (16)

We shall show (step 1) that for l ∈ N∗ and Λ = [−l, l]d, the following inequalities hold:

sup
Θ∈F1

∣∣∣∣∫A P (X l,x ∈ Θ)dµ(x) −
∫
A
Ql,ηz (Θ)dµ(η)

∣∣∣∣ �
∫
A

sup
‖f‖�1

∣∣∣∣∫A f dµ(.|η([−l,l]d)c) −
∫
A
f dµl,ηz

∣∣∣∣ dµ(η)

∀η ∈ A sup
‖f‖�1

∣∣∣∣∫A f(x) dµ(x|η([−l,l]d)c) −
∫
A
f(x) dµl,ηz (x)

∣∣∣∣ � 2
(

1 − ZΛ,η
z

Z l,ηz

)
(17)
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and (step 2) that

∀η ∈ A 0 � 1 − ZΛ,η
z

Z l,ηz
� z exp(−2Nϕ)

∫
Rd

1Iψl,η(y)>0 exp(−ψl,η(y)) dy. (18)

Inequality (18) and assumption (3) on ψl,η imply that

+∞∑
l=1

∫
A

(
1 − ZΛ,η

z

Z l,ηz

)
dµ(η) < +∞.

Then for each ρ and l fixed, we choose Θ = B (m(ρ, l), a(ρ, l), ε) ∪ B (m(ρ, l − 1), a(ρ, l − 1), ε) . Thanks to (17)
and (18), in order to prove (16), it suffices to prove that there exists ε0 ∈ 1/N such that for all ε < ε0 and
ρ ∈ N∗

+∞∑
l=ρ+2

∫
Ql,ηz

(
B̃(m(ρ, l), a(ρ, l), ε) ∪ B̃(m(ρ, l − 1), a(ρ, l − 1), ε)

)
dµ(η)

+
+∞∑
l=ρ+2

∫
Ql,ηz

(
˜̃B(m(ρ, l), ε) ∪ ˜̃B(m(ρ, l− 1), ε)

)
dµ(η) < +∞ .

By proposition 2.6, this is smaller than

∫
z C′

d e−2Nϕ
+∞∑
l=ρ+2

a(ρ, l)d m(ρ, l)2d exp
(
− ε2

96
m(ρ, l)

)
+a(ρ, l− 1)d m(ρ, l − 1)2d exp

(
− ε2

96
m(ρ, l− 1)

)
dµ(η)

+
∫ +∞∑

l=ρ+2

m(ρ, l)
(
z |B(0, 1)| exp(−2Nϕ) ((R + ε)d − rd)

)[ m(ρ,l)
R+ε ]

+m(ρ, l− 1)
(
z |B(0, 1)| exp(−2Nϕ) ((R + ε)d − rd)

)[ m(ρ,l−1)
R+ε ]

dµ(η).

Thus we only have to prove that

∃ε0 ∈ 1/N ∀ε < ε0 ∀ρ ∈ N∗
+∞∑
l=ρ+2

a(ρ, l)d m(ρ, l)2d exp
(
− ε2

96
m(ρ, l)

)
< +∞

and
+∞∑
l=ρ+2

m(ρ, l)
(
z |B(0, 1)| exp(−2Nϕ) ((R+ ε)d − rd)

)[ m(ρ,l)
R+ε ]

< +∞.

The first series converges for each ε ∈ 1/N and each ρ ∈ N∗ thanks to (14). The second one also converges
thanks to (14), as soon as

(
z |B(0, 1)| exp(−2Nϕ) ((R + ε0)d − rd)

)
< 1, which is true for ε0 small enough

when z < zc. It remains to prove (17) and (18).
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Step 1. Proof of (17)
Let us fix l ∈ N∗ and Λ = [−l, l]d. For each event Θ on C([0, 1]), by definition of Ql,ηz :∫

A
P (X l,x ∈ Θ)dµ(x) −

∫
A
Ql,ηz (Θ)dµ(η)

�
∫
A

∫
A
P (X l,xηΛc ∈ Θ) dµ(x|ηΛc ) dµ(η) −

∫
A

∫
A
P (X l,η,Card(x)(x, ·) ∈ Θ) dµl,ηz (x) dµ(η).

If xη ∈ A then P (X l,η,Card(x)(x, ·) ∈ Θ) = P (X l,x,ηΛc ∈ Θ) and since this quantity is smaller than 1, we obtain:∣∣∣∣∫A P (X l,x ∈ Θ)dµ(x) −
∫
A
Ql,ηz (Θ)dµ(η)

∣∣∣∣�∫A sup
‖f‖�1

∣∣∣∣∫A f(x) dµ(x|ηΛc) −
∫
A
f(x) dµl,ηz (x)

∣∣∣∣ dµ(η).

