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QUALITATIVE ROBUSTNESS IN BAYESIAN INFERENCE
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Abstract. The practical implementation of Bayesian inference requires numerical approximation
when closed-form expressions are not available. What types of accuracy (convergence) of the numerical
approximations guarantee robustness and what types do not? In particular, is the recursive application
of Bayes’ rule robust when subsequent data or posteriors are approximated? When the prior is the push
forward of a distribution by the map induced by the solution of a PDE, in which norm should that
solution be approximated? Motivated by such questions, we investigate the sensitivity of the distribution
of posterior distributions (i.e. of posterior distribution-valued random variables, randomized through
the data) with respect to perturbations of the prior and data-generating distributions in the limit when
the number of data points grows towards infinity.
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1. Introduction and motivations

When we apply Bayesian inference with Gaussian priors and linear observations, we do not actually com-
pute Bayes’ rule but solve the linear system whose solution is the conditional expectation, and robustness
is guaranteed by that of our linear solver. This paper is motivated by robustness questions that arise in the
numerical implementation of Bayes’ rule for continuous systems when closed-form expressions are not avail-
able for the computation of posterior values/distributions. For example, what is the sensitivity of posterior
values or the sensitivity of the distribution of posterior values to perturbations introduced by the numerical
approximation of the prior? When Bayes’ rule is applied in a recursive manner and approximated posterior
distributions are used as prior distributions or approximated data is used in the conditioning process, such as
in [2,15,16,24,34,45,52,57,61], do we have robustness guarantees on subsequent posterior distributions/values?
Is it possible to numerically approximate the optimal prior/mixed strategy of a decision theory problem (arising
in the continuous setting under the complete class theorem [62]) when closed form expressions are not available,
and if it is, in which metric should we do so?

Figure 1 provides an illustration of partial answers to such questions, which, when combined, can be used
as a map to navigate robustness/non-robustness questions/issues arising from numerical approximations. To
begin, (a) [47–49] demonstrated the brittleness of Bayesian inference, in the sense that they show that the
range of posterior values of the quantity of interest under perturbations of the prior in Prokhorov or total
variation (TV) metrics is the deterministic range of the quantity of interest. Moreover, (c.1) [58] shows that
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Figure 1. On the robustness of the Bayes’ rule. The top panel illustrates relationships among
probability metrics and, as in [32], a directed arrow from A to B means that (for some function
h) dA ≤ h(dB). The central panel illustrates the generation of non-robustness and the bottom
panel illustrates the generation of robustness.

the posterior distributions are controlled by the Hellinger metric under the application of the Bayes rule with
an exact prior under the perturbation of a finite number of finite dimensional samples (see also [12]). Since
the Hellinger and TV metrics are equivalent [32], (c.1) and (a) suggest that, without specific restrictions, it
is, in general, not possible to offer guarantees on the robustness of recursive Bayes under perturbations of the
data. Similarly (c.2) the convergence of Markov chains (on continuous state spaces) used in MCMC algorithms
(such as the Metropolis algorithm) is generally analyzed with respect to the TV topology [31, 54]. However it
should be noted that, according to Roberts and Rosenthal ([53], p. 10), Gibbs [31], Gelman ([29], Intro) and
Madras and Sezer ([42], Intro), convergence in TV is in general not guaranteed, so that in general convergence
of MCMC in any metric stronger than TV is not guaranteed. Therefore combining (c.2) and (a) suggests that,
without further restrictions, it is, in general, not possible to offer guarantees on the robustness of recursive
Bayes if posteriors are approximated using MCMC. Moreover, in many cases, the prior may need to undergo
a numerical approximation/discretization step prior to conditioning. For example, in popular applications of
Bayes’ rule to stochastic PDEs [22,64] one pushes forward the prior from the space of coefficients of the PDE to
the solution space where it is conditioned. Consequently, if the PDE is numerically approximated this implies an
approximation of the pushed-forward prior. Therefore (c.3) representing numerical discretization/approximation
as a continuous map between two Polish spaces, it is known that the push forward of a measure under such maps
is continuous in the weak topology, which is metrized by the Prokhorov distance. Therefore, combining (c.3)
and (a) suggests that, without further restrictions, it is, in general, not possible to offer robustness guarantees
to perturbations caused by the numerical discretization of the prior.

For positive results on the other hand, observe that (b) [35] shows that posterior values (given a finite
number of data points) are robust to approximation errors of the prior measured in Kullback−Leibler divergence.
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Figure 2. Primary mechanism for non-robustness. See Illustration 1.1.

Therefore if (c.4) the numerical approximation map is continuous in Kullback−Leibler divergence then posterior
values (given a finite number of data points) are robust to that numerical discretization step. However observe
that unless closed form expressions are available, one must keep track of densities to achieve the continuity
of the numerical approximation map in Kullback−Leibler divergence, which is a task plagued by the curse of
dimensionality.

Since the brittleness of posterior distributions and values with respect perturbations of the prior defined in
TV or Prokhorov metrics is an obstacle to obtaining robustness guarantees to numerical approximation errors
when closed form expressions are unavailable, it is natural to ask whether robustness could be guaranteed by
considering the distribution of posterior distributions or posterior values generated by the random generation
of the data. To answer this question we develop a framework for quantifying the sensitivity of the distribution
of posterior distributions with respect to perturbations of the prior and data-generating distributions in the
limit when the number of data points grows towards infinity. In this generalization of Cuevas’ [19] extension of
Hampel’s [38] notion of qualitative robustness to Bayesian inference to include both perturbations of the prior
and the data-generating distribution, posterior distributions are analyzed as measure-valued random variables
(measures randomized through the data) and their robustness is quantified using the TV, Prokhorov, and Ky Fan
metrics. Our results show that (1) the assumption that the prior has Kullback−Leibler support at the parameter
value generating the data, classically used to prove consistency, can also be used to prove the non-robustness
of posterior distributions with respect to infinitesimal perturbations in TV of the class of priors satisfying
that assumption, (2) for a prior which has global Kullback−Leibler support on a space which is not totally
bounded, we can establish non-robustness and (3) consistency, and the unstable nature of the conditions which
generate it, produces non-robustness, and a careful selection of the prior is important if both properties (or their
approximations) are to be achieved. The mechanisms supporting our results are different and complementary
to those discovered by Hampel and developed by Cuevas. To obtain them, we derive in Section 3 a corollary to
Schwartz’ consistency Theorem that leads to robustness or non-robustness results depending on the topology
defining the continuity of the numerical approximation map (Kullback−Leibler, TV or Prokhorov). Moreover,
this corollary is further developed in Proposition A.1 to analyze the convergence of random measures in the
qualitative robustness framework. More precisely, although in [35] it is shown that the Fréchet derivatives of
posterior values to Kullback−Leibler perturbations of the prior may diverge to infinity with the number of
data points, a simple application of Proposition A.1 implies the robustness of the distribution of posterior
distributions/values under Kullback−Leibler perturbations of the prior in the limit where the number of data
points goes to infinity. On the other hand, application of Proposition A.1 also suggest the lack of robustness
of the distribution of posterior distributions/values to TV or Prokhorov perturbations of the prior, where we
note that Prokhorov perturbations include classes of perturbations defined by generalized moment constraints,
as in [6–9,47–49].

Illustration 1.1 (Illustration of mechanisms generating non robustness).
This is an informal illustration of Example 5.1. Let X := R and Θ := R and consider the Gaussian parametric

model P : R → M(R) such that the measure P (θ) is the standard Gaussian measure with mean θ, that is it

has the density 1√
2π

e−
−|x−θ|2

2 , x ∈ R. We will reference Fig. 2 by indicating a), b), or c).
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In our first example, we would like show that assuming the prior has Kullback−Leibler support for all θ ∈ Θ
does not lead to robustness. To that end, let ρ be small and a) let the data-generating distribution be P (θ) for
some fixed θ ∈ Θ, and let us not allow any perturbations to it. One can show that any strictly positive measure,
one which is strictly positive on all open sets, has full Kullback−Leibler support. By selecting b) a strictly
positive prior π with a very small mass about θ, it follows that c) a measure π′ which is close to π in the TV
metric exists which has no support in a neighborhood of size ρ of θ. For the prior π′ the corresponding posterior
will remain uniformly bounded away from δθ at a distance of at least ρ. Moreover, since π has Kullback−Leibler
support at θ, the posteriors it generates converge to δθ. This is the mechanism establishing the assertion of
Theorem 4.1.

In our second example, we begin with a prior as in b), then select a θ so that their relationship is as in b)
so that we again end up at c) in Figure 2. That is, we begin with a prior π with full Kulback-Leibler support
and demonstrate non robustness to small perturbations to it, while also not allowing perturbations in the
data-generating distribution. To that end, fix δ > 0, let ρ > 0 be small, and consider a prior π which has
Kullback−Leibler support for all θ ∈ R. Since R is not completely bounded it follows that there exists a θ such
that the measure of the interval about θ of size δ is small enough that there exists a measure π′ within TV
distance ρ of π whose support does not intersect this interval. Selecting P (θ) as the data-generating distribution,
it again follows that the posterior distributions resulting from the prior π′ stay uniformly a distance ρ from δθ.
Moreover, since π has Kullback−Leibler support at θ, the posteriors it generates converge to δθ. This is the
mechanism establishing the assertion of Theorem 4.3.

