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ASYMPTOTIC BEHAVIOR OF DIFFERENTIAL EQUATIONS DRIVEN
BY PERIODIC AND RANDOM PROCESSES WITH SLOWLY DECAYING

CORRELATIONS

Renaud Marty1

Abstract. We consider a differential equation with a random rapidly varying coefficient. The random
coefficient is a Gaussian process with slowly decaying correlations and compete with a periodic compo-
nent. In the asymptotic framework corresponding to the separation of scales present in the problem,
we prove that the solution of the differential equation converges in distribution to the solution of a
stochastic differential equation driven by a classical Brownian motion in some cases, by a fractional
Brownian motion in other cases. The proofs of these results are based on the Lyons theory of rough
paths. Finally we discuss applications in two physical situations.
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1. Introduction

Limit theorems are very useful for approximation problems in many situations, for instance in physics [7–9]
or mathematics for finance [6]. We consider in this paper a random field (Y ε(t))t∈[0,+∞) which is solution of
the random differential equation:






dY ε

dt
(t) = εm(t)F (Y ε(t)) for t ∈ [0,+∞),

Y ε(t = 0) = x0 ∈ R
d,

(1)

where F is a smooth function, m is a continuous, stationary and centered stochastic process and ε > 0 is a small
dimensionless parameter. For instance the vector Y ε can model the position of a particle driven by a random
velocity field or a vector of prices in mathematics for finance. We want to study the asymptotic behavior of Y ε

when ε goes to 0. Under boundedness conditions on F and m, it is clear that Y ε → x0 when ε → 0. So our
aim is to find the time scale which leads to a nontrivial effective evolution of the position of the particle or the
vector of prices. In some cases it appears that the good scale is t→ t/ε2. The rescaled quantity Xε := Y ε(·/ε2)
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166 R. MARTY

satisfies the random differential equation:






dXε

dt
(t) =

1
ε
m
( t

ε2

)
F (Xε(t)) for t ∈ [0,+∞),

Xε(t = 0) = x0 ∈ R
d.

(2)

The limit of Xε when ε → 0 is well known under prescribed sets of hypotheses, in particular on the mixing
properties of m. For instance, we may assume that m is an ergodic Markov process with generator G which
satisfies the Fredholm alternative [23], or that m is a φ−mixing process with sufficiently decaying mixing
function φ [12]. Then, by classical approximation-diffusion theorem (see for instance [11, 25, 26] and the books
by Kushner [12] and Ethier and Kurtz [5]) the solution Xε converges in distribution in the space of continuous
functions to the diffusion process X which is solution of the stochastic differential equation:

{
dX(t) = σ0F (X(t)) ◦ dW (t) for t ∈ [0,+∞),

X(t = 0) = x0 ∈ R
d,

(3)

where W is a classical Brownian motion (cBm), ◦ stands for the Stratonovich integration and σ2
0 =

2
∫ +∞
0

E[m(0)m(t)] dt which is nonnegative by the Wiener-Kintchine theorem [22]. As a consequence, if σ0 > 0,
then we get a time scale which leads to a nontrivial evolution of Y ε. A question that we can ask is: what does it
happen if σ0 = 0? The classical diffusion-approximation theorem still holds true and shows that Xε converges
to 0. So it seems that we should consider a longer scale to capture the effective behavior of Y ε.

We would like to address another issue. The classical diffusion-approximation theorem requires the covariance
function to be integrable. What does it happen if the covariance function of m is not integrable? The influence
of the random term is stronger, so it seems that we should consider a shorter scale to get the effective behavior
of Y ε.

In this article we address the two issues. We shall see that the suitable scale is not t/ε2 anymore, but a
longer scale in the case where σ0 = 0 (the short-range case), and a smaller scale when the covariance function
of m is not integrable (the long-range case). We shall establish that the rescaled process Xε converges to the
solution of a stochastic differential equation of the same type of (3), not driven by a classical Brownian motion,
but driven by a fractional Brownian motion. The Hurst parameter of this fractional Brownian motion will turn
out to depend on the decay rate of the covariance function. The Hurst parameter will be smaller than 1/2
in the short-range case, and greater than 1/2 in the long-range case. Note that numerous papers [5, 7, 25, 26]
have examined the limit of differential equations driven by a scaled noise verifying some general conditions
(that we can find for instance in Kushner’s book [12]), and in all these papers the limit system is driven by a
semi-martingale. So an original contribution of this paper is to show examples where the limit driving noise is
not a semi-martingale.

Sometimes the dynamical system is driven by a forcing term resulting from the interplay between a random
component and a periodic component [23]. For instance let us consider the system






dY ε

dt
(t) = εm(t) cos(εbt)F (Y ε(t)) for t ∈ [0,+∞),

Y ε(t = 0) = x0 ∈ R
d.

(4)

It is well-known [5, 12, 25, 26] that if m is an ergodic Markov process with a generator which satisfies the
Fredholm alternative, b ∈ (0, 2), then the rescaled quantity Xε = Y ε(·/ε2) converges to the solution of (3)
with σ2

0 =
∫ +∞
0

E[m(0)m(t)] dt. We want to address the same issue as in the previous case, that is to say:
what does it happen if the covariance function is not integrable or if the covariance function is integrable but
suchthat

∫ +∞
0 E[m(0)m(t)] dt = 0? Do we get the same results as previously, that is to say the convergence to
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the solution of a stochastic differential equation driven by a fractional Brownian motion? The answer is no; we
prove in this paper that Xε converges to the solution of a stochastic differential equation driven by a classical
Brownian motion like in the classical case, but with a normalization which depends on the decay rate of the
covariance function and on the frequency of the periodic component.

The proofs for the classical cases are based on the perturbed test function method [5,12,25,26]. This approach
requires good mixing properties of the driving processes. These good mixing properties do not hold in our cases
(in particular, the limit system is not always driven by a semi-martingale), so it seems that the perturbed test
function method cannot be applied. We shall use the rough paths theory developed by Lyons (see [15–17, 19]
for the theory and [3, 13, 14] for some applications). Moreover we propose a new approach to the classical
approximation-diffusion theorem using the rough paths theory.

In a previous work [20] we addressed the case where m is a long-range process and we did not take into
account a periodic component. In this paper we first extend this result to the short-range case, which requires
deeper technical considerations, essentially due to the stronger roughness of the system. Second we consider the
role of a periodic component on the evolution of the system. The interplay between randomness and periodicity
leads to a diffusive asymptotic behavior, which is really different from the case without a periodic component.
This is in dramatic contrast with the classical approximation diffusion situation where we get the same diffusive
asymptotic behavior with or without periodic component.

The problem that we consider in this article is also triggered by some recent work [29] dealing with wave
propagation in fractal random media. We expect that generalizations of our results will be obtained and applied
to many situations: finance, wave propagation in random media, and other fields where dynamical systems are
governed by differential equations with random forces. In this paper, we shall discuss applications in two physical
situations.

