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A MARTINGALE CONTROL VARIATE METHOD FOR OPTION PRICING
WITH STOCHASTIC VOLATILITY ∗, ∗∗
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Abstract. A generic control variate method is proposed to price options under stochastic volatility
models by Monte Carlo simulations. This method provides a constructive way to select control variates
which are martingales in order to reduce the variance of unbiased option price estimators. We apply a
singular and regular perturbation analysis to characterize the variance reduced by martingale control
variates. This variance analysis is done in the regime where time scales of associated driving volatility
processes are well separated. Numerical results for European, Barrier, and American options are
presented to illustrate the effectiveness and robustness of this martingale control variate method in
regimes where these time scales are not so well separated.
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Introduction

Monte Carlo pricing for options is a popular approach in particular since efficient algorithms have been
developed for optimal stopping problems, see for example [10]. The advantage of Monte Carlo simulations is
that it is less sensitive to dimensionality of the pricing problems and suitable for parallel computation; the main
disadvantage is that the rate of convergence is limited by the central limit theorem so it is slow.

To increase the efficiency besides parallel computing, quasi Monte Carlo and variance reduction techniques
are two possible approaches. We refer to [9] for an extensive review. Quasi Monte Carlo, unlike pseudo-random
number generators, forms a class of methods where low-discrepancy numbers are generated in deterministic
ways. Its efficiency heavily relates to the regularity of the option payoffs, which in most cases are poorly posted.
The pros are that such an approach can be always implemented regardless to the pricing problems and it is easy
to combine with other sampling techniques such as those involving the Brownian bridge. On the other hand,
variance reduction methods seek probabilistic ways to reformulate the pricing problem considered in order to
gain significant variance reduction. For example control variate methods take into account correlation properties
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of random variables, and importance sampling methods utilize changes of probability measures. The cons are
that the efficiency of these techniques is often restricted to certain pricing problems.

Stochastic volatility models have been an important class of diffusions extending the Black-Scholes model,
see [6] for details. Under multifactor stochastic volatility models, this paper aims at generalizing the control
variate method proposed by the authors in [4], and studying its variance analysis. Since the proposed control
variates are (local) martingales, we shall call this method “martingale control variate method”. The pricing
problems of European, Barrier and American options are considered in order to demonstrate the effectiveness
of our method for a broad range of problems.

The martingale control variate method can be well understood in finance terminology. The constructed
control variate corresponds to a continuous (non-self-financing) delta hedge strategy taken by a trader who
sells an option. Though perfect replication by delta hedging under stochastic volatility models is impossible,
the variance of replication error is directly related to the variance induced by the martingale control variate
method. This method is also potentially useful to study contracts dealing with volatility or variance risks such
as variance swaps.

A variance analysis, presented in the Appendix, deduces an asymptotic result for the variance reduced by
martingale control variates. It is based on the singular and regular perturbation method presented in [8]. The
paper is organized as follows. In Section 1 we introduce the basic Monte Carlo pricing mechanism and review
the martingale control variate method for European options. Section 2 and 3 extends the method to Barrier and
American options, respectively. Numerical experiments are included and we conclude this paper in Section 4.

1. Monte Carlo pricing under multiscale stochastic volatility models

Under a risk-neutral pricing probability measure IP � parametrized by the combined market prices of volatility
risk (Λ1, Λ2) , we consider the following class of multiscale stochastic volatility models:

dSt = rStdt + σtStdW
(0)∗
t , (1)

σt = f(Yt, Zt),

dYt =
[
1
ε
c1(Yt) +

g1(Yt)√
ε

Λ1(Yt, Zt)
]

dt +
g1(Yt)√

ε

(
ρ1dW

(0)∗
t +

√
1 − ρ2

1dW
(1)∗
t

)
,

dZt =
[
δc2(Zt) +

√
δg2(Zt)Λ2(Yt, Zt)

]
dt

+
√

δg2(Zt)
(

ρ2dW
(0)∗
t + ρ12dW

(1)∗
t +

√
1 − ρ2

2 − ρ2
12dW

(2)∗
t

)
,

where St is the underlying asset price process with a constant risk-free interest rate r. Its stochastic volatility σt

is driven by two stochastic processes Yt and Zt varying on the time scales ε and 1/δ, respectively (ε is intended
to be a short time scale while 1/δ is thought as a longer time scale). The vector (W (0)∗

t , W
(1)∗
t , W

(2)∗
t ) consists

of three independent standard Brownian motions. The instant correlation coefficients ρ1, ρ2, and ρ12 satisfy
|ρ1| < 1 and |ρ2

2 +ρ2
12| < 1. The volatility function f is assumed to be smooth bounded and bounded away from

0. The coefficient functions of Yt, namely c1 and g1, are assumed to be such that under the physical probability
measure, Yt is ergodic. The Ornstein-Uhlenbeck (OU) process is a typical example by defining c1(y) = m1 − y

and g1(y) = ν1

√
2 such that 1/ε is the rate of mean reversion, m1 is the long run mean, and ν1 is the long run

standard deviation. Its invariant distribution is N (m1, ν
2
1

)
.

