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USING AUXILIARY INFORMATION IN STATISTICAL FUNCTION
ESTIMATION

SERGEY TARIMA! AND DMITRI PAVLOV?

Abstract. In many practical situations sample sizes are not sufficiently large and estimators based on
such samples may not be satisfactory in terms of their variances. At the same time it is not unusual that
some auxiliary information about the parameters of interest is available. This paper considers a method
of using auxiliary information for improving properties of the estimators based on a current sample only.
In particular, it is assumed that the information is available as a number of estimates based on samples
obtained from some other mutually independent data sources. This method uses the fact that there
is a correlation effect between estimators based on the current sample and auxiliary information from
other sources. If variance covariance matrices of vectors of estimators used in the estimating procedure
are known, this method produces more efficient estimates in terms of their variances compared to the
estimates based on the current sample only. If these variance-covariance matrices are not known, their
consistent estimates can be used as well such that the large sample properties of the method remain
unchangeable. This approach allows to improve statistical properties of many standard estimators such
as an empirical cumulative distribution function, empirical characteristic function, and Nelson-Aalen
cumulative hazard estimator.
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INTRODUCTION

In many practical situations sample sizes are not sufficiently large and estimators based on such samples
may not be satisfactory in terms of their variances. At the same time it is not unusual that some auxiliary
information about the parameters of interest is available. Such additional information, if available, can be
incorporated in an estimating procedure which can result in improved properties of standard methods.

Auxiliary information

Auxiliary information can be obtained from different data sources and in different forms such as census
data, population based survey reports, results of previous experiments, and expert opinions or assumptions on
population parameters. Information from these sources can be presented and used in a number of different
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ways. Census data can be used to obtain probability distributions for such parameters of interest as age,
gender, household income, etc. Surveys usually report more targeted information, such as a proportion of likely
voters favoring democratic (or republican) political platform, or an average income of customers shopping at
a supermarket. While using census data, a researcher typically assumes zero variance, but it is not usually a
case to ignore sample variability for survey based estimation. Expert opinion can be expressed in a form of a
well grounded guess on one or several population parameters. Some experts can impose a set of restrictions on
population parameters or an underlying distribution.

In general, auxiliary information can be of the following two types. The first type is auxiliary information
of exact nature, such as census data, expert assumptions, or a set of linear restrictions. The second type is
information known with some degree of uncertainty, such as survey results, estimates from previous experiments,
ete.

Exact auxiliary information

One of the first attempts to use auxiliary information goes back to 1973, when Pugachev [11] suggested to use
a correlation effect for incorporating auxiliary information in an estimating procedure. He considered a linear
regression of a variable of interest on a variable known from auxiliary information. The latter one is usually
called auziliary.

Haberman [6] expressed auxiliary information in a set of linear constraints on probability measures. His idea
was to find a probability measure satisfying these constrains and bringing minimum to Kulbak-Leibler divergence
with an empirical measure. This approach was also brought up by Dmitriev and Ustinov [2]. They considered
projections of probability measures in a class of probability measures defined by additional information. In
addition to focusing on many theoretical issues of their method, they gave detailed analysis of projections
onto quantile and symmetric classes of distributions. They proved that asymptotic properties of Pugachev’s
estimators and the estimators obtained by Kulbak-Leibler projections are identical.

In 1986, Chambers and Dunstan [1] presented quantile estimation in the presence of auxiliary variable.
They proposed a model-based method incorporating auxiliary information on estimation stage. Rao et al. [12]
extended their approach to design-based estimators.

The same “ultimate” knowledge on auxiliary variable was used by Holt [5] to modify estimators derived on
data inflicted by non-responses and by Zhang [13] who minimized profile likelihood in the presence of constrains
imposed by auxiliary information.

Bayesian theory provides an easy-to-use methodology for incorporating auxiliary information. Bayesian
inference is based on a posterior risk minimization at an assumed prior distribution. If this prior distribution
is known, the parameters of this distribution are also know. If this prior distribution is known in a form of a
parametric model with a set of unknown parameters, these parameters are substituted by sample estimates and
the prior is called empirical.

Non-parametric Bayesian approach provides statistical inference comparable to classical nonparametric in-
ference. A probability model p(F') can be assumed on an underlying distribution F'. A standard assumption
is a Dirichlet distribution, p (F)) = D (Fy, M) , where F is an assumed distribution, and M is the parameter
defining the variability around Fjp.