The organization of the paper is as follows: Section 2 is a brief review of rough paths theory and stochastic
differential equations driven by a fractional Brownian motion. In Section 3 we establish the main results which
are proved in Section 4. In Section 5 we apply continuity theorem of Lyons to give a new proof of the classical
approximation-diffusion theorem. Section 6 deals with generalizations of previous results in multi-dimensional
cases. Finally we discuss in Section 7 some applications.

2. Some background

2.1. The fractional Brownian motion

This section is a brief review of fractional Brownian motion properties. We refer the reader to [27] for a more
exhaustive presentation.

Let H ∈ (0, 1). We call the fractional (one-dimensional) Brownian motion (fBm) with Hurst parameter H
the centered Gaussian process (WH(t))t∈R with covariance function

E[WH(s)WH(t)] =
1
2
{|t|2H + |s|2H − |t− s|2H

}
.

Remark that if H = 1/2, the process WH is the classical Brownian motion (cBm). However, if H �= 1/2, WH is
nor a semi-martingale, neither a Markov process. As a consequence, the construction for the fBm of a stochastic
calculus turns out to be more tricky than for the cBm. The aim of the following section is to give a short review
of the method to construct solutions of stochastic differential equations driven by a fractional Brownian motion
via rough paths theory introduced by Lyons [15–17,19] and used for instance in [3, 13].
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2.2. Rough paths

In this section we fix p ≥ 1, and we consider only functions defined on I := [0, 1]. We say that a function
w : I → R

n is of p−finite variation if

Vp(w) :=

(

sup
D

k−1∑

j=0

|w(tj+1) − w(tj)|p
)1/p

<∞,

where supD runs over all finite partitions {0 = t0 < t1 < · · · < tk = 1} of I.
For any continuous function w : I → R

n of finite variation, we construct the smooth rough path over w:

w̃ : ∆ → R ⊕ R
n ⊕ (Rn)⊗2 ⊕ · · · ⊕ (Rn)⊗[p]

(s, t) �→ (1, w̃1(s, t), w̃2(s, t), · · · , w̃[p](s, t)),

where ∆ = {0 ≤ s ≤ t ≤ 1} and w̃k(s, t) is the k-th iterated integral of w on [s, t]:

w̃k(s, t) =
∫

s<r1<···<rk<t

dw(r1) ⊗ · · · ⊗ dw(rk).

The space of all smooth rough paths is endowed with the p−variation distance

dp(ũ, ṽ) =
[p]∑

j=1

(

sup
D

∑

l

|ũj(tl−1, tl) − ṽj(tl−1, tl)|p/j

)j/p

+ sup
t∈[0,1]

|u(t) − v(t)|

and is denoted by Ω∞
p . The closure of this metric space is called the space of all geometric rough paths and is

denoted by Ωp. One of the most important theorems of rough paths theory is the following one:

Theorem 1 (continuity theorem of Lyons). Let G : R × R
d → L(R,Rd), and F : R × R

d → L(Rn,Rd) be two
smooth functions with all bounded derivatives up to the degree [p] + 1. We consider y the unique solution of the
differential equation

dy(t) = G(t, y(t)) dt + F (t, y(t)) dw(t), y(t = 0) = y0,

where w is a finite variation function. Then the Itô map I : w̃ �→ ỹ is continuous with respect the p−variation
distance from Ω∞

p (Rn) to Ω∞
p (Rd). Therefore there exists a unique extension of this map (that we still denote

by I) to the space Ωp(Rn).

This theorem is a consequence of the continuity theorem of Lyons (see [3,13,15–17,19]), where G is assumed
to be zero. Indeed, it suffices to replace the noise w : t �→ w(t) by the noise w∗ : t �→ (t, w(t)). Then, by a
straithforward calculation using integrations by part, we show that the application w̃ �→ w̃∗ is continuous in the
space of geometric rough paths (see for instance [18] pp. 140–141).

2.3. Stochastic differential equations driven by fBm

Let us consider the case n = 1. We can check that for any continuous function w : I → R of finite p−variation,
there exists a geometric rough path w̃ which has the explicit formulation:

w̃(s, t) =

(

1, w(t) − w(s),
(w(t) − w(s))2

2
, · · · , (w(t) − w(s))[p]

[p]!

)

·

We consider a fBm WH with Hurst parameter H . The sample paths are H ′−Hölder continuous for all H ′ < H ,
so they are of finite p−variation for all p > 1/H . Then there exists a geometric rough path for all sample paths
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of WH , which we denote by W̃H . Following Theorem 1 we can define I(W̃H)1 + y0 as the strong solution of the
stochastic differential equation driven by a fBm:

dy(t) = G(t, y(t)) dt + F (t, y(t)) ◦ dWH(t), y(t = 0) = y0. (5)

Note that if H = 1/2, the strong solution of (5) defined as above is the same as the strong solution defined by
classical Stratonovich’s calculus.

Now we consider the case where n > 1. It is proved by Coutin and Qian in [3] that there exists a geometric
rough path of order p with p > 1/H for all sample paths of a multi-dimensional fBm with Hurst index H > 1/4.
So we can construct in this case a strong solution of stochastic differential equations driven by such a fBm. It
is also shown that this construction can be extended to more general Gaussian processes.

3. Main results

3.1. Convergence to the solution of a stochastic differential equation driven by a fractional
Brownian motion

In this section we consider the family of processes (Xε)ε in R
d which is defined by:






dXε

dt
(t) = G(t,Xε(t)) +

1
εα
m
( t

ε2

)
F (t,Xε(t)) for t ∈ [0, 1],

Xε(t = 0) = x0 ∈ R
d,

(6)

where G and F are two smooth functions (strict conditions will be given below), m is a continuous, stationary
and centered stochastic process, and α ∈ (0, 2). We denote by r the covariance function of m, that is r(t) =
E[m(0)m(t)]. We define the following assumptions:

Assumption (H1): α ∈ (0, 1) and there exists c0 > 0 such that r(t) ∼ c0/t
α when t→ +∞.

Assumption (H2): α ∈ (1, 2), there exists c0 < 0 such that r(t) ∼ c0/t
α when t → +∞ and

∫ +∞
0

r(t) dt = 0.

Before stating the main result of this section we give examples of processes which satisfy Assumption (H1)
or (H2). Let H ∈ (0, 1). We call the fractional (one-dimensional) white noise with index H the pro-
cess (mH(t))t∈R defined by

mH(t) = WH(t+ 1) −WH(t),

where WH is a fBm with Hurst parameter H . This process is continuous, Gaussian, stationary, centered and
his covariance function is given by

E[mH(0)mH(t)] =
1
2
{|t+ 1|2H + |t− 1|2H − 2|t|2H

}
.