The coefficient functions of Zt, namely c2 and g2 are assumed to be smooth enough in order to satisfy
existence and uniqueness conditions for diffusions [11]. The combined risk premia Λ1 and Λ2 are assumed to be
smooth, bounded, and depending on the variables y and z only. Within this setup, the joint process (St, Yt, Zt)
is Markovian. We refer to [8] for a detailed discussion on this class of models.
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Given the multiscale stochastic volatility model (1), the price of a plain European option with the integrable
payoff function H and expiry T is given by

P ε,δ(t, x, y, z) = IE�
t,x,y,z

{
e−r(T−t)H(ST )

}
, (2)

where IE�
t,x,y,z denotes the expectation with respect to IP � conditioned on the current states St = x, Yt = y,

Zt = z. A basic Monte Carlo simulation estimates the option price P ε,δ(0, S0, Y0, Z0) at time 0 by

1
N

N∑
i=1

e−rT H
(
S

(i)
T

)
, (3)

where N is the total number of independent sample paths and S
(i)
T denotes the ith simulated stock price at

time T .
Assuming that the European option price P ε,δ(t, St, Yt, Zt) is smooth enough, we apply Ito’s lemma to

its discounted price e−rtP ε,δ, and then integrate from time 0 to the maturity T . The following martingale
representation is obtained

P ε,δ(0, S0, Y0, Z0) = e−rT H(ST ) −M0(P ε,δ) − 1√
ε
M1(P ε,δ) −

√
δM2(P ε,δ), (4)

where centered martingales are defined by

M0(P ε,δ) =
∫ T

0

e−rs ∂P ε,δ

∂x
(s, Ss, Ys, Zs)f(Ys, Zs)SsdW (0)∗

s , (5)

M1(P ε,δ) =
∫ T

0

e−rs ∂P ε,δ

∂y
(s, Ss, Ys, Zs)g1(Ys)dW̃ (1)∗

s , (6)

M2(P ε,δ) =
∫ T

0

e−rs ∂P ε,δ

∂z
(s, Ss, Ys, Zs)g2(Zs)dW̃ (2)∗

s , (7)

with the Brownian motions

W̃ (1)∗
s = ρ1W

(0)∗
s +

√
1 − ρ2

1W
(1)∗
s ,

W̃ (2)∗
s = ρ2W

(0)∗
s + ρ12W

(1)∗
s +

√
1 − ρ2

1 − ρ2
12W

(2)∗
s .

These martingales play the role of “perfect” control variates for Monte Carlo simulations and their integrands
would be the perfect Delta hedges if P ε,δ were known and volatility factors traded. Unfortunately neither the
option price P ε,δ(s, Ss, Ys, Zs) nor its gradient at any time 0 ≤ s ≤ T are in any analytic form even though all
the parameters of the model have been calibrated as we suppose here.

One can choose an approximate option price to substitute P ε,δ used in the martingales (5, 6, 7) and still
retain martingale properties. When time scales ε and 1/δ are well separated, namely 0 < ε � 1 � 1/δ, an
approximation of the Black-Scholes type is derived in [8]:

P ε,δ(t, x, y, z) ≈ PBS(t, x; σ̄(z)) (8)

with an accuracy of order O(
√

ε,
√

δ) for continuous payoffs. We denote by PBS(t, x; σ̄(z)) the solution of the
Black-Scholes partial differential equation with the terminal condition PBS(T, x) = H(x). The z-dependent
effective volatility σ̄(z) is defined by

σ̄2(z) =
∫

f2(y, z)dΦ(y), (9)
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where Φ(y) is the invariant distribution of the fast varying process Yt. In the OU case, the density Φ is simply
the Gaussian density with mean m1 and variance ν2

1 . Note that the approximate option price PBS(t, x; σ̄(z)) is
independent of the variable y. A martingale control variate estimator is formulated as

1
N

N∑
i=1

[
e−rT H

(
S

(i)
T

)
−M(i)

0 (PBS) −
√

δM(i)
2 (PBS)

]
. (10)

This is the approach taken by Fouque and Han [4], in which the proposed martingale control variate method
is empirically superior to an importance sampling [5] for pricing European options. As control variates M0

and M2 are martingales, we shall call them martingale control variates afterwards. Note that there is no M1

martingale term since the approximation PBS does not depend on y and the y-derivative cancels in (6) with
P ε,δ replaced by PBS .