Remark 1.2 (Instabilities in Deep Learning). Are the non robustness mechanisms exhibited in [47–49] purely
academic or can they be found in practical applications? In [47–49] the mechanism producing instabilities to
adversarial small perturbations of the prior/model exploits the fact that the model is a finite dimensional
object whose infinite co-dimension is vulnerable to adversarial perturbations using the linear dependence of the
probability of the data (appearing in the denominator of the Bayes’ rule) with respect to the choice of the prior.
As a consequence, a perturbation of the prior can be chosen to be small (in TV metric) and, at the same time,
have a large impact on posterior properties by aligning those perturbations with the events associated with the
observation of the data (and those instabilities can be alleviated, at the cost of consistency, through a process
of coarsening of the data [48, 49]).

Recent work of Szegedy et al. [59], Goodfellow, Shlens and Szegedy [33], and further developed in Uličnỳ,
Lundström and Byttner [60] show that deep learning image classification is unstable with respect to adversarial
perturbation of test images. That is very nearby data points can produce dramatically different results, (see
e.g. [33], p. 3) where a minuscule perturbation of an image correctly classified as a panda produces a visually
identical image classified as a gibbon.

The mechanism proposed in [33] for the non-robustness of deep learning is very similar to the mechanism
causing non-robustness in Bayesian inference [47–49]: deep learning networks are composed of hierarchies of
linear models corresponding to scalar products taken against feature maps in a high dimensional spaces of
images. A small perturbation of an image can have a large impact on classification through its alignment with
feature maps.

It is also interesting to note that Gal and Ghahramani [28] and Le, Baydin, Zinkov and Wood [41] demonstrate
a connection between deep learning and Bayesian inference and Patel, Nguyen and Baraniuk [50] have developed
a Bayesian theory of deep learning where they propose to achieve robustness (as in) through Approximate
Bayesian Computation (that is equivalent to a process of coarsening [17, 43] of the data).

2. Qualitative Robustness for Bayesian inference

Hable and Christmann [36] have recently established qualitative robustness for support vector machines.
Consequently, it appears natural to inquire into the qualitative robustness of Bayesian inference. Hampel [38]
introduced the notion of the qualitative robustness of a sequence of estimators and Cuevas [19] has extended
Hampel’s definition and his basic structural results to Polish spaces. Since the space M(Θ) of priors and
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posteriors equipped with the weak topology is Polish whenever Θ is, Cuevas’ extension has direct applications
to Bayesian inference. Boente et al. [11] have developed qualitative robustness for stochastic processes, Nasser
et al. [46] for estimation, and Basu et al. [4] for Bayesian inference with a single sample. The notion of qualitative
robustness introduce in this paper is a straightforward generalization of that introduced by Hampel [38] and
developed by Cuevas [19], see also Cuevas [21]. Indeed, this version requires no introduction of loss and risk
functions and concerns itself with not just expected values but with the full distribution of the effects of the
randomness of the observations. It considers a fixed model so is not concerned with robustness with respect to
model specification, although such considerations can easily be included. Moreover, since it is formulated with
respect to classic notions in probability, it appears to us as simple, natural, flexible, without calibration issues,
and easy to interpret statistically.

Metrics on spaces of measures and random variables will be important in its formulation. Our primary
assumption is that both the sample space X and the parameter space Θ are Borel subsets of Polish metric
spaces. It will be demonstrated that this extremely general assumption is sufficient to gives us extremely general
results. However, to keep the presentation simple we will restrict our attention to the TV, Prokhorov and Ky Fan
metrics (we refer to [6–9] for motivations for considering classes of priors defined in the Prokhorov metric). The
necessary well-definedness and measurability considerations for such metrics and for Bayesian conditioning with
a fixed measurable model on Borel subsets of Polish metric spaces is presented in Section A.1. For measurable
spaces Θ and X , we write M(Θ) and M(X) for the set of probability distributions on Θ and X respectively.
Furthermore, when Θ and X are Borel subsets of Polish metric spaces we can metrize M(Θ) and M(X) with
the Prokhorov metrics dPrΘ) and dPrX) and having done so, we can define the the space M2(Θ) := M(M(Θ))
of Borel probability measures on the metric space (M(Θ), dPrΘ) of Borel probability measures.

Let us fix a measurable model P : Θ → M(X). Then for a prior π ∈ M(Θ), consider the measurable map

π̄ : Xn → M(Θ)

defined by the family of posterior conditional measures

π̄(xn) := πxn , xn ∈ Xn , (2.1)

so that its corresponding pushforward operator

π∗ : M(Xn) → M2(Θ)

is well-defined, where we have removed the bar over π to simplify the notation, while still emphasizing that this
pushforward operator π∗ corresponds to the prior π. Then the pushforward

π∗μn ∈ M2(Θ)

of the iid data-generating distribution, which is the sampling distribution of the posterior distribution πxn when
xn ∼ μn, represents how the posteriors πxn vary as a function of the sample data xn when it is generated by
i.i.d. sampling from μ. For a fixed prior π ∈ M(Θ), we say that the Bayesian inference corresponding to the
model P is qualitatively robust at a data-generating distribution μ ∈ M(X) with respect to an admissible set
P containing μ, and metrics dM(X) and dM2(Θ) on M(X) and M2(Θ), if for any ε > 0, there exists a δ > 0
such that

μ́ ∈ P , dM(X)(μ, μ́) < δ =⇒ dM2(Θ)(π∗μn, π∗μ́n) < ε

for large enough n.
On the other hand, when the data-generating distribution μ is fixed and we vary the prior π, we consider the

sequence of maps
πn : X∞ → M(Θ)

defined by
πn(x∞) := πxn , x∞ ∈ X∞. (2.2)
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Since the projection Pn : X∞ → Xn is continuous and πn = π̄ ◦ Pn, it follows from the measurability of
π̄ : Xn → M(Θ), that πn is measurable, and therefore the resulting sequence

πn : (X∞, μ∞) → M(Θ)

is a sequence of M(Θ)-valued random variables. For each μ ∈ M(X), let αμ be a metric on the space of
M(Θ)-valued random variables whose domain is the probability space (X∞, μ∞). Then, for a prior π ∈ M(Θ),
we say that the Bayesian inference corresponding to the model P is qualitatively robust at π with respect to an
admissible set Π ⊂ M(Θ) containing π, the metric αμ and the metric dM(Θ) on M(Θ), if given ε > 0, there
exists a δ > 0 such that

π́ ∈ Π, dM(Θ)(π, π́) < δ =⇒ αμ(πn, π́n) < ε

for large enough n.
These two definitions can be combined in a straightforward manner to define robustness corresponding to a

single prior/data-generating pair. However, to consider a larger class of distributions than a single pair along with
a general class of perturbations, we let Z ⊂ (M(Θ)×M(X)

)2 denote the admissible set of prior/data-generating
distribution pairs including allowed perturbations to be specified such that

(
(π, μ), (π́, μ́)

) ∈ (M(Θ)×M(X)
)2

means that (π, μ) ∈ M(Θ) × M(X) is an admissible candidate for robustness considerations and (π́, μ́) ∈
M(Θ)×M(X) is an admissible candidate for its perturbation. In particular, the projection Z1 ⊂ M(Θ)×M(X)
of Z onto its first component denotes the set of admissible prior/data-generating pairs. Now combining in a
straightforward manner we obtain:

Definition 2.1. Let X and Θ be Borel subsets of Polish metric spaces and let M(X) and M(Θ) be equipped
with the weak topology metrized by the Prokhorov metrics dPrX and dPrΘ. Let M2(Θ) := M(M(Θ)) be
the space of Borel probability measures on the metric space (M(Θ), dPrΘ) of Borel probability measures on
Θ equipped with its weak topology metrized by its Prokhorov metric dPr2Θ. Consider perturbation pseudo-
metrics dM(X), dM(Θ) and dM2(Θ) on M(X), M(Θ) and M2(Θ) respectively and for each μ ∈ M(X), let
αμ be a pseudometric on the space of M(Θ)-valued random variables on the probability space (X∞, μ∞). Let
Z ⊂ (M(Θ) ×M(X)

)2 denote the admissible set of prior/data-generating distribution pairs including allowed
perturbations and suppose that P : Θ → M(X) is measurable. Then the Bayesian inference corresponding to
the model P is qualitatively robust with respect to Z, if given ε1, ε2 > 0, there exists δ1, δ2 > 0 such that(

(π, μ), (π́, μ́)
) ∈ Z, dM(Θ)(π, π́) < δ1, dM(X)(μ, μ́) < δ2

=⇒ dM2(Θ)(π∗μn, π́∗μ́n) < ε1 , αμ(πn, π́n) < ε2

for large enough n.