If we take α = 2 − 2H , we can check by straightforward calculations that mH satisfies (H1) if H > 1/2, (H2)
if H < 1/2.

We call the (stationary) fractional Orstein-Uhlenbeck process with index H the process (νH(t))t∈R defined by

νH(t) = WH(t) − e−t

∫ t

−∞
eθWH(θ) dθ,

where WH is a fBm with Hurst parameter H . As the white noise with index H , νH is continuous, Gaussian,
stationary, centered and, taking α = 2 − 2H , satisfies (H1) if H > 1/2, (H2) if H < 1/2.
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The main result of this section is the following.

Theorem 2. Assume that:

1) m is Gaussian and (H1) or (H2) is satisfied.
2) F and G are two functions from R × R

d to R
d of class C[2/(2−α)]+1 with bounded derivatives.

Let (Xε)ε be the family of processes which is solution of (6). When ε goes to 0, Xε converges in distribution
in C([0, 1],Rd) to the process X which is solution of:

{
dX(t) = G(t,X(t)) dt+ C0F (t,X(t)) ◦ dWH(t) for t ∈ [0, 1],

X(t = 0) = x0 ∈ R
d,

(7)

where WH is a fractional Brownian motion with Hurst index H = (2 − α)/2 and C2
0 = H−1(2H − 1)−1c0. In

fact, the convergence holds in the space of geometric rough paths of order p > 2/(2 − α).

Section 4.1 is devoted to the proof of this theorem.

3.2. Convergence to the solution of a stochastic differential equation driven by a classical
Brownian motion

Now we consider the family of processes (Xε)ε in R
d which is defined by:






dXε

dt
(t) = G(t,Xε(t)) +

1
εγ
m
( t

ε2

)
cos
( t

εβ

)
F (t,Xε(t)) for t ∈ [0, 1],

Xε(t = 0) = x0 ∈ R
d,

(8)

where G and F are two smooth functions (strict conditions will be given below), m is a continuous, stationary
and centered stochastic process, and γ, β are two parameters. We denote by r the covariance function of m.
We define the following assumptions:

Assumption (H3): There exist α ∈ (0, 1) and c0 > 0 such that r(t) = c0/t
α+f(t) where f(t) = O(t−α−2)

when t→ +∞.
Assumption (H4): There exist α ∈ (1, 2) and c0 < 0 such that r(t) = c0/t

α+f(t) where f(t) = O(t−α−2)
when t→ +∞ and

∫ +∞
0

r(t) dt = 0.

For instance the fractional white noise mH which is defined in the previous section satisfies Assumption (H3)
if H > 1/2 and (H4) if H < 1/2. The main result of this section is the following.

Theorem 3. Assume that:

1) m is Gaussian and (H3) or (H4) is satisfied.
2) β ∈ (0, 2) and γ = 1 − (1 − α)(2 − β)/2.
3) F and G are two smooth functions from R × R

d to R
d of class C[2/(1−α)]+1 with bounded derivatives

if (H3) is satisfied. F and G are two smooth functions from R × R
d to R

d of class C[2/(2−α)]+1 with
bounded derivatives if (H4) is satisfied.

Let (Xε)ε be the family of processes which is solution of (8). When ε goes to 0, Xε converges in distribution in
C([0, 1],Rd) to the process X which is solution of

{
dX(t) = G(t,X(t)) dt+ C0F (t,X(t)) ◦ dW (t) for t ∈ [0, 1],

X(t = 0) = x0 ∈ R
d,

(9)
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where W is a classical Brownian motion, C2
0 = c0 cos((1 − α)π/2)Γ(2 − α)/(1 − α)1. In fact, the convergence

holds in the space of geometric rough paths of order p > 2/(1 − α) for α ∈ (0, 1), of order p > 2/(2 − α) for
α ∈ (1, 2).

Sections 4.2 and 4.3 are devoted to the proof of this theorem.

4. Proofs of the main results

4.1. Proof of Theorem 2

The proof of Theorem 2 under (H1) can be found in [20]. The proof of Theorem 2 under (H2) follows
the same lines, but it requires to study geometric rough paths of order p with p sufficiently large. This is
essentially due to the strong roughness of the fractional Brownian motion of Hurst index H < 1/2. Indeed, in
the long-range case, p = 1 is sufficient. So we take p > 1/H . We let

wε(t) :=
1
εα

∫ t

0

m

(
θ

ε2

)

dθ = ε2H

∫ t/ε2

0

m(θ) dθ,

and we denote by w̃ε the geometric rough path of wε for p, that is

w̃ε(s, t) := (w̃ε
1(s, t), w̃

ε
2(s, t), · · · , w̃ε

[p](s, t))

where w̃ε
1(s, t) = wε(t) − wε(s) and w̃ε

n(s, t) = (w̃ε
1(s, t))n/n!. By Theorem 1 it is sufficient to show that w̃ε

converges in distribution when ε goes to 0 to the geometric rough path of the fBm WH for the metric dp:

dp(ũ, ṽ) =
[p]∑

j=1

(

sup
D

∑

l

|ũj(tl−1, tl) − ṽj(tl−1, tl)|p/j

)j/p

+ sup
t∈[0,1]

|u(t) − v(t)|.

The aim of the first lemma is to prove the convergence of the finite-dimensional distributions of w̃ε. Then we
prove an estimate on the increments of wε that we use to conclude the proof by the tightness of w̃ε for the
distance dp.

Lemma 1. When ε goes to 0, the finite-dimensional distributions of (w̃ε)ε>0 converge in law to the finite-
dimensional distributions of C0W̃H where C2

0 = H−1(2H − 1)−1c0 and W̃H is the geometric rough path of the
fBm WH .

Proof. By the continuity of the map x �→ (x, x2/2, · · · , x[p]/[p]!) and the fact that m is Gaussian and centered,
we only have to show that for all s, t ∈ [0, 1],

lim
ε→0

E[wε(s)wε(t)] =
C2

0

2
{|t|2H + |s|2H − |t− s|2H

}
.

It is a straightforward extension to the continuous case of the result 7.2.11 p. 337 of Samorodnitsky and
Taqqu [27]. �

The following lemma is useful for the tightness of (w̃ε)ε>0.

Lemma 2. There exists a positive constant C such that

E[(wε(t) − wε(s))2] ≤ C|t− s|2H

for all t, s in [0, 1] and ε in (0, 1).

1 In the statement of the theorem Γ stands for the Gamma Euler function Γ(x) =
∫∞
0 e−ttx−1 dt.
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Proof. If we let w(t) :=
∫ t

0
m(θ) dθ it is sufficient to show that

E[(w(t) − w(s))2] ≤ C|t− s|2H .

