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RENORMALIZATION GROUP OF AND CONVERGENCE TO THE LISDLG
PROCESS ∗

Endre Iglói
1

Abstract. The LISDLG process denoted by J(t) is defined in Iglói and Terdik [ESAIM: PS 7 (2003)
23–86] by a functional limit theorem as the limit of ISDLG processes. This paper gives a more general
limit representation of J(t). It is shown that process J(t) has its own renormalization group and
that J(t) can be represented as the limit process of the renormalization operator flow applied to the
elements of some set of stochastic processes. The latter set consists of IGSDLG processes which are
generalizations of the ISDLG process.
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1. Introduction

This paper can be considered to be the supplement of [3] insomuch as it is built upon the results of that
paper. So the DLG, SDLG and LISDLG processes are supposed to be known to the reader.

The motivation of this paper is the following. It is well-known that the FBM (Fractional Brownian Motion)
is a fixed point of its renormalization operators framing a group, or a fixed point of its renormalization group
for short. With the help of the renormalization operator one can give functionals of appropriate processes
which will converge to the FBM. There holds also a more general result of this type, coupling to a higher order
generalization of the FBM, the Gaussian subordinated higher Hermite order self-similar process with stationary
increments, see the classic papers [2] and [6]. The analog holds also for the LISDLG process and this is the
subject of this paper.

In Section 2 we show that the LISDLG process has its own renormalization group and this fact gives an idea
of what to do with certain proper processes to get the LISDLG process as a limit: apply the renormalization
operator flow to the process and take the limit. Heuristically, if the initial process is not too far from the
LISDLG process, the convergence must work. It works indeed, as we will see in Section 4. The main theorem
of this paper, Theorem 4 states this convergence in more general circumstances. Namely, if the initial process
is an element of the set of IGSDLG (Integrated General SDLG) processes, then the sums of an appropriate
number of independent copies of it, after rescaling, will converge to the LISDLG process.

Keywords and phrases. LISDLG process, dilative stability, renormalization group, functional limit theorem, regularly varying
function.
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Section 3 is about GSDLG (General SDLG) processes. These are the processes from which we derive the
above mentioned IGSDLG processes, by taking the integral and adjusting the mean to zero. The construction of
a GSDLG process is similar to that of an SDLG process (see [3], Sect. 3.1), that is superposition of independent
(conditionally on the sequence of random parameters −2αk) stationary DLG processes with properly chosen
random parameters. The random parameters −2αk have the same role as in the buildup of the SDLG process.
However, due to the much milder conditions imposed on the sequence 〈−2αk〉k∈N

in the GSDLG setup (ergodicity
instead of independence, fairly general one dimensional distribution instead of the fixed Γ), the resulting GSDLG
processes constitute an entire class of processes instead of the single SDLG one.

In this paper all the stochastic processes are real-valued and the time parameter is nonnegative.

2. The renormalization group of the LISDLG process

Recall that the LISDLG process {J(t), t ≥ 0} can be defined as the a.s. (almost surerely) continuous process
which has a zero mean and the following second and higher order joint cumulants (see [3], Prop. 14):

cum(J(t1), . . . , J(tm)) =
21−2H

1 − H
· c0

σ2
0

σ2m
0 (m − 1)! sym

t


 t∫

0

Dτ0(s)
2(H−1)ds


 , (2.1)

m ≥ 2. Here H ∈ (
1
2 , 1

)
, c0 > 0 and σ2

0 > 0 are constants, the operator sym
t

is the symmetrization operator,

symmetrization for all permutations of the components of t = (t1, . . . , tm), i.e. for any function f(t) it is
defined by

sym
t

f(t) .=
1
m!

∑
(i1,...,im)∈Perm(1,2,...,m)

f(ti1 , . . . , tim),

the expression
Dτ (t) .= |ti1 − t1| + |ti2 − ti1 | + · · · + ∣∣tim−1 − tim−2

∣∣+ ∣∣t1 − tim−1

∣∣ , (2.2)
m ∈ {2, 3, 4, . . .}, τ = (i1, . . . , im−1) ∈ Perm(2, 3, . . . , m), and τ0 is the identity permutation. The LISDLG
process has the remarkable property called dilative stability (see [3], Def. 3 and Th. 8), meaning that for every
T > 0, m ∈ N and t1, . . . , tm � 0

(
J (T t1)

T
, . . . ,

J (T tm)
T

)�T 2(1−H)

d∼ (J (t1) , . . . , J (tm)) , (2.3)

where d∼ denotes equality in distribution and the exponent �T 2(1−H)
denotes the

(
T 2(1−H)

)
th convolution power.