Remark 2.2. Let us explain why we have both the Prokhorov metrics dPrX , dPrΘ and the perturbation
pseudometrics dM(X), dM(Θ) on M(X) and M(Θ). The primary reason for the Prokhorov metrics is that weak
topology is natural for Schwartz’ convergence theorem. One could also specify the Prokhorov metrics for the
perturbation metrics but the proofs of our main results appear to allow the much stronger TV metric to be used.
Since a small TV neighborhood is much smaller than a Prokhorov neighborhood we feel this extra expressivity
warranted. Moreover, allowing the perturbation pseudometrics to be user specified will allow this definition to
be used in the development of positive results, see Remark 4.6.

Finite sample versions, as introduced in Hable and Christmann ([37], Def. 2), are also available. Note that
unlike Hampel and Cuevas who require “for all n” in their definitions, we follow Huber [39] and Mizera [44] in
only requiring closeness “for large enough n”. The results of this paper are applicable to both versions. Of course
the relevance of the specific notion of qualitative robustness used depends on the perturbation metrics used.
The results of this paper apply to the case when αμ is the Ky Fan metric, metrizing convergence in probability
on the space of M(Θ)-valued random variables with domain the probability space (X∞, μ∞) and the dM(Θ) is
any metric weaker than the total variation.
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3. Lorraine Schwartz’ Theorem

The fundamental mechanism generating non robustness for Bayesian inference will be its consistency when
combined with the unstable nature of the conditions which generate it. The breakthrough in consistency for
Bayesian inference is considered to be Schwartz’ theorem ([56], Thm. 6.1), so we use it as a model for consistency
and the conditions sufficient to generate it. Barron, Schervish and Wasserman ([3], Intro), Wasserman ([63],
p. 3) and Ghosal, Ghosh and Ramamoorthi ([30], Cor. 1) state the result for the nonparametric case. Here
we consider the parametric case. To that end, observe that Schervish ([55], Thm. B.32) asserts that regular
conditional probabilities exist for conditioning random variables with values in a Borel subset of a Polish space.
Moreover, when the parametric model is a Markov kernel and is dominated by a σ-finite measure, then by
the Bayes’ Theorem for densities Schervish ([55], Thm. 1.31) we have, in addition, that the Bayes’ rule for
densities determines a valid family of densities for the regular conditional distributions. We say that a model
P : Θ → M(X) is dominated if there exists a σ-finite Borel measure ν on X such that Pθ 	 ν, θ ∈ Θ.

Recall the Kullback−Leibler divergence K between two measures μ1 and μ2 defined by

K(μ1, μ2) :=
∫

log
(

dμ1

dν

/dμ2

dν

)
dμ1 ,

where ν is any measure such that both μ1 and μ2 are absolutely continuous with respect to ν. It is well known that
K is nonnegative, and that it is finite only if μ1 	 μ2, and in that case K(μ1, μ2) =

∫
log dμ1

dμ2
dμ1. From this we

can define the Kullback−Leibler ball Kε(μ) of radius ε about μ ∈ M(X) by Kε(μ) = {μ′ ∈ M(X) : K(μ, μ′) ≤
ε}. For a model P : Θ → M(X), there is the pullback to a function K on Θ defined by K(θ1, θ2) := K(Pθ1 , Pθ2)
and when the model is dominated by a σ-finite measure ν, if we let p(x|θ) := dPθ

dν (x), x ∈ X be a realization of
the Radon-Nikodym derivative, then the pullback has the form

K(θ1, θ2) :=
∫

log
p(x|θ1)
p(x|θ2)

dPθ1(x).

From this we define a Kullback−Leibler neighborhood of a point θ ∈ Θ by

Kε(θ) :=
{
θ′ ∈ Θ : K(θ, θ′) ≤ ε

}
. (3.1)

Let us define the set of priors K(θ) ⊂ M(Θ) which have Kullback−Leibler support at θ by

K(θ) :=
{
π ∈ M(Θ) : π

(
Kε(θ)

)
> 0, ε > 0

}
, (3.2)

which implicitly requires that Kε(θ) be measurable2 for all ε > 0. Also let K ⊂ M(Θ) denote those measures
with global Kullback−Leibler support, that is,

K := ∩θ∈ΘK(θ)

is the set of priors which have Kullback−Leibler support at all θ.
For the nonparametric case, Barron, Schervish and Wasserman ([3], Lem. 11) demonstrate that the

Kullback−Leibler neighborhoods Kε(Pθ∗) ⊂ M(X) are measurable with respect to the strong topology re-
stricted to the subspace of measures which are absolutely continuous with respect to a common σ-finite reference
measure. For the parametric case, we establish the following.

Lemma 3.1. Let X and Θ be Borel subsets of Polish spaces and suppose that the model P is measurable and
dominated. Then, for each ε > 0 and each θ ∈ Θ, the Kullback−Leibler neighborhood Kε(θ) ⊂ Θ is measurable.

2 Note the change from the standard definition Kε(μ) = {μ′ : K(μ, μ′) < ε} to ours Kε(μ) = {μ′ : K(μ, μ′) ≤ ε} does not affect
which measures have Kullback−Leibler support, but is more convenient since then the proof of Lemma 3.1 shows that Kε(μ) is
closed.
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The following corollary to Schwartz’ Theorem, and its implications in Proposition A.1, gives us the form of
consistency that we will use in the robustness analysis. Since the σ-algebra of a Borel subset of a Polish space is
countably generated, Doob’s Theorem in Dellacherie and Meyer ([23], Thm. V.58) and the measurability of the
dominated model P implies that a family p(θ), θ ∈ Θ of densities can be chosen to be B(X)×B(Θ) measurable,
so that this assumption of Schwartz’ Theorem ([56], Thm. 6.1) is satisfied. We note that Dellacherie and Meyer
emphasize that the countably generated condition is indispensable for Doob’s Theorem to apply. Note the
assumption that the map P : Θ → P (Θ) be open.

Corollary 3.2 (Schwartz). Let X and Θ be Borel subsets of Polish metric spaces and equip M(X) and M(Θ)
with the Prokhorov metrics. Consider an injective measurable dominated model P : Θ → M(X) such that
P : Θ → P (Θ) is open. Then for every π ∈ M(Θ) with Kullback−Leibler support at θ∗ ∈ Θ and for every
measurable neighborhood U of θ∗, we have

πxn(U) → 1 n → ∞, a.e. P∞
θ∗ .

4. Main results

Now that we have defined qualitative robustness for Bayesian inference and presented the consistency con-
ditions of Schwartz’ Corollary 3.2, we are now prepared for our main results. Indeed, the brittleness results
of [47–49] and the non qualitative robustness results of Cuevas ([19], Thm. 7) suggest that we may obtain non
qualitative robustness according to Definition 2.1 by fixing the prior and varying the data-generating distribu-
tion. However, according to Berk [5], in the misspecified case, although “there need be no convergence (in any
sense)”, in the limit the posterior becomes confined to a carrier set consisting of those points which are closest
in terms of the Kullback−Leibler divergence. Consequently, it appears possible that a generalization of the
results of Hampel ([38], Lem. 3) and Cuevas ([19], Thm. 1) which allows such a set-valued notion of consistency
may be sufficient. Certainly it will require the more sophisticated notions of the continuity, or semi-continuity,
of the Kullback−Leibler set-valued information projection and its dependence on the geometry of the model
class P (Θ) ⊂ M(X). Although this path will certainly be instructive and appears feasible, we instead find
it simpler to obtain non qualitative robustness by fixing the data-generating distribution to be in the model
class and varying the prior. In particular, we show that the inference is not robust according to Definition 2.1
when the metric αμ is the the Ky Fan metric and the metric on M(Θ) is any that is weaker than the total
variation metric. It is important to note that these results do not require any misspecification. Moreover, it
appears that Bayesian Inference’s dependence on both the data-generating distribution and the prior leads to
two complementary mechanisms generating non qualitative robustness; whereas Cuevas’ result ([19], Thm. 7)
utilizes consistency and the discontinuity of the infinite sample limit, this other component utilizes the non-
robustness of consistency, namely that the set of consistency priors, those with Kullback−Leibler support at
the data-generating distribution, is not robust.

Now let us return to our main results. For θ ∈ Θ, let us recall from (3.2) the set of priors K(θ) ⊂ M(Θ) with
Kullback−Leibler support at θ and, for ρ > 0, define a total variation uniformity Πρ(θ) ⊂ M(Θ) ×M(Θ) by

Πρ(θ) := {(π, π́) ∈ M(Θ) ×M(Θ) : π ∈ K(θ), dtv(π, π́) < ρ} (4.1)

of prior pairs where the first component has Kullback−Leibler support at θ and the second component is within
ρ of the first in the total variation metric. For θ ∈ Θ, we define an admissible set of prior/data-generating
distribution pairs including allowed perturbations Zρ(θ) ⊂

(M(Θ) ×M(X)
)2 by

Zρ(θ) := Πρ(θ) × Pθ × Pθ , (4.2)

using the identification of
(M(Θ) ×M(X)

)2 with M(Θ)2 ×M(X)2.
Our Main Theorem shows, under the conditions of Schwartz’ Corollary, that the Bayesian inference is not

robust under the assumption that the prior has Kullback−Leibler support at the parameter value generating
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the data. This result, along with those that follow, supports Cuevas’ [20] statement that “his results suggest the
possibility of proving the instability (i.e. the lack of qualitative robustness) for a wide class of usual Bayesian
models”.