Since µ ∈ G(z), using the conditional density of µ with respect to πz and the definition of µl,ηz , one has for each
f : A → R bounded by 1:∣∣∣∣∫A f(x) dµ(x|ηΛc ) −

∫
A
f(x) dµl,ηz (x)

∣∣∣∣
=
∣∣∣e−z|Λ|

ZΛ,η
z

[
f(ηΛc) +

+∞∑
n=1

zn

n!

∫
Λn

f(yηΛc) 1IA(yηΛc) exp
(
−

∑
1�i<j�n

ϕ(yi − yj) −
∑

1�i�n
ηj∈Λc

ϕ(yi − ηj)
)

dy
]

−e−z2
dld

Z l,ηz

[
f(ηΛc) +

+∞∑
n=1

zn

n!

∫
(Rd)n

f(yηΛc) e−β
l,η
n (y) 1IA(y) dy

]∣∣∣.
Note that βl,ηn (y) =

∑
1�i<j�n ϕ(yi − yj) +

∑
1�i�n
ηj∈Λc

ϕ(yi − ηj) for any y ∈ Λn verifying yηΛc ∈ A, because

ψl,η(yi) = 0 for each i in this case. Thus the above quantity is equal to∣∣∣∣∣f(ηΛc)

[
e−z|Λ|

ZΛ,η
z

− e−z2
dld

Z l,ηz

]
+

+∞∑
n=1

zn

n!

[
e−z|Λ|

ZΛ,η
z

− e−z2
dld

Z l,ηz

]∫
Λn

f(yηΛc) 1IA(yηΛc) e−β
l,η
n (y) dy

−e−z2
dld

Z l,ηz

+∞∑
n=1

zn

n!

∫
(Rd)n

f(yηΛc) e−β
l,η
n (y) (1IA(y) − 1IA(yηΛc) 1IΛn(y)) dy

∣∣∣∣∣ .
Recall e−z|Λ| = e−z2

dld and

ZΛ,η
z = e−z|Λ|

[
1 +

+∞∑
n=1

zn

n!

∫
Λn

1IA(yηΛc) e−β
l,η
n (y) dy

]

� e−z2
dld

[
1 +

+∞∑
n=1

zn

n!

∫
(Rd)n

1IA(y) e−β
l,η
n (y) dy

]
= Zl,ηz .

We then obtain:∣∣∣∣∫A f(x) dµ(x|ηΛc ) −
∫
A
f(x) dµl,ηz (x)

∣∣∣∣
�
∣∣∣∣∣e−z|Λ|

ZΛ,η
z

− e−z2
dld

Z l,ηz

∣∣∣∣∣ ez|Λ|ZΛ,η
z +

e−z2
dld

Z l,ηz

∣∣∣ez2dldZ l,ηz − ez|Λ|ZΛ,η
z

∣∣∣ = 2
(

1 − ZΛ,η
z

Z l,ηz

)
and (17) is proven.
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Step 2. Proof of (18)
This final step of the proof of Proposition 3.2 is straightforward, simply using the definitions of Zl,ηz , ZΛ,η

z

and ψl,η:

1 − ZΛ,η
z

Z l,ηz
=

e−z2
dld

Z l,ηz

+∞∑
n=0

zn

n!

∫
(Rd)n

1IA(ξ1, . . . , ξn) e−β
l,η
n (ξ1,...,ξn)

(
1 −

n∏
i=1

1IΛ−B(ηΛc ,r)(ξi)
)

dξ1 · · · dξn

� e−z2
dld

Z l,ηz

+∞∑
n=0

zn

n!

∫
(Rd)n

1IA(ξ1, . . . , ξn) e−β
l,η
n (ξ1,...,ξn)

( n∑
i=1

1Iψl,η(ξi)>0

)
dξ1 · · · dξn

� e−z2
dld

Z l,ηz

+∞∑
n=0

zn

n!
n

∫
(Rd)n∩A

e−ψ
l,η(ξ1) exp(−2Nϕ) e−β

l,η
n−1(ξ2,...,ξn)1Iψl,η(ξ1)>0 dξ1 · · · dξn

� e−z2
dld

Z l,ηz

+∞∑
n=1

z
zn−1

(n− 1)!
νl,ηn−1((R

d)n−1) exp(−2Nϕ)
∫

Rd

1Iψl,η(y)>0 exp(−ψl,η(y)) dy

� z exp(−2Nϕ)
∫

Rd

1Iψl,η(y)>0 exp(−ψl,η(y)) dy . �

In order to prove Proposition 3.1, we need the following lemma which states that, for nice trajectories only a
finite number of other particles interacts with each fixed particle. Thus dynamics (E) reduces to an infinite
number of SDE involving only a finite random number of particles up to time 1.