Variance analysis of martingale control variates

Since M2(PBS) is small of order
√

δ, in a first approximation we can neglect M2(PBS) in (10). Hence we
reduce the number of stochastic integrals or martingale control variates from 2 to 1 and formulate the following
unbiased estimator:

1
N

N∑
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[
e−rT H

(
S

(i)
T

)
−M(i)

0 (PBS)
]
, (11)

where

M0(PBS) =
∫ T

0

e−rs ∂PBS

∂x
(s, Ss; σ̄(Zs))f(Ys, Zs)SsdW (0)∗

s .

For the sake of simplicity, we first assume that the instant correlation coefficients, ρ1, ρ2 and ρ12 in (1), are
zero. From (4), the variance of the controlled payoff

e−rT H(ST ) −M0(PBS) (12)

is simply the sum of quadratic variations of martingales:

Var
(
e−rT H(ST ) −M0(PBS)

)
(13)

= IE�
0,t,x,y,z

{∫ T

0

e−2rs

(
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∂x
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∂x

)2

(s, Ss, Ys, Zs)f2(Ys, Zs)S2
sds

+
1
ε

∫ T

0
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(
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∂y

)2

(s, Ss, Ys, Zs)g2
1(Ys)ds

+ δ

∫ T

0

e−2rs

(
∂P ε,δ

∂z

)2

(s, Ss, Ys, Zs)g2
2(Zs)ds

}
. (14)

As in the numerical experiments implemented in [4] and in next sections, we assume that the driving volatility
processes Yt and Zt are of OU type; namely c1(y) = (m1−y), c1(z) = (m2−z), g1(y) = ν1

√
2, and g2(z) = ν2

√
2.

The volatility premia Λ1 and Λ2 are assumed to be smooth and bounded.

Theorem 1.1. Under the assumptions made above and the payoff function H being continuous piecewise smooth
as a call (or a put), for any fixed initial state (0, x, y, z), there exists a constant C > 0 such that for ε ≤ 1, δ ≤ 1,

V ar
(
e−rT H(ST ) −M0(PBS)

) ≤ C max{ε, δ}.
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The proof of Theorem 1.1 is given in the Appendix.
We comment this theorem:
(1) The assumption of zero instant correlations is not necessary. One can still obtain the same accuracy

result with additional cross-variation terms appearing in equation (13).
(2) Adding the next order corrections in

√
ε and

√
δ to (8), as suggested in [8], and using two martingale

control variates as in (10), we would obtain that the variance associated with the estimator is still of
the same order as in the theorem. One can obtain next order accurate result for Lemma A.1. However
there is no accuracy gain for Lemma A.2 because the next order price approximation is still independent
of the fast varying y-variable [8].

Several variance reduction results for pricing European call options can be found in [4], where the martingale
control variate method does demonstrate significant variance reduction performance when time scales are well
separated.

From the computational viewpoint, since calculating each stochastic integral along a sample path is time
consuming, it is useful to reduce the number of stochastic integrals from (10) to (11) and still retain considerable
accuracy for the reduced variance. From the finance point of view, the martingale control variate M0(PBS)
represents that a trader, who sells an option, uses the delta hedge strategy continuously. By doing so, the
induced error of replicated discounted-payoff e−rT H(ST )−M0(PBS) and its statistical property can be studied
through the Monte Carlo simulations (11). Since the martingale control variate method is associated with
hedging strategies, it should, in principle, work for all other derivatives pricing problems provided the delta is
easy enough to be computed or effectively approximated.

In the next sections, we generalize this method to Barrier and American option pricing problems under
stochastic volatility models.

2. Barrier options

The payoff of a barrier option depends on whether the trajectory of the underlying stock hits a pre-specified
level or not before the maturity T . For instance a down and out call option with the barrier B and the strike
K has a payoff

(
ST − K+

)
I{τ>T},

where we denote by I the indicator function and by τ the first hitting time

τ = inf{0 ≤ t ≤ T, St ≤ B}.