Theorem 4.1. Consider Definition 2.1 with the total variation metric dM(Θ) := dtv on M(Θ) and the Ky Fan
metric αμ on the space of M(Θ)-valued random variables with domain the probability space (X∞, μ∞). Given
the conditions of Schwartz’ Corollary 3.2, for all θ ∈ Θ the Bayesian inference corresponding to the model P is
not qualitatively robust with respect to Zρ(θ) for all ρ > 0.

Remark 4.2. Actually the proof shows more; let D denote the diameter of Θ, then for ε < min (D
2 , 1), there

does not exist a δ > 0 such that robustness is satisfied. Since min (D
2 , 1) is large, either half the diameter of the

space or larger than 1, we say the inference is brittle.

Theorem 4.1 does not assert that the Bayesian inference corresponding to the model P is not robust at any
specified prior, only that it is not robust under the assumption that the prior has Kullback−Leibler support at
the parameter value generating the data. To establish non-robustness at specific priors we include variation in
the data-generating distribution in the model class as follows. Let ΔP ⊂ M(X) ×M(X), defined by

ΔP = {(Pθ, Pθ), θ ∈ Θ},
denote the fact that we allow the data-generating distribution to vary throughout the model class but do not
allow any perturbations to it. Then, for π ∈ M(Θ), define the admissible set Zρ(π) ⊂ (M(Θ) ×M(X)

)2 by

Zρ(π) := π × Btv
ρ (π) × ΔP ,

where Btv
ρ (π) is the open ball in the total variation metric.

Since the following theorem is a corollary to the theorem after it, Theorem 4.4, we do not include its proof.
However, we state it here because it is the more fundamental result.

Theorem 4.3. Consider the situation of Theorem 4.1 with Θ not totally bounded. Then if the prior π has
Kullback−Leibler support for all θ ∈ Θ, the Bayesian inference corresponding to the model P is not qualitatively
robust with respect to Zρ(π) for all ρ > 0.

Since a metric space is totally bounded if and only if its completion is compact, when Θ is totally bounded, we
assume that it is a Borel subset of a compact metric space. In this case, although Theorem 4.3 does not apply,
utilizing the covering number and packing number inequalities of Kolmogorov and Tikhomirov [40], we can
provide a natural quantification of qualitative robustness. To that end, we define covering and packing numbers.
For a finite subset Θ′ ⊂ Θ, the finite collection of open balls {Bε(θ), θ ∈ Θ′} is said to constitute a covering of
Θ if Θ ⊂ ∪θ∈Θ′Bε(θ). For a finite set Θ′ we denote its size by |Θ′|. The covering numbers are defined by

Nε(Θ) = min
{
|Θ′| : Θ ⊂ ∪θ∈Θ′Bε(θ)

}
,

that is, Nε(Θ) is the smallest number of open balls of radius ε centered on points in Θ which covers Θ. On the
other hand, a set of points Θ′ ⊂ Θ is said to constitute an ε-packing if d(θ1, θ2) ≥ ε, θ1 �= θ2 ∈ Θ′. The packing
numbers are then defined by

Mε(Θ) := max
{
|Θ′| : Θ′ is an ε-packing of Θ

}
.

Since the Kolmogorov and Tikhomirov ([40], Thm. IV) inequalities

M2ε(Θ) ≤ Nε(Θ) ≤ Mε(Θ) (4.3)

are valid in the not totally bounded case, if we allow values of ∞, the following theorem has Theorem 4.3 as its
corollary.
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Theorem 4.4. Given the conditions of Theorem 4.3 with Θ totally bounded. If the Bayesian inference corre-
sponding to the model P is qualitatively robust with respect to Zρ(π) for some ρ > 0, then given ε2 > 0, we must
have

δ1 < min
(

1
N2ε2(Θ)

, ρ

)
.

Remark 4.5. Note that the only assumptions Theorems 4.1, 4.3 and 4.4 make on the model P is that it be
measurable, dominated, and P : Θ → P (Θ) be open. Moreover, since the TV metric is stronger than the
Prokhorov metric, the utilization of the TV metric in the statements of the theorems implies the same theorem
using the Prokhorov metric instead. Moreover, Prokhorov’s compactness theorem, (see e.g. [1], Lem. 15.21),
asserting that a family of probability measure on a separable metric space is relatively compact if and only if it
is tight, suggests that small TV neighborhoods are extremely small Prokhorov neighborhoods. Indeed, to make
this rigorous we would somehow assert that the relevant perturbed measures form a tight family.

Remark 4.6. In infinite dimensional linear parameter spaces, the conditions of Schwartz’ theorem are, in
general, not sufficient to generate the stronger convergence of a Bernstein-von Mises (BvM) theorem, that is,
guaranteeing that in the large sample limit the posterior distribution approximates a normal distribution. In
particular, Freedman [27] has shown that a BvM theorem does not hold on a separable Hilbert space in general.
However, the recent work of Castillo and Nickl [14], continuing that of [13], shows that multiscale priors of
type S and H , on page 1952 in the first reference, do generate a BvM theorem on separable Hilbert space. One
might ask what the above results might say under such stronger assumptions generating stronger notions of
consistency like the BvM theorem. As we stated at the beginning of Section 3, the results of this paper suggest
that “The fundamental mechanism generating non robustness for Bayesian inference will be its consistency
when combined with unstable nature of the conditions which generate it”. In particular, if the consistency rate
is improved we suspect the quantitative estimates of non-robustness will also improve. Moreover, if the prior
generates a BvM consistency, the above results still assert that the inference is not robust to perturbations in TV
metric. Consequently, in the setting of the introduction where the standard numerical approximated posteriors
are then used as priors in a new iteration, such irregular distributions may be encountered and therefore the
robustness of the procedure would be suspect.

Does this mean that Bayesian inference is not qualitatively robust? Far from it. Indeed, this is the reason
that we have constructed a definition of qualitative robustness for Bayesian inference in Definition 2.1 which
incorporates the user specified set Z of an admissible set of prior/data-generating distribution pairs including
allowed perturbations, along with the user specified perturbation pseudometrics dM(X), dM(Θ) and dM2(Θ)

on M(X), M(Θ) and M2(Θ) respectively, and for each μ ∈ M(X), the pseudometric αμ on the space of
M(Θ)-valued random variables on the probability space (X∞, μ∞). The challenge then would be, for a class
of models, to make these specifications in a way that are appropriate to some application domain, and then
establish qualitative robustness. In this sense, the primary message of these theorems is that any perturbation
metric on M(Θ) included in the definition of Z that is weaker than the TV metric, such as the Prokhorov
metric, does not appear to be a good choice.

As an example, let us return the setting of Castillo and Nickl ([14], Thm. 3), where a BvM theorem is available
for priors of type S or H . Let us focus on class S, where we note that it is not important to know what exactly
this class is for this discussion, see page 1952 of [14] for the definitions. Now, instead of Definitions 4.1 and 4.2,
let us define MS(Θ) to be the priors of class S. Then define

ΠS
ρ (θ) := {(π, π́) ∈ MS(Θ) ×MS(Θ) : π ∈ K(θ), dtv(π, π́) < ρ} (4.4)

to be the class of prior/perturbed prior pairs where the first component has Kullback−Leibler support at θ and
the second component is within ρ of the first in the total variation metric. For θ ∈ Θ, we define an admissible
set of prior/data-generating distribution pairs including allowed perturbations by

ZS
ρ (θ) := ΠS

ρ (θ) × Pθ × Pθ , (4.5)



QUALITATIVE ROBUSTNESS IN BAYESIAN INFERENCE 261

In this case, Theorem 4.1 does not apply since the mechanisms described in Section 5 are not available, since in
this case the measures used in these mechanism cannot be obtained through small TV perturbations because,
by definition, the sets of allowed perturbations must lie in MS(Θ). In this situation, although it is clear that
the consistency guaranteed by the BvM Theorem guarantees the correct limit for all perturbations it is not
clear these limits are obtained uniformly according to the Definition 2.1 of qualitative robustness. Although it
is possible that we have qualitative robustness in this case, it is also possible that some modification of the
perturbation metrics is needed to obtain it. The interaction between the quantitative knowledge of the BvM
theorem and the perturbation metrics leading to qualitative robustness should be illuminating.

