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INFINITE SYSTEM OF BROWNIAN BALLS WITH INTERACTION:
THE NON-REVERSIBLE CASE*

MvyYRIAM FRADON! AND SYLVIE RELLY? 3

Abstract. We consider an infinite system of hard balls in R? undergoing Brownian motions and
submitted to a smooth pair potential. It is modelized by an infinite-dimensional stochastic differential
equation with an infinite-dimensional local time term. Existence and uniqueness of a strong solution
is proven for such an equation with fixed deterministic initial condition. We also show that Gibbs
measures are reversible measures.
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INTRODUCTION

The aim of this paper is to construct and analyze an infinite system of interacting hard balls undergoing
Brownian motions in R? and starting from a fixed initial condition.

R. Lang [5] constructed in a pioneer paper the reversible solution of an infinite gradient system of Brownian
particles (i.e. balls with radius 0, that is reduced to points) submitted to a smooth pair interaction. It is
a so-called equilibrium dynamics in statistical physics, since this process has a time-stationary distribution.
J. Fritz solved some years later in [3] the non-reversible case, which occurs when the initial distribution is no
more Gibbsian. For this type of systems, the main difficulty comes from a possible explosion (i.e. an infinite
number of particles can enter in a finite volume after a finite time).

On another side, a reversible system of infinitely many Brownian hard balls (without external potential) was
studied by H. Tanemura [8]. He constructs a unique solution to an infinite-dimensional Skohorod type equation
where the hard core situation — balls can not overlap — appears as a local time term in addition to the basic
Brownian motion. The (reversible) initial condition is ditributed like a Gibbs measure associated to the hard
core potential.

In the present paper, the model is a mixture of both Lang’s and Tanemura’s models. We deal with Brownian
motions submitted to the sum of a hard core potential and a smooth finite range pair potential. In [2] we proved

Keywords and phrases. Stochastic differential equation, local time, hard core potential, Gibbs measure, reversible measure.

* Ces quelques pages sont dédiées avec reconnaissance et amitié a Nicole, qui nous fit découvrir les beautés de beaucoup de
planétes mathématiques, en particulier celle des diffusions infini-dimensionnelles.

1 Laboratoire CNRS 8524, UFR de Mathématiques, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq
Cedex, France; Myriam.Fradon@univ-lillel.fr

2 Institut fiir Mathematik, Universitit Potsdam, Am Neuen Palais, 14415 Potsdam, Germany; roelly@math.uni-potsdam.de

3 On leave of absence Centre de Mathématiques Appliquées, UMR CNRS 7641, Ecole Polytechnique, 91128 Palaiseau Cédex,

France.
© EDP Sciences, SMAI 2007

http://www.edpsciences.org/ps or http://dx.doi.org/10.1051/ps:2007006



http://www.edpsciences.org/ps
http://dx.doi.org/10.1051/ps:2007006

56 M. FRADON AND S. R(ELLY

existence and uniqueness of a reversible solution of equation (£), under the condition that the initial distribution
is Gibbs with a small mean density of spheres. We propose here the construction of a strong non-reversible
solution of (£), in the sense that the initial condition can be any deterministic configuration in a set of allowed
configurations which is clearly identified.

Although some techniques in the proof of the main results are similar to those in [2], we adopt a new pathwise
approach for the construction of the solution of (£) which is much finer than in [2], where the time-stationarity
of the solution was used at several places. Moreover we make explicit in Theorem 1.3 the set of allowed initial
configurations, and prove that any Gibbs measure associated with the dynamical interaction carries a.s. this
set.

In Section 1 we present the infinite dimensional equation (£) and we state the results. The sequence of
approximating solutions is built in Section 2.1. Furthermore, we prove in Section 2 technical estimates needed
in Section 3, for the convergence of the approximations. Finally, Section 4 is devoted to complete the proof of
the main results.

1. DYNAMICS AND MAIN RESULTS

1.1. Configuration spaces

The particles we deal with in the present paper move in R?, for a fixed d > 2, endowed with the Euclidian
norm denoted by | |. B(y, p) will denote the closed ball centered in y € R? with radius p > 0 and more generally,
for any A C R%, we define

B(A, p) = {y € R such that d(y, 4) < p}
where d(y, A) denotes the Euclidian distance between y and A. The volume of a subset A in R? is also denoted
by |A].

The modelization of point configurations may be done in two equivalent ways. The first possibility is to
represent an n points configuration in R? as a subset (with multiplicity) of cardinal n in R? that is as an
equivalence class on (R?)™ under the action of the permutation group %,, on {1,...,n}. The second possibility
is to modelize it as a point measure Y ., d¢, on R?. More generally, the set of all point configurations in R?
will be the set M of all point Radon measures on R¢:

M = {§ = 2(55% such that I ¢ N, & € R? and for all A compact in R, £(A) < +oo} :
iel

M is endowed with the topology of vague convergence. By simplicity, we will identify any point measure £ € M
with the subset of R? {¢;,i € I'} corresponding to its support and with the representants of this subset in (R9)!,
writing for example €4 = £ N A for the restriction of this configuration to A C R%, ¢n for the concatenation of
both configurations ¢ and . M N (R4)™ is the set of all n points configurations.

A function g on M is called C! if for each v € M, y — g(yy) = g(6, + ) is a C'-function on R D,g(xy)
denotes its derivative at y = x.

We introduce the following notations.
For A C R?, N, is the counting variable on M: Ny (¢) = Card{i € N,§; € A}.
For A C R%, B, is the og-algebra on M generated by the sets {Na4 =n}, n € N, A C A, A bounded.
7 (resp. ) is the Poisson process on R? (resp. on A) with intensity measure the Lebesgue measure
dy (resp. dy|a).
For z > 0, 7% (resp. 7%) is the Poisson process on R? (resp. on A) with activity z, that is with intensity
measure z dy (resp. z dy|a).

The particles we deal with in this paper are not reduced to points but are hard balls or spheres of diameter r,
for a fixed 7 > 0. So the set of allowed configurations is the following subset of M:

A = {¢ € M such that Vi # j |& — &|>r}.
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Remark 1.1. We study here the evolution of a particles configuration under the influence of an interaction
potential with finite range R. Then a fixed particle can interact with at most a finite number N of particles.

N only depends on d and R/r and is clearly bounded by % = (1+2R/r)%.

1.2. Interaction potential and associated Gibbs measures

For a complete description in a general framework of the concepts introduced in this subsection, we refer the
reader to [4].

We are dealing with hard balls with diameter r submitted to the action of a pair potential, which is a function
on R? of class C? with finite range R > r, i.e. satisfying ¢(x) = 0 if |2| > R and ¢(x) = p(—z). Due to the hard
core situation the values of p(x) may be chosen arbitrarily for |z| < r. In particular, one can assume without
restriction that ¢ vanishes in a neighborhood from 0 and that V(0) = 0. Since ¢ has compact support, it is
bounded from below: the smallest value of interaction between two particles is given by

p = inf p(z) <O0.

|| >r

If this real constant is zero there exists only repulsion between the balls; if it is negative there exists an attraction
domain around each ball.

The energy of a configuration & € M submitted to the potential ¢ in the compact volume A C R? with the
boundary condition n € M is given by:

1

S Y wEG—g)+ Y. el —m) iféame €A

EA(SM) - 2 &6 €N & €A EAC (1)
+00 otherwise

(the condition £xnpa- € A corresponds to configurations for which £y € A, nae € A and no ball of npc is

overlapping a ball of £4). The energy is well defined since both sums contain no more than %W terms,

see Remark 1.1. Moreover, e~ Z2(&l) vanishes as soon as the configuration 57« is not allowed.