Since r(t) ∼ c/tα when t → ∞ and
∫∞
0
r(t) dt = 0, there exists a constant C′ such that

∫ A

0
r(t) dt ∼ C′A1−α

when A→ ∞, so there exists a positive constant C′′ such that
∫ A

0
r(t) dt ≤ C′′A1−α. Combining this inequality

with the fact that

E[(w(t) − w(s))2] = 2
∫ t−s

0

dθ
∫ θ

0

r(σ) dσ

completes the proof. �
Now we can prove the tightness of (w̃ε)ε>0.

Lemma 3. The family (w̃ε)ε>0 is tight in the space of geometric rough paths for the metric dp for all p > 1/H.

Proof. Using Lemmas 2 and 13 establish the proof. �

4.2. Proof of Theorem 3 under (H3)

In this proof we take p > 2/(1 − α) and we denote

wε(t) = ε1+(1−α)b/2

∫ t/ε2

0

cos(εbθ)m(θ) dθ,

where b = 2 − β. This following proof follows the same lines as the proof of Theorem 2.

Lemma 4. For all s, t ∈ [0, 1], we have:

lim
ε→0

E[(wε(t) − wε(s))2] = C2
0 |t− s|.

Proof. Let s < t ∈ [0, 1]. We have

E[(wε(t) − wε(s))2] = ε2+(1−α)b

∫ t/ε2

s/ε2
dθ cos(εbθ)

∫ t/ε2

s/ε2
dσ cos(εbσ)r(θ − σ)

=
1
2
(Iε

1 (s, t) + Iε
2 (s, t)),

where

Iε
1(s, t) = ε2+(1−α)b

∫ t/ε2

s/ε2
dθ
∫ t/ε2

s/ε2
dσ cos(εb(θ − σ))r(θ − σ),

Iε
2(s, t) = ε2+(1−α)b

∫ t/ε2

s/ε2
dθ
∫ t/ε2

s/ε2
dσ cos(εb(θ + σ))r(θ − σ).

We have
Iε
1(s, t) = 2(Iε

1,1(s, t) − Iε
1,2(s, t)),

where

Iε
1,1(s, t) = ε(1−α)b(t− s)

∫ (t−s)/ε2

0

dσ cos(εbσ)r(σ),

Iε
1,2(s, t) = ε2+(1−α)b

∫ (t−s)/ε2

0

dσ cos(εbσ)σr(σ).
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To prove this lemma, it is sufficient to show

Iε
1,1(s, t)

ε→0−→ C2
0 (t− s), (10)

Iε
1,2(s, t)

ε→0−→ 0, (11)

Iε
2 (s, t) ε→0−→ 0. (12)

Let us begin by (10). We can write Iε
1,1 = Jε

1,1 +Kε
1,1 where

Jε
1,1(s, t) = c0(t− s)

∫ (t−s)/ε2−b

0

dσ cos(σ)σ−α,

Kε
1,1(s, t) = ε(1−α)b(t− s)

∫ (t−s)/ε2

0

dσ cos(εbσ)f(σ).

Since b < 2, Jε
1,1 → c0(t − s)

∫∞
0 dσ cos(σ)σ−α = c0(t − s) cos((1 − α)π/2)Γ(1 − α). |Kε

1,1(s, t)| ≤ ε(1−α)b(t −
s)
∫∞
0

dσ |f(σ)| → 0 because α < 1. So (10) is shown.
Let us prove (11). We can write Iε

1,2 = Jε
1,2 +Kε

1,2 where

Jε
1,2(s, t) = c0ε

2−b

∫ (t−s)/ε2−b

0

dσ cos(σ)σ1−α,

Kε
1,2(s, t) = ε2+(1−α)b

∫ (t−s)/ε2

0

dσ cos(εbσ)σf(σ).

By an integration by part:

Jε
1,2(s, t) = c0ε

α(2−b) sin((t− s)εb−2)(t− s)1−α

−c0ε2−b(1 − α)
∫ (t−s)/ε2−b

0

dσ sin(σ)σ−α,

so we can easily check that Jε
1,2 → 0 because b < 2 and 0 < α < 1. Moreover |Kε

1,2(s, t)| ≤ ε2+(1−α)b
∫∞
0

|σf(σ)| dσ.
The function σ �→ σf(σ) is integrable, then Kε

1,2 → 0, so (11) is proved.
Let us complete the proof of the lemma by showing (12). We can write

Iε
2 (s, t) = ε2+(1−α)b

∫∫

Aε∪Bε∪Cε∪Dε

dxdy r(x) cos(εb(y + 2s/ε2)),

where

Aε = {(x, y) ∈ [0, (t− s)/ε2] × [0, (t− s)/ε2] : x ≤ y},
Bε = {(x, y) ∈ [0, (t− s)/ε2] × [(t− s)/ε2, 2(t− s)/ε2] : y ≤ −x+ 2(t− s)/ε2},
Cε = {(x, y) ∈ [−(t− s)/ε2, 0] × [(t− s)/ε2, 2(t− s)/ε2] : y ≤ x+ 2(t− s)/ε2},
Dε = {(x, y) ∈ [−(t− s)/ε2, 0] × [0, (t− s)/ε2] : −y ≤ x}.

Using trigonometric formulas and the basic estimate |sin| ≤ 1, we can easily check that Jε
1,2(s, t) → 0. This

shows (12) and concludes the proof of Lemma 4. �
Lemma 5. There exists a constant C > 0 such that for all t and s ∈ [0, 1], and ε ∈ (0, 1)

E[(wε(t) − wε(s))2] ≤ C|t− s|1−α.
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Proof. In this proof we adopt the same notations as previously. C stands for a constant which may vary from
line to line but remains independent of s, t, and ε. Following the proof of (10) we get that |Iε

1,1| ≤ C × |t− s| ≤
C × |t− s|1−α.

We remember that Iε
1,2 = Jε

1,2 +Kε
1,2. We have

Jε
1,2(s, t) = c0ε

α(2−b) sin((t− s)εb−2)(t− s)1−α − c0ε
2−b(1 − α)

∫ (t−s)/ε2−b

0

dσ sin(σ)σ−α.

The modulus of the first term of this sum is smaller than C × (t− s)1−α. For the second term we introduce the
function g : A �→ 1

A

∫ A

0 sin(σ)σ−α dσ. g is bounded because α ∈ (0, 1), so

|ε2−b(1 − α)
∫ (t−s)/ε2−b

0

dσ sin(σ)σ−α| ≤ C × (t− s)1−α,

and |Jε
1,2| ≤ C× (t− s)1−α. For Kε

1,2 we introduce the function h : A �→ 1
A

∫ A

0 |σf(σ)| dσ. h is bounded because
α ∈ (0, 1), so |Kε

1,2| ≤ C × (t− s)1−α and |Iε
1,2| ≤ C × (t− s)1−α. Finally, using the estimate on r and |sin| ≤ 1,

we easily check that |Iε
2 | ≤ C × (t− s)1−α. This concludes the proof. �

Now we prove the tightness of (w̃ε)ε>0.