The described methods deal mostly with auxiliary information of exact nature. The results of the research
described above are not applicable directly if the exact auxiliary information cannot be obtained. Literature
on using uncertain auxiliary information is not as extensive. In fact the authors found only few papers that
provide methods on the use of auxiliary information presented in a form of statistical estimates.

Even though non-parametrical Bayesian approaches can efficiently emulate some cases of uncertain addi-
tional information, these methods also rely on some assumptions of parametric families or random probability
measures, which makes them members of a group of exactly known auxiliary information. Empirical Bayesian
approaches are usually used as a convenient practical tool for implementing classical Bayesian techniques, and
hence, we are not considering them separately from the other Bayesian approaches.
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Uncertain auxiliary information

Kuk and Mak [7] used a median derived from an independent sample to improve the standard median
estimator.

Kulldorff [8] considered a parameter estimation problem on a partially grouped sample. If we consider
frequencies of grouped observations as auxiliary information, the problem of statistical estimation on a partially
grouped sample can be thought as a problem of uncertain auxiliary information. Kulldorff used a likelihood
based approach for estimating on partially grouped data. He focused specifically on exponential and normal
distributions.

In 1991, Gal’chenko and Gurevich [4] extended Pugachev’s approach to auxiliary information obtained from
a single previous experiment.

In contrast to Gal’chenko and Gurevich’s method, this paper describes a more general approach for a situation
when auxiliary information is available from several independent data sources. The suggested extension allows
to implement auxiliary information obtained from any finite number of previous experiments. Also, there are
no strict constrains on rates of convergences for the estimates used in the procedure.

Layout

Section 1 defines notation, develops extensions to Gal’chenko and Gurevich’s approach, and assess asymptotic
properties of the suggested estimators.

In Section 2 a cumulative distribution function (CDF) estimator with incorporated auxiliary information
given by a probability estimate is presented. Empirical cumulative distribution function (ECDF) is modified
by this probability estimate. Mathematics of this special case is given in details for illustrative purposes. A
numerical example concludes this section.

Section 3 considers mutually uncorrelated auxiliary information. Cumulative hazard function (CHF) is
estimated on partially grouped samples. In CHF case, Nelson-Aalen cumulative hazard function estimator is
improved by incorporating additional data into the estimating procedure.

A short discussion is situated in Section 4.

1. METHODOLOGY

1.1. Notation

Current data set. Let (X, F) be a measurable space and P be a set of all probability measures on (X, F).
Suppose X = (Xi,...,Xn) is a vector of independent and identically distributed random variables with a
common probability distribution P € P.

Objective. The objective is to estimate a vector of parameters © = (61, ..., 05)" , where 0, = S ps(x)dP(z)

with a known function ¢, (z) defined on X. The quality of this estimation is defined by a risk function Rp(©) =
I'cov(0,0)T, where I' = (v, ...,7s)7 is a vector of pre-specified constants and © is an unbiased estimator
of ©.

Auxiliary data sources. Auxiliary information is presented in a form of vectors of unbiased estimates
B; = (Bil, ey BU%)T from I independent data sources, ¢ = 1,...,I, J; denotes the number of estimates from ith
source of auxiliary information. The key assumption on auxiliary information is B; estimates B; = (Bits s Big) T,
which are shared parameters of ith auxiliary data source and current data. In other words, the distribution of
the current sample (P) and the distribution of the ith auxiliary data (denote this distribution as @;) can be
different, but 3;; = [ ¢i;(y)dQi(y) = [ ¢i;(x)dP(x), i = 1,...,I and j = 1,..., J;. The distributions Q;(-) and
functions ¢;;(-) may be defined on a domain different from X. This key assumption let us think that every B;
is an estimate of B; a set of parameters of P.

Estimators on current data set. Given X we obtain © a vector of unbiased estimators of © and Bz
vectors of unbiased estimators of B;.
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Some more notation. For further delivery we denote

B=(BT,...,BT a J x 1 vector column, where J = 2521 Ji;

B= (BIT, e BIT)T a J x 1 vector column of estimates on current sample;

B= (BIT, e B’IT)T a J x 1 vector column of estimates from additional data sources;
Koy; = cov(Bs, B;) and Koy, = C?V(Bi, B;) are J; x J; variance covariance matrices;

/ 5 15 " S 1 . . .
Ko, = cov(B, B), K11 = cov(0,0), and K,, = cov(B, B) are J x J variance covariance matrices;
Ki2 = cov(0,5) is a J x S covariance matrix;

Ky = COV(B, B) + COV(B, B) is a J x J variance covariance matrix.