We now define the set G(z) of Gibbs measures on A associated to the potential ¢ with activity parameter
z € R*T. For each compact subset A of R, let us define a local density function with respect to the Poisson
process mx by:

F7(€lm) = —x exp(~Ex€ln) (2)

where the so-called partition function Z27 is the renormalizing constant:

“+o0 n
z
Zé\,ﬂ — e —2lAl (1 + g — / exp—Ea(y1 -+ ynln) dyr - - .dyn> .
el n. An

Due to the hard core, the above series is only a finite sum and 0 < Z2" < +o0.
Definition 1.2. A probability measure p on M belongs to the set G(z) of Gibbs measures on hard balls with

activity z and associated potential ¢ if and only if, for each compact subset A C R?,

du(€|Bac)(n) = fi(&ln) dni(§)  for p—a.em.

Remark that any Gibbs measure in G(z) has its support included in .A. Dobrushin proved in [1], using compact-
ness argument, that there exists at least one element in G(z) when the potential contains a hard core component.
Furthermore the set G(z) is convex and compact. About the cardinality of G(z), remarking that the sum of
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the hard core and the smooth potential ¢ is superstable and lower regular in the sense of Ruelle [6], we do the
following remarks:

— If z is small enough Ruelle proved that uniqueness holds. In our case, a sufficient condition would be:
2 <M (B(0, 1) + [ Locpy<nll — e ?W|dy) ",

— For z large enough it is conjectured (see [4]) — but still not proved — that phase transition occurs:
Card G(z) > 1.

1.3. The stochastic equation (£) and statement of the main results

Let (Q,F, P) be a probability space with a right continuous filtration {F;}+>0 such that each F; contains
all P— negligible sets and let (W;(t),t>0);en be a family of F;-adapted independent d-dimensional Brownian
motions.

Let us denote C(R™, M) (respectively C(R™,.A)) the set of continuous M-valued (resp. A-valued) paths on
R*, endowed with the topology of uniform convergence on each compact time interval.

Let ¢ be the smooth pair potential with finite range R introduced in the previous subsection. We consider
the following infinite gradient system of stochastic equations satisfied by the Brownian balls:

For i € N,t € RT,

©9 X0 = X+ W) -5 3 [ Vel = X(s)ds + 3 [ (i) = X (i)

jEN jEN
where
o (X;(t),t=0);en € C(RT, A) satisfies | X;(t) — X;(¢)| = r for >0 and i # j;
o (L;j(t),t=0); jen is a family of non-decreasing R*-valued continuous processes satisfying:

t
Lij(O) =0, Lj;=Lj and Lij(t) = / ][|X1.(S),Xj(s)|:7~ dLij(S), L;; =0.
0

A solution of the system (€) with initial condition x € A is a family (X7 (¢), Lg;(t),t>0,i,j € N) of processes
such that equation (&) is satisfied with X (0) = x.

The main results of this paper are the following theorems.

Theorem 1.3. The stochastic equation (£) admits a solution with values in A for any deterministic initial
configuration which belongs to the set A C A defined by A = {z € A: P(QFNQT) = 1} (sets QF and QF
are given in (15) and (23)). This solution is unique as element of C C C(R™, A), a subset of paths with some
reqularity defined in Proposition 4.4.

Theorem 1.4. If the initial configuration of the stochastic equation (£) is random with distribution p € G(z)
for some z > 0 and u(A) = 1, then this solution is time-reversible, that is its law is invariant with respect to
the time reversal.

exp(2Np)

BRI DB Any Gibbs measure

Proposition 1.5. Let z. be a critical value of the activity given by: z. =
p € G(z) with 0 < z < 2. has its support included in A.

Remark 1.6. The existence of a critical value for the activity z is related to the still open problem of per-
colation for the hard core continuous system. The critical value z. given here appears for technical reasons in
Corollary 2.5, where a percolation type estimate is computed.
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20

FIGURE 1. Particles of 775, are represented; the grey area is the domain where 1! vanishes.

2. APPROXIMATING PROCESSES AND ESTIMATES ON THE PATHS SET

In this whole subsection, | € N* is fixed. To simplify we restrict the study of the paths on the time interval
[0,1]. Tt is obvious that all the results in the sequel hold true on any time interval [0,7], T>1, up to a change
of constants.

2.1. Construction of approximating processes

We construct the approximating process X' in order that it “essentially” stays in the bounded cube A; =
[~1,1]? (in a sense which will be clear soon). To obtain such a behavior, we introduce in the equation (£) a
supplementary gradient drift V)" which vanishes in a subset of A; and is repulsive outside of A;.

More precisely, for any allowed configuration n € A which support is disjoint to A;, we fix a RT-valued
function %" on R% which is C? with bounded derivatives and vanishes on each (and only on) y € A; such that
yn is an allowed configuration (see Fig. 1), that is

Py =0 o yeA=[-L]"andyne A < yec A =[-11%and d(y,n)>r

We extend the definition of %" to any configuration n € A by: ¢ = wl’"“f. We also choose the family
(y'7); such that, for every n € A,

Z/Rd Lytn(y)>0 eXp(*Q/}l’n(y)) dy < 1. (3)

leN*
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For n € A and n € N*, let us now define the n-dimensional stochastic differential equation:

Vie{l,...,n}, for 0 <t <1,
ety | 0 =) - 20X Ve - Xm0+ YD VelXit) ) )i
n j=1,m jimj €A
- SVOMIGONE YD (X)) — X ()L (1)

j=1,..n

with L;; = Lj; for all ¢ and j and L;;(t) = f(f Lx,(s)— X, (s)|=r dLi;j(s). (ELM) is a n-dimensional stochastic
differential equation reflected in AN (R*)" with gradient drift —3V 34" where

B )= X (B by Y elm-a)+ Y el -ny). (®)
1=1,...,n jz;;é.:i.,n jmjEAC

Since the drift f%Vﬂfﬂ is bounded and Lipschitz continuous, (£47) admits a unique strong solution for each
initial n-point configuration x € AN (R?)" (see Th. 5.1 of [7]). We denote this solution by X" (z,-). For a
general initial configuration x € A, we extend the above process as follows:

X150 = XU Yo

where = zpe and n = Card(x N A;). It is an M-valued (not necessarily A-valued) process with initial
configuration x. Particles which are initially in A; move like the (£;7)-dynamics and the other ones stay fixed
outside A;.

The solution of (EL7) with initial distribution 4" is reversible, where ;7 is the finite measure defined on
(Rd)" by
dvh™(zy, ... m) = exp(—=B5"(x1, o an)) Ty, ..., 2,) dog ... da,.

Q4" denotes the time-reversible law of X" starting from v/4":

Qi = [ Pxine ) € ) ki),

—+oo
The probability measure u4” on U (RH)™ is defined for Ag x Ay X --- x Ap X --- by:
n=0
w2ty 400
/,le’n(AQXAlX"'XAnX"'):WZ;)HV},{”(ATL) (5)
+oo  n
Iy _ Z I dyn . . I, _
where 2,7 = Z 1 n ((R*)™) (with the convention vy"({0}) = 1).
n=0
—+oo
Similarly, consider the probability measure on U C([0,1], (RY)™) defined by
n=0

— 2244 +oo _n

tn_ ¢ Z 2 olm
Qz - Zi’n n| Qn *

n=0
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This probability measure is time reversal invariant and has a support in A, as a mixing of A-supported measures.