Other popular barrier options such as down and in, up and out and up and in can be defined similarly. Under
the risk-neutral probability IP �, a down and out barrier call option price at time t conditioning on no knock-out
before time t < T is given by

P ε,δ(t, x, y, z) = IE�
t,x,y,z

{
e−r(T−t)

(
ST − K+

)
I{τ>T}

}
. (15)

The price P ε,δ(t, x, y, z) solves a boundary value problem [7]. When parameters ε and δ are small enough, the
leading order approximation to P ε,δ in (15) is given by

P ε,δ(t, x, y, z) ≈ PB
BS(t, x; σ̄(z)), (16)

where PB
BS(t, x; σ̄(z)) solves a Black-Scholes partial differential equation for a barrier option problem with the

effective volatility σ̄(z), and the boundary conditions PB
BS(t, B) = 0 for any 0 ≤ t ≤ T and PB

BS(T, x) = (x−K)+
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Table 1. Parameters used in the two-factor stochastic volatility model (1).

r m1 m2 ν1 ν2 ρ1 ρ2 ρ12 Λ1 Λ2 f(y, z)

8% –1 –1 1 1 –0.2 -0.2 0 0 0 exp(y + z)

for x > B. It is known (see for instance [12]) that PB
BS(t, x; σ̄(z)) admits the closed form solution

PB
BS(t, x; σ̄(z)) = CBS(t, x; σ̄(z)) −

( x

B

)1−k

CBS(t, B2/x; σ̄(z)), (17)

where k = 2r/(σ̄2(z)) and CBS(t, x; σ̄(z)) denotes the Black-Scholes price of a European call option with
strike K, maturity T , and volatility σ̄(z).

2.1. Martingale control variate estimator for Barrier options

Let S0 > B, one can apply Ito’s lemma to the discounted barrier option price, then integrate from time 0 up
to the bounded stopping time τ ∧ T so that

P ε,δ(0, S0, Y0, Z0) = e−rT (ST − B)+I{τ>T} −M0(P ε,δ) − 1√
ε
M1(P ε,δ) −

√
δM2(P ε,δ) (18)

is deduced. The local martingales are defined as in (5, 6, 7) except that the upper bounds are replaced by τ ∧T .
As in Section 1, we use the barrier price approximation (17) to construct the following local martingale

control variate

M0(PB
BS) =

∫ τ∧T

0

e−rs ∂PB
BS

∂x
(s, Ss; σ̄(Zs))f(Ys, Zs)SsdW (0)∗

s .

The unbiased martingale control variate estimator by Monte Carlo simulations for the barrier option is

1
N

N∑
i=1

[
e−rT (S(i)

T − K)+I{τ (i)>T} −M(i)
0 (PB

BS)
]
.

The variance analysis for the estimator e−rT (ST − K)+I{τ>T} −M0(PB
BS) can be done similarly as in Theo-

rem 1.1. In fact one can obtain the same accuracy, namely O(ε, δ), because, as shown in [7], the accuracy of the
leading order barrier option approximation in (16) is the same as for European options. All other derivations
remain the same.

2.2. Numerical results

Several numerical experiments are presented to demonstrate that the martingale control variate method is
efficient and robust for barrier option problems even in the regimes where the time scales ε and 1/δ are not
so well separated. Relevant parameters and volatility functions for a two-factor stochastic volatility model are
chosen as in Table 1. Other values including initial conditions and option parameters are given in Table 2.
Option price computations are done with various time scale parameters given in Table 3. The sample size is
N = 10 000. Simulated paths are generated based on the Euler discretization scheme [9] with time step size
∆t = 10−3. Figure 1 presents sampled barrier option prices with respect to the number of realizations. The
dash line corresponds to basic Monte Carlo simulations, while the solid line corresponds to same Monte Carlo
simulations using the martingale control variate M0(PB

BS).
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Table 2. Initial conditions and down and out barrier call option parameters.

$S0 Y0 Z0 $K $B T years

100 –1 –1 110 80 1

Table 3. Comparison of standard errors with various ε and δ. The notation StdBMC stands
for the standard error estimated from basic Monte Carlo simulations, and StdMCV the standard
error from the same Monte Carlo simulations but using the martingale control variate. Numbers
within parenthesis in the third and fourth columns are sample means estimated from the two
Monte Carlo methods, respectively. The fifth column records the variance reduction ratio,
which is calculated by

(
StdBMC/StdMCV

)2
.

1/ε δ StdBMC StdMCV Variance Reduction Ratio

100 0.01 0.2822 (10.8153) 0.0304 (10.8497) 86

75 0.1 0.2047 (10.7652) 0.0306 (10.7594) 45

50 1 0.2455 (11.2082) 0.0474 (11.0962) 27

25 10 0.2604 (12.6212) 0.0417 (12.4372) 39
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Figure 1. Monte Carlo simulations for a down-and-out barrier call option price when 1/ε = 75
and δ = 0.1. Sampled prices are obtained along the number of realizations.