Let us furthermore continue this line of inquiry in the context of the setting of the introduction, where numer-
ical approximated posteriors are then used as priors in a new iteration. If standard numerical approximations
of the posteriors are used in the approximation of the posteriors, then the Definition 4.4 of ΠS

ρ (θ) will have
to be modified to reflect this fact, but if these computations cannot protect against the TV perturbed priors
that generate non robustness, then we suspect that qualitative robustness in this case may not be available.
On the other hand, if the model P is such that the process of Bayesian conditioning leaves the class MS(Θ)
invariant or almost invariant, and a numerical approximation scheme is used which utilizes this fact is employed,
then these non-robustness mechanisms may be avoided and possibly qualitative robustness obtained. We expect
such results to depend on the actual model and its interaction with the admissible set of prior/data-generating
distribution pairs including allowed perturbations, along with the other user specified quantities, in particular,
the numerical approximation methods of the posteriors and the quantitative information available in the BvM
theorem.

5. Mechanisms generating non-robustness

For the clarity of the paper, in this subsection, we illustrate some of the mechanisms generating non qualitative
robustness in Bayesian inference, which complement the mechanism discovered by Hampel ([38], Lem. 3) and
Cuevas ([19], Thm. 1). These mechanisms do not utilize misspecification. Those which do are discussed in
Section 5.1. The core mechanism is derived from the nature of both the assumptions and assertions of results
supporting consistency. More precisely, Corollary 3.2 states that if the data-generating distribution is μ =
P (θ∗) and if the prior π attributes positive mass to every Kullback−Leibler neighborhood of θ∗, then the
posterior distribution converges towards δθ∗ as n → ∞. The assumption that π attributes positive mass to
every Kullback−Leibler neighborhood of θ∗ does not require π to place a significant amount of mass around θ∗,
but instead can be satisfied with an arbitrarily small amount. Therefore, if, as in Figure 3, π is a prior distribution
with support centered around θ �= θ∗, but with a very small amount of mass about θ∗, so that it satisfies the
assumptions of Corollary 3.2 at θ∗, then π can be slightly perturbed into a π′ with support also centered around
θ �= θ∗, but with no mass about θ∗. In this situation, although π and π′ can be made arbitrarily close in total

Figure 3. The data-generating distribution is P (θ∗). π′ has most of its mass around θ. π is an
arbitrarily small perturbation of π′ so that π has Kullback−Leibler support at θ∗. Corollary 3.2
implies that πn converges towards δθ∗ while π′

n remains close to δθ.
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(a) Density of π (b) Density of π (c) Density of π′

Figure 4. The data-generating distribution is P (θ∗). The probability density functions of π
and π′ are p and p′ with respect to the uniform distribution on [0, 1]. π is an arbitrarily small
perturbation of π′ in total variation. πn converges towards δθ∗ while the distance between the
support of π′

n and θ∗ remains bounded from below by a > 0.

variation distance, the posterior distribution of π converges towards δθ∗ as n → ∞, whereas that of π′ remains
close to δθ. Figure 4 gives an illustration of the same phenomenon when the parameter space Θ is the interval
[0, 1] and the probability density functions of π and π′ are p and p′ with respect to the uniform measure.

Note that the mechanism illustrated in Figures 3 and 4 does not generate non qualitative robustness at all
priors but instead for the full class of consistency priors, defined by the assumption of having positive mass on
every Kullback−Leibler neighborhood of θ∗. One may wonder whether this non qualitative robustness can be
avoided by selecting the prior π to satisfy Cromwell’s rule (that is, the assumption that π gives strictly positive
mass to every nontrivial open subset of the parameter space Θ). Theorem 4.3 shows that this is not the case
if the parameter space Θ is not totally bounded. For example, when Θ = R, for all δ > 0 one can find θ ∈ R

such that the mass that π places on the ball of center θ and radius one is smaller than δ, and by displacing
this small amount of mass one obtains a perturbed prior π′ whose posterior distribution remains asymptotically
bounded away from that of π when the data-generating distribution is P (θ). Similarly if Θ is totally bounded
then Theorem 4.4 places an upper bound on the size of the perturbation of the prior π that would be required as
a function of the covering complexity of Θ. Note that these observations suggest that a maximally qualitatively
robust prior should place as much mass as possible near all possible candidates θ for the parameter θ∗ of the
data-generating distribution, thereby reinforcing the notion that a maximally robust prior should have its mass
spread as uniformly as possible over the parameter space.

Example 5.1. Let X := R and Θ := R and consider the Gaussian parametric model P : R → M(R) such that

the measure P (θ) is the standard Gaussian measure with mean θ, that is it has the density 1√
2π

e−
−|x−θ|2

2 , x ∈ R.
This model satisfies the conditions of Schwartz’ Corollary 3.2. Moreover, because of the regularity of the Gaussian
measures it follows that each Kullback−Leibler neighborhood Kε(θ), defined in (3.1), contains an open interval
Oε(θ) about θ. Consequently, the set K(θ) of measures with Kullback−Leibler support at θ defined in (3.2)
contains all strictly positive measures, that is those which attribute positive mass to all open intervals.

Let us first consider the situation of Theorem 4.1. Let ρ > 0 be small and fix θ ∈ Θ in Definition 4.2 of Zρ(θ).
In particular, P (θ) is the data-generating distribution and we do not allow any perturbations to it. The discussion
above implies that the first component in the total variation uniformity Πρ(θ), defined in (4.1), contains all
strictly positive measures so that the first component in the corresponding set Zρ(θ) of admissible prior/data-
generating distribution pairs including allowed perturbations, defined in (4.2), also contains all strictly positive
measures. By selecting a strictly positive prior π with a very small mass about θ, it follows that a measure π′

which is close to π in the TV metric exists and therefore constitutes an admissible second component in Πρ(θ),
but which has no support an a neighborhood of θ. For the prior π′ the corresponding posterior will remain
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(a) π (b) π′

Figure 5. Non-robustness caused by misspecification. The parameter space of the model is
Θ1. We assume that the model P : Θ1 → M(X) is the restriction of an injective model
P̄ : Θ1 × Θ2 → M(X) to Θ1 × {θ2 = 0}. The data-generating distribution is P̄ (θ∗) where
θ∗ := (θ∗1 , θ

∗
2), with θ∗2 �= 0, so that the model P is misspecified. π satisfies Cromwell’s rule. π′

is an arbitrarily small perturbation of π having Kullback−Leibler support at θ∗. Corollary 3.2
implies that π′

n converges towards δθ∗ while the distance between the support of πn and θ∗
remains bounded from below by a > 0.

uniformly bounded away from δθ in the TV metric and therefore the Ky Fan metric. This is the mechanism
establishing the assertion of Theorem 4.1.

Now let us consider situation of Theorem 4.3. Fix δ > 0, let ρ be small, and consider a prior π which has
Kullback−Leibler support for all θ ∈ R. By the discussion at the beginning, we can choose π to be any strictly
positive measure. Since R is not completely bounded it follows that there exists a θ such that the measure of
the interval about θ of size δ is small enough that there exists a measure π′ within TV distance ρ of π whose
support does not intersect this interval. Selecting P (θ) as the data-generating distribution in the admissible set
Zρ(π), it again follows that the posterior distributions resulting from the prior π′ stay uniformly a distance δ
from δθ in the TV metric and therefore the Ky Fan metric. This the mechanism establishing the assertion of
Theorem 4.3.

5.1. Robustness under misspecification

Although the main results of Section 4 do not utilize any model misspecification, the brittleness results of [48]
suggest that misspecification should also generate non qualitative robustness. Indeed, although, one may find a
prior that is both consistent and qualitatively robust when Θ is totally bounded and the model is well-specified,
we now show how extensions of the mechanism illustrated in Figures 3 and 4 suggest that misspecification
implies non qualitative robustness. Consider the example illustrated in Figure 5. In this example the model P
is the restriction of a well specified larger model P̄ : Θ1 × Θ2 → M(X) to θ2 = 0. Assume that the data-
generating distribution is P̄ (θ∗1 , θ∗2) where θ∗2 �= 0, so that the restricted model P is misspecified. Let π be any
prior distribution on Θ1 × {θ2 = 0}. Although π may satisfy Cromwell’s rule the mechanisms presented in
this paper suggest that is not qualitatively robust with respect to perturbed priors having support on Θ1 × Θ2.
Indeed, let π′ be an arbitrarily small perturbation of π obtained by removing some mass from the support of
π and adding that mass around θ∗. Note that π′ can be chosen arbitrarily close to π while satisfying the local
consistency assumption of Corollary 3.2, which implies that the posterior distributions of π′ concentrate on θ∗

while the posterior distributions of π remain supported on Θ1 × {θ2 = 0}. Note that if P̄ is interpreted as an
extension of the model P , then this mechanism suggests that we can establish conditions under which Bayesian
inference is not qualitatively robust under model extension.



264 HOUMAN OWHADI AND CLINT SCOVEL

(a) P∗π (b) ν

Figure 6. Non-robustness caused by misspecification. The parameter space of the model is
Θ. The data-generating distribution is μ �∈ P (Θ), so that the model is misspecified. ν is an
arbitrarily small perturbation of P∗π in total variation distance having non-zero mass on μ.
Note that if a small mass on μ is sufficient to ensure the consistency of ν then such a mechanism
also implies the non-robustness of the model with respect to misspecification since in such a
case, νn, the posterior distribution of ν would converge towards δμ whereas the distance between
the support of P∗πn and μ remains bounded from below by the distance from the model to the
data-generating distribution.