We now want to prove that the probability of trajectories which interact too much, vanishes asymptotically
when [ — +o00. We will use this result to construct the limit of (X*); in the Section 3.

Regular paths are w’s such that each particle interacts only with a finite number of particles during a finite
time interval ; X% (w) is then the (unique) solution of a finite dimensional equation. Bad w’s are paths such
that at least one particle interacts with a great number of other ones, either because it moves very fast (see
Sect. 2.2), or because it belongs to a large chain of particles where each one interacts with its neighbors (see
Sect. 2.3).

2.2. Paths with high velocity

We obtain here an estimate of the probability that a particle moves “too fast”. In order to establish such an
estimate, done in Proposition 2.2, we first compute the probability of fast motion between two fixed bounded
domains in R%,

For every bounded subsets Ag and A; of R? and every ¢ > 0 and § € ]0, 1], let Fm(Ao, A1,¢,d) denote the
event “at least a particle goes from Ay to A; with an oscillation greater than € in a time interval smaller than
67, i.e.

fm(A(),Al,E,(S) = {X c C([O, 1],./4), Ji s.t. XZ(O) € Ao, Xz(]-) € A1 and U)(XZ,(S) > 5}

where w(X;,0) = sup |X;(t) — X;(s)| is the usual modulus of continuity of the path X; on [0, 1].
[t—s|<d
0<s,t<1

Lemma 2.1. For each Ay, A1 C R? bounded, each ¢ >0, § €]0,1],n € A and n € N*, we have:

Q?f;n(fm(AOaAl;Eﬂa))) = \/P(lemn(zﬂ ) € fm(A()aAl;Ea(S)) dein(x) (6)
—2N. L,n dyn—1y 1 g? b
< Alne 2 ) (R )= exp | —=— (L4, + 14,)e dy
5 55 ) Jpa

and
2

N, 1 m
QU(Fm(A, Av,e,0))) < (412752 ) < exp (%) / (Lay + La,)e """ dy. (7)
Rd
From this lemma proved below, we easily deduce an estimate of the probability, under Qfg", that a particle
starting from B(0, K) moves too fast. For every K € N* ¢ > 0 and § €]0,1], let Fm(K,e,0) be the following
event:

Fm(K,e,0) ={X €C(|0,1],A) such that i, X;(0) € B(0,K) and w(X;,0) >¢}.
Proposition 2.2. The following upper bounds hold:

VK eN" Ve>0 V§€|0,1] Ve A
T 2
QUN(Fm(K,e,0)) < n Cqe 2Ne b (RH)"Y) % exp (5_) K

— 1 2
QUFm(K.2.8) < = Cue2 L exp (—i) K
where Cy is a constant depending only on dimension d. Similarly one has:

VK e N* Ve>0 V5€l0,1] Vne A
~ 1 2
Q(Fm(K,e,0)) < 246 n e 2N 17 (RY)"Y) < exp (—E—) / e~V gy
Rd

_ 2
QY Fm(K,e,0)) < 246 z e 2NVe — exp <€—> / e~V W) dy.
Rd
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Proof of Lemma 2.1. We first need an estimate of QL"(Fm(Ao, A1,€,0)).
Let (Xbmm, Lbmm) denote the unique strong solution of (£47) starting from 1,7, and recall that the distri-
bution Qﬁ;” of X% is time reversible on [0,1]. By construction, the processes:

1 t
Wi(t) = XPUU(E) = XP7(0) + 5 /0 Vil (X0 (s))ds
t
[ ) - XL s 1<i<n, 0<t<

ST

1
and Wi(t) = Xf”””(lft)fo”””(l)Jr% / VAL (X B (s))ds
1—t

1
- / DX (s) = X (s))d Ly (s), 1<i<n, 0<t<1
1t
are both n-dimensional Brownian motions starting from 0. Remarking that
1 —~ —
vie 0.1 XMn() - X1(0) = (W(t) WA —t) - W(1)>

and using the equality in law between (X772 (1 — ), W) and (X5 W), we obtain:

Ji<n s.b. X2 (x,0) € Ag, X2 (2,1) € Ay and

QEN(Fm(Ag, Ay,e,8)) = / P sup [Wi(t) — Wi(s) + W1 —t) = W(1—s)| >2¢ | dvhn(a)
(Rd)n [t—s|<d
0<s,t<1

< /P(Hign st x; € Ag and w(W;, 8) > e) dvh" (x)
+/P (Fi<n s.t. x; € Ay and w(W;,8) > ) Vi (z).

The right hand side is smaller than

M:

n
1/’77 (x; € Ag) P(w(W;,6) >¢)+ Z 1/’77 (x; € A1) P(w(W;,0) > ¢)
i=1 =1

<n P( (W1,5) ) (l/ (1’1 € Ao) én(l‘l € A ))

We know from Appendix 5 that
41 g2
< — _— -
P (w(Wh,0) >¢) < 5 exp( 55)

According to the definition (4) of 847, since a particle interacts with at most N other particles (¢f. Rem. 1.1):

62"7(1»17 v 71'71)2 wlm(ml) + 2N£+ 6221(1‘27 v 7'7571) (8)
which implies that
V’fin(xl € AO) = / d ]15816140 ][A(xl,...,l‘n) eiﬁf{n(zlwwxn) dIldIn
(]R )'n.
< @ [ e gy 9)
Ao



INFINITE SYSTEM OF BROWNIAN BALLS WITH INTERACTION: THE NON-REVERSIBLE CASE 63

and the same result holds for A;. This leads to the estimate:

_ 41 2 o
Qi (FmAn, 2, 0)< me Vel (R G e (<55 [ (ay T
R

by summing over n we obtain the desired result:

—z2419 0 n

QLY (Fim(Ao, A2, 0))) = — = 3 =0 Q3M(Fm(Ao, Av,e,0)) 0 (RY")

n=1
— 2244 too n-1 2
¢ § : o Ln dyn—1 _oNg 1 € gt
g 41 W z (n_l (n _ 1)' Vn—l((R )n )) e .4 5 exp (_5) /(][Ao + ][Al)e dy
N, 1 62 \n
< (41 ze 2Nf> 5 exp (—%) /]Rd(][AO + ]IAl)e_wl dy. O

Proof of Proposition 2.2. For j in N, let a; = K + \/% + 5j. The sequence (a;); increases from ap = K + %
to +00. Now for Q = Q4" or Q = QL" consider

Q(Fm(K,e,9)) = QI |Xi(0)|<K and w(X;,0) > ¢)
< (Eli, | X:(0)|<K and w(X;,0) > € and |X;(1)|<ao)

+ZQ i, [Xi(0)|[<K and a; < [Xi(1)|<a;11)

But |X;(0)|<K and |X;(1)| > a; imply that w(X;,1) > a; — K, so this is smaller than
(Hi | X (0)|<K, |X;(1)|<ap and w(X;, ) > ¢)

+ZQ 0)|<K, a; < |Xi(1)] < aj+1 and w(X;,1) > a; — K).
Using Lemma 2.1 we obtain:

ARG S0 ES SO % P <_) / (Ts0.1) + Tp(0a) ™" dy

—+oo

. L
I5(0,x) + IB(0,a0) + Z e’ (][B(O,K) + ][B(O,aHl)\B(O,aj)))e_w dy
=0

with C(QL") = 41 n e™2N2 b7 ((R?)"=1) and C(QL7) = 41 z e 2N%.
Moreover, for j>1:

d
i ‘
/ o) dy < (aj+1)d 1B(0,1)] < 3% K%|B(0,1)| max (Li) 5(+1) (10)
B(0,aj4+1)~B(0,a;) \/S
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and similarly:

d
/][B(O,ao) e W) dy < (ag)? [B(0,1)] < 2¢ K |B(0,1)] max <1, %) :

—+oo —+oo
Since Ze‘j <2 and Z(\/j + 1)d e~ 7 <2 this leads to:
§=0 =0

2 d
Q(Fm(K,e,8)) < C(Q) % exp (—%) |B(0, K)| 3 x 39 max (1, %) e

Finally

_ 1 2
QLN Fm(K,e,0)) < ne 2Ne b (RY"1) Oy 5 P <%) K

_ 1 2
and QL(Fm(K,e,0)) < ze Ne oy 5 xp (—%) K

where Cy = 41 |B(0,1)| 3 x 3¢ \/E_)d SUD,cp+ e~ /5 max(1, z)de®’/S.
An alternative bound for Q(Fm(K,e,0)) may be obtained using the fact that each indicator function is
smaller than one:

)
This completes the proof. O

QUFM(K,,8)) < C(Q) = exp (_f) / 6ot gy,
Rd

2.3. Large chains of interacting particles

Recall that two particles interact instantaneously only if the distance between their centers is smaller than
R, the range of the potential ¢. But more generally, a particle can have an influence on several ones during any
small time interval. To modelize this, we introduce the notion of (R + ¢)-chain of particles.

Definition 2.3. Let « € A and € > 0. Each subset {x1,--- ,z,} of z verifying |1 — 23] < R+¢e,--+ ,|Tp_1 —
Zn| < R+ ¢ is called an (R + £)-chain of particles of .

Now, let us fix K € N*, M € N* and € > 0 and let Ch(K, M, R + ¢) denote the event that there exists an
(R + £)-chain of M particles with one end inside of B(0, K), that is:

Ch(K,M,R+e¢) = {ac € A, 3{xy1, -+ ,xp} subset of z, |z1]| < K and |z; —xz2|<R+e¢, - ,|$M_1—xM|<R+E}.

Our aim in this subsection is to estimate the u'"-probability that such a chain exists.

Proposition 2.4. For every M € N*, ¢ > 0,1 € N*, n € A and K € R", we have:

+oo 1
i (U Onr, M R+€)) < (= [BO,1)] exp(~2Ng) ((RJrs)d—rd))M .
K=1

From this proposition, we easily deduce the following corollary used in Section 2.4.
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xp(2N
Corollary 2.5. There exists a critical activity z. = % such that for each z > 0, € €]0,1] and
M € N*,

M—1
z (R+e)d—rd
sup sup u*”( C’hKMR+€))< <—7 )

IeN* neA U N

In particular, for any z < z. there emsts e > 0 such that

+oo
lim sup sup,u ( ChK,M,R—i—E):O.
M—>+ool€N* neA KL:JI ( )

Proof of Proposition 2.4. Each configuration in (R%)™ N Ch(K, M, R + ¢) has exactly (=T )! representants in

(RH)™ such that (z,_ar41,--.,7,) is a fixed M-uple verifying |z,_a11| < K and |2, a1 — Tnonrr2| <R +
g, |1 — x| <R +e. Since B5"(xy,...,2,) and T4(z1,...,7,) do not change by permutation of the x;’s,
this leads to:

Vi (Ch(K, M, R +¢))

-1
n! _glm -
= m/ Lo pran|<K Ta(zy,...,20) € BL (1, Tn) H Loy |<Rpe Ay - - - .
© J (R i=n—M+1
Remarking that
]IA(xl, - ,l‘n) < ][\xn—xn,lgr ][A(:El, .. .,l‘nfl),

using again inequality (8) and integrating with respect to x,, we obtain:

Vi (Ch(K, M, R + ¢))

-2

(n—1)! / 3
< 1, | T NIz, e
T OE ) g et (LD e cnignie Jlaten oy

_oN _nplin
][T<|m"7mn [|<Ric€ 2Ng =B (@1, Tn—1) dzq -+ -day,

<ne N2 (R+e)d—rh) |B(0,1)| 5" (Ch(K, M — 1,R +¢)).

By definition of ub7 (see (5))
—z241¢

L(Ch(K, M, R +¢)) Zz—' VE(Ch(K, M, R + ¢)). (11)

Z
Using the above inequality and iterating the result on M, we obtain:

ue"(Ch(K, M, R +€))

_ — 22414 n—1
<e N2 ((R+ ) —r?) |B(0,1)] QZW P h Vb1 (Ch(K, M —1,R +¢)
z n>M ’
<ze M2 (R+e) —rY) |B(0,1)] pb"(Ch(K,M —1,R+¢))
— M-—1
< (2 e ((R+2)" =B, 1))

Since the event Ch(K, M, R + ¢) increases as a function of K

+oo
pr (| OhE M R +)) < (= [BO,1)] exp(~2Ng) (R+e)? =)™ " -
K=1
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2.4. Estimates on the set of regular paths

Let B(m,a,c) denote the following set of bad paths, in which either a particle has a high oscillation in a
small time interval or belongs to a large chain of interacting particles:

YmeN" Yax=1 Ve>0 B(m,a,e):B(m,a,e)Ué(m,s)

where B(m,a,e) = {X € C([0,1],.4), 3, w(X;, l) > i and Jt<1, |X¢(t)|<a+2m2}
m

5 3k € {0,...,m — 1}, there exists an
and B(m,e) = {X €C([0,1],A), (R+¢) — chain of particles of X (£) }
with diameter greater than m — R — ¢

Let us remark that a — B(m, a, ) is non-decreasing but B(m, a, ) is not monotone as a function of m and e.
Our aim in this section is to estimate the probability of B(m, a,¢) under Q%".

Proposition 2.6. For each m € N* and a>1:

2
5 7 €
sup sup QL7(B(m,a,¢)) < z C4 e 2N2 ad m?? exp (——m)
lEN* neA 96

where the constant C!; only depends on dimension d. One also has, for m € N*:

sup sup Q" (é(mﬁ)) <m (2 |B(0,1)] exp(—2Nyp) ((R+¢e)* _rd))[ﬂs].
leN* neA —

If z < z. and € is small enough (depending on z), this implies that the left hand side decreases exponentially
fast as a function of m.
Proof of Proposition 2.6.

le»’f] (B(ma a, E)) < lem (E'Z, ’LU(X“

+ QL7 (34, |X:(0)] > a+ 3m? and 3t<1, |X;(t)|<a+2m?).

) > Z and | X;(0)|<a + 3m2>

The second term of the sum is smaller than

“+o0
ZQZZ’” (Fi, a+ (2 + 5)m? < |X;(0)|<a + (34 j)m? and w(X;,1) > jm2) )
j=1
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Thus using Proposition 2.2, we obtain:

+oo
QU (Blma,e) < Qi (Fm (a3 5 L)) 4 Y QL (Fnla+ 3+ gy 1)

j=1
_ &2
< 2C e N2 m exp ( - %m> (a + 3m?)?
too _ j2m4
+ Z z Cyg e_QNfexp(f ) (a+ (34 j)m>)?
j=1
_ £2 too §2m4
< 20y e2N¢<m exp ( - %m) (a+3m?)? + ;exp ( - ) (a+ (3+j)m2)d)
2Ny od d, 2d g? -~ JPmiy g
2Ny - _ .
< z2Ce 728 am (exp( 96m)+jz:;€><p( 6 ).7)
INp qd d , 2d g2 -~ d 5
< 2C;e""28%am exp<%m)<1+ ;] exp<ﬁ)>.