3. American options

The most important feature of an American option is that the option holder has the right to exercise the
contract early. Under the stochastic volatility models considered, the price of an American option with the
payoff function H is given by:

P ε,δ(t, x, y, z) = (ess) sup
t≤τ≤T

IE�
t,x,y,z

{
e−r(τ−t)H(Sτ )

}
, (19)
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where τ denotes any stopping time greater than t, bounded by T , adapted to the completion of the natural
filtration generated by Brownian motions (W (0)∗

t , W
(1)∗
t , W

(2)∗
t ). We consider a typical American put option

pricing problem, namely H(x) = (K − x)+, and maturity T . By the connection of optimal stopping problems
and variational inequalities [11], P ε,δ(t, x, y, z) can be characterized as the solution of the following variational
inequalities

⎧⎪⎨
⎪⎩

L(S,Y,Z)P
ε,δ(t, x, y, z) ≤ 0

P ε,δ(t, x, y, z) ≥ (K − x)+

L(S,Y,Z)P
ε,δ(t, x, y, z) · (P ε,δ(t, x, y, z) − (K − x)+

)
= 0,

where L(S,Y,Z) denotes the infinitesimal generator of the Markov process (St, Yt, Zt). The optimal stopping time
is characterized by

τ�(t) = inf
{
t ≤ s ≤ T, (K − Ss)+ = P ε,δ(s, Ss, Ys, Zs)

}
. (20)

When ε and δ are small enough, the leading order approximation by a formal expansion is

P ε,δ(t, x, y, z) ≈ PA
BS(t, x; σ̄(z)) (21)

while PA
BS(t, x; σ̄(z)) solves the homogenized variational inequality

⎧⎪⎨
⎪⎩

LBS(σ̄(z))PA
BS(t, x; σ̄(z)) ≤ 0

PA
BS(t, x; σ̄(z)) ≥ (K − x)+

LBS(σ̄(z))PA
BS(t, x; σ̄(z)) · (PA

BS(t, x; σ̄(z)) − (K − x)+
)

= 0,

(22)

where LBS(σ̄(z)) denotes the Black-Scholes operator with the constant volatility σ̄(z). In contrast to typical
European and barrier options, there is no closed-form solution for the American put option price under a
constant volatility. The derivation of the accuracy of the approximation (21) is still an open problem.

As in the previous sections, we assume that the discounted American option price e−rtP ε,δ(t, St, Yt, Zt)
before exercise is smooth enough to apply Ito’s lemma, then we integrate from time 0 to the (bounded) optimal
stopping time τ� such that we obtain

P ε,δ(0, S0, Y0, Z0) = e−rT (K − Sτ�)+ −M0(P ε,δ) − 1√
ε
M1(P ε,δ) −

√
δM2(P ε,δ). (23)

The local martingales are defined as in (5, 6, 7) except that the upper bounds are replaced by the optimal
stopping time τ�.

3.1. Martingale control variates for American options

As revealed in (20), the characterization of the optimal stopping time τ�(t) does depend on the American
option price, which itself is unknown in advance. This causes an immediate difficulty to implement Monte Carlo
simulations because one does not know the time to stop in order to collect the payoff along each realized sample
path.

Longstaff and Schwartz [10] took a dynamic programming approach and proposed a least-square regression
to estimate the continuation value at each in-the-money stock price state.

By comparing the continuation value and the instant exercise payoff, their method exploits a decision rule,
denoted by τ , for early exercise along each sample path generated. It is shown in [10] that Longstaff-Schwartz’
method provides a low-biased American option price estimate for practical Monte Carlo simulations. As the
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number of least-square basis functions increases to infinity for discrete exercise dates, Clement et al. in [3] show
that the normalized error in Longstaff-Schwartz’ method is asymptotically Gaussian.

Like in previous sections, a local martingale control variate can be in principle constructed as

M0(PA
BS ; τ�) =

∫ τ�

0

e−rs ∂PA
BS

∂x
(s, Ss; σ̄(Zs))f(Ys, Zs)SsdW (0)∗

s .

Indeed the optimal stopping time τ� is not known. We approximate τ� by the exercise rule τ . Note that
M0(PA

BS ; τ) may incur a bias but from the sample means in Table 6 this effect seems negligible. In fact, one
could build an approximate stopping time from Longstaff-Schwartz’ method. This can be done but will be
computational expensive.