From mutual independence of the sources of auxiliary information, the matrix K/Q/Q = diag(Kg%) (block diagonal
matrix and Kg% are its diagonal elements, i = 1,...,I).

1.2. Method

A family of unbiased estimators. Let

&' =0+ (B-B) (1)
be a family of unbiased estimators, where
A11 A1y
A= .
As1 Asg

defines all possible estimators in (1).

The smallest dispersion ellipsoid. In a class of positive definite variance covariance matrices cov(éA, éA),
a dispersion ellipsoid based on cov(@AU7 ©40) is called the smallest if

I''cov (éAO, éAO) I <TTcov (éA, éA) T

for any I' = (71, ...,vs)7.
Optimal estimator. An estimator is called optimal if it defines the smallest dispersion ellipsoid in (1).
Dispersion ellipsoid is invariant to orthogonal transformations and its shape can be uniquely identified through
its eigenvalues. After eigenvectors’ based orthogonal transformation 7' the vector TO consists of uncorrelated
components. Hence, without loss of generality, a vector of estimates 6= (él, e éS)T with mutually uncorrelated
components can be assumed, and the class of unbiased estimators (1) can be represented in a form of S equalities

0 = 6, + A, (r;’ - é) : 2)

where Ay = (A1, Asg), s =1,..., 5.

The variance of every ég\ can be minimized independently from the variances of éé\t, t # s. Moreover, the
dependence from I' disappears, because one-dimensional variance minimization does not depend on a multi-
plicative constant.

Setting a gradient vector with respect to A identically equal to zero, that is

A Var (éA) = 9Ky + 20K, = 0, (3)

we find that if Koo is invertible, the solution Ag = K12K2_21 is invariant to any choice of I'. This Ay brings a
minimum to T'7cov(©*, ©*)I" because second derivatives give I'TKgol' > 0.
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Hence, the optimal estimator is
6" = 6 - Ki,Kj)! (B - B) (4)

and its smallest dispersion ellipsoid is defined by a variance covariance matrix
K’ = K;, — K19K5, K%, (5)

The optimal estimator (4) is a multivariate multiple linear regression of O on B — B. If additional information
provides exact values of B, the optlmal estimator becomes a multivariate multiple linear regressmn of © on B.

The difference of the regressions © on B — B and © on B is incorporated in the matrix Koy = Koy + Koy If
B is known exactly from an additional data source, Koo = K22. If B is estimated by B from an additional data
source, Koy = Ky, + Ko,

Adaptive estimator. The optimal estimator (4) can be obtained only when the matrices K2 and Koo
are known. However, in the majority of real life problems they are not available. The simplest solution is to
substitute Kio and Koo with their consistent estimates Klg and Kgg.

After this substitution

0" =0 - KipKy, ([5’ —~ é) : (6)

By analogy with Pugachev’s terminology the estimator (6) is called adaptive. The variance covariance matrix (5)
can be estimated by

RO = Ky — KoK KD, ™)

The estimators (6) and (7) can be obtained only when Ky is invertible. If Koy is invertible, there exists a

real valued € > 0 such that the smallest eigenvalue of Koo is greater then this e. As sample size increases, the

probability that the smallest eigenvalue of Ko is strictly greater than zero goes to one and chances of inability
to invert Koo go to zero.

1.3. Large sample properties

The method of Section 1.2 uses estimators and their dispersions only. The analysis of large sample properties
also uses actual sample sizes of the current sample and additional data sources. Let n be a size of a current
sample, m; be a sample size of the ith additional data source, i =1,...,I.

Set m; = fi(n), where f;(n) is an increasing function, as n going to infinity. Thus, the asymptotical properties
of (4) and (6) are tied to n only.