Lemma 6. The family (w̃ε)ε>0 is tight in the space of geometric rough paths for the metric dp for all
p > 2/(1 − α).

Proof. Using Lemmas 5 and 13 establishes the proof. �

4.3. Proof of Theorem 3 under (H4)

Substituting Lemma 7 for Lemma 4 and Lemma 8 for Lemma 5 in the previous proof, we get the proof of
Theorem 3 under (H4).

Lemma 7. For all s, t ∈ [0, 1], we have:

lim
ε→0

E[(wε(t) − wε(s))2] = C2
0 |t− s|.

Proof. Let s < t ∈ [0, 1]. Proceeding and using the same notations as in the proof of Lemma 4 we have

E[(wε(t) − wε(s))2] = Iε
1,1(s, t) − Iε

1,2(s, t) +
1
2
Iε
2(s, t).

Hence, it is sufficient to show

Iε
1,1(s, t)

ε→0−→ C2
0 (t− s), (13)

Iε
1,2(s, t)

ε→0−→ 0, (14)

Iε
2 (s, t) ε→0−→ 0. (15)

Let us begin by (13). We can write

Iε
1,1(s, t) = (t− s)(Jε

1 (s, t) + Jε
2 (s, t) + Jε

3 (s, t)),
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where

Jε
1 (s, t) = c0

∫ (t−s)/ε2−b

0

dσ (cos(σ) − 1)σ−α,

Jε
2 (s, t) = ε(1−α)b

∫ (t−s)/ε2

0

dσ (cos(εbσ) − 1)f(σ),

Jε
3 (s, t) = ε(1−α)b

∫ (t−s)/ε2

0

dσ r(σ).

In the following, C stands for a constant which may vary from line to line but remains independent of s, t
and ε. Jε

1 (s, t) → c0
∫∞
0 dσ (cos(σ) − 1)σ−α = c0 sin((2 − α)π/2)Γ(1 − α) because b < 2. We have |Jε

2 (s, t)| ≤
ε(3−α)b

∫∞
0 σ2|f(σ)| → 0 because σ → σ2f(σ) ∈ L1 and α < 2. We have Jε

3 (s, t) = ε(1−α)b
∫ (t−s)/ε2

0 dσ r(σ). We
have r(σ) ∼σ→∞ C × σ−α and

∫∞
0 r = 0, therefore

∫ A

0 r ∼A→∞ C × A1−α, so Jε
3 (s, t) ∼ε→0 C × ε(b−2)(1−α).

This proves (13).
Let us show (14). We can write

Iε
1,2(s, t) = Jε

1,2(s, t) +Kε
1,2(s, t),

where

Jε
1,2(s, t) = ε2−b

∫ (t−s)/ε2−b

0

dσ cos(σ)σ1−α,

Kε
1,2(s, t) = ε2+(1−α)b

∫ (t−s)/ε2

0

dσ cos(εbσ)σf(σ).

The definite integral
∫∞
0 dσ cos(σ)σ1−α exists and b < 2, so Jε

1,2(s, t) → 0. Moreover |Kε
1,2(s, t)| ≤

ε2+(1−α)b
∫ (t−s)/ε2

0
dσ |σf(σ)|. ∫∞

0
|σf(σ)| dσ <∞ and 2 > b(α− 1), therefore Jε

1,2(s, t) → 0. This proves (14).
The proof of (15) is similar to the proof of (12). �

Lemma 8. There exists a constant C > 0 such that for all t and s ∈ [0, 1], and ε ∈ (0, 1)

E[(wε(t) − wε(s))2] ≤ C|t− s|2−α.

Proof. The proof follows the same lines as the proof of Lemma 5 and essentially uses the calculations of the
proof of Lemma 7. �

5. Approximation-diffusion VIA rough paths

In this section we use our previous arguments, particularly the theorem of continuity of Lyons to give a new
proof of a classical approximation-diffusion theorem.

Theorem 4. Consider p > 2. Let F and G two functions from R×R
d to R

d of class C3 with bounded derivatives
and m be a real-valued Gaussian, centered, continuous and stationary random process with covariance function
r(t) = E[m(0)m(t)]. We assume that r is integrable and we let C2

0 =
∫∞
0 r(t) dt. Then, when ε goes to 0,

(i) the geometric rough path of order p of the solution Xε
1 of the problem






dXε
1

dt
(t) = G(t,Xε

1 (t)) +
1
ε
m

(
t

ε2

)

F (t,Xε
1(t)) for t ∈ [0, 1],

Xε
1(t = 0) = x0 ∈ R

d,
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converges in distribution in the space Ωp to the geometric rough path of order p of the solution X1 of the
stochastic differential equation

{
dX1(t) = G(t,X1(t)) dt +

√
2C0F (t,X1(t)) ◦ dW (t) for t ∈ [0, 1],

X1(t = 0) = x0 ∈ R
d,

where W is a one-dimensional classical Brownian motion,
(ii) if β ∈]0, 2[, the geometric rough path of order p of the solution Xε

2 of the problem





dXε
2

dt
(t) = G(t,Xε

2 (t)) +
1
ε
m

(
t

ε2

)

cos

(
t

εβ

)

F (t,Xε
2(t)) for t ∈ [0, 1],

Xε
2(t = 0) = x0 ∈ R

d,

converge in distribution in the space Ωp to the geometric rough path of order p of the solution X2 of the stochastic
differential equation

{
dX2(t) = G(t,X2(t)) dt+ C0F (t,X2(t)) ◦ dW (t) for t ∈ [0, 1],

X2(t = 0) = x0 ∈ R
d.

The p−variation topology is stronger than the uniform topology, so that this result covers the standard formu-
lation of the approximation-diffusion theorem.

We let

wε
1(t) = ε

∫ t/ε2

0

m(θ) dθ and wε
2(t) = ε

∫ t/ε2

0

cos(ε2−βθ)m(θ) dθ.

First we establish two preliminary lemmas.

Lemma 9. For all s and t in [0, 1], we have:

lim
ε→0

E[(wε
1(t) − wε

1(s))
2] = 2C2

0 |t− s| and lim
ε→0

E[(wε
2(t) − wε

2(s))
2] = C2

0 |t− s|.

Proof. The proof consists in some algebra using trigonometric formulas, the dominated convergence theorem
and the fact that r is integrable. �
Lemma 10. For all s and t in [0, 1], there exists a constant C > 0 such that for all ε ∈ (0, 1]:

E[(wε
1(t) − wε

1(s))
2] ≤ C|t− s| and E[(wε

2(t) − wε
2(s))

2] ≤ C|t− s|.
Proof. The proof essentially uses the calculations and the arguments of the previous proof. �

Now we can prove Theorem 4.