In the remainder of this section we consider the processes in the weak sense, that is, we do not distinguish
two processes if they are weakly equivalent, i.e. if all the corresponding finite dimensional distributions are the
same.

Following [5] a stochastic process is called infinitely divisible, if its finite dimensional distributions are infinitely
divisible. Denote the set of infinitely divisible processes by I. In I for every r > 0 we can define the operation
called rth convolution power and denote by �r (in the exponent). Let us define in I the operators AT , T > 0, by

AT : I −→ I, X �→ AT X,

(AT X) (t) .=
1
T

(X(T t))�T 2(1−H)

, t ≥ 0.

Like the renormalization operator of the FBM, operator AT will be called a renormalization operator. The
motivation for this appellation will be given in Theorem 1. Consider the set G .= {AT : T > 0} equipped with
the composition operation, i.e. (AT ◦ AS)X

.= AT ASX , S, T > 0, X ∈ I. Because T 2(1−H) is a multiplicative
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function of T , we have AT ◦ AS = ATS . Hence (G, ◦) is a multiplicative one parameter group, which will be
called the renormalization group of the LISDLG process.

With the above terminology the dilative stability of the LISDLG process can be reformulated as follows.

Theorem 1. The LISDLG process {J(t), t ≥ 0} is a fixed point of the elements of its renormalization group,
or briefly, {J(t), t ≥ 0} is a fixed point of G.

Theorem 1 gives an idea of what to do with a process to get the LISDLG process as a limit: apply the
renormalization operator AT to the process and take the limit as T → ∞. Heuristically, if the initial process
is not too far from the LISDLG process, the convergence probably works. It works indeed, as we will see in
Section 4. But before that, we make a digression to the inverse (in some sense) of the problem. Let fd−→ denote
the convergence of processes in the sense of convergence of finite dimensional distributions.

Theorem 2. Let {X(t), t ≥ 0} ∈ I. If {AT X(t), t ≥ 0} fd−→
T→∞

{Y (t), t ≥ 0}, where {Y (t), t ≥ 0} is some (nec-

essarily also infinitely divisible) process, then {Y (t), t ≥ 0} is a fixed point of the renormalization group G.

Proof. It follows easily, since (G, ◦) is a multiplicative one parameter group. �

3. GSDLG processes

Firts of all recall the notion and certain properties of the DLG process. (See [3], Sect. 2 for a more detailed
discussion.) Let µ > 0, α ∈ R, σ > 0 be parameters and

δ
.=

µ

σ2
· (3.1)

A diffusion process with a differential generator of the form

(µ + 2αx)
∂

∂x
+

1
2
4σ2x

∂2

∂x2

(linear drift and diffusion coefficients) is called a δ-dimensional diffusion process with a linear differential gener-
ator, or DLG process, for short. Equivalently, the δ-dimensional DLG process {R(t), t ≥ 0} is the unique strong
solution of the diffusion equation

dR(t) = (µ + 2αR(t)) dt + 2σ
√

R(t)dB(t),

where {B(t), t ≥ 0} is a standard BM (Brownian Motion). We assume that α < 0 and that {R(t), t ≥ 0}
starts from its stationary one-dimensional distribution, i.e. we deal with stationary DLG processes. The one-
dimensional distribution of process {R(t), t ≥ 0} is Γ, namely

R(t) ∼ Γ
(

δ

2
,

σ2

−α

)
· (3.2)

More generally, the m-dimensional distribution of process {R(t), t ≥ 0} is m-dimensional Γ, namely the charac-
teristic function of the random vector (R(t1), . . . , R(tm)) is

ϕR(t1),...,R(tm)(u) = |I − 2iUΣ|−δ/2
, (3.3)
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where U
.= diag(u) with u ∈ R

m, i.e. a matrix with zero elements except for the main diagonal, which is u, I
is the m × m identity matrix, and | | denotes the determinant. Moreover, the cumulants are

cum (R(t1), . . . , R(tm)) =




δ

2

(−α

σ2

)−m

, if m = 1

δ

2

(−α

σ2

)−m ∑
τ∈Perm(2,...,m)

eαDτ (t1,...,tm), if m � 2,
(3.4)

where Dτ (t1, . . . , tm) was defined in (2.2).
The construction of the GSDLG (General SDLG) process is similar to that of the SDLG process (see [3],

Sect. 3.1), that is superposition of stationary DLG processes with properly chosen random parameters. Let
〈α〉 = 〈αk〉k∈N

be a stationary random sequence of positive parameters, and let P〈α〉 denote its distribution
on R