Assume

e & =ay (é - @) if, where a,, is a sequence of positive real numbers such that a,, — +oo, §iN (0,%11),
and aiKH — 211;

° T, =ay, (l% — B) 7, where 72N (0, 2/22> and a2 Koy — Yo

® (in = bin él —Bi) i@-, where b;, is a sequence of positive real numbers such that b;, — —+oo,

d 1" . 1"
GAN (0, ZQQi), i=1,..,1, and b2, Koy,

o Go= (s h)" where CEN (0,35,) and %5, = diag (T3, ).

12
— Yoos

Proposition 1. If bj,a;! — w; € [0,400) and Yo = Yoy + diag(w?Ly,;) is positive definite then
an((:)O - @)iN(O7 Y11 — 21980 2L, where $15 = cov(E, 7).
Proof. Let n, = an((:)O — ©) then n, =&, — K12K2_21Tn. Since the random variable 7, is a linear combination

of random variables converging to a normal distribution, 7,, converges to a normal random variable, denote 7.
From E(0Y) = © find E(n) = 0, from (5) cov(n,n) = a? K0 Y11 — 219X 2%, O



16 S. TARIMA AND D. PAVLOV

The term 21222_212?2 is always non-negative and depends on sample sizes only through w;. If w; are much
larger than 1, the risk function decrease gained by incorporating auxiliary information is very small and the
asymptotic properties of the optimal estimator are almost the same as the estimator based on current sample
has. If w; is close to 0 then the estimators obtained from additional data sources provide small variability and
the asymptotic properties of the optimal estimator are close to the case of incorporating additional information
of exact nature.

Denote Ny a class of all univariate and multivariate normal random variables with zero means and variance
covariance matrices of finite elements.

Proposition 1 provides asymptotic properties of the optimal estimator (4). The asymptotic properties of (6)
are presented in

Proposition 2. Under the assumptions of Proposition 1, if the elements of a2 (K12 —Ki2) and ai(f{gg —Ks)

converge to random variables from Ny, then an(é* — @)in and afl((:)* - éo) converges to random variables
from Ny. In other words, the asymptotic properties of the optimal and adaptive estimators are the same, and
O* converges to ©° with a2 rate of convergence.

Proof. The representation
an (é* — @) =a, (éo — @) + ay, (é* — (;)0)
can be rewritten as
Qp, (é* — @) =MNn — Qn (K12K2_21 — K12K2_21) (B — 5’) . (8)

From (8) it follows that it is enough to show that (K12K5, — K12K 5, ) (B — B) does not affect the asymptotic
properties of an(é* — 0). The convergence of the elements of a%(K12 — Ki9), a%(f(gg — Kss), and B-Bto
random variables from Ay makes any continuous and differentiable at zero function of these elements converge
to a normal random variable at the same rate. So, the elements of a2 (KoK, — KoKy, ) (B — B) also converge
to random variables from M.

Hence, 1) the elements of an(f(uf{g}l — K12K§21)(l§ — B) converge to random variables from ANy with

decreasing variance (as n — 00), which makes this term uninfluential to asymptotic properties of a,(©* — ©),
and 2) the elements of ©* converge to OV with a2 rate of convergence. O

The advantage of using a,, instead of \/n and b;, instead of \/m; is that by this generalization it becomes
possible to incorporate in the estimating procedure not only the well-spread estimators converging to their
means at /n rate of convergence but also a variety of estimators converging to normal random variables with
arbitrary convergence rates. For example, kernel estimators depending on bandwidth provide certain degree of
robustness, which importance cannot be underestimated at small sample sizes, however, these estimators suffer
from a convergence rate slower than /n.

Remark. The estimator (7) estimates a variance covariance matrix of the optimal estimator (4). Since the
elements of a2 (©* — ©°) converge to random variables from A, the elements of a2 (cov(©*,0%) — K) also
converge to random variables from M.

To illustrate merits of the proposed estimators, an example of characteristic function (CF) estimation with
auxiliary information is considered in the following section.

1.4. Characteristic function with auxiliary information
A CF is defined by
+oo
O(t) = / exp (itx)dF(z),

where t € (—o0, +00) and /i = —1.
Since ®(t) is a function of ¢, the estimating procedure incorporating auxiliary information can be presented
for an arbitrary time point .
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Let Xi,..., X, be a simple random sample with a common distribution function F', then § = ®(t) can be
estimated by a plug in estimator

A~ A +OO
0=2>o(t) = [ exp (itz)dF, (x),

where F,(-) is a ECDF. The estimator ®(t) is called empirical characteristic function.