There is no closed-form solution for the homogenized American option PA
BS(t, x; σ̄(z)) either. We introduce

an approximation proposed by Barone-Adesi and Whaley [1], denoted by PBAW
BS , which is derived from an

elliptic-type variational inequalities as an approximation to the parabolic-type variational inequalities (22).
The approximation PBAW

BS admits the closed-form solution:

PBAW
BS (t, x; σ) =

{
λxα + PE

BS(t, x; σ), x > x∗

K − x, x ≤ x∗,

where PE
BS(t, x; σ) denotes the corresponding European put option price and the free boundary x∗ solves the

following nonlinear algebraic equation

x∗ = |α| K − PE
BS(t, x∗; σ)

∂P E
BS(t,x∗;σ)

∂x + 1 + |α|
,

with

α =
1 − 2r

σ2 −
√

(1 − 2r
σ2 )2 + 8(κr+1)

κσ2

2

and

λ =
K − x∗ − PE

BS(t, x; σ)
(x∗)α

·

To summarize, we construct the following stopped martingale as a control variate

M0(PBAW
BS ; τ ) =

∫ τ

0

e−rs ∂PBAW
BS

∂x
(s, Ss; σ̄(Zs))f(Ys, Zs)SsdW (0)∗

s .

The Monte Carlo estimator with the martingale control variate is

1
N

N∑
i=1

[
e−rτ(K − S(i)

τ )+ −M(i)
0 (PBAW

BS ; τ)
]
.

3.2. Numerical results

We consider American put options under two factor stochastic volatility models, specified in Table 4 and
Table 5. Results of variance reduction by the martingale control variate to price American put options are
illustrated in Table 6 with various time scale parameters ε and δ. The discrete time step size is ∆ = 10−3
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Table 4. Parameters used in the two-factor stochastic volatility model (1).

r m1 m2 ν1 ν2 ρ1 ρ2 ρ12 Λ1 Λ2 f(y, z)

10% –1 –1 1 1 –0.3 –0.3 0 0 0 exp(y + z)

Table 5. Initial conditions and American put option parameters.

$S0 Y0 Z0 $K T years

90 –1 –1 100 1

Table 6. Comparison of standard errors with various ε and δ. The notation StdBMC stands
for the standard error estimated from basic Monte Carlo simulations and StdMCV the standard
error from same Monte Carlo simulations but using the martingale control variate. Numbers
within the parenthesis in the third and fourth columns are sample means estimated from the
two Monte Carlo methods, respectively. The fifth column records the variance reduction ratio,
which is calculated by (StdBMC/StdMCV )2.

1/ε δ StdBMC StdMCV Variance Reduction Ratio

100 0.01 0.2354 (21.4340) 0.0240 (21.5942) 96

75 0.1 0.2564 (21.4791) 0.0286 (21.8001) 81

50 1 0.2571 (21.5217) 0.0350 (21.6319) 54

25 10 0.2606 (21.9621) 0.0453 (21.3243) 32

and the total sample size is N = 5000. Figure 2 presents sampled American put option prices with respect to
the number of realizations. The dash line corresponds to basic Monte Carlo simulations, while the solid line
corresponds to same Monte Carlo simulations using martingale control variate M0(PBAW

BS ).

4. Conclusion

In the context of multifactor stochastic volatility models, we propose a martingale control variate method
to price options by Monte Carlo simulations. A theoretical variance analysis is provided to characterize the
size of the variance reduced by martingale control variate in the case that driving volatility time scales are well
separated. Comparing to plain Monte Carlo simulations, significant variance reduction ratios for European,
Barrier and American options are obtained even in regimes where volatility time scales are not so well separated.
These results confirm the robustness of our method based on martingale control variates constructed as in delta
hedging strategies. The effectiveness of our method depends on option price approximations to the pricing
problem considered.
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Figure 2. Monte Carlo simulations for an American put option price when 1/ε = 50 and
δ = 1. Sampled prices are obtained along the number of realizations.

Appendix A. Derivation of the accuracy of the variance analysis

In order to prove Theorem 1.1, we need the following three lemmas.

Lemma A.1. Under the assumptions of Theorem 1.1, for any fixed initial state (0, x, y, z), there exists a positive
constant C1 > 0 such that for ε ≤ 1 and δ ≤ 1, one has

IE�
0,t,x,y,z

{∫ T

0

e−2rs

(
∂P ε,δ

∂x
− ∂PBS

∂x

)2

(s, Ss, Ys, Zs)f2(Ys, Zs)S2
sds

}
≤ C1 max{ε, δ}.