Proof of Theorem 4. Substituting Lemma 9 for Lemma 4 and Lemma 10 for Lemma 5 in the proof of Theorem 3
under (H3), we get the proof of Theorem 4. �

6. About the multi-dimensional case

6.1. Extension of Theorem 2

We consider the following problem:





dXε

dt
(t) = G(t,Xε(t)) +

1
ε

k∑

j=1

mj

( t

ε2

)
Fj(t,Xε(t)) for t ∈ [0, 1],

Xε(t = 0) = x0 ∈ R
d,

(16)
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wherem1, ...,mk are centered stochastic processes, ε is a small parameter, andG,F1, ..., Fk are smooth functions.
This type of equation has some applications, for instance in the study of light propagation in a birefringent
optical fiber [10]. It is well-known [25, 26] that if the multi-dimensional process (m1, ...,mk) is continuous,
centered, Markovian, ergodic with a generator which satisfies the Fredholm alternative, and satisfying good
correlations conditions (for instance the mj ’s are independent), then the solution Xε converges in distribution
to a limit X which is solution of the stochastic differential equation






dX(t) = G(t,X(t)) dt+
k∑

j=1

CjFj(t,X(t)) ◦ dWj(t) for t ∈ [0, 1],

X(t = 0) = x0 ∈ R
d,

(17)

where the Wj ’s are independent standard Brownian motions and C2
j = 2

∫ +∞
0

E[mj(0)mj(t)] dt. The natural
question that we can ask is: can we extend this result to the case where the mj ’s satisfy the assumptions of
Theorem 2, that is to say, can we establish a multi-dimensional version of Theorem 2? The following theorem
establishes that the answer to this question is positive at least in the case where the mj ’s are long-range
processes. The case where the mj ’s are short-range processes is more complicated and will be discussed at the
end of this section.

Theorem 5. Assume that:

1) the mj’s are centered, stationary, Gaussian, independent processes;
2) there exist positive constants c1, c2, ..., ck and 1 > α1 ≥ α2 ≥ ... ≥ αk > 0 such that E[mj(0)mj(t)] ∼

cj/t
αj ;

3) the Fj’s and G are functions from R × R
d to R

d of class C[2/(2−α1)]+1 with bounded derivatives. Then,
when ε goes to 0, the solution Xε of the equation






dXε

dt
(t) = G(t,Xε(t)) +

k∑

j=1

1
εαj

mj

( t

ε2

)
Fj(t,Xε(t)) for t ∈ [0, 1],

Xε(t = 0) = x0 ∈ R
d

(18)

converge in distribution in C([0, 1],Rd) to the process X which is solution of:






dX(t) = G(t,X(t)) dt+
k∑

j=1

CjFj(t,X(t)) ◦ dWHj (t) for t ∈ [0, 1],

X(t = 0) = x0 ∈ R
d,

(19)

where the WHj ’s are independent fractional Brownian motions with Hurst indices Hj = (2 − αj)/2 and
C2

j = H−1
j (2Hj − 1)−1cj. In fact, the convergence holds in the space of geometric rough paths of order

p > 2/(2 − α1).

Proof. We fix p ∈ (1/H1, 2). Following the continuity theorem of T. Lyons, it is sufficient to show that the
geometric functional of order 1 w̃ε of wε,

wε(t) =

(∫ t

0

1
εα1

m1

( θ

ε2

)
dθ, ...,

∫ t

0

1
εαk

mk

( θ

ε2

)
dθ

)

,
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converges to the geometric functional of order 1 of the multi-dimensional fractional Brownian motion
(WH1 , ...,WHk

) for the p−variation distance dp. The functional w̃ε can write as

w̃ε(s, t) =

(∫ t

s

1
εα1

m1

( θ

ε2

)
dθ, ...,

∫ t

s

1
εαk

mk

( θ

ε2

)
dθ

)

,

where all components are independent. So, we have just to prove for all j = 1, ..., k the convergence of
∫ t

s
1

εαj mj

(
θ
ε2

)
dθ. This is already proved in the proof of Theorem 2 under (H1). �

We can imagine multiple extensions of Theorem 5. One of the most natural extensions is a multi-dimensional
version of Theorem 2 under (H2). The problem is that the roughness of the possible limit implies that we have
to prove the convergence of the iterated integrals to the iterated integrals of fBm, which cannot be written
as continuous real-valued functions of Gaussian variables as in proof of Theorem 2 under (H2). This is an
interesting issue that deserves further analysis.

6.2. Extension of Theorem 3

We consider the complex-valued vector Xε which is solution of the following problem:





dXε

dt
(t) = G(t,Xε(t)) +

1
εγ
m
( t

ε2

)
exp

(
i
t

εβ

)
F (t,Xε(t)) for t ∈ [0, 1],

Xε(t = 0) = x0 ∈ C
d.

(20)

This type of equations has a lot of applications in various physical domains, particularly in the study of wave
propagation in random media [7–9, 23]. It is well-known [25, 26] that if the process m is continuous, centered,
Markovian, ergodic with a generator which satisfies the Fredholm alternative, γ = 1 and β ∈ (0, 2), then the
solution Xε converges in distribution to a limit X which is solution of the stochastic differential equation

{
dX(t) = G(t,X(t)) dt+ C0F (t,X(t)) ◦ (dW1(t) + idW2(t)) for t ∈ [0, 1],

X(t = 0) = x0 ∈ C
d,

(21)

where W1 and W2 are two independent standard Brownian motions and C0 =
∫∞
0

E[m(0)m(t)] dt is a nonneg-
ative constant. We can ask the question: in the same way as for Theorem 3, can we prove such a result under
Assumption (H3) or (H4)? This can be expected but we prove in this section a weaker result which is sufficient
for some applications (see Sect. 7). We denote

wε
c(t) = ε1+(1−α)(2−β)/2

∫ t/ε2

0

cos(ε2−βθ)m(θ) dθ,

wε
s(t) = ε1+(1−α)(2−β)/2

∫ t/ε2

0

sin(ε2−βθ)m(θ) dθ.

Theorem 6. We assume m to be Gaussian, (H3) or (H4) to be satisfied with β ∈ (0, 2) and γ = 1−
(1 − α)(2 − β)/2. Then, the sequence of stochastic fields (wε

c(·), wε
s(·)) converges in distribution in C([0, 1],R2)

to C0W where W is a two-dimensional standard Brownian motion, C2
0 = c0 cos((1 − α)π/2)Γ(2 − α)/(1 − α).

Proof. The proof of this theorem is an extension of the proofs of Lemmas 4, 5, 7 and 8. In fact, it remains to
prove that for all s and t, E[wε

c(t)wε
s(s)] converge to 0 when ε goes to 0, to ensure the independence of the two

coordinates of the limit process. We begin by the case where t = s. By a trigonometric formula we can write

E[wε
c(t)w

ε
s(t)] =

1
2
(Lε

1(t) + Lε
2(t)),
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where

Lε
1(t) = ε2+(1−α)(2−β)

∫ t/ε2

0

dθ
∫ t/ε2

0

dσ sin(ε2−β(σ − θ))r(σ − θ),

Lε
2(t) = ε2+(1−α)(2−β)

∫ t/ε2

0

dθ
∫ t/ε2

0

dσ sin(ε2−β(σ + θ))r(σ − θ).