N
+. The other random parameters σ2

k, k ∈ N, depend on parameters αk such that σ2
k

.= −αkσ2
0 , where σ2

0 > 0
is a deterministic constant. The same notation will be used for the random sequence 〈α〉 and for its realizations,
i.e. 〈α〉 may denote also an element of R

N
+; similarly, αk and σ2

k can be both r.v.s (random variables) and fixed
realizations. Furthermore let the deterministic parameters µn

.= µ0/n, n ∈ N, where µ0 > 0 is a constant.
Consider the triangular array

R1,1(t, α1)
R2,1(t, α1), R2,2(t, α2)

...
Rn,1(t, α1), . . . , Rn,n(t, αn)

...

, (3.5)

t ≥ 0, of stationary DLG processes {Rn,k(t, αk), t ≥ 0}, where the second argument indicates the parameter α of
the DLG process. Each process {Rn,k(t, αk), t ≥ 0} is defined for P〈α〉-a.e. (almost every) 〈α〉, with input BM
{Bk(t), t ≥ 0} and parameters αk, σk, and µn. Assume that the random sequence 〈α〉 and the BMs are defined
on two different probability spaces, (ΩA,AA, PA) and (ΩB ,AB, PB), respectively1. Moreover, let the BMs
{Bk(t), t ≥ 0}, k ∈ N, be independent. Thus, the following stochastic differential equations holding for P〈α〉-a.e.
〈α〉 link the processes and their parameters:

dRn,k(t, αk) = (µn + 2αkRn,k(t, αk)) dt + 2σk

√
Rn,k(t, αk)dBk(t), (3.6)

k = 1, . . . , n; n ∈ N.
We state that if in the above setup the distribution P〈α〉 is chosen properly, then the row sums of (3.5)

converge in a certain sense to a limit process {Y (t), t ≥ 0}, which no longer depend on 〈α〉, i.e.

{Zn(t, 〈α〉), t ≥ 0} .=

{
n∑

k=1

Rn,k(t, αk), t ≥ 0

}
−→

n→∞ {Y (t), t ≥ 0} .

Process {Y (t), t ≥ 0} will be called a GSDLG process.
There are two differences between the base conditions of the two setups, the SDLG setup in [3], Section 3.1

and our GSDLG one. One is that the random parameters αk, k = 1, 2, . . ., will not be assumed to be independent
but only to constitute an ergodic sequence. The other difference – and this is more important – is that in the
present setup the distribution of −2α is not fully specified, resulting in an entire class of processes instead of a
single process. Namely, in the construction of the SDLG process −2α had Γ(3−2H, 1/λ) distribution, where H

1 The subscripts A (large Greek alpha) and B are used to remind of the parameter α and the BMs, respectively.
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and λ were parameters. Hence the SDLG process could depend only on the parameters H and λ (besides, of
course, µ0 and σ2

0). The GSDLG process will, however, be more general as it will depend on the distribution
of −2α, or, equivalently, on its d.f. F−2α, and d.f. F−2α may be arbitrary in some class F of d.f.s. For this
reason if necessary, we will also use the name GSDLG(F ) to allude to F ∈ F . The class F will, naturally,
contain the Γ(3 − 2H, 1/λ) distribution function. Accordingly, the class of GSDLG processes will contain the
SDLG process. Now we summarize these conditions exactly.
Condition 1’. 1/2 < H < 1, σ2

0 > 0 and µ0 > 0 are constants.
Condition 2. (ΩA,AA, PA) and (ΩB ,AB, PB) are two different probability spaces.
Condition 3’. a) 〈α〉 = 〈αk〉k∈N

, is an ergodic sequence of r.v.s defined on (ΩA,AA, PA); its distribution

on RN
+ is denoted by P〈α〉.

b) The d.f. of the random parameters −2αk, F−2α ∈ F , where

F .=


d.f. F regularly varying at zero of order 3 − 2H and

∞∫
0

xdF−2α(x) < ∞

 .

Condition 4. σ2
k

.= −αkσ2
0 , k ∈ N.

Condition 5. µn
.= µ0/n, n ∈ N.

Condition 6. {Bk(t), t ≥ 0}, k ∈ N , are independent BMs defined on (ΩB,AB, PB).
Conditions 2, 4, 5, and 6 are the same as in [3], Section 3.1, and Condition 1’ is almost the same as Condition 1

but without λ. Condition 3’b means that r.v.s −2αk are nonnegative, EA (−2αk) < ∞, and F−2α is of the form

F−2α(x) = L0 (x) x3−2H , x > 0, (3.7)

where the function {L0(x), x > 0} is slowly varying in zero, i.e.

lim
x→0

L0(ax)
L0(x)

= 1, ∀a > 0. (3.8)

Remark 1. Condition 3’b is fulfilled when besides having a finite mean and restricted to the positive half-line,
F−2α is absolutely continuous with a density function regularly varying in zero of order 2 − 2H ; e.g. when the
distribution of −2α is Γ with shape parameter 3 − 2H (this is the SDLG case).