Defining the constant C/; equal to Cy 8d (1 + Z;;Of j%exp (f%)) < 400 we obtain

. _ 2
QY"(B(m,a,e)) < z O e 2N2 g% m?? exp <;—6m> :

‘We now have to find a similar estimate for

there exists an (R + €) — chain of particles
of X(£) with diameter greater than m — R—¢ )

Qi (Bom.2)) =@ (3t € 0.....m ~ 1)

Thanks to the stationarity of Q.", this probability is smaller than

mz_:l b (4 A there exists an (R + €) — chain of particles
P Mz * of z with diameter greater than m — R—¢ /°

It is necessary to have at least [7-] + 1 particles ([z] denotes the integer part of z) to construct a chain of

length greater than m — R — ¢ where each particle is at distance smaller than (R + ¢) from its neighbors. Thus
the above quantity is smaller than m pl” ( ;r(ozol Ch(K,[g]+ LR+ 5)) Due to Proposition 2.4, this is
bounded from above by

m (2 [B0,1)] exp(~2Ngp) (R + ¢)® — rd))'#¥l .

3. CONVERGENCE OF THE APPROXIMATIONS

The aim of this section is to prove the convergence of the sequence (X'®); to a limit process X%, We shall
check in the next section that X% is a solution of (&).

We fix z € A. As usual for infinite-dimensional stochastic equations, we study X l’“‘(w) for each w in a set
QF C Q and prove that the set €2 \ Qf is negligible.

For each p € N* and [>p — r + 1, let m(p,!) and a(p,!) denote the following integers:

m(p,l) = [\/Z —p— r} -1 and a(p,l) = p+m(p,l). (12)
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Remark that
a(p, 1) +m(p,)> +1<l—r (13)
and
vC >0 Za(p,l)d m(p,1)?4 el < 4o (14)
1
Let 1/N denote the set {1,1/2,1/3,---} of real numbers € such that 1/ € N. Let us now define the set QF as
follows:

Oz {w € Qs.t. Jeo € 1/N Ve<ep ¥p € N* 3lp € N*, VIl
Xb(w,) & B(m(p,1),a(p,1),e) and X" (w,) ¢ B(m(pvl)va(pvl)vs)} (15)

timinf () Tminf (X' ¢ B (m(p,0),a(p,).€)} 0 {X"17 & B(mip.1),alp.),e)}-
pEN* e

Proposition 3.1. For every x € A, every w in Qf and everyi € N, the sequence of processes (lel (w, ), Lﬁ’jx (w,1),
j €Nt €[0,1])en- elements of C([0,1], R? x Rl}‘_) converges in the sense of uniform convergence of continuous
paths to a limit denoted by (Xfo’x(w,t),L;’;”l(w,t),j € N,t € [0,1]). Moreover, this sequence is stationary: for
anyz € A,we Qf,i €N

Ay Vizly, XM (w,) = X% (w,-) on [0,1], and,Vj € N Lﬁ’f(w, ) = L (w,+) on [0,1].
Proposition 3.2. For each Gibbs measure 1 € G(z) with z < z. one has / P(Q) du(x) = 1. This means
M
that defining A by A= {x € A, P(QF) =1}, one has

Vz<ze Vpeg(z) wpA =1

Proof of Proposition 8.2. Let us fix u € G(z). We want to prove that [, P(Q \ Qf) du(x) = 0. By definition
of QF

X% e B(m(p,1),a(p,1),€) or )
lex € B(m(pal - 1)70’(/)71* 1)75)

< 3> p(timsup {X" € B(m(p,0),a(p,1),€) UB (m(p. L~ 1), alp,l = 1),2)} )

e<eg pEN* l=+o0

PQNQF) =P <V€o € 1/N, Je<ep Ip € N* Viy € N* 3>,

for all g € 1/N. Thanks to Borel-Cantelli lemma, this vanishes as soon as there exists g € 1/N such that for
all e < g9 and p € N*

+oo
Z / P (x4 e B(m(p,1),a(p,1),e) UB(m(p,l —1),a(p,l — 1),€)) du(z) < +oo . (16)
I=p+2” A

We shall show (step 1) that for I € N* and A = [~1,1]¢, the following inequalities hold:

sup | [ POX € O)duta) - [ @ivwe)du(n)} < [ swo | [t - [ 1] duto)
ocF |JA A A lfli<t 1 /a . A
VAN
Vne A sup / J(x) dp(zln—i,g4)) —/ f(z) dubm(z)| <2 (1 - Zln)
[Fi RSy PV A zz
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and (step 2) that

Z _
vneA 0<1- 7 < z exp(—2Nyp) /d Lypin ()0 exp(—t(y)) dy. (18)
R

z

Inequality (18) and assumption (3) on " imply that

io/ (1 Zln)du(n)<+oo.

Then for each p and [ fixed, we choose © = B (m(p,1),a(p,l),e) U B(m(p,l —1),a(p,l —1),e). Thanks to (17)
and (18), in order to prove (16), it suffices to prove that there exists ¢y € 1/N such that for all ¢ < g7 and
p € N*

Z /le” p,1),a(p,1), ) UB(m(p, 1 —1),a(p,1 — 1)75)) dp(n)
1= p+2
+Z /Ql’” l%’ (p.1).€) U B(m(p,1 ~ 1), ))du(n)<+00-
l=p+2

By proposition 2.6, this is smaller than

_ tx 2
/z Cl e 2Ne Z a(p, ) m(p,1)** exp (—;—Gm(p,l))

l=p+2
2

+alpyd = 1 (o1 = 02 exp (= Semlpd = 1)) et

/ Z m(p,1) (2 |B(0,1)] exp(—2Ny) ((R+e)* - ))["k(ii)}

l=p+2
m(p,l— 1)]

mp,l—1) (2 |B(0,1)] exp(—2Ng) (B+e)? — rH) T 7 Ldpu(n).

Thus we only have to prove that

—+o0

2
Jep € 1/N Ve<egy VpeN* Z a(p, ) m(p,1)* exp <%m(p,l)> < 400
l=p+2
I _ [m(p,l)]
and Z m(p,1) (2 |B(0,1)] exp(—2Ny) (R+e)* —r%)) 7 < +o0.
l=p+2

The first series converges for each € € 1/N and each p € N* thanks to (14). The second one also converges
thanks to (14), as soon as (z [B(0,1)] exp(—2Ng) (R +&¢)* —r?)) < 1, which is true for g9 small enough
when z < z.. It remains to prove (17) and (18).
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Step 1. Proof of (17)
Let us fix [ € N* and A = [~[,1]¢. For each event © on C([0,1]), by definition of Q4":

/P(X“”e@ dp(z /le )dp(n
< [ [ poxten o) autann) anty / [ PEe) e, € ©) ank(a) duto).

If 2 € A then P(XbnCardx) (g ) € ©) = P(X®¢ ¢ @) and since this quantity is smaller than 1, we obtain:
[ et c o) - [ @@autn|< [ s | [ 1(0) duteline) - [ 1(0) uto(e)
A A A IflITJA A

Since p1 € G(2), using the conditional density of 1 with respect to 7% and the definition of 1!, one has for each
f:+A— R bounded by 1:

dp(n).