Proof. By Cauchy-Schwartz inequality we have

IE�
0,t,x,y,z

{∫ T

0

e−2rs

(
∂P ε,δ

∂x
− ∂PBS

∂x

)2

(s, Ss, Ys, Zs)f2(Ys, Zs)S2
sds

}
(24)

≤
√

IE�

∫ T

0

(
∂P ε,δ

∂x
− ∂PBS

∂x

)4

(s, Ss, Ys, Zs)ds

×
√∫ T

0

IE�
{

f4(Ys, Zs) (e−rsSs)
4
}

ds,

where we omitted the sub-scripts under the expectation IE�. The second factor on the right hand side of this
inequality is bounded by

√∫ T

0

IE�
{
f4(Ys, Zs) (e−rsSs)

4
}

ds ≤ Cf

√∫ T

0

IE�
{

(e−rsSs)
4
}

ds (25)
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for some constant Cf , as the volatility function f is bounded. Using the notation σt = f(Yt, Zt) as in (1), and
W (0)∗ = W for simplicity, one has

e−rsSs = xe
∫ s
0 σudWu− 1

2

∫ s
0 σ2

udu,

and therefore

IE�
{(

e−rsSs

)4} = x4IE�
{
e6
∫

s
0 σ2

udue
∫

s
0 4σudWu− 1

2

∫
s
0 16σ2

udu
}

≤ C′
fx4IE�

{
e
∫

s
0 4σudWu− 1

2

∫
s
0 16σ2

udu
}

= C′
fx4,

where we have used again the boundedness of f , and the martingale property. Combined with (25) we obtain

√∫ T

0

IE�
{

f4(Ys, Zs) (e−rsSs)
4
}

ds ≤ C2, (26)

for some positive constant C2.
In order to study the first factor on the right hand side of the inequality (24), we have to control the “delta”

approximation, ∂P ε,δ

∂x → ∂PBS

∂x , as opposed to the option price approximation, P ε,δ → PBS , studied in [8] for
European options, or in [7] for digital-type options.

By pathwise differentiation (see [9] for instance), the chain rule can be applied and we obtain

∂P ε,δ

∂St
(t, St, Yt, Zt) = IE�

{
e−r(T−t)I{ST >K}

∂ST

∂St
| St, Yt, Zt

}
.

At time t = 0,

e−rT ∂ST

∂S0
= e

∫ T
0 σtdW

(0)∗
t − 1

2

∫ T
0 σ2

t dt (27)

gives an exponential martingale, and therefore one can construct a IP �-equivalent probability measure P̃ by
Girsanov theorem. As a result, the delta ∂P ε,δ

∂St
(t, St, Yt, Zt) has a probabilistic representation under the new

measure P̃ corresponding to the digital-type option

∂P ε,δ

∂St
(t, St, Yt, Zt) = Ẽ

{
I{ST >K} | St, Yt, Zt

}
,

where the dynamics of St becomes

dSt =
(
r + f2 (Yt, Zt)

)
Stdt + σtStdW̃t,

with W̃ being a standard Brownian motion under P̃ . The dynamics of Yt and Zt remain the same as in (1)
because we have assumed here zero correlations between Brownian motions. Then one can apply the accuracy
result in [7] for digital options to claim that

∣∣∣Ẽ {I{ST >K} | St, Yt, Zt

}− Ē
{
I{S̄T >K} | S̄t = St, Zt

}∣∣∣ ≤ C3(Yt)max{√ε,
√

δ},

where the constant C3 may depend on Yt, and the “homogenized” stock price S̄t satisfies

dS̄t =
(
r + σ̄2(Zt)

)
S̄tdt + σ̄(Zt)S̄tdW̄t
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with W̄t being a standard Brownian motion [6]. In fact, the homogenized approximation Ē
{
I{S̄T >K} | S̄t, Zt

}
is a probabilistic representation of the homogenized “delta”, ∂PBS

∂x . Consequently, we obtain the accuracy result
for delta approximation:

∣∣∣∣
(

∂P ε,δ

∂x
− ∂PBS

∂x

)
(t, St, Yt, Zt)

∣∣∣∣ ≤ C3(Yt)max{√ε,
√

δ}.