Lemma 3.3. Let us assume that the path X ∈ C([0, 1]) does not belong to B(m, ρ+m, ε) for some ε ∈ 1/N∗,
some m ∈ N∗ and some ρ ∈ N∗. For k in {0, 1, · · · ,m − 1} we define Jk(X) as the set of indices i ∈ N such
that either |Xi( km )|�ρ + m2 − km + R + ε or Xi( km ) belongs to a (R + ε)-chain of particles which intersects
B(0, ρ+m2 − km+R+ ε). Then the following inclusions hold:

{i ∈ N, |Xi(0)|�ρ} ⊂ Jm−1(X) ⊂ · · · ⊂ Jk+1(X) ⊂ Jk(X) ⊂ · · · ⊂ J0(X).

Particles of Jk(X) stay around the origin in the following sense:

∀i ∈ Jk(X) ∀t ∈
[
k

m
,
k + 1
m

]
|Xi(t)| � ρ+m2 +m+ 1.

They stay also far away from the others:

∀i ∈ Jk(X) ∀j 	∈ Jk(X) ∀t ∈
[
k

m
,
k + 1
m

]
|Xi(t) −Xj(t)| > R+

ε

2
· (19)

Proof of Lemma 3.3. The set Jk(X) is defined as the set of indices i ∈ N such that Xi( km ) belongs to B(0, ρ+
m2 − km+ R + ε) or is connected to B(0, ρ+m2 − km+ R+ ε) by some (R + ε)-chain of particles of X( km );
thus

∀j 	∈ Jk(X)
∣∣∣∣Xj

(
k

m

)∣∣∣∣ > ρ+m2 − km+R + ε

and

∀i ∈ Jk(X) ∀j 	∈ Jk(X)
∣∣∣∣Xi

(
k

m

)
−Xj

(
k

m

)∣∣∣∣ > R+ ε.

Since X 	∈ B(m, ρ+m, ε) then X( km ) does not include any (R+ ε)-chain of particles with diameter greater than
m−R− ε:

∀i ∈ Jk(X)
∣∣∣∣Xi

(
k

m

)∣∣∣∣ � (ρ+m2 − km+R+ ε) + (m−R− ε) = ρ+m2 − (k − 1)m. (20)
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Again since X 	∈ B(m, ρ+m, ε), no particle of X entering B(0, ρ+m+ 2m2) moves for more than ε
4 during a

time interval of length 1
m :

∀i ∈ Jk(X) ∀j 	∈ Jk(X) ∀t ∈
[
k

m
,
k + 1
m

]
|Xi(t) −Xj(t)| > R+

ε

2

and

∀i ∈ Jk(X) ∀t ∈
[
k

m
,
k + 1
m

]
|Xi(t)| � ρ+m2 − (k − 1)m+

ε

4
� ρ+m2 +m+ 1.

Moreover

∀j 	∈ Jk(X)
∣∣∣∣Xj

(
k + 1
m

)∣∣∣∣ > ρ+m2 − km+R +
3
4
ε > ρ+m2 − km;

using (20) this leads to

j 	∈ Jk(X) =⇒ j 	∈ Jk+1(X)

which implies the decreasing property of the sets Jk(X).
Now, using once more the small velocity property of X , we see that

|Xi(0)|�ρ =⇒ |Xi(1)|�ρ+
ε

4
m � ρ+m2 − (m− 1)m+R+ ε =⇒ i ∈ Jm−1(X)

and the proof is complete. �

Proof of Proposition 3.1. In this whole proof, x ∈ A, ω ∈ Ωx0 and ρ ∈ N∗ are fixed; we also fix a corresponding
ε ∈ 1/N as in the definition of Ωx0 and an l�l0 associated to ω, ε, ρ as in the definition of Ωx0 . So m(ρ, l) and
a(ρ, l) are fixed too; for simplicity they will be denoted by m and a.

Since X l,x(ω, ·) 	∈ B(m, a, ε) and X l+1,x(ω, ·) 	∈ B(m, a, ε) with a = m+ ρ, the results obtained in Lemma 3.3
hold for X l,x(ω, ·) and X l+1,x(ω, ·). In particular, recalling (13) we have for each k in {0, 1, · · · ,m− 1}:

∀i ∈ Jk(X l,x(ω, ·)) ∀t ∈
[
k

m
,
k + 1
m

]
|X l,x

i (t)| � ρ+m2 +m+ 1 < l − r =⇒ ψl,x(X l,x
i (t)) = 0

and since

∀i ∈ Jk(X l,x(ω, ·)) ∀j 	∈ Jk(X l,x(ω, ·)) ∀t ∈
[
k

m
,
k + 1
m

]
|X l,x

i (t) −X l,x
j (t)| > R+

ε

2

no interaction is possible during the time interval
[
k
m ,

k+1
m

]
between the particles of Jk(X l,x(ω, ·)) and the other

particles. In this case equation (E l,ηn ) verified by X l,x(ω) during the time interval
[
k
m ,

k+1
m

]
reduces to the

following equation (E(k, Jk, X l,x)) for the indices i ∈ Jk(X l,x(ω, ·)):

X l,x
i (ω, t) = X l,x

i

(
ω,

k

m

)
+Wi(ω, t) −Wi

(
ω,

k

m

)
− 1

2

∫ t

k
m

∑
j∈Jk(Xl,x(ω,·))

∇ϕ(X l,x
i (ω, s) −X l,x

j (ω, s)) ds

+
∫ t

k
m

∑
j∈Jk(Xl,x(ω,·))

(X l,x
i (ω, s) −X l,x

j (ω, s)) dLl,xij (ω, s). (21)
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For the same reasons, the equation (el+1) verified by X l+1,x(ω, ·) during the time interval
[
k
m ,

k+1
m

]
reduces to

the following equation (E(k, Jk, X l+1,x)) for the indices i ∈ Jk(X l+1,x(ω, ·)):

X l+1,x
i (ω, t) = X l+1,x

i

(
ω,

k

m

)
+Wi(ω, t)−Wi

(
ω,

k

m

)
− 1

2

∫ t

k
m

∑
j∈Jk(Xl+1,x(ω,·))

∇ϕ(X l+1,x
i (ω, s)−X l+1,x

i (ω, s))ds

+
∫ t

k
m

∑
j∈Jk(Xl+1,x(ω,·))

(X l+1,x
i (ω, s) −X l+1,x

i (ω, s)) dLl+1,x
ij (ω, s). (22)

But sinceX l,x(ω, 0) = X l+1,x(ω, 0) = x and Ll,x(ω, 0) = Ll+1,x(ω, 0) = 0, sets J0(X l,x(ω, ·)) and J0(X l+1,x(ω, ·))
are equal and equations (21) and (22) coincide for k = 0. The strong uniqueness of the solution then implies:

∀t ∈ [0,
1
m

] ∀i, j ∈ J0(X l,x(ω, ·)) = J0(X l+1,x(ω, ·))
X l,x
i (ω, t) = X l+1,x

i (ω, t) and Ll,xij (ω, t) = Ll+1,x
ij (ω, t)

and because J1(X l,x(ω, ·)) ⊂ J0(X l,x(ω, ·)) (and idem for J1(X l+1,x(ω, ·))) this in turn implies that
J1(X l,x(ω, ·)) = J1(X l+1,x(ω, ·)). But again, since

∀i, j ∈ J1(X l,x(ω, ·)) = J1(X l+1,x(ω, ·)) X l,x
i

(
ω,

1
m

)
= X l+1,x

i

(
ω,

1
m

)
and Ll,xij

(
ω,

1
m

)
= Ll+1,x

ij

(
ω,

1
m

)

equations (21) and (22) coincide for k = 1, and the strong uniqueness implies X l,x
i (ω, .) ≡ X l+1,x

i (ω, .)
(and Ll,xij (ω, .) ≡ Ll+1,x

ij (ω, .)) on [ 1
m ,

2
m ] for i in J1(X l,x(ω, ·)) = J1(X l+1,x(ω, ·), which in turn implies that

J2(X l,x(ω, ·)) = J2(X l+1,x(ω, ·).
By induction, we thus obtain that for all k ∈ {1, . . . ,m− 1}, Jk(X l,x(ω, ·)) = Jk(X l+1,x(ω, ·)) and

∀i, j ∈ Jk(X l,x(ω, ·)), t ∈
[
0,
k + 1
m

]
, X l,x

i (ω, t) = X l+1,x
i (ω, t) and Ll,xij (ω, t) = Ll+1,x

ij (ω, t).

Using the inclusion chain {i ∈ N, |xi|�ρ} ⊂ Jm−1(X) ⊂ · · · ⊂ J1(X) ⊂ J0(X) which holds forX = X l,x(ω, ·)
and X = X l+1,x(ω, ·) becauseX l,x(ω, 0) = X l+1,x(ω, 0) = x, we obtain that X l,x

i (ω, ·) and X l+1,x
i (ω, ·) are equal

on [0, 1] for i’s such that |xi|�ρ and the same result holds for (Ll,xij (ω, ·))i,j and (Ll+1,x
ij (ω, ·))i,j because both

local times coincide if j in J0(X l,x(ω, ·)) and identically vanish otherwise.
Since ρ may be chosen arbitrary large, Proposition 3.1 is proven. �

4. Remaining proofs

The main Theorems 1.3, 1.4 and 1.5 are now direct consequences of Propositions 4.1, 4.4 and 4.5 enounced
and proved in this section.