A A
—z|A| +oo n
(§] z
= ‘—Am [f(nAC)JFE F/ f(ynac) La(ynae) eXp< § o(yi —y;) — E <p(yinj))dy]
Z n=1 '~ JA" 1<i<j<n 1<i<n
n; EA°

eZzn [ (e +Z — / Flynae) e 50 La(y) dy] |

Note that 85" (y) = Doicicicn Wi = ¥) + Di<i<n p(yi — ;) for any y € A" verifying ynae € A, because
nj €EAC
b (y;) = 0 for each i in this case. Thus the above quantity is equal to

djd
e—z\A| e—22%

Zé\ﬂ? Zéﬁl

e—Z2dld +oo Zn

djd
too L e—z\A| e—22%

Zé\ﬂl Zi’”

n!

‘f(ﬂAc)

I,
/A Flynae) Ta(ynae) e "W dy

n=1

Flynac) e 2" (La(y) — La(ynac) Tan(y)) dyl .

L, nl
Zzn ot n! (Rd)n

did
Recall e #IAl = ¢=22°1° gnd

Zé\’n — o 7lAl

+oo n
z gl
*ﬁf;”(y)
1+ Z n! / Ry dy

— 22414 L
< # =2Z".

We then obtain:

[ 5@ dutelne) = [ 160) o)

—z|A\ e—z2dld

“An 1
Zn zZ"

—z2dld

Z|A\ZA n 4+ —

\

Am
z2414 L, z|A| 7Am| Zz
2 gl M zAn) — 9 (1 —

l
Zz T ZZJI

and (17) is proven.
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Step 2. Proof of (18)

This final step of the proof of Proposition 3.2 is straightforward, simply using the definitions of ZL7, ZAm
and b7:

ZA,n e—szld +oo on Lo n
- Zzz,n = > g La(r, .. 6n) e (51""’5”’)(1 = ] LI (5i)> dgy ---dén
z z n=0 i=1
efz2dld 1t n . n
_ s
< W ol S Ta(&y,. .- 6n) e P (51,...,&,)(2 ][wlvn(&)>o> déi---d&,
Z n=0 " i=1
efz2dld +oo P L o L
A nt " /< 2) Aeiw ) exp(=2Ng) e Hmrle Sy g, y50 dér - dép
z n=0 RE)™N
e—szZd +oo Zn—l . 4 L o .
< Zi’n — z (ni 1)| Vn@l((R )n ) exp(—2N£) /]Rd ][wl'”(y)>0 GXP(—w 777(y)) dy
<zemm—iﬁf)/}Iwm@»oemxfw“ww)dy- O
R

In order to prove Proposition 3.1, we need the following lemma which states that, for nice trajectories only a
finite number of other particles interacts with each fixed particle. Thus dynamics (£) reduces to an infinite
number of SDE involving only a finite random number of particles up to time 1.

Lemma 3.3. Let us assume that the path X € C([0,1]) does not belong to B(m, p + m,¢e) for some e € 1/N*,
some m € N* and some p € N*. For k in {0,1,--- ,m — 1} we define Ji.(X) as the set of indices i € N such

that either | X;(£)|<p+m? — km + R+ ¢ or X;(£) belongs to a (R + €)-chain of particles which intersects
B(0,p+m? —km+ R+¢). Then the following inclusions hold:

{i e N, |X;(0)[<p} C Jpm—1(X) C -++ C Jpa(X) C Je(X) C -+ C Jo(X).
Particles of Jp(X) stay around the origin in the following sense:

k k+1
Vi € Ji(X) Vte[g,i} IX:(t)] < p+m?+m+ 1.

They stay also far away from the others:

[Xi(0) = X;(8)] > R+ - (19)

k k+1
m m

Weh@)Wg%@)We[,

Proof of Lemma 3.3. The set Ji(X) is defined as the set of indices i € N such that X;(£) belongs to B(0, p +

m? — km + R + ¢) or is connected to B(0, p +m? — km + R + ¢) by some (R + ¢)-chain of particles of X (£);
thus

k
Vi & Ji(X) ‘Xj(g)‘>p+m2—kzm+R+e

k k
(2)n (2

m m
Since X & B(m, p+m,e) then X(%) does not include any (R + ¢)-chain of particles with diameter greater than
m— R —e:

and

Vi€ Jp(X) Vi Je(X) > R+e.

Vi € Ji(X) ‘X1<%>' <(p+m?—km+R+e)+(m—R—e)=p+m? —(k—1)m.  (20)
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Again since X ¢ B(m, p+m,e), no particle of X entering B(0, p + m 4 2m?) moves for more than £ during a
time interval of length %:

Vie Ju(X) Vi Ju(X) Ve {%%} 1X:(t) — X;(1)] >R+%
and
Vie Jpy(X) Vte [%@] 1X;(1)] < p+m2—(kz—1)m+i <p+m?4+m+1.
Moreover

kE+1 3
Vi & Ji(X) ‘Xj<%)‘>p+m2—km+R+Zs>p+m2—kzm;
using (20) this leads to
J€ (X)) = jé&Jn(X)

which implies the decreasing property of the sets Ji(X).
Now, using once more the small velocity property of X, we see that

5
|1 X;(0)|<p = |X¢(1)|<p+1m<p+m2—(m—1)m+R+€ = i€ Jn_1(X)

and the proof is complete. O

Proof of Proposition 3.1. In this whole proof, x € A, w € Qf and p € N* are fixed; we also fix a corresponding
e € 1/N as in the definition of QF and an [>ly associated to w, €, p as in the definition of &. So m(p,l) and
a(p,l) are fixed too; for simplicity they will be denoted by m and a.

Since X"*(w,-) & B(m,a,c) and X712 (w, ) & B(m,a,e) with a = m + p, the results obtained in Lemma 3.3
hold for X'*(w,-) and X'*1.%(w,-). In particular, recalling (13) we have for each k in {0,1,--- ,m — 1}:

k k+1
Vi€ (XD (w,-)) Vte [EL} X <p+rmPimA+l<i—r = PM(XP7(1) =0
and since
k k+1 : :
Vie Jo(X"®(w,:) Vi (X" (w,:) Vte {E’ %} I XPU() — X ()] > R+ %

no interaction is possible during the time interval [£, ££1] between the particles of J;(X"*(w,)) and the other

m’ m
particles. In this case equation (£47) verified by X"*(w) during the time interval [£ Al

following equation (€(k, Ji, X'*)) for the indices i € Ji (X% (w,-)):

%, } reduces to the

k k I
Xf@(w,t) = Xf’z (w, E) + Wi(w,t) = W; <w, E) ~3 /}C Z V@(X;*m(w7 s) — leyf(w, s)) ds
m eI (X2 (w,"))
t
1, L L
+ Z (X" (w, 8) = X" (w, 8)) AL (w, 5). (21)
m jET (X (w,)
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k+1

For the same reasons, the equation (e!*1) verified by X!*1%(w,-) during the time interval [%, —

the following equation (€ (k, Ji, X'*1®)) for the indices i € J (X% (w,-)):

] reduces to

: : k kY 1 [ : :
XA, ) = XHhe (w, E) +Wi(w, t)—W; (w, E) -3/, Z V(X (W, 5) = X (W, 5))ds
eI (X )
¢
Y ) - X w,s) AL ), 22)
T (XTI (w,)

But since X% (w,0) = X% (w,0) = z and L"*(w,0) = L% (w, 0) = 0, sets Jo(X 5% (w, -)) and Jo(XH1(w,-))
are equal and equations (21) and (22) coincide for kK = 0. The strong uniqueness of the solution then implies:

1
vt € [0, E] Vi, j € Jo(X"(w, ")) = Jo(X 1% (w, )
X9 (w,t) = X (w,t) and LY (w,t) = LTV (w, 1)

and because J1(X'¥(w,-)) C Jo(X'*(w,-)) (and idem for J;(X*1%(w,-))) this in turn implies that
J1 (X (w, ) = Ji(XH1%(w, +)). But again, since

1 1 1 1
. l,x _ I+1,x l,x _ vyl l,x B o
Vi, j € J1(X"(w,+)) = J1(X (w,9)) X, (w, E) =X; (w, a) and L;; (w, E) =1L, <w, a)

equations (21) and (22) coincide for k¥ = 1, and the strong uniqueness implies Xf’m(w,.) = Xf“’m(w,.)
(and Lﬁf(w, D)= Léjl’m(u}, ) on [L 2] for i in Jy (X" (w,-)) = Ji (X% (w,-), which in turn implies that
Jo(X% (w, ) = Jo(XHLE(w, ).

By induction, we thus obtain that for all k € {1,...,m — 1}, Jp(X"*(w,")) = J(X*1*(w,-)) and

kE+1 . ) )
Vi, j € Ju(X5(w, ).t € [0, L} , X[ (w,t) = X[V (w,t) and LT (w,t) = LV (w, b).
m

Using the inclusion chain {i € N, |z;|<p} C Jpp—1(X) C -+ C Ji(X) C Jo(X) which holds for X = X% (w, )
and X = X*1%(w, ) because X' (w,0) = X'*1%(w,0) = x, we obtain that Xf’m(w, -) and Xf“’x(w, -) are equal
on [0, 1] for #’s such that |z;|<p and the same result holds for (Lﬁf(w, -))i,; and (Lijl’x(w, -))i,; because both
local times coincide if j in Jo(X"%(w,)) and identically vanish otherwise.

Since p may be chosen arbitrary large, Proposition 3.1 is proven. O

4. REMAINING PROOFS

The main Theorems 1.3, 1.4 and 1.5 are now direct consequences of Propositions 4.1, 4.4 and 4.5 enounced
and proved in this section.

In order to prove these propositions, we need some more notations. We first fix x € A. For m € N*, a>1 and
e € 1/N fixed, let Q% (1, a,¢) be the set of w’s such that X% (w,-) does not belong to B(h, @,&) for an infinite
number of indices I:

O%(m, a,¢e) = {w €eQ:VpeN3IU>p, X'(w,.)d é(m,d,e)} = limsup{ X"* ¢ é(m,d,e)}.

l—+oo
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We also define

U1

{w € Qs.t. Ve € 1/N for p large enough and for an infinite number of I’s X' ¢ B(p, R, E)}

= () liminfQ%(p, R, 2). (23)

p~>00

e€1/N

We have the following result:

Proposition 4.1. For every x € A and w € QF NQT, the process (X% (w,.), Lf;-”m(w, .)) satisfies equation (&)
with X°%(w,0) = x. Thus, for anyx € A={{ € A: P(Q5N Q%) =1}, the process (X, L") is a solution
of (£) with initial condition x. Moreover for each z < z. and p € G(z) u(A) = 1.

Before proving this proposition, we first establish some useful results on Q%(m, a,¢) and Q.

Lemma 4.2. Let p be a Gibbsian measure in G(z). For each e € 1/N, m € N* and a > 1, one has

2
/P(Qx(m,d,s)c)du(ﬂﬁ) <20 e ¢ a% m?® exp (—%m) .

[ @) -

Lemma 4.3. For each m € N*, a>1 and € € 1/N one also has

As corollary

Vw € Q%(m,a,e)  X®%(w,-) & B(m,a,e)
and consequently

Vee A YweQ¥ Veel/N 3Fpy st Yp=py X% w,-) &B(p,R,e) .

Proof of Lemma 4.2. By definition of Q (1, a, ) one has

0% (1, &, €)° hmmf{wGQst X (w ~)eB(m,a,5)}.

l—+o0

By Fatou lemma
/P(Qx(m,a £)%)du(z hmmf/P (X5 (w,-) € B(m, a,e))du(z).

Using inequality (17) (see the proof of Prop. 3.2 step 1) applied to the event © = é(m,d,a) we obtain the
following bound:

A,
Ziﬂl

/P(Qz(m,a £)%)du(z hmmf/ QL (B(1m, a,¢)) du(n)+2/A (1

l—+4o0

) duto

thus by Proposition 2.6

A,
Zn
Zi’n

< / z Clhe N2 g exp <§—7h> dp(n) +2 lim (1 -
A

l—+o0

) dp(n).
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zAmn
Inequality (18) implies that lim (1 - =5 ) dp(n) = 0 thus
l=+00 J 4 sz

_ 2
/P(Qx(m,d,s)c)du(x) <z 0 e e gd 2 exp <%m) :

Replacing m and a by p and R in the above inequality, we obtain:

+oo
Ve € 1/N Z/P(m(p,R,g)C)du(x) < 4o0.
p=1
By Borel-Cantelli lemma, this leads to:

Ve € 1/N /P(limsup O%(p, R, e)%)dp(x) =0

p—-+oo
and consequently

[ Panant = [ PO timsupe (. k. 2))dnta) =0

e€1/N ptoo

Proof of Lemma 4.3. According to Proposition 3.1

Vee A YweQf VieN JpeN Vil X%(w,)=X""(w,-)on[0,1].

75

Consequently, for z € A and w € Q%(m,a,e) NQF and for i € N, there exists an [ >y such that X" (w,-) &

B(m,a,c), i.e.

X2 (w, ) = XM (w,) on [0,1]  and  w(X (W, ), =)< = or Vi<, | XD (w, b)) > a+2m? .

St
PR

Thus

Vee A Ywe Q%(m,a,e)NQE VieN wX % (w,), =)<~ or V<1, [ X%(w,t)| > a4+ 2m>.

St
PR

By definition of Qf,
Vee A YweQinQ] Veel/N Fpgst. Vo=py weQ(p,R,e).

So for any z € A, w € QF NQF and € € 1/N there exists pg such that

1
Vp?po ViENU}(X;O’x(w,-),—) <

; Z or Vt < 1, | X% (w,b)] > R + 202

that is
Vie A YweQEnQF Vecl/N 3pgst. Vp=po X%w,-) & B(p,R,e).
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Proof of Proposition 4.1. Let us fix u € G(z) for some z < z.. As corollary of Proposition 3.2 and Lemma 4.2,

/P(Qg N Q7 )dp(z) = 1.

This proves that for p-almost every x in A, P(25 N Q7) = 1 and then pu(A) =

We fix an = € A such that P(Q NQ7) =1 and w € QF N Q7.