The following remark helps to size up how broad or narrow the set F is.

Remark 2. The intersection of F (which is here considered to be made up of distributions) with the set of
positive selfdecomposable distributions is the set of shot noise distributions with exponential response functions.
The latter distributions form a large class among the selfdecomposable distributions, see [4].

Mainly the law of large numbers relating to the following two cases will account for the existence of the
GSDLG process.

Lemma 1. For P〈α〉-a.e. 〈α〉

lim
n→∞

(
1
n

n∑
k=1

(−2αk)

)
= EA (−2α) ∈ R+,

and

lim
n→∞

(
1
n

n∑
k=1

(
1

−2αk
e2αkx

))
= EA

(
1

−2α
e2αx

)
∈ R+, (3.9)

for every x ≥ 0.
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Proof. The first statement is a consequence of Conditions 3’a and 3’b (EA (−2α) < ∞). To prove that the right
hand side of (3.9) is finite, it is enough to show that

1∫
0

1
y
dF−2α(y) < ∞. (3.10)

Now, let 0 < ε < 1. Integrating by parts and using (3.7) we have

1∫
ε

1
y
dF−2α(y) = L0(1) − L0(ε)ε2−2H +

1∫
ε

L0(y)y1−2Hdy. (3.11)

Since by the first part of Condition 1’ there exists δ > 0 such that lim
y↓0

(
L0(y)y1−2H+1−δ

)
= 0, we have

L0(y)y1−2H ∈ L1[0, 1]. Letting ε → 0 in (3.11) we obtain the finiteness of the right hand side and thus of the
left hand side as well. Application of the monotone convergence theorem yields (3.10). Finally, Condition 3’a
ensures the convergence in (3.9). �

To stress it again, we have the stationary DLG processes {Rn,k(t, αk), t ≥ 0} defined for P〈α〉-a.e. 〈α〉
by (3.6). Specifically, {R1,1(t, α1), t ≥ 0} has (random) parameters α1, σ2

1 = −α1σ
2
0 and (non-random) µ1 = µ0.

Due to (3.2) for any fixed t and for P〈α〉-a.e. 〈α〉 the distribution of Rn,k(t, αk) (the conditional distribution
of Rn,k(t, αk), given 〈α〉) is Γ

(
δn,k/2,−σ2

k/αk

)
, where δn,k = µn/σ2

k, i.e.

Rn,k(t, αk) ∼ Γ
(

µ0

2nσ2
k

, σ2
0

)
∼ Γ

(
µ0

σ2
0n

1
−2αk

, σ2
0

)
(3.12)

for P〈α〉-a.e. 〈α〉.
Let us define the process {Zn(t, 〈α〉), t ≥ 0} to be the nth row sum of the triangular array (3.5), i.e.

Zn(t, 〈α〉) .=
n∑

k=1

Rn,k(t, αk),

t ≥ 0, for P〈α〉-a.e. 〈α〉, n ∈ N. The first observation is that for P〈α〉-a.e. 〈α〉 the one-dimensional limit
distribution of {Zn(t, 〈α〉), t ≥ 0} remains Γ as n → ∞.

Proposition 1. For every fixed t ∈ R+ and for P〈α〉-a.e. 〈α〉 the distribution of Zn(t, 〈α〉) (the conditional
distribution of Zn(t, 〈α〉), given 〈α〉) converges to a Γ distribution, namely

Zn(t, 〈α〉) w−→
n→∞ Γ

(
µ0

σ2
0

EA
1

−2α
, σ2

0

)

for P〈α〉-a.e. 〈α〉.
Proof. Because processes {Rn,k(t, αk), t ≥ 0}, k = 1, . . . , n, are independent conditionally on 〈α〉 (due to Con-
dition 6), by (3.12) and Condition 4 we have

Zn(t, 〈α〉) ∼ Γ

(
µ0

nσ2
0

n∑
k=1

1
−2αk

, σ2
0

)

for P〈α〉-a.e. 〈α〉, from which we have the statement by (3.9). �
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Corollary 1. The GSDLG process {Y (t), t ≥ 0}, if it exists, has marginal distribution Γ, namely,

Y (t) ∼ Γ
(

µ0

σ2
0

EA
1

−2α
, σ2

0

)
,

for every t � 0.