In order to prove these propositions, we need some more notations. We first fix x ∈ A. For m̃ ∈ N∗, ã�1 and
ε ∈ 1/N fixed, let Ωx(m̃, ã, ε) be the set of ω’s such that X l,x(ω, ·) does not belong to B̃(m̃, ã, ε) for an infinite
number of indices l:

Ωx(m̃, ã, ε) =
{
ω ∈ Ω : ∀p ∈ N ∃l�p, X l,x(ω, .) 	∈ B̃(m̃, ã, ε)

}
= lim sup

l→+∞
{X l,x 	∈ B̃(m̃, ã, ε)}.
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We also define

Ωx1 =
{
ω ∈ Ω s.t. ∀ε ∈ 1/N for ρ large enough and for an infinite number of l’s X l,x 	∈ B̃(ρ,R, ε)

}
=

⋂
ε∈1/N

lim inf
ρ→+∞ Ωx(ρ,R, ε). (23)

We have the following result:

Proposition 4.1. For every x ∈ A and ω ∈ Ωx0 ∩Ωx1 , the process (X∞,x(ω, .), L∞,x
ij (ω, .)) satisfies equation (E)

with X∞,x(ω, 0) = x. Thus, for any x ∈ A = {ξ ∈ A : P (Ωξ0 ∩ Ωξ1) = 1}, the process (X∞,x, L∞,x
ij ) is a solution

of (E) with initial condition x. Moreover for each z < zc and µ ∈ G(z) µ(A) = 1.

Before proving this proposition, we first establish some useful results on Ωx(m̃, ã, ε) and Ωx1 .

Lemma 4.2. Let µ be a Gibbsian measure in G(z). For each ε ∈ 1/N, m̃ ∈ N∗ and ã� 1, one has∫
P (Ωx(m̃, ã, ε)c)dµ(x) � z C′

d e−2Nϕ ãd m̃2d exp
(
− ε2

96
m̃

)
.

As corollary ∫
P (Ωx1)dµ(x) = 1 .

Lemma 4.3. For each m̃ ∈ N∗, ã�1 and ε ∈ 1/N one also has

∀ω ∈ Ωx(m̃, ã, ε) X∞,x(ω, ·) 	∈ B̃(m̃, ã, ε)

and consequently

∀x ∈ A ∀ω ∈ Ωx1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ�ρ0 X∞,x(ω, ·) 	∈ B̃(ρ,R, ε) .

Proof of Lemma 4.2. By definition of Ω(m̃, ã, ε) one has

Ωx(m̃, ã, ε)c = lim inf
l→+∞

{
ω ∈ Ω s.t. X l,x(ω, ·) ∈ B̃(m̃, ã, ε)

}
.

By Fatou lemma ∫
P (Ωx(m̃, ã, ε)c)dµ(x) � lim inf

l→+∞

∫
P (X l,x(ω, ·) ∈ B̃(m̃, ã, ε))dµ(x).

Using inequality (17) (see the proof of Prop. 3.2 step 1) applied to the event Θ = B̃(m̃, ã, ε) we obtain the
following bound:∫

P (Ωx(m̃, ã, ε)c)dµ(x) � lim inf
l→+∞

∫
A
Ql,ηz (B̃(m̃, ã, ε)) dµ(η) + 2

∫
A

(
1 − ZΛ,η

z

Z l,ηz

)
dµ(η);

thus by Proposition 2.6∫
P (Ωx(m̃, ã, ε)c)dµ(x)

�
∫
A
z C′

d e−2Nϕ ãd m̃2d exp
(
− ε2

96
m̃

)
dµ(η) + 2 lim

l→+∞

∫
A

(
1 − ZΛ,η

z

Z l,ηz

)
dµ(η).
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Inequality (18) implies that lim
l→+∞

∫
A

(
1 − ZΛ,η

z

Z l,ηz

)
dµ(η) = 0 thus

∫
P (Ωx(m̃, ã, ε)c)dµ(x) � z C′

d e−2Nϕ ãd m̃2d exp
(
− ε2

96
m̃

)
.

Replacing m̃ and ã by ρ and R in the above inequality, we obtain:

∀ε ∈ 1/N
+∞∑
ρ=1

∫
P (Ωx(ρ,R, ε)c)dµ(x) < +∞.