Figure 6 represents a non-parametric generalization of the mechanism of Figure 5. Assume that the data-
generating distribution is μ �∈ P (Θ), so that the model is misspecified. Let π ∈ M(Θ) be an arbitrary prior
distribution and P∗π ∈ M2(X) its corresponding non-parametric prior. By removing an arbitrarily small amount
of mass from P∗π and placing it on μ one obtains an arbitrarily close prior distribution ν that is consistent with
respect to the data-generating distribution μ. Therefore although P∗π and ν may be made arbitrarily close,
their posterior distributions would remain asymptotically separated by a distance corresponding to the degree
of misspecification of the model (the distance from μ to P (Θ)).

6. Proofs

6.1. Proof of Lemma 3.1

Dupuis and Ellis ([26], Lem. 1.4.3) assert that on a Polish space that K is lower semicontinuous in both
arguments. Since the subset embedding : X → X ′ of a subset X of a metric space X ′ is isometric, when
X is a Borel subset of a separable metric space X ′, it can be shown that the induced pushforward map
i∗ : M(X) → M(X ′) is isometric in the Prokhorov metrics, in particular it is continuous. Since the composition
of a continuous and a lower semicontinuous function is lower semicontinuous, it follows from Dupuis and Ellis
([26], Lem. 1.4.3) that on any realization of a standard Borel space that the Kullback−Leibler divergence is lower
semicontinuous in each of its arguments separately, in particular, fixing the first, it is lower semicontinuous.
Therefore Kε(Pθ∗) ⊂ M(X) is closed, and therefore measurable for ε > 0. Consequently, when P is measurable,
it follows that Kε(θ∗) ⊂ Θ is measurable for ε > 0.

6.2. Proof of Corollary 3.2

We seek to apply Schwartz’ theorem ([56], Thm. 6.1). Since Θ and X are separable metric spaces, their
Borel σ-algebras are countably generated, so Doob’s Theorem ([23], Thm. V.58) and the measurability of the
dominated model P implies that a family of densities can be chosen to be B(X) × B(Θ) measurable, thus
satisfying this requirement of ([56], Thm. 6.1). Since U is a neighborhood it follows that it contains an open
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neighborhood O of θ. Since O is open and P : Θ → P (Θ) is open, it follows that P (O) is open in P (Θ), and
therefore there is an open set V∗ ⊂ M(X) such that V∗ ∩P (Θ) = P (O). Moreover, V∗ is an open neighborhood
of Pθ∗ . Since X is a separable metric space, it follows that dPrX metrizes the weak topology, and since V∗ is
open, it is well known (see e.g. [3, 30, 63]) that there exists a uniformly consistent test of Pθ∗ against V c

∗ , see
Schwartz [56] for the definition of uniformly consistent test. It follows trivially that there exists a uniformly
consistent test of Pθ∗ against V c∗ ∩P (Θ). Moreover, since P is injective it follows that Oc = P−1(V c∗ ). Therefore,
there exists a uniformly consistent test of Pθ∗ against V c

∗ ∩ P (Θ) = {Pθ : θ ∈ Oc}.
Since V∗ is open, it also follows that there is a Prokhorov metric ball Bs(Pθ∗) of radius s > 0 about Pθ∗

such that Bs(Pθ∗) ⊂ V∗. Now consider the Kullback−Leibler ball Kτ (Pθ∗) for τ < s2

2 . It follows from Csiszar,
Kemperman and Kullback’s [18] improvement K ≥ 1

2d2
tv of Pinsker’s inequality and the inequality dtv ≥ dPrX ,

that Kτ (Pθ∗) ⊂ Bs(Pθ∗). Since then Kτ (Pθ∗) ⊂ Bs(Pθ∗) ⊂ V∗ it follows that

P−1
(
Kτ (Pθ∗)

) ⊂ P−1(V∗) = O.

Consider now the Kullback−Leibler neighborhood Wτ (θ∗) ⊂ Θ of θ∗ defined by pulling Kτ (Pθ∗) back to Θ
by the model P :

Wτ (θ∗) := P−1
(
Kτ (Pθ∗)

)
.

Then the previous inequality states that
Wτ (θ∗) ⊂ O.

Since the Kullback−Leibler neighborhoods are measurable in the weak topology and P is assumed measurable,
it follows that Wτ (θ∗) is measurable.

Therefore, O and Wτ (θ∗) satisfy the assumptions of the sets V and and W in ([56], Thm. 6.1). Consequently,
since by assumption, the prior π has Kullback−Leibler support, it follows that we can apply Schwartz’ theorem
([56], Thm. 6.1) to obtain the assertion for O and since U ⊃ O is measurable the assertion follows.

6.3. Proof of Theorem 4.1

Let us prove the assertion for a weaker pseudometric άμ ≤ αμ derived from the Prokhorov metric on dPr2Θ

on M2(Θ). Since it is weaker the assertion follows. To that end, consider μ ∈ M(X). Then for two random
variables Z, W : (X∞, μ∞) → M(Θ) it follows that Z∗μ∞, W∗μ∞ ∈ M2(Θ), so we can define a pseudometric
άμ by

άμ(Z, W ) := dPr2Θ(Z∗μ∞, W∗μ∞). (6.1)

Since Dudley ([25], Thm. 11.3.5) asserts that

dPr2Θ(Z∗μ∞, W∗μ∞) ≤ αμ(Z, W ), (6.2)

we conclude that
άμ ≤ αμ. (6.3)

For fixed π and μ and n, the M(Θ)-valued random variable

πn : (X∞, μ∞) → M(Θ)

defined by πn(x∞) := πxn in (2.2) satisfies

(πn)∗μ∞ = π∗μn (6.4)

where π∗ : M(Xn) → M2(Θ) is the pushforward operator corresponding to the map π̄ : Xn → M(Θ) defined
by π̄(xn) := πxn in (2.1). Consequently, we obtain

άμ(πn, π́n) = dPr2Θ(π∗μn, π́∗μn) (6.5)
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for π, π́ ∈ M(Θ) and n fixed. From the triangle inequality we then obtain

dPr2Θ(π∗μn, π́∗μ́n) ≤ dPr2Θ(π∗μn, π́∗μn) + dPr2Θ(π́∗μn, π́∗μ́n)
≤ αμ(πn, π́n) + dPr2Θ(π́∗μn, π́∗μ́n) ,

bounding the simple single term dPr2Θ(π∗μn, π́∗μ́n) in terms of the sum of two terms αμ(πn, π́n) and
dPr2Θ(π́∗μn, π́∗μ́n) of qualitative robustness in Definition 2.1. Consequently, the assumption of the pseudo-
metric άμ amounts to Definition 2.1 with one epsilon instead of two corresponding to the metric

dPr2Θ(π∗μn, π́∗μ́n), (π, π́, μ, μ́) ∈ M(Θ)2 ×M(X)2. (6.6)

Moreover, non qualitative robustness with respect to this definition implies non qualitative robustness with
respect to the original Definition 2.1 with the Ky Fan metric.

Now lets turn to the proof that the inference is non qualitatively robust with respect to the objective
metric (6.6). Fix θ∗ ∈ Θ and consider another point θ ∈ Θ and the Dirac mass δθ ∈ M(Θ) situated at θ.
For π ∈ K(θ∗), the convex combination

πα := απ + (1 − α)δθ

is a probability measure with Kullback−Leibler support, that is, πα ∈ K(θ∗), α > 0 and

dtv(πα, δθ) ≤ α. (6.7)

Therefore, it follows that
(πα, δθ) ∈ Πρ(θ∗) , α < ρ ,

and therefore (
πα, δθ, Pθ∗ , Pθ∗

) ∈ Zρ(θ∗) , α < ρ ,

where Zρ(θ∗) is the admissible set defined in (4.2).
For the prior πα, let πα

n : (X∞, P∞
θ∗ ) → M(Θ), defined by πα

n(x∞) := πα
xn , x∞ ∈ X∞, denote the corre-

sponding sequence of posterior random variables, and let (πα
n )∗P∞

θ∗ ∈ M2(Θ) denote its induced sequence of
laws. On the other hand, for the prior δθ, it is easy to see that (δθ)xn = δθ, xn ∈ Xn, so that if we denote the
corresponding sequence of posterior random variables by δn

θ , then (δn
θ )∗P∞

θ∗ = (δθ)∗Pn
θ∗ = δδθ

.
Since the assumptions of Schwartz’ Corollary 3.2 are satisfied and πα has Kullback−Leibler support at θ∗,

we can apply the assertion (A.4) of Proposition A.1

P∞
θ∗

{
dPrΘ(πα

n , δθ∗) > ε
}
→ 0 n → ∞ ,

for ε > 0. To complete the proof we simply use the fact that convergence in law to a Dirac mass is equivalent
to convergence in probability to a constant random variable, that is use the equivalent assertion (A.5) of
Proposition A.1

dPr2Θ

(
(πα

n )∗P∞
θ∗ , δδθ∗

)
→ 0 n → ∞. (6.8)

Now the proof is very simple. Indeed, from the triangle inequality we have

dPr2Θ

(
(πα

n )∗P∞
θ∗ , δδθ

)
≥ dPr2Θ

(
δδθ∗ , δδθ

)
− dPr2Θ

(
(πα

n )∗P∞
θ∗ , δδθ∗

)

and, by two applications of Proposition A.4, we have

dPr2Θ

(
δδθ∗ , δδθ

)
= min

(
dPrΘ

(
δθ∗ , δθ

)
, 1

)

= min
(
min

(
d(θ∗, θ), 1

)
, 1

)

= min
(
d(θ∗, θ), 1

)
.