Additional information comes from two independent data sources.

The first data source provided two estimates Fy,,, (a) and F,, (b), where my is the number of observations
used for obtaining these estimates, a and b are constants on real line.

From the second data source a mean estimate sz is available. The estimator Xm2 was obtained on mo
observations with kernel smoothing.

The types of the additional estimators imply

V1 (Fy (a) — F(a)) SN (0, F(a) — F*(a)) ,

VL (Fray (b) — F(5)) 5N (0, F(b) — (b)) ,
m;1/3 (sz - ,LL> iN (07 02) )

where p = fj_;o xdF(z) and 0% = fj;o (x — p)2dF ().
The optimal estimator is

0 = 6 — KiK' (B - B) , 9)

where B = (Fn(a), Fr(b),
The matrices used in (9
o K12 = HK(Z)
n=t f (exp (itz) — ®(t)) (I[a;ga] — F(a)
<2> n=t [ (exp (itx) — ®(t)) (Ija<s) — F(b)) dF(z), and
K =0~ [ (exp (itz) — B(t)) (x — p) dF ();

X) B= (le(a),le(b),Xm).
) ar

, where

~
o
o

—~
&

—

)

o Ko = HKQ(;j) , where
i,j=1,2,3 ,
1 — - +
K2(21) = (” ! +my 1) f_oooo (I[zSa] - F(a)) dF(z),

KS = (07t +mih) [T (Ipey — F(0)” dF(x),

K = (070 4my ™) [12 (@ = ) dF (@),

K = KD = (07 +mi?) [1 (Tpsa) = F(@) (wsy — F(0)) dF (@),
K5 = K53 =n™t [ (Ijy<a) — F(a)) (v = p) dF (2),

KQ%S) = Kégz) =n! fj;o (Iiz<t) — F(b)) (z — p) dF ().

However, the optimal estimator depends on F', which is not available. The adaptive estimator is obtained from
the optimal estimator by plugging in F), instead of an unknown F'. Since p depends on F, a sample mean f
can be used instead, i = X,, = > i X;.
The CF estimator incorporates two correlated probability estimators from the first data source and one
smoothed kernel based mean estimator from the second data source, which is independent from the first.
Section 2 presents another illustrative special case, CDF estimation with auxiliary information, and three
numerical examples.
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2. CUMULATIVE DISTRIBUTION FUNCTION ESTIMATOR

Let X5,...,X, be independent and identically distributed random variables (i.i.d.r.v.) with an unknown
CDF F(t), t € (—00,00). In addition to X7,...,X,, an additional data source provided an estimate Fm(s)
based on a simple random sample of m observations, s is a constant on real line. Note, actual observations from
this additional data source are not available. Moreover, they can come from a different from F' distribution,
denote it G. The underlying assumption for incorporating Fm(s) in statistical estimation is the distributions
managing random variables in current and additional data are equal at s, that is G(s) = F(s). Let F,,(s) be a
sample probability estimate, which means /m(F,,(s) — F(s))iN(O7 F(s) — F%(s)).

To modify an ECDF F,,(t) we consider a class of unbiased estimators

F7(t) = Fu(t) + M(Fu(s) = Fu(s)) (10)

which is a special case of (1).
The optimal parameter Ao bringing the smallest in (10) variance is

m_ F(min(s,t)) — F(s)F(t)

NS PO FG) -
Then, applying (11) to (10) the optimal estimator becomes
F2(0) = P - TN 1, ) — £ () (12)
The variance of (12) is
_F()(1—F(t)) m  (F(min(s,t)) — F(s)F(t))”
var (E, (1)) = " Tt m) FEO—F6) (13)

The actual value of Ag usually is not available in (12) and (13). In this case, the adaptive estimator (6) can be
used, which is simplified to

m  F,(min(s,t)) — F,(s)F,(t)
n+m F.(s)(1— F,(s))

Fo(t) = Fu(t) — (Fu(s) = Fin(s))- (14)

According to Proposition 2 the estimator (14) provides the same asymptotic properties as (12).

Remark. The adaptive estimator F*(¢) cannot be used when F,(s) = 0 or F,(s) = 1. To avoid it, many
different amendments to F,(t) can be used. For example, assigning F, (¢t) = F,(t) in these cases resolves this
problem.