To prove that Lε
2(t) converge to 0, we proceed as for Iε

2 (s, t) in the previous proofs. For Lε
1(t), we perform the

change of variable (θ, σ) → (t/ε2 − θ, t/ε2 − σ) and using the fact that sin(−x) = − sin(x) and r(x) = r(−x),
we get that Lε

1(t) = 0.
Now we assume that s �= t, for instance s < t. From the result obtained in the case t = s, it suffices to show

that

Lε
3(s, t) := E[(wε

c(t) − wε
c(s))w

ε
s(s)]

ε→0−→ 0. (22)

Let us prove (22) under (H4). Note that:

Lε
3(s, t) = ε2+(1−α)(2−β)

∫ s/ε2

0

dσ sin(εbσ)
∫ t/ε2

s/ε2
dθ cos(εbθ)r(θ − σ).

Then, we get:

Lε
3(s, t) ≤ ε2+(1−α)(2−β)

∫ s/ε2

0

dσ
∫ t/ε2

s/ε2
dθ |r(θ − σ)|

≤ ε2+(1−α)(2−β)C

∫ s/ε2

0

dσ
∫ t/ε2

s/ε2
dθ (θ − σ)−α

=
ε(α−1)β

(α− 1)(2 − α)
C((t− s)2−α − t2−α + s2−α) ε→0−→ 0,

because we assume (H4).
Now we prove (22) under (H3). By a trigonometric formula we can write

Lε
3(s, t) =

1
2
(Lε

3,1(s, t) + Lε
3,2(s, t)),

where

Lε
3,1(s, t) = ε2+(1−α)(2−β)

∫ t/ε2

s/ε2
dθ
∫ s/ε2

0

dσ sin(εb(θ − σ))r(θ − σ),

Lε
3,2(s, t) = ε2+(1−α)(2−β)

∫ t/ε2

s/ε2
dθ
∫ s/ε2

0

dσ sin(εb(θ + σ))r(θ − σ).

Lε
3,2(s, t) can be treated exactly as Iε

2(s, t) in the proof of Lemma 4. It remains to deal with Lε
3,1(s, t). By a

change of variable we get:

Lε
3,1(s, t) = ε2+(1−α)(2−β)

∫ t/ε2

s/ε2
dθ
∫ θ

θ−s/ε2
dσ sin(εbσ)r(σ)

= M ε(t) −M ε(s) −M ε(t− s),
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where

M ε(t′) = ε2+(1−α)(2−β)

∫ t′/ε2

0

dθ
∫ θ

0

dσ sin(εbσ)r(σ).

To conclude the proof, we shall prove that

M ε(t′) ε→0−→ c0t
′
∫ ∞

0

σ−α sin(σ) dσ. (23)

By an integration by part we get

M ε(t′) = ε(1−α)(2−β)t′
∫ t′/ε2

0

dθ sin(εbθ)r(θ) − ε2+(1−α)(2−β)

∫ t′/ε2

0

dθ sin(εbθ)θr(θ).

The two terms in the right-hand side can be treated as Iε
1,1(s, t) and Iε

1,2(s, t), respectively, in the proof of
Lemma 4. This concludes the proof. �

6.3. A remark on rough paths theory

We conclude this section by a remark on rough paths theory. In the 70’s, Doss and Sussmann worked on
the gap between ordinary differential equations and stochastic differential equations [4, 30]. One their most
important results deals with the continuity of the Itô’s map. We consider x to be the solution of the ordinary
differential equation driven by the continuous noise w:

dx(t) = G(x(t)) dt + F (x(t)) dw(t), x(t = 0) = x0.

Their result, roughly, is the following: if w is a one-dimensional noise, then the Itô’s map I : w �→ x is continuous
with respect to the uniform norm, but if w is a multi-dimensional noise, then I is not continuous with respect
to the uniform norm in the general case. So, one of the main interests of the rough paths theory is to establish
the continuity of I with a topology stronger than the uniform topology. The conclusion of this remark is the
following: we could prove Theorems 2 and 3 with the theory of Doss and Sussmann, but the rough paths theory
of Lyons makes it possible to generalize these results to multi-dimensional cases as in Theorem 5.

7. Applications

In this section we give applications in two physical situations: the classical random harmonic oscillator and
the quantum random harmonic oscillator. Both systems have been extensively studied because they are great
pedagogical tools and they can be encountered in many physical frameworks [2, 8, 21, 24, 28].

7.1. The classical random harmonic oscillator

We consider the classical harmonic oscillator in a random field ηκm(t/ητ ) wherem is a stationary, continuous,
Gaussian, and centered random process which satisfies (H3) or (H4), η a small dimensionless parameter, τ > 0
and κ = (3 + τ(1/2 − α))/2. The evolution is described by the ordinary differential equation:






d2y

dt2
(t) + ω2y(t) = ηκm

( t

ητ

)
for t > 0

y(t = 0) = y0,

dy
dt

(t = 0) = y′0.

(24)
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The aim of this section is to compute and to study the asymptotic behavior of the energy H of the random
harmonic oscillator:

H(t) = |y(t)|2 +
1
ω2

∣
∣
∣
∣
dy
dt

(t)
∣
∣
∣
∣

2

.

We let

u(t) := y(t) +
1
iω

dy
dt

(t),

so





du
dt

(t) = iωu(t) − iηκ

ω
m
( t

ητ

)
for t > 0

u(t = 0) = y0 +
1
iω
y′0.

(25)

We perform a change of variable

x(t) := e−iωtu(t)

so that, instead of (25), we can consider






dx
dt

(t) = − iη
κ

ω
e−iωtm

( t

ητ

)
for t > 0

x(t = 0) = y0 +
1
iω
y′0.

(26)

Then

x(t) = y0 +
1
iω
y′0 +

ηκ

ω

∫ t

0

[

sin(t′ω) + i cos(t′ω)
]

m
( t′

ητ

)
dt′

and

H(t) = y2
0 + 2y0

ηκ

ω

∫ t

0

sin(t′ω)m
( t′

ητ

)
dt′ +

η2κ

ω2

(∫ t

0

sin(t′ω)m
( t′

ητ

)
dt′
)2

+
y′0

2

ω2
− 2y′0

ηκ

ω2

∫ t

0

cos(t′ω)m
( t′

ητ

)
dt′ +

η2κ

ω2

(∫ t

0

cos(t′ω)m
( t′

ητ

)
dt′
)2

.

We get the main result of this section by letting ε = η1+τ/2 and applying Theorem 6.