QUALITATIVE ROBUSTNESS IN BAYESIAN INFERENCE 267

Therefore, since (δn
θ )∗P∞

θ∗ = δδθ
, the convergence (6.8) implies that

dPr2Θ

(
(πα

n)∗P∞
θ∗ , (δn

θ )∗P∞
θ∗

)
→ min

(
d(θ∗, θ), 1

)
, n → ∞ .

Finally, since dPrΘ ≤ dtv, it follows from (6.7) that

dPrΘ(πα, δθ) ≤ α.

Then, for any δ > 0, if we restrict α so that α < min (δ, ρ), it follows that dtv(πα, δθ) < ρ and dPrΘ(πα, δθ) < δ,
so that (

πα, δθ, Pθ∗ , Pθ∗
) ∈ Zρ(θ∗) , (6.9)

dPrΘ(πα, δθ) < δ. (6.10)

Let D := sup {d(θ1, θ2) : θ1, θ2 ∈ Θ} denote the diameter of Θ. Then it follows from the triangle inequality that,
for any ε > 0, there exists a θ ∈ Θ such that d(θ∗, θ) ≥ D

2 − ε. Consequently, for any ε̄ < min (D
2 , 1), no matter

how small δ is, there is an α > 0 such that, in addition to (6.9) and (6.10), we have

dPr2Θ

(
(πα

n )∗P∞
θ∗ , (δn

θ )∗P∞
θ∗

)
> ε̄,

for large enough n. Consequently, the assertion is proved.

6.4. Proof of Theorem 4.4

As in the proof of Theorem 4.1, we establish the assertion with respect to the modified form of qualitative
robustness defined by (6.6), and since this form is weaker it implies the assertion. It follows from the definition
of the packing numbers that, for ε > 0, there is a packing {θi, i = 1, ..,M2ε(Θ)} and therefore the collection
of open balls Bε(θi), i = 1, ..,M2ε(Θ) is a disjoint union. Denoting N2ε := N2ε(Θ) and M2ε := M2ε(Θ), we
therefore obtain

1 = π(Θ)

≥ π
(∪M2ε

i=1 Bε(θi)
)

=
M2ε∑
i=1

π
(
Bε(θi)

)

≥ M2ε min
i=1,M2ε

π
(
Bε(θi)

)
.

Consequently, since (4.3) implies M2ε ≥ N2ε, there exists a point θ∗ ∈ Θ such that

π
(
Bε(θ∗)

) ≤ 1
N2ε

· (6.11)

Let Bε := Bε(θ∗) denote the open ball about θ∗ and let Bc
ε denote its complement. Let πε ∈ M(Θ), defined by

πε(B) :=
π(Bc

ε ∩ B)
π(Bc

ε )
, B ∈ B(Θ) ,

denote the normalization of the restriction of π to Bc
ε which, by the inequality (6.11), is well defined. Since

π = π(Bc
ε )π

ε + π|Bε it follows that π − πε = π|Bε − π(Bε)πε so that we obtain

dtv(πε, π) ≤ π(Bε) ≤ 1
N2ε
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from which we obtain
dPrΘ(πε, π) ≤ 1

N2ε
· (6.12)

In particular, when 1
N2ε

< ρ, we obtain
πε ∈ Btv

ρ (π)

and therefore (
π, πε, Pθ∗ , Pθ∗

) ∈ Zρ(π) .

That is, when 1
N2ε

< ρ, the point
(
π, πε, Pθ∗ , Pθ∗

) ∈ Zρ(π).
For the prior πε, let πε

n : (X∞, P∞
θ∗ ) → M(Θ), defined by πε

n(x∞) := πε
xn , x∞ ∈ X∞, denote the correspond-

ing sequence of posterior random variables, and let (πε
n)∗P∞

θ∗ ∈ M2(Θ) denote its induced sequence of laws.
Since the assumptions of Schwartz’ Corollary 3.2 are satisfied and π has Kullback−Leibler support at θ∗, we
can apply the assertion (A.5) of Proposition A.1 to the sequence of posterior laws (πn)∗P∞

θ∗ corresponding to π:

dPr2Θ

(
(πn)∗P∞

θ∗ , δδθ∗

)
→ 0 n → ∞. (6.13)

From the triangle inequality we have

dPr2Θ

(
(πn)∗P∞

θ∗ , (πε
n)∗P∞

θ∗

)
≥ dPr2Θ

(
(πε

n)∗P∞
θ∗ , δδθ∗

)
− dPr2Θ

(
(πn)∗P∞

θ∗ , δδθ∗

)
, (6.14)

so to lower bound the lefthand side it is sufficient in the limit to lower bound the first term on the right. To
that end, we use a quantitative version of the partial converse ([25], Thm. 11.3.5) of convergence in probability
implies convergence in law, valid when the convergence in law is to a Dirac mass. Indeed, if we denote the Ky
Fan metric determined from the measure P∞

θ∗ by αθ∗ , Lemma A.3 asserts that

dPr2Θ

(
(πε

n)∗P∞
θ∗ , δδθ∗

)
= αθ∗(πε

n, δθ∗). (6.15)

To evaluate the Ky Fan distance on the righthand side, first observe that since πε has support contained in the
closed set Bc

ε , it follows from Schervish ([55], Thm. 1.31) that πε
xn also has support contained in Bc

ε a.e Pn
θ∗ .

Therefore, if we define B0 := {θ∗} and Br := Br(θ∗), it follows that Br
0 = Br, so that

πε
xn(Br

0) = 0 , a.e. Pn
θ∗ , r < ε

and
(δθ∗)xn(B0) = 1 , a.e. Pn

θ∗ .

It follows from Lemma A.2 that

dPrΘ

(
πε

xn , (δθ∗)xn

) ≥ min (ε, 1) a.e. P∞
θ∗ ,

and, since ε ≤ 1, we obtain
P∞

θ∗

(
dPrΘ

(
πε

xn , (δθ∗)xn

) ≥ ε
)

= 1.

Therefore, by the definition (A.2) of the Ky Fan metric, we obtain αθ∗(πε
n, δθ∗) ≥ ε and, by the identity (6.15),

we conclude that
dPr2Θ

(
(πε

n)∗P∞
θ∗ , δδθ∗

)
≥ ε.

Consequently, from the triangle inequality (6.14) and the convergence (6.13), we conclude, for any έ > 0, that
for large enough n we have

dPr2Θ

(
(πn)∗P∞

θ∗ , (πε
n)∗P∞

θ∗

)
≥ ε − έ. (6.16)

Consequently, if this Bayesian inference is qualitatively robust, then for ε > 0, it follows from (6.16) and (6.12)
that δ < 1

N2ε
. The requirement that perturbations be admissible, that is determine members in Zρ(π), implies

that δ < ρ.
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Appendix A.

A.1. Metrics on spaces of measures and random variable and the measurability
of conditioning

Metrics on spaces of measures and random variables is a well studied field, see e.g. Rachev et al. [51] and
Gibbs and Su [32], but to keep the presentation simple, here we will restrict our attention to the total variation,
Prokhorov and Ky Fan metrics (we refer to [6–9] for motivations for considering classes of priors defined in
the Prokhorov metric). For measurable spaces Θ and X , we write M(Θ) and M(X) for the set of probability
distributions on Θ and X respectively. In this general setting, we can metrize the spaces of measures M(X) and
M(Θ) using total variation. This latter metrization makes M(Θ) into a topological space whose Borel structure
can be used to define the space M2(Θ) of probability measures on M(Θ), which can also be metrized using
the total variation. However, the separability of these spaces will be extremely useful for us and, in general,
these spaces will not be separable under the total variation metric. Recall that for a metric space (S, d), the
Prokhorov metric dPr on the space M(S) of Borel probability measures is defined by

dPr(μ1, μ2) := inf
{
ε : μ1(A) ≤ μ2(Aε) + ε, A ∈ B(S)

}
, μ1, μ2 ∈ M(S) , (A.1)

where
Aε := {x′ ∈ S : d(x, x′) < ε for some x ∈ A} .