We first use the fact that w € QF. For € € 1/N smaller than ey corresponding to w in the definition of QF,
for each p € N* and | > p + 1 greater than Iy associated to w, ¢, p, we have X% (w,-) & B(m(p,1), p+m(p,1),€).
Lemma 3.3 and inequality (13) then imply, as in the proof of Proposition 3.1(i ), that |Xll “(w,t)] <1 —r for
t € [0,1] and for i’s such that |x;|<p. Equation (E5") then reduces to the simpler equation:

Yw e QFNQT VpeN* Hlost ViZly Vist. |z]<p Vte|0,1]

X5 (w,t) = x5 + Wilw, t) — /ZchXlzws Xlx(ws))ds
JEN (24)

/ Z (X" (w, 5) Xlx(w s)) dLi’jx(w,s).

jEN

Since w belongs to Q2 too there exists ¢ € 1/N* and pg such that w € Q%(p, R, ) for each p>pg. Let us fix such
a p. Since w € Q(p, R, €), there exists an infinite number of indices I such that XL (w, ) € B(p, R, ). Remark
that R+ 2p?>p + £p + R so for I's such that X" (w,-) & B(p, R, ) we have:

VieN |w|l<p = Vtel0,1] X/ (w,t )|<p+4p

25
VjeN |x,|>p+2p+R = Vtel0,1] |Xlx(wt|>p+4p+R (25)

Equation (24) holds for these indices [ provided [>lp(w, p,e) and IZp + 1 and in this case we may replace the
sums over j € N by sums over {7, |z;|<p+ 5p + R}, due to (25):

Yw e QgNOY Veel/N Fpgs.t. Vp=po

for an infinite number of I’s and for all @ s.t. |z;| <p vVt € [0,1]
l,x lx o {,x
X% (w,t) = o + Wi(w, t) — / Z Vo (X; " (w,8) — X% (w, 8)) ds (26)
{7 |l;\<9+29+R}
v (X1, 8) = X, 8)) ALY ,8).

{5:]z; \<p+ Sp+R}

Since the set {j : |z;|<p + §p + R} is finite, using proposition 3.1 we can choose [ large enough such that (26)
holds and -
. I T
Vj such that |z;| <p+ 3P +R X" (w, ) = X;°%(w,-) on [0,1].

Consequently

Vw e QiNOQT Veel/N Fpgst. Vp=po Vist. |z|<p VEe|0,1]
t

1
Xioo’m(W,t) =z, + Wi(W,t) _ 5 Z VQD(XZOO@(W, S) — XjOO,a:(w’ S)) ds
) O jlzjl<p+5p+R (27)
+ Z (X7 (w, 8) = X°%(w, 5)) ALy " (w, 5).

O Glasl<ptsotR



INFINITE SYSTEM OF BROWNIAN BALLS WITH INTERACTION: THE NON-REVERSIBLE CASE 77

On the other hand, since w € Q%(p, R, ¢) for each p>py, Lemma 4.3 leads to X°*(w,-) & B(p, R, ). As already
remarked for X' (w,-), this implies that it is equivalent to sum over j € N or over {j,|z;| < p+ 5p+ R} in the
above equation:

Ywe QF Ny Veel/N IFpgst. Vo=po Vist. |x|<p VEe€][0,1]
1 [ :
X220 (w, t) = z; + Wiw, t) — 5/ E V(X" (w,8) — X7 (w, 5)) ds
0 “
jeN

n / SO (w,5) — X7 (w,5)) AL (w, 5)

jEN

ie. forallw e Q2 NOYF, i € Nand ¢ € [0,1]

1 t
X;Qx(w’t) =x; + Wi(w,t) — 5/ Z VQD(XZOO’CC(W7 S) — X]?O,;c(w7 S)) ds
. 0 jen
[ ) = X)) AL 1)
0

JEN
This prove that X°7 is a solution of (£) starting from z. O

Proposition 4.4. The process (X;7%(t), Ly “(t),4,j € N,t € RT) is the unique solution of equation (£) with
initial point v € A inside the class of paths C defined as follows:

X € C(RT,A) belongs to C if there exists € > 0 and p € N* such that for all p,mg € N* there exists an
integer m>=my, a sequence 0 =ty < t; < -+ < tyy = 1 in Q verifying tx4+1 — tkgﬁ and bounded open sets

Co,C1,- -+, Cpr—q in R® which satisfy

B(0,p+m) C Cpy—1 C B(Cpr—1,6) C Chyy—a C -+- C B(Ch,e) C Cy C B(0, p+ m +mP)
R
and Yk ¢ {0’ e ’m/ - 1} d({XJ(U’)aJ € N*au € [tk,tk+1]},60k) 2 5 + Z
Proof. We first check that for w € QF, X°%(w,-) € C. To this aim, we choose ¢ = 9 < R as in the definition
of QF and p = 2. For each p and mg in N*, one may find [ > lo(w, p, €) large enough to have m(p,1) > mgy. Then
m=m(p,l), m =m,t = % and

. R+¢ 00,T ki, R+e
Ck_B(O,P+m2—km+ 5 )u_ U B(Xi (W, =) —5
1€ TL(X" (w,))

are convenient choices: recall that Lemma 3.3 and the proof of Proposition 3.1 imply that

1
d ({X?’”(u),j €N ue [5, ki} } ,ack) LA e
m 2

m 4

and that B(Cy,e) C B(0,p+m2—(k—1)+m+ § +¢) C Cp_1.
The proof of uniqueness is then a direct generalization of the proof of uniqueness for hard core potential
made by Tanemura [8], Lemma 5.4; so we omit it. O

Proposition 4.5. If the initial configuration of X% is random with distribution p € G(z) , then this solution
s time-reversible, that is its law is invariant with respect to the time reversal.
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Proof. We have to prove that for any T € [0, 1], for f1, ..., fx bounded continuous functions on M with compact
support and for ¢y, ..., € [0,7)

/(HleO” ) duta) /(Hsz‘m 1)) (). (28)

But X°% is, by construction, the weak limit of X’*. Then equality (28) holds if the following equality holds:

lim (Hfl (xXbe( Hfl (Xbe(T ))) du(z) = 0.

l—+o0

Like in the proof of Proposition 3.2 step 1 (cf inequalities (17) and (18)), we go back to Q4" which is reversible:

k
‘ / FX (1) = T F(X0(T ~ 1)) dute)
i=1
H filX )) dQL"(X) dp(n)
ZAn
+2 ]| sup|fi(§) / (1— - ) du(n)
H1E€ OIS 70 (

where A = [—1,1]%. The first term of the right hand side is equal to 0 and the second term tends to zero as [
tends to infinity. (I
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5. APPENDIX: ESTIMATE OF THE PROBABILITY OF FAST OSCILLATION
FOR BROWNIAN MOTION

Proposition 5.1. If W is a one-dimensional Brownian motion on (Q,F, P) then for every e > 0 and every
d €]0,1]

Pw(W,6)>¢) < ﬂexp(,i),

Proof. We first use Doob’s inequality applied to the submartingale exp(2W (-)?/5s¢) and then the Gaussian
property E(exp(aW (1)?)) = 1/4/1 — 2a to obtain

P(@3s<so, [W(s)|20) = P< SUp exp <M> > P <2—62)>

0<5< 50 BEN BEN

< exp <§—f§) E (exp (%8500)2)) = V5exp (g) . (29)
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Now using the translation invariance property of the Brownian motion and inequality (29) one obtains:

P(W,8)>2) = P | sup [W(t) = W(s)|>e
bt

5 26 36 5
,é,g,%,-'-}ﬁ[O,l] ds € [i,i+§[3t€ [s,s+ I s.t. |W(t)W(s)|>€)

) §
1) P (35 e [o, g[ 3t € [0, 3 + 4] st [W(t) = W(s)] 28)

3e
4

3
L
@
m
=
| >

5
[3teo, %[ st (W)= S or (D) >

)
+1<) (\/Eexp —%%%) +V5exp (-%9116%))

VAN VAN VAN
N N N hU
s | 00 | Oom

+
- +

N
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