By Borel-Cantelli lemma, this leads to:

∀ε ∈ 1/N
∫
P (lim sup

ρ→+∞
Ωx(ρ,R, ε)c)dµ(x) = 0

and consequently ∫
P ((Ωx1)c)dµ(x) =

∫
P (

⋃
ε∈1/N

lim sup
ρ→+∞

Ωx(ρ,R, ε)c)dµ(x) = 0. �

Proof of Lemma 4.3. According to Proposition 3.1

∀x ∈ A ∀ω ∈ Ωx0 ∀i ∈ N ∃l0 ∈ N ∀l�l0 X∞,x
i (ω, ·) ≡ X l,x

i (ω, ·) on [0, 1].

Consequently, for x ∈ A and ω ∈ Ωx(m̃, ã, ε) ∩ Ωx0 and for i ∈ N, there exists an l� l0 such that X l,x(ω, ·) 	∈
B̃(m̃, ã, ε), i.e.

X∞,x
i (ω, ·) = X l,x

i (ω, ·) on [0, 1] and w(X l,x
i (ω, ·), 1

m̃
)� ε

4
or ∀t� 1, |X l,x

i (ω, t)| > ã+ 2m̃2 .

Thus

∀x ∈ A ∀ω ∈ Ωx(m̃, ã, ε) ∩ Ωx0 ∀i ∈ N w(X∞,x
i (ω, ·), 1

m̃
)� ε

4
or ∀t� 1, |X∞,x

i (ω, t)| > ã+ 2m̃2.

By definition of Ωx1 ,

∀x ∈ A ∀ω ∈ Ωx0 ∩ Ωx1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ� ρ0 ω ∈ Ωx(ρ,R, ε).

So for any x ∈ A , ω ∈ Ωx0 ∩ Ωx1 and ε ∈ 1/N there exists ρ0 such that

∀ρ� ρ0 ∀i ∈ Nw(X∞,x
i (ω, ·), 1

ρ
) � ε

4
or ∀t � 1, |X∞,x

i (ω, t)| > R+ 2ρ2

that is

∀x ∈ A ∀ω ∈ Ωx0 ∩ Ωx1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ� ρ0 X∞,x(ω, ·) 	∈ B̃(ρ,R, ε). �
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Proof of Proposition 4.1. Let us fix µ ∈ G(z) for some z < zc. As corollary of Proposition 3.2 and Lemma 4.2,∫
P (Ωx0 ∩ Ωx1)dµ(x) = 1.

This proves that for µ-almost every x in A, P (Ωx0 ∩ Ωx1) = 1 and then µ(A) = 1.
We fix an x ∈ A such that P (Ωx0 ∩ Ωx1) = 1 and ω ∈ Ωx0 ∩ Ωx1 .
We first use the fact that ω ∈ Ωx0 . For ε ∈ 1/N smaller than ε0 corresponding to ω in the definition of Ωx0 ,

for each ρ ∈ N∗ and l� ρ+ 1 greater than l0 associated to ω, ε, ρ, we have X l,x(ω, ·) 	∈ B(m(ρ, l), ρ+m(ρ, l), ε).
Lemma 3.3 and inequality (13) then imply, as in the proof of Proposition 3.1(i), that |X l,x

i (ω, t)| < l − r for
t ∈ [0, 1] and for i’s such that |xi|�ρ. Equation (E l,ηn ) then reduces to the simpler equation:

∀ω ∈ Ωx0 ∩ Ωx1 ∀ρ ∈ N∗ ∃l0 s.t. ∀l� l0 ∀i s.t. |xi|�ρ ∀t ∈ [0, 1]

X l,x
i (ω, t) = xi +Wi(ω, t) − 1

2

∫ t

0

∑
j∈N

∇ϕ(X l,x
i (ω, s) −X l,x

j (ω, s)) ds

+
∫ t

0

∑
j∈N

(X l,x
i (ω, s) −X l,x

j (ω, s)) dLl,xij (ω, s).

(24)

Since ω belongs to Ωx1 too there exists ε ∈ 1/N∗ and ρ0 such that ω ∈ Ωx(ρ,R, ε) for each ρ�ρ0. Let us fix such
a ρ. Since ω ∈ Ωx(ρ,R, ε), there exists an infinite number of indices l such that X l,x(ω, ·) 	∈ B̃(ρ,R, ε). Remark
that R+ 2ρ2�ρ+ ε

4ρ+R so for l’s such that X l,x(ω, ·) 	∈ B̃(ρ,R, ε) we have:

∀i ∈ N |xi|�ρ =⇒ ∀t ∈ [0, 1] |X l,x
i (ω, t)|�ρ+

ε

4
ρ

∀j ∈ N |xi| > ρ+
ε

2
ρ+R =⇒ ∀t ∈ [0, 1] |X l,x

j (ω, t)| > ρ+
ε

4
ρ+R.