The existence of moments of Yt ensures the existence of the fourth moment of C3(Yt), and therefore the first
factor on the right hand side of (24) is bounded by

√√√√IE�

{∫ T

0

(
∂P ε,δ

∂x
− ∂PBS

∂x

)4

(s, Ss, Ys, Zs)ds

}
≤ C4 max{ε, δ} (28)

for some positive constant C4. From (24), (28) and (26), we conclude that

IE�

{∫ T

0

e−2rs

(
∂P ε,δ

∂x
− ∂PBS

∂x

)2

(s, Ss, Ys, Zs)f2(Ys, Zs)S2
sds

}
≤ C1 max{ε, δ}

for some constant C1. �

Lemma A.2. Under the assumptions of Theorem 1.1, for any fixed initial state (0, x, y, z), there exists ε a
positive constant C such that for ε ≤ 1 and δ ≤ 1, one has

∫ T

0

e−2rs

(
∂P ε,δ

∂y

)2

(s, Ss, Ys, Zs)g2
1(Ys)ds ≤ C ε2. (29)

Proof. Conditioning on the path of volatility process and by iterative expectations, the price of a European
option can be expressed as

P ε,δ(t, x, y, z) = IE�
t,x,y,z

{
IE�
{
e−r(T−t) (ST − K)+ | σs, t ≤ s ≤ T

}}
= IE�

t,x,y,z

{
PBS

(
t, x; K, T ;

√
σ2
)}

, (30)

where the realized variance is denoted by σ2:

σ2 =
1

T − t

∫ T

t

f(Ys, Zs)2ds. (31)

Taking a pathwise derivative for P ε,δ [9] with respect to the fast varying variable y, we deduce by the chain rule

∂P ε,δ

∂y
(t, x, y, z) = IE�

t,x,y,z

{
∂PBS

∂σ

(
t, x; K, T ;

√
σ2(y, z)

)
∂
√

σ2

∂y

}
. (32)

Inside of the expectation the first derivative, known as Vega,

∂PBS

∂σ
=

xe−d2
1/2

√
T − t√

2π
,
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with d1 = log(x/K)+(r+ 1
2 σ2)(T−t)

σ
√

T−t
, is uniformly bounded in σ. Using the chain rule one obtains

∂
√

σ2

∂y
=

1

(T − t)
√

σ2

∫ T

t

[
∂f

∂y
(Ys, Zs)

∂Ys

∂y
+

∂f

∂z
(Ys, Zs)

∂Zs

∂y

]
f(Ys, Zs)ds. (33)

In order to control the growth rate of ∂Ys

∂y and ∂Zs

∂y we consider their dynamics:

d
ds

(
∂Ys

∂y
∂Zs

∂y

)
=

(
− 1

ε + ν1
√

2√
ε

∂Λ1
∂y (Ys, Zs) ν1

√
2√

ε
∂Λ1
∂z (Ys, Zs)√

δν2
∂Λ2
∂y (Ys, Zs) −δ +

√
δν2

√
2∂Λ2

∂z (Ys, Zs)

)(
∂Ys

∂y
∂Zs

∂y

)
(34)

with the initial condition (∂Yt

∂y , ∂Zt

∂y ) = (1, 0).
Rescaling the system (34) by defining Ỹ ε

s = Ysε and Z̃ε
s = Zsε, we deduce

d
ds

(
∂Ỹ ε

s

∂y
∂Z̃ε

s

∂y

)
=

(
−1 0
0 0

)(
∂Ỹ ε

s

∂y
∂Z̃ε

s

∂y

)

+
√

ε

(
ν1

√
2∂Λ̃1

∂y (Ỹ ε
s , Z̃ε

s) ∂Λ̃1
∂z (Ỹ ε

s , Z̃ε
s)√

δεν2
∂Λ̃2
∂y (Ỹ ε

s , Z̃ε
s) −δ

√
ε +

√
δεν2

√
2∂Λ̃2

∂z (Ỹ ε
s , Z̃ε

s)

)(
∂Ỹ ε

s

∂y
∂Z̃ε

s

∂y

)
.

The functions Λ̃1 and Λ̃2 are defined according to the rescaling and they are smooth and bounded as Λ’s. By
a classical stability result [2], we obtain |∂Ys

∂y | < C5e−(s−t)/ε and |∂Zs

∂y | < C6δε for some constants C5 and C6.
Applying these estimates to (33) and by the smooth boundness of f , we obtain

∂
√

σ2

∂y
≤ Cε

for some C, and consequently a similar bound for ∂P ε,δ

∂y (t, x, y, z) in (32). Finally, as g1 = ν1

√
2, Lemma A.2

follows. �
Lemma A.3. Under the assumptions of Theorem 1.1, for any fixed initial state (0, x, y, z), there exists a positive
constant C such that for ε ≤ 1 and δ ≤ 1, one has

∫ T

0

e−2rs

(
∂P ε,δ

∂z

)2

(s, Ss, Ys, Zs)g2
2(Zs)ds ≤ C.

Proof. The proof is similar to Lemma A.2. �
From the bounds in Lemma A.1, A.2 and A.3, we deduce Theorem 1.1.
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