Remark 3. For each n ∈ N and for P〈α〉-a.e. 〈α〉 the random process {Zn(t, 〈α〉), t ≥ 0} is PB-a.s. continuous,
i.e. for P〈α〉-a.e. 〈α〉: {Zn(t, 〈α〉), t ≥ 0} ∈ C[0,∞) PB-a.s. Thus, for each n ∈ N and for P〈α〉-a.e. 〈α〉: process
{Zn(t, 〈α〉), t ≥ 0} induces a measure PZn,〈α〉 on C[0,∞).

Before stating the main theorem in this section we need the following lemma, which is point by point the
same as Lemma 3 in [3].

Lemma 2. For P〈α〉-a.e. 〈α〉 the sequence of measures PZn,〈α〉 , n ∈ N, mentioned in Remark 3, is tight.

Proof. We premise that in this proof every statement containing realizations of 〈α〉, will be meant to hold
for P〈α〉-a.e. 〈α〉.

It follows from (3.3) that the characteristic function of Rn,k(t, αk) − Rn,k(0, αk) is

ϕRn,k(t,αk)−Rn,k(0,αk)(u) = ϕRn,k(t,αk),Rn,k(0,αk)(u,−u)

=
∣∣∣∣I − iuσ2

0

(
1 0
0 −1

)(
1 eαk|t|

eαk|t| 1

)∣∣∣∣
− µ0

−2nσ2
0αk

=
(
1 + u2σ4

0

(
1 − e2αk|t|

))− µ0
−2nσ2

0αk .

Calculating the moments from the characteristic function by differentiation, we have

E (Rn,k(t, αk) − Rn,k(0, αk))2 =
2µ0σ

2
0

n
· 1 − e2αk|t|

−2αk
,

E (Rn,k(t, αk) − Rn,k(0, αk))4 = 12
µ0

−2nσ2
0αk

(
µ0

−2nσ2
0αk

+ 1
)((

1 − e2αk|t|
)

σ4
0

)2

.

Hence

E (Zn(t, 〈α〉) − Zn(0, 〈α〉))4 =
n∑

k=1

E (Rn,k(t, αk) − Rn,k(0, αk))4

+
n∑

k=1

n∑
�=1

E (Rn,k(t, αk) − Rn,k(0, αk))2 E (Rn,�(t, α�) − Rn,�(0, α�))
2

�
(

12
µ0σ

6
0

n

n∑
k=1

(
µ0

σ2
0n

− 2αk

)
+

4µ2
0σ

4
0

n2

n∑
k=1

n∑
�=1

1

)
t2

=

(
4µ2

0σ
4
0

(
1 +

3
n

)
+

12µ0σ
6
0

n

n∑
k=1

(−2αk)

)
t2

�
(
16µ2

0σ
4
0 + 12µ0σ

6
0K(〈α〉)) t2, (3.13)

for all n ∈ N, where K(〈α〉) is a constant bounding the series 1
n

n∑
k=1

(−2αk) from above. Such a constant exists

by the strong law of large numbers.
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Process {Zn(t, 〈α〉), t ≥ 0} is stationary, thus it has stationary increments. Consequently, using (3.13), we
have

E (Zn(t + s, 〈α〉) − Zn(s, 〈α〉))4 � K1(〈α〉)t2,
for all t, s > 0 and n ∈ N. Thus the tightness condition of Kolmogorov is fulfilled. �

In the rest of the section we lay down the theorem about the existence of the GSDLG process (corresponding
partly to Th. 5 in [3]). Process {Y (t), t ≥ 0} of Theorem 3 is what we call GSDLG process.

Theorem 3. Let Conditions 1’, 2, 3’, 4, 5, 6 hold. Then for P〈α〉-a.e. 〈α〉 the series of processes

Zn(t, 〈α〉) .=
n∑

k=1

Rn,k(t, αk),

t ≥ 0, converges weakly to some a.s. continuous process {YF (t), t ≥ 0} defined on (ΩB,AB, PB), i.e.

{Zn(t, 〈α〉), t ≥ 0} w−→
n→∞ {Y (t), t ≥ 0} in C[0,∞)

for P〈α〉-a.e. 〈α〉. Process {Y (t), t ≥ 0} does not depend on the realizations 〈α〉 any more, however it may depend
on d.f. F = F−2α ∈ F (hence we will write YF (t) if needed). Moreover, its finite-dimensional distributions have
the following cumulants:

cum (Y (t1), . . . , Y (tm)) =




µ0σ
2m−2
0

∑
τ∈Perm(2,...,m)

EA

(
1

−2α
eαDτ (t)

)
if m ≥ 2

µ0 EA
1

−2α
if m = 1

. (3.14)

Proof. We premise that in this proof every statement containing realizations of 〈α〉, will be meant to hold for
P〈α〉-a.e. 〈α〉.