Theorem 7. Let us denote the rescaled energy Hη(t) = H(t/η2). Then, when η goes to 0, Hη converges to H0

in distribution in C([0, 1],R) where H0 reads as

H0(t) = y2
0 +

y′0
2

ω2
+ 2|ω|αC0

(

y0W1(t) +
y′0
ω
W2(t)

)

+ |ω|2αC2
0 (W1(t)2 +W2(t)2)

where W1 and W2 are two independent Brownian motions, C2
0 = c0 cos((1 − α)π/2)Γ(2 − α)/(1 − α).

One thus obtains linear diffusive growth of the energy, which is standard in the case of strongly decaying
covariance function [2]. However the dependence of the energy growth with respect to the oscillation frequency ω
exhibits a non-standard structure (E[H0(t)] = H(0) + 2|ω|2αC2

0 t).
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7.2. The quantum random harmonic oscillator

7.2.1. The nonperturbed model

The state vector ψ(t, x) of a particle of mass M in a quadratic trapping potential obeys the Schrödinger
equation:

i�
∂ψ

∂t
(t, x) = − �

2

2M
∂2ψ

∂x2
(t, x) +

1
2
Mω2x2ψ(t, x), (27)

where ω is the oscillation frequency and � is the Planck constant. We multiply the spatial coordinate x
by
√
Mω/� and the time by ω to rewrite (27) in the dimensionless form:

2i
∂ψ

∂t
(t, x) = −∂

2ψ

∂x2
(t, x) + x2ψ(t, x). (28)

7.2.2. The particle in a random force field

We assume the particle to be in an external random force field which derives from the potential ηκxm(t/ητ ).
m is a stationary, continuous, Gaussian, and centered process which satisfies (H3) or (H4), η is a small di-
mensionless parameter, τ > 0 and κ = (3 + τ(1/2 − α))/2. The state vector ψ obeys the partial differential
equation:






2i
∂ψ

∂t
(t, x) = −∂

2ψ

∂x2
(t, x) + x2ψ(t, x) + ηκxm

( t

ητ

)
ψ(t, x),

ψ(t = 0, x) = ψ0(x).
(29)

This can model the motion of a charged particle in a random external electric field. Our aim is to study the
asymptotic behavior of the energy in a long time scale. We define the energy

H(t) =
∫ +∞

−∞

( ∣
∣
∣
∣
∂ψ

∂x
(t, x)

∣
∣
∣
∣

2

+ x2|ψ(t, x)|2
)

dx.

The main theorem of this section is the following.

Theorem 8. Let us denote the rescaled energy Hη(t) = H(t/η2). If H(0) < +∞, then, when η goes to 0, Hη

converge to H0 in distribution in C([0, 1],R) where H0 reads

H0(t) = H(0) + C0(RW1(t) + IW2(t)) +E2
0C

2
0 (W1(t)2 +W2(t)2)

where W1 and W2 are two independent Brownian motions, C2
0 = c0 cos((1 − α)π/2)Γ(2 − α)/(1 − α), R =

∫ +∞
−∞ x|ψ0(x)|2 dx, I is the imaginary part of

∫ +∞
−∞ (∂ψ0(x)/∂x)ψ0(x) dx, and E2

0 =
∫ +∞
−∞ |ψ0(x)|2 dx.

Proof. We rewrite the energy of the perturbed quantum harmonic oscillator with perturbation of the form
ηκxm(t/ητ )ψ(t, x) in term of the energy of an equivalent classical harmonic oscillator with additive noise [2].
As a result the energy reads:

Hη(t) = H(0) + Rηκ

∫ t/η2

0

sin(t′)m
( t′

ητ

)
dt′ + E2

0η
2κ

(∫ t/η2

0

sin(t′)m
( t′

ητ

)
dt′
)2

+Iηκ

∫ t/η2

0

cos(t′)m
( t′

ητ

)
dt′ + E2

0η
2κ

(∫ t/η2

0

cos(t′)m
( t′

ητ

)
dt′
)2

.

We let ε = η1+τ/2 and we apply Theorem 6 to complete the proof. �
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8. Appendix: technical lemmas

The proofs of the main results are based on the tightness in the space of geometric rough paths. Moreover
we need to compute the p−variation for p > 1. So, we remember the reader with the two following important
lemmas. The first one can be found for instance in [15], the second one in [13, 15]. Finally we establish a
tightness result for Gaussian geometric rough paths.

Lemma 11. Let q > 1 and (x̃ε)ε>0 = (x̃ε
1, . . . , x̃

ε
[q])ε>0 a family of random geometric rough paths of finite

q−variation such that ((x̃ε(0, t))t∈[0,1])ε>0 is tight in the space of continuous functions on [0, 1] and for all
j = 1, . . . , [q]

lim
A→+∞

sup
ε>0

P

[(

sup
D

∑

l

|x̃ε
j(tl−1, tl)|q/j

)j/q

> A

]

= 0, (30)

where supD runs over on all finite subdivisions {tl}l of [0, 1]. Then (x̃ε)ε>0 is tight in the space of geometric
rough paths for the distance dp for all p > q.

Lemma 12. For all n ∈ N and all k = 0, 1, ..., 2n, we let tnk := k/2n. Let q > 1 and x̃ be a geometric rough
path of finite q−variation. Then there exist two positive constants γ, λ which do not depend on x̃ such that

sup
D

∑

l

|x̃(tl−1, tl)|q ≤ λ

+∞∑

n=1

nγ
2n
∑

k=1

|x̃(tnk−1, t
n
k )|q.

Lemma 13 (tightness result for Gaussian geometric rough paths). Let p > 1 and (x̃ε)ε>0 = (x̃ε
1, . . . , x̃

ε
[p])ε>0

a family of Gaussian random geometric rough paths (that is to say x̃ε
1 is Gaussian) in Ωp(R). We assume that

there exists two constants C > 0 and η > 2/p such that

E[x̃ε
1(s, t)

2] ≤ C|t− s|η (31)

for all s and t in [0, 1]. Then, (x̃ε)ε>0 is tight for the distance dp.

Proof. Let q ∈]2/η, p[. Note that for a Gaussian variable, we can compare high-order moments with second-
order moments, so it is possible to work with second-order moments here. Using Kolmogorov criteria [1], the
fact that x̃ε

1 is Gaussian and (31) we get that ((x̃ε(0, t))t∈[0,1])ε>0 is tight in the space of continuous functions
on [0, 1]. Hence, following Lemma 11, it rest to show (30) for (x̃ε)ε>0. By Markov inequality and Lemma 12:

P

[(

sup
D

∑

l

|x̃ε
j(tl−1, tl)|q/j

)j/q

> A

]

≤ 1
Aq/j

+∞∑

n=1

nγ(2n)1−qη/2

for all j = 1, . . . , [q]. Taking the sup on ε and letting A→ ∞ completes the proof. �
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