Denote
n m -
im(8) = T Fa(s) + T o)
If t < s then (14) is simplified to
Fa(t)
FX(t) = Fham 1
10 = P () 20 (15)
and if ¢ > s (14) becomes
Fo(t) — Fu(s
F3(0) = Fuen(s) + [1 = Frn(s)) 2002 21 (16)
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From (15) and (16)

F,(min(t, s))
F.(s)

F,(max(t,s)) — F,(s) .

Fr(t) = Faym(s) 1 — Fu(s)

+[1 = Fugm(s)]

(17)

The estimator (17) was also obtained by Little and Rubin [9] as a maximum likelihood estimator on two
dimensional data with ignorable missingness in the second component.

When the m(m +n)~! goes to 0 the estimator (14) converges to empirical cumulative distribution function
estimator. As the m(m + n)~! goes to 1, the estimator (14) goes to the case when auxiliary information is
known exactly. Applying the ultimate case with m = +oo and finite n, the ratio m(m +n)~! =1 and F}(t)
becomes
F,(min(s,t)) — F,(s)F,(t)

Ei®) = Bult) - =5 0 = Fu(s))

(Fn(s) = F(s)). (18)
The (18) can be represented as

F,,(min(t, s))

F(t) = F(s) =55 Fy(max(t, s)) — Fu(s)

1—F,(s)

+(1—-F(s)) (19)

The estimator (19) is a non-parametric maximum likelihood estimator constructed with a prior knowledge
of F(s) [10].
In order to illustrate how F(¢) differs from the empirical cumulative estimator we consider the following

Example. Suppose X, ..., X,, are obtained from F(t) = 1 — exp(—t). The estimate F},(1) represents auxiliary
information. Three experiments were conducted: a) n = 50, m = 150; b) n = 50, m = 10; ¢) n = 50,
m = 10000.

In Figures 1, 3, 5 empirical estimators with their 95% confidence intervals are shown. Figures 2, 4, 6 picture
adaptive estimators and their 95% confidence intervals.

Figure 2 shows the closer ¢ to 1 (and the stronger the correlation between Fj,(t) and F,,(1)), the smaller
confidence interval becomes. The strongest improvement from incorporating auxiliary information comes at
t=1.

Figure 6 describes a situation, where m is much larger than n.

Figures 1 to 6 illustrate that the best improvement of the confidence interval corresponds to ¢ = 1 because
at this time point the strongest correlation between F,(t) and F),(t) is attained.
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3. MUTUALLY UNCORRELATED AUXILIARY INFORMATION

Section 1 considers auxiliary information presented by vectors of estimates obtained from mutually indepen-
dent data sources.

In this section, we consider a more specific situation, we assume that every additional data source provides one
estimator only. Then, in the notation of Section 1 J; = 1, i = 1,...,I. The components of B are independent
and, hence, uncorrelated. The matrix K;Q becomes a diagonal matrix. Another reasonable assumption is
the components of B are also uncorrelated. This assumption sets all non-diagonal elements of Kl22 to zero.
Summarizing these two assumptions the matrix Koo is diagonal with elements Var(ﬁil) + Var(Bﬂ). Then, the
matrix K5, is also diagonal with elements (Var(8;1) + Var(8;1)) .

In these assumption, the optimal estimator is

ISR (6 — )

i=1 Var (Bil) + Var (Bﬂ> , (20)
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the variance (5) is simplified to

I

KO —_ K11 _ KlQK{Q

i—1 Var (@1) + Var (le) ,

where K15 is a § x I matrix with elements cov (és,@l), s=1,...,8i=1,..1I

3.1. Cumulative hazard estimator

Let Y3,...,Y, be iidr.v. with an unknown Fy (t), C1,...,C, be iidr.v. from Fgo(t), t € [0,00), YV
is independent from C. If T; = min(Y;,C;) and §; = I(Y; < Cj), for j = 1,...,n, paired observations
(Th,61), ..., (Tn,,) represent right censored data.