(25)

Equation (24) holds for these indices l provided l�l0(ω, ρ, ε) and l�ρ+ 1 and in this case we may replace the
sums over j ∈ N by sums over {j, |xj |�ρ+ ε

2ρ+R}, due to (25):

∀ω ∈ Ωx0 ∩ Ωx1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ� ρ0

for an infinite number of l’s and for all i s.t. |xi|� ρ ∀t ∈ [0, 1]

X l,x
i (ω, t) = xi +Wi(ω, t) − 1

2

∫ t

0

∑
{j:|xj |�ρ+ ε

2 ρ+R}
∇ϕ(X l,x

i (ω, s) −X l,x
j (ω, s)) ds

+
∫ t

0

∑
{j:|xj |�ρ+ ε

2ρ+R}
(X l,x

i (ω, s) −X l,x
j (ω, s)) dLl,xij (ω, s).

(26)

Since the set {j : |xj |�ρ+ ε
2ρ+ R} is finite, using proposition 3.1 we can choose l large enough such that (26)

holds and
∀j such that |xj |� ρ+

ε

2
ρ+R X l,x

j (ω, ·) = X∞,x
j (ω, ·) on [0, 1].

Consequently

∀ω ∈ Ωx0 ∩ Ωx1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ� ρ0 ∀i s.t. |xi|�ρ ∀t ∈ [0, 1]

X∞,x
i (ω, t) = xi +Wi(ω, t) − 1

2

∫ t

0

∑
j,|xj |�ρ+ ε

2ρ+R

∇ϕ(X∞,x
i (ω, s) −X∞,x

j (ω, s)) ds

+
∫ t

0

∑
j,|xj |�ρ+ ε

2ρ+R

(X∞,x
i (ω, s) −X∞,x

j (ω, s)) dL∞,x
ij (ω, s).

(27)
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On the other hand, since ω ∈ Ωx(ρ,R, ε) for each ρ�ρ0, Lemma 4.3 leads to X∞,x(ω, ·) 	∈ B̃(ρ,R, ε). As already
remarked for X l,x(ω, ·), this implies that it is equivalent to sum over j ∈ N or over {j, |xj | � ρ+ ε

2ρ+R} in the
above equation:

∀ω ∈ Ωx0 ∩ Ωx1 ∀ε ∈ 1/N ∃ρ0 s.t. ∀ρ�ρ0 ∀i s.t. |xi|�ρ ∀t ∈ [0, 1]

X∞,x
i (ω, t) = xi +Wi(ω, t) − 1

2

∫ t

0

∑
j∈N

∇ϕ(X∞,x
i (ω, s) −X∞,x

j (ω, s)) ds

+
∫ t

0

∑
j∈N

(X∞,x
i (ω, s) −X∞,x

j (ω, s)) dL∞,x
ij (ω, s)

i.e. for all ω ∈ Ωx0 ∩ Ωx1 , i ∈ N and t ∈ [0, 1]

X∞,x
i (ω, t) = xi +Wi(ω, t) − 1

2

∫ t

0

∑
j∈N

∇ϕ(X∞,x
i (ω, s) −X∞,x

j (ω, s)) ds

+
∫ t

0

∑
j∈N

(X∞,x
i (ω, s) −X∞,x

j (ω, s)) dL∞,x
ij (ω, s) .

This prove that X∞,x is a solution of (E) starting from x. �

Proposition 4.4. The process (X∞,x
i (t), L∞,x

ij (t), i, j ∈ N, t ∈ R+) is the unique solution of equation (E) with
initial point x ∈ A inside the class of paths C defined as follows:
X ∈ C(R+,A) belongs to C if there exists ε > 0 and p ∈ N∗ such that for all ρ,m0 ∈ N∗ there exists an

integer m�m0, a sequence 0 = t0 < t1 < · · · < tm′ = 1 in Q verifying tk+1 − tk� 1
m and bounded open sets

C0, C1, · · · , Cm′−1 in Rd which satisfy

B(0, ρ+m) ⊂ Cm′−1 ⊂ B(Cm′−1, ε) ⊂ Cm′−2 ⊂ · · · ⊂ B(C1, ε) ⊂ C0 ⊂ B(0, ρ+m+mp)

and ∀k ∈ {0, · · · ,m′ − 1} d ({Xj(u), j ∈ N∗, u ∈ [tk, tk+1]}, ∂Ck) � R

2
+
ε

4
·

Proof. We first check that for ω ∈ Ωx0 , X
∞,x(ω, ·) ∈ C. To this aim, we choose ε = ε0 �R as in the definition

of Ωx0 and p = 2. For each ρ and m0 in N∗, one may find l� l0(ω, ρ, ε) large enough to have m(ρ, l)�m0. Then
m = m(ρ, l), m′ = m, tk = k

m and

Ck = B

(
0, ρ+m2 − km+

R+ ε

2

)
∪

⋃
i∈Jk(X∞,x(ω,·))