Because processes {Rn,k(t, αk), t ≥ 0}, k = 1, . . . , n, are independent, we have by (3.4), Conditions 4 and 5,
formula (3.1) and formula (3.9)

cum (Zn(t1, 〈α〉), . . . , Zn(tm, 〈α〉)) =
n∑

k=1

cum (Rn,k(t1, αk), . . . , Rn,k(tm, αk))

= µ0σ
2m−2
0

∑
τ∈Perm(2,...,m)

1
n

n∑
k=1

(
1

−2αk
eαkDτ (t)

)
−→
n→∞ µ0σ

2m−2
0

∑
τ∈Perm(2,...,m)

EA

(
1

−2α
eαDτ (t)

)
,

for m ≥ 2. Taking the case m = 1 similarly we have shown that cum (Zn(t1, 〈α〉), . . . , Zn(tm, 〈α〉)) converges
as n → ∞ to the right hand side of (3.14). Next we prove that the cumulants on the right hand side of (3.14)
uniquely determine a distribution on C[0,∞). Since the sequence of measures PZn,〈α〉 , n ∈ N, mentioned in
Lemma 2 is tight, there exists a PB-a.s. continuous process the joint cumulants of which are the ones on the
right hand side of (3.14). Let {Y (t), t ≥ 0} be such a process. What we have to prove yet is the uniqueness, i.e.
that the finite dimensional distributions of process {Y (t), t ≥ 0} are uniquely determined by the cumulants on
the right hand side of (3.14). For this it is enough to prove that for an arbitrary linear combination

m∑
k=1

λkY (tk) (3.15)
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its distribution is uniquely determined by its moments. But this is so because (3.15) does have a moment
generating function, because each of the r.v.s λkY (tk) has one (as they are Γ distributed by Cor. 1), and by
the Hölder inequality we have

E exp

(
u

m∑
k=1

λkY (tk)

)
≤

m∏
k=1

(E exp (muλkY (tk)))
1
m ,

for arguments u with sufficiently small modulus. �

4. Convergence of rescaled sums of independent IGSDLG processes

to the LISDLG process

Let {YF (t), t ≥ 0} be a GSDLG(F ) process. Its integral process with a mean adjusted to zero,

{JF (t), t ≥ 0} .=




t∫
0

(YF (s) − EYF ) ds, t ≥ 0




will be called an IGSDLG(F ) process (Integrated GSDLG)2. The essence of this section is that the set of
IGSDLG processes, i.e.

{{JF (t), t ≥ 0} : F ∈ F}
is contained in the domain of attraction of the LISDLG process. We will state a functional limit theorem
that leads from any IGSDLG process to the LISDLG process. Namely, the sums of an appropriate number
of independent copies of an IGSDLG process, after rescaling, will converge to the LISDLG process. The
convergence means the weak convergence of probability distributions on the space of continuous functions (see
Th. 4). The “appropriate number” depends on the asymptotic behaviour in zero of the d.f. F ∈ F . When F is
the Γ(3−2H, 1/λ) d.f. (as in the SDLG case), the theorem merely states that when we apply the renormalization
operator AT to the IGSDLG(F ) process, the resulting process converges weakly to the LISDLG process.

For shortness, introduce the following notation.

Notation 1. L∞(x) .= L0(1/x), x > 0 (see (3.7) for L0(x)).

The function L∞(x) is slowly varying in infinity, i.e.

lim
x→∞

L∞(ax)
L∞(x)

= 1, ∀a > 0,

see (3.8). The next lemma is of a technical nature.

Lemma 3. For any r > 0 we have

lim
T→∞

EA

(
1

−2α
eαTr

)
T 2(1−H)

L∞(T )
= 22(1−H)(3 − 2H)Γ(2 − 2H)r2(H−1)

and for all 0 < δ < 2(1 − H)

EA

(
1

−2α
eαTr

)
T 2(1−H)

L∞(T )
≤ k1r

2(H−1)+δ + k2r
2(H−1)−δ , (4.1)

where 0 < k1, k2 are some constants (possibly depending on δ and H).