In survival analysis CHF is defined by

H(t):/o (1 — Fy(z—)) 'dFy(z), (22)

where F(z—) =lim._o F(z —¢), ¢ > 0.
The standard approach to CHF estimation is to use Nelson-Aalen cumulative hazard estimator

1,0 = 3 2 23)

<t n($)
where d,,(z) = >i", 6;1(Y; = x) represents the number of uncensored events Y; registered at z, R, (z)
Sor I(Y; > x) stands for the number of events Y; registered at or after z.
The variance of (23) can be estimated by Aalen’s variance estimator
—~ D dn ()
var(H,(t)) = Z R%(ac) (24)
x<t

Fleming [3] is a good reference for further reading on (23) and (24).
Assume that 1)

2 dm ()
Hp(si) = m (25)
" 2
were obtained from an additional data source, ¢ = 1,...,k, and 2) Y;I (s;;—1 <Y; < sj) is independent from
YiI (sj—1 <Y; < s;), where [ is an indicator function and j # j’. The second assumption states that the number
of events in periods (s;—1, s;], j =1, ..., k, are mutually independent.
The elements of variance covariance matrices can be consistently estimated on the basis of given right censored
data by
v (B (s1), Hin(s5)) = 8 (Hyp (minsi, 55)))
and
GV (Hu(s:), Ha(s;) ) = r(Hy (min(si, s,)))-

To be able to use uncorrelated auxiliary information we represent auxiliary information as

A (s) = H(s) - H(s)= Y ol (26)

si—1<x<s;
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where i = 1,...,k, so = 0, H(0) = 0.
By analogy with (26),

2 dp ()
AH (s;) = .
= > Zm
si—1<x<s;
Since Y;I (s;_1 < Y; < s;) is independent from Y;I (s;_1 < Y; < s;/), where j # j', AH (s;) and AH (s;) are
mutually uncorrelated for any 4.
Then, the adaptive cumulative hazard estimator with auxiliary information is

=8

R2(x

. dy(x m dn(z
H,() = Rn((x)) Cn+m Z Z RQ((I)) Z

Jj=1 \ min(t,s;_1)<x<min(t,s;) sj—1<x<s;

~

" Z dy(x) _ dm () - (@27)

sj_1<x<s; Rn(l’) sj_1<x<s; Rm(l')
The variances of (27) can be estimated by
k 2 -1
(A dp(x) m dp(x) dp(z)
var (H,(t)) = Z o Z 3 Z 2 : (28)
( ) z<t Ri(z)  n4m J=1 \min(t,s;—1)<z<min(t,s;) R (@) sj—1<z<s; (@)

The formulaes (27) and (28) represent estimators of an optimal estimator and its variance. The large sample
properties of these estimators are presented in Proposition 2.

4. CONCLUSION

A problem of using auxiliary information is considered. Auxiliary information is presented in a form of a set of
statistical estimates obtained from mutually independent additional data sources. Moment based methodology
is developed for incorporating auxiliary information.

The methodology developed in this paper provides extensions for previously known procedures of incorpo-
rating auxiliary information. In particular, these extensions are 1) arbitrary convergence rates and 2) multiple
sources of auxiliary information. The extension to arbitrary convergence rates provides an opportunity to in-
corporate in statistical estimation the estimators with a different from +/n rates of convergence. For example,
many kernel estimators along with advantageous robustness acquire slow convergence rates. Another extension
presents the use of additional information from several mutually independent data sources.

Large sample properties are shown for the optimal and adaptive estimators. The first proposition shows that
the optimal estimator (the estimator based on known variance covariance matrices) is unbiased and provides the
same or smaller variance than the estimator without using auxiliary information. The second proposition proves
that the adaptive estimator developed for unknown variance covariance matrices provides the same asymptotic
properties as the optimal estimator.

Detailed mathematics for incorporating one estimate from one additional data source in a cumulative distri-
bution function is presented in a separate section. In addition, a numerical example is also provided.

As a special case, the use of mutually uncorrelated additional estimators is considered. A cumulative hazard
estimator with auxiliary information is shown as an application of this special case.

Overall, the decision on the use of these estimators depends on the answers to the following questions: 1) how
strong is the correlation between the estimator based on current sample and the estimator from an additional
data source? 2) do we have a large enough sample size to insure that the adaptive estimator provides properties
close to the optimal estimator?
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The number of estimates used in an estimating procedure is another issue a researcher should be aware of. As
with linear models, the more estimates we involve in a procedure, the larger sample size we need for attaining
sufficient quality of estimation.
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