B

(
X∞,x
i (ω,

k

m
),
R+ ε

2

)

are convenient choices: recall that Lemma 3.3 and the proof of Proposition 3.1 imply that

d

({
X∞,x
j (u), j ∈ N∗, u ∈

[
k

m
,
k + 1
m

]}
, ∂Ck

)
�R

2
+
ε0
4

and that B(Ck, ε) ⊂ B(0, ρ+m2 − (k − 1) +m+ ε
4 + ε) ⊂ Ck−1.

The proof of uniqueness is then a direct generalization of the proof of uniqueness for hard core potential
made by Tanemura [8], Lemma 5.4; so we omit it. �

Proposition 4.5. If the initial configuration of X∞,x is random with distribution µ ∈ G(z) , then this solution
is time-reversible, that is its law is invariant with respect to the time reversal.
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Proof. We have to prove that for any T ∈ [0, 1], for f1, . . . , fk bounded continuous functions on M with compact
support and for t1, . . . , tk ∈ [0, T ]

∫
E
( k∏
i=1

fi(X∞,x(ti))
)

dµ(x) =
∫
E
( k∏
i=1

fi(X∞,x(T − ti))
)

dµ(x). (28)

But X∞,x is, by construction, the weak limit of X l,x. Then equality (28) holds if the following equality holds:

lim
l→+∞

∫
E
( k∏
i=1

fi(X l,x(ti)) −
k∏
i=1

fi(X l,x(T − ti))
)

dµ(x) = 0.

Like in the proof of Proposition 3.2 step 1 (cf inequalities (17) and (18)), we go back to Ql,ηz , which is reversible:∣∣∣∣∣
∫
E
( k∏
i=1

fi(X l,x(ti)) −
k∏
i=1

fi(X l,x(T − ti))
)

dµ(x)

∣∣∣∣∣
�
∣∣∣∣∣
∫
A

∫
A

k∏
i=1

fi(X(ti)) −
k∏
i=1

fi(X(T − ti)) dQl,ηz (X) dµ(η)

∣∣∣∣∣
+ 2

k∏
i=1

sup
ξ∈A

|fi(ξ)|
∫
A

(
1 − ZΛ,η

z

Z l,ηz

)
dµ(η)

where Λ = [−l, l]d. The first term of the right hand side is equal to 0 and the second term tends to zero as l
tends to infinity. �
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5. Appendix: estimate of the probability of fast oscillation
for Brownian motion

Proposition 5.1. If W is a one-dimensional Brownian motion on (Ω,F , P ) then for every ε > 0 and every
δ ∈]0, 1]

P (w(W, δ)� ε) � 41
δ

exp
(
− ε2

5δ

)
.

Proof. We first use Doob’s inequality applied to the submartingale exp(2W (·)2/5s0) and then the Gaussian
property E(exp(aW (1)2)) = 1/

√
1 − 2a to obtain

P (∃s� s0 , |W (s)|�β) = P

(
sup

0�s�s0
exp

(
2W (s)2

5s0

)
� exp

(
2β2

5s0

))
� exp

(
−2β2

5s0

)
E

(
exp

(
2W (s0)2

5s0

))
=

√
5 exp

(
−2β2

5s0

)
. (29)
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Now using the translation invariance property of the Brownian motion and inequality (29) one obtains:

P (w(W, δ)�ε) = P

⎛⎜⎝ sup
|t−s|<δ
0�s,t�1

|W (t) −W (s)|� ε

⎞⎟⎠
� P

(
∃i ∈ {0, δ

8
,
2δ
8
,
3δ
8
, · · · } ∩ [0, 1] ∃s ∈ [i, i+

δ

8
[ ∃t ∈ [s, s+ δ[ s.t. |W (t) −W (s)|� ε

)
�
([

8
δ

]
+ 1

)
P

(
∃s ∈ [0,

δ

8
[ ∃t ∈ [0,

δ

8
+ δ[ s.t. |W (t) −W (s)|� ε

)
�
(

8
δ

+ 1
)
P

(
∃s ∈ [0,

δ

8
[ ∃t ∈ [0,

9δ
8

[ s.t. |W (s)|� ε

4
or |W (t)|� 3ε

4

)
�
(

8
δ

+ 1
)(√

5 exp
(
−2

5
ε2

16
8
δ

)
+
√

5 exp
(
−2

5
9ε2

16
8
9δ

))
� 41

δ
exp

(
− ε2

5δ

)
.

�
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