2 In the notation JF (t) the index F is always provided, because J(t) without an index denotes the LISDLG process.
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Proof. By the form of the d.f. F (x) = F−2α(x) according to (3.7), after integrating by parts we have

EA

(
1

−2α
eαTr

)
T 2(1−H)

L∞(T )
=

∞∫
0

1
x

e−xT r
2 dF (x)

T 2(1−H)

L∞(T )
=

∞∫
0

x2−2H

(
1
x

+ 1
)

e−x L∞
(

r
2xT

)
L∞(T )

dx
( r

2

)2(H−1)

.

(4.2)
We may use Lebesgue’s dominated convergence theorem, because on the one hand

lim
T→∞

(
x2−2H

(
1
x

+ 1
)

e−x L∞
(

r
2xT

)
L∞(T )

)
= x2−2H

(
1
x

+ 1
)

e−x (4.3)

for all x > 0, since L∞ is slowly varying. On the other hand, the majorizing argument is the following. By a
theorem of Potter (see [1], p. 25, Th. 1.5.6. (ii)) for every δ > 0 there exists a k > 0 such that

L∞
(

r
2xT

)
L∞(T )

≤ k max
(( r

2x

)δ

,
( r

2x

)−δ
)

for all T > 0 and x > 0. Therefore we have

x2−2H

(
1
x

+ 1
)

e−x L∞
(

r
2xT

)
L∞(T )

≤ kx2−2H

(
1
x

+ 1
)

e−x max
(( r

2x

)δ

,
( r

2x

)−δ
)

= k max
((r

2

)δ

x1−2H−δ ,
(r

2

)−δ

x1−2H+δ

)
e−x

+ k max
(( r

2

)δ

x2−2H−δ ,
(r

2

)−δ

x2−2H+δ

)
e−x. (4.4)

On the right hand side of (4.4) in all of the four places the power of x is greater than −1 if we choose δ so
that 1 − 2H − δ > −1, i.e. 0 < δ < 2(1 − H). Thus if 0 < δ < 2(1 − H), then the right hand side of (4.4) (as
a function of x) is integrable and this fact means that the condition of the dominated convergence theorem is
fulfilled. So by (4.2) and (4.3) the first statement of the lemma will follow if we calculate the integral

∞∫
0

lim
T→∞

(
x2−2H

(
1
x

+ 1
)

e−x L∞
(

r
2xT

)
L∞(T )

)
dx =

∞∫
0

x2−2H

(
1
x

+ 1
)

e−xdx = (3 − 2H)Γ(2 − 2H).

With respect to the second statement, using (4.2) and (4.4) we have

EA

(
1

−2α
eαTr

)
T 2(1−H)

L∞(T )
≤ 22(1−H)r2(H−1)k




∞∫
0

max
((r

2

)δ

x1−2H−δ ,
(r

2

)−δ

x1−2H+δ

)
e−xdx

+

∞∫
0

max
(( r

2

)δ

x2−2H−δ ,
(r

2

)−δ

x1−2H+δ

)
e−xdx




≤ 22(1−H)r2(H−1)k

{(r

2

)δ

Γ(2 − 2H − δ) +
( r

2

)−δ

Γ(2 − 2H + δ)

+
(r

2

)δ

Γ(3 − 2H − δ) +
(r

2

)−δ

Γ(3 − 2H + δ)
}

= k1r
2(H−1)+δ + k2r

2(H−1)−δ ,

if 2 − 2H − δ > 0, i.e. δ < 2(1 − H). �
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The next proposition already contains the key tool that will lead to our aim.

Proposition 2. Let {JF (t), t ≥ 0} be an IGSDLG(F ) process and m ≥ 2, (t1, . . . , tm) ∈ R
m
+ . Then we have

cum (JF (T t1), . . . , JF (T tm)) ∼
T→∞

µ0σ
2m−2
0 22(1−H)(3 − 2H)Γ(2 − 2H)(m − 1)!

× sym
t


 t1∫

0

· · ·
tm∫
0

Dτ0(s)
2(H−1)ds


T m+2(H−1)L∞(T ). (4.5)

Proof. By (3.14) we have

cum (JF (T t1), . . . , JF (T tm)) = µ0σ
2m−2
0

∑
τ∈Perm(2,...,m)

Tt1∫
0

· · ·
Ttm∫
0

EA

(
1

−2α
eαDτ (s)

)
ds

= µ0σ
2m−2
0 (m − 1)! sym

t


 t1∫

0

· · ·
tm∫
0

EA

(
1

−2α
eαTDτ0 (s)

)
ds


T m (4.6)

and from this, by Lemma 3 and Lebesgue’s dominated convergence theorem we have the statement. �

It seems from the proof of Proposition 2 that all IGSDLG processes are infinitely divisible, i.e. they
are contained in I. Hence it is meaningful to renormalize an IGSDLG process, i.e. to take the process
{(AT JF ) (t), t ≥ 0}, or more generally, the process

{
(JF (t))�a

, t ≥ 0
}

for any a > 0. The following propo-
sition is a direct consequence of Proposition 2.

Proposition 3. Let {JF (t), t ≥ 0} be an IGSDLG(F ) process and m ≥ 2, (t1, . . . , tm) ∈ R
m
+ . Then we have

lim
T→∞

cum


( 1

T
JF (T t1)

)� T2(1−H)
L∞(T )

, . . . ,

(
1
T

JF (T tm)
)� T2(1−H)

L∞(T )




= µ0σ
2m−2
0 22(1−H)(3 − 2H)Γ(2 − 2H)(m − 1)! sym

t


 t1∫

0

· · ·
tm∫
0

Dτ0(s)
2(H−1)ds


 . (4.7)

In this form one can already recognize the renormalization operator AT . Indeed, when lim
T→∞

L∞(T ) = γ ∈ R+,

then on the right hand side of (4.5) the term L∞(T ) disappears in exchange for parameter µ0 passing into µ0γ.
Writing the resulting expression in the form of Proposition 2, we have

lim
T→∞

cum ((AT JF ) (t1), . . . , (AT JF ) (tm))

= µ0γσ2m−2
0 22(1−H)(3 − 2H)Γ(2 − 2H)(m − 1)! sym

t


 t1∫

0

· · ·
tm∫
0

Dτ0(s)
2(H−1)ds


 .

When F is the Γ(3 − 2H, 1/λ) d.f., then γ = λ3−2H

Γ(4−2H) , so we get exactly (2.1) with c0 = µ0λ
3−2H (see also [3],

Sect 3.2, Condition 7).
The main theorem of the paper is the following.
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Theorem 4. Let {JF,i(t), t ≥ 0} , i = 1, 2, . . ., be independent IGSDLG(F ) processes and let {J(t), t ≥ 0} be the
LISDLG process with parameters H, c0 = µ0Γ(4 − 2H) and σ2

0 . Then the following weak convergence holds.




1
T

⌊
T2(1−H)

L∞(T )

⌋∑
i=1

JF,i(T t), t ≥ 0




w−→
T→∞

{J(t), t ≥ 0} in C[0,∞). (4.8)

(�·
 denotes the integer part function.)

Proof. The right hand side of (4.7) is the general m-fold joint cumulant of process {J(t), t ≥ 0} (see (2.1)).
Because lim

T→∞
(
T 2(1−H)/L∞(T )

)
= ∞, Proposition 3 can be applied to show that each joint cumulant of the

process on the left hand side of (4.8) converges to the corresponding joint cumulant of process {J(t), t ≥ 0}.
Kolmogorov’s tightness condition is satisfied too, because

E


 1

T

⌊
T2(1−H)
L∞(T )

⌋∑
i=1

JF,i(T t)




2

=
⌊

T 2(1−H)

L∞(T )

⌋
cum2

(
1
T

JF,1(T t)
)

≤ µ0σ
2
0

t∫
0

t∫
0

E A

(
1

−2α
eαTDτ0 (s)

)
T 2(1−H)

L∞(T )
ds (4.9)

≤ µ0σ
2
0

t∫
0

t∫
0

(
k1Dτ0(s)

2(H−1)+δ + k2Dτ0(s)
2(H−1)−δ

)
ds (4.10)

= µ0σ
2
0

(
k1t

2H+δ + k2t
2H−δ

)
(4.11)

< µ0σ
2
0 (k1 + k2) t2H−δ, (4.12)

where (4.9) follows from (4.6), (4.10) from (4.1), (4.11) is true if we choose δ so that 0 < δ < 2H − 1 and (4.12)
is true for 0 < t < 1. The choice δ < 2H − 1 ensures also that the power 2H − δ > 1, which is needed for the
Kolmogorov condition to be satisfied. Thus, the statement of the theorem follows. �

Remark 4. The upper limit of the sum in (4.8) can also be written directly in the form

⌊
T 2(1−H)

L∞(T )

⌋
=

⌊
1

TF
(

1
T

)
⌋
·

Remark 5. Formula (4.8) becomes more concrete when lim
T→∞

L∞(T ) = γ ∈ R+:

{
1

(γn)
1

2(1−H)

n∑
i=1

JF,i

(
(γn)

1
2(1−H) t

)
, t ≥ 0

}
w−→

n→∞ {J(t), t ≥ 0} in C[0,∞).
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