According to Dudley ([25], Thm. 11.3.1), the Prokhorov metric is a metric on M(S). Consequently, when Θ and
X are metric, we can also metrize the spaces of measures M(Θ) and M(X) with the Prokhorov metrics, and
having done so we can define the space M2(Θ) := M(M(Θ)) of Borel probability measures on the metric space
(M(Θ), dPrΘ) of Borel probability measures on Θ and metrize it with the Prokhorov metric dPr2Θ. Furthermore,
when (S, d) is a separable metric space, Dudley ([25], Thm. 11.3.3) asserts that the Prokhorov metric metrizes
weak convergence and Aliprantis and Border ([1], Thm. 15.12) asserts that the metric space (M(S), dPr) is
separable.

Therefore, when X and Θ are separable metric spaces, the Prokhorov metrics dPrX and dPrΘ metrize weak
convergence in M(X) and M(Θ) respectively and both metric spaces (M(X), dPrX) and (M(Θ), dPrΘ) are
separable. Consequently, when Θ is a separable metric space, (M(Θ), dPrΘ) is a separable metric space and
therefore (M2(Θ), dPr2Θ) is a separable metric space.

The separability of (M(Θ), dPrΘ) is sufficient to define the Ky Fan metric on a space of (M(Θ)-valued random
variables. Indeed, for a separable metric space S, probability space (Ω, Σ, P ), and two S-valued random variables
Z : Ω → S and W : Ω → S, the Ky Fan distance between Z and W , (see e.g. Dudley [25], p. 289), is defined as

α(Z, W ) := inf
{
ε ≥ 0 : P (d(Z, W ) > ε) ≤ ε

}
. (A.2)

By Dudley ([25], Thm. 9.2.2), the Ky Fan metric is a metric on the space of S-valued random variables from
(Ω, Σ, P ) and metrizes convergence in probability for them. Consequently, when Θ is a separable metric space
and M(Θ) is metrized with the Prokhorov metric dPrΘ, the Ky Fan metric α of (A.2) metrizes the space of
M(Θ)-valued random variables Z : (X∞, μ∞) → (M(Θ), dPrΘ) for each μ ∈ M(X). Since this family of metrics
depends on the measure μ we indicate this dependence by writing αμ. Moreover, when Θ and X are separable
metric spaces, their Borel σ-algebras are countably generated, which is required to apply Doob’s Theorem to
assert that a dominated measurable model has a jointly measurable family of densities, which is required in the
consistency theorem of Schwartz which we will need.

When Θ and X are Borel subsets of Polish metric spaces, they are separable metric spaces so the above
applies. Let us now show that the assumption also facilitates the measurability of Bayesian conditioning that
will be needed to define its qualitative robustness. To that end, from now on let us place as default the weak
topologies on M(X), M(Θ) and M2(Θ) and metrize them with the Prokhorov metrics dPrX , dPrΘ and dPr2Θ.
This is primarily to obtain well-defined Bayesian conditioning while at the same time applicability of Schwartz’s
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consistency theorem. We will also place other metric structures on M(X), M(Θ) and M2(Θ) to quantify the
size of perturbations and indicate them with the notation dM(X), dM(Θ) and dM2(Θ). Consider a measurable
model P : Θ → M(X). Since Aliprantis and Border ([1], Thm. 15.13) implies that the map M(X) → R defined
by μ �→ μ(A) is Borel measurable for all A ∈ B(X), it follows that P corresponds to a Markov kernel. Consider
a prior π ∈ M(Θ). Then since Θ is assumed to be a Borel subset of a Polish space, it follows from Schervish
([55], Thm. B.46) that there exists a family πx, x ∈ X of conditional probability measures generated by the
model P such that the map x �→ ∫

Θ
fdπx, x ∈ X is B(X)-measurable for all bounded and measurable functions

f : Θ → R. Note that after the proof Schervish mentions that such a family of conditional measures is not
unique. Since both Θ and X are separable and metrizable, it then follows from Aliprantis and Border ([1],
Thm. 19.7) that the resulting map x �→ πx from X to M(Θ) is measurable. For multiple samples, it is clear
that Xn is a Borel subset of the n-th power of the ambient Polish space of X . By Billingsly’s ([10], Thm. 2.8)
characterization of weak convergence on product spaces it follows that the injection M(X) → M(Xn) defined
by μ �→ μn is continuous, so that it follows that Pn : Θ → M(Xn), defined by Pn(θ) = P (θ)n, θ ∈ Θ, is
measurable and therefore, by the same arguments as above, we obtain a family of multisample conditional
measures πxn , xn ∈ Xn such that the resulting map

π̄ : Xn → M(Θ)

defined by the determination of the posteriors

π̄(xn) := πxn , xn ∈ Xn (A.3)

is measurable. Therefore, its corresponding pushforward operator

π∗ : M(Xn) → M2(Θ)

is well-defined, where we have removed the bar over π to simplify the notation, but still emphasize that this
pushforward operator π∗ corresponds to the prior π. Then to consider how the posteriors πxn vary as a function
of the sample data xn when it is generated by i.i.d. sampling from μ, since Mn(X) ⊂ M(Xn) it follows that
μn ∈ M(Xn) so we can utilize the pushforward operator π∗ to define

π∗μn ∈ M2(Θ)

the sampling distribution of the posterior distribution πxn when xn ∼ μn.

A.2. Schwartz’ Theorem and the convergence of random measures

It will be useful to express the assertion of Corollary 3.2 and some of its consequences in terms of the
convergence of measures and random measures. To that end, recall the notation M2(Θ) := M(M(Θ)), and
consider the corresponding sequence of random variables πn : (X∞, P∞

θ∗ ) → M(Θ), defined by πn(x∞) :=
πxn , x∞ ∈ X∞, and its induced sequence of laws (πn)∗P∞

θ∗ ∈ M2(Θ). Note especially that δδθ∗ is the Dirac
mass in M2(Θ) situated at the Dirac mass δθ∗ in M(Θ) situated at θ∗.

Proposition A.1. The assertion of Corollary 3.2 is equivalent to

πxn �→ δθ∗ a.e. P∞
θ∗ ,

where �→ is weak convergence. This in turn implies that

P∞
θ∗

{
dPrΘ(πn, δθ∗) > ε

}
→ 0 n → ∞ , (A.4)

for ε > 0, which is equivalent to

dPr2Θ

(
(πn)∗P∞

θ∗ , δδθ∗

)
→ 0 n → ∞ , (A.5)

where dPr2Θ is the Prokhorov metric on M2(Θ) defined with respect to the Prokhorov metric dPrΘ on M(Θ).
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Proof. Let O denote the open sets in Θ and Oθ∗ ⊂ O denote the open neighborhoods of θ∗. Then, under the
conditions of Corollary 3.2, for O ∈ Oθ∗ , it follows that

πxn(O) → 1 n → ∞, a.e. P∞
θ∗ .

Since δθ∗(O) = 1, O ∈ Oθ∗ and δθ∗(O) = 0, O ∈ O \ Oθ∗ it easily follows that

lim inf
n

πxn(O) ≥ δθ∗(O), ∀O ∈ O, a.e. P∞
θ∗ .

which, by the Portmanteau theorem ([25], Thm. 11.1.1), is equivalent to

πxn �→ δθ∗ a.e. P∞
θ∗ .

where �→ denotes weak convergence.
Now consider the corresponding sequence of random variables πn : (X∞, P∞

θ∗ ) → M(Θ), defined by πn(x∞) :=
πxn , x∞ ∈ X∞, and its induced sequence of laws (πn)∗P∞

θ∗ ∈ M2(Θ). Then πxn �→ δθ∗ a.e. P∞
θ∗ is equivalent to

πn �→ δθ∗ a.s. P∞
θ∗ .

Since Θ is a separable metric space it follows that M(Θ) equipped with the Prokhorov metric is a separable
metric space. Since a.s. convergence implies convergence in probability for random variables with values in a
separable metric space, it follows that

πn �→ δθ∗ in P∞
θ∗ − probability ,

that is,
P∞

θ∗

{
dPrΘ(πn, δθ∗) > ε

}
→ 0 n → ∞.

Since M(Θ) is a separable metric space it follows that M2(Θ) equipped with the Prokhorov metric is also
a separable metric space. Therefore, since on separable metric spaces convergence in probability to a constant
valued random variable is equivalent to the weak convergence of the corresponding set of laws to the Dirac
mass situated at that value, (see e.g. Dudley [25], Prop. 11.1.3), it follows that the convergence in probability,
πn → δθ∗ in P∞

θ∗ − probability, is equivalent to the corresponding convergence of laws

(πn)∗P∞
θ∗ �→ δδθ∗ n → ∞.

Finally, since the Proprokhorov metric dPr2Θ on M2(Θ) metrizes the weak topology on M2(Θ) = M(M(Θ)),
it follows that the latter is equivalent to

dPr2Θ

(
(πn)∗P∞

θ∗ , δδθ∗

)
→ 0 n → ∞. �

A.3. Some Prokhorov Geometry

We establish a basic mechanism to bound from below the Prokhorov distance between two measures based
on the values of the measures on the neighborhood of a single set.

Lemma A.2. Let Z be a metric space and consider the space M(Z) of Borel probability measures equipped
with the Prokhorov metric. Consider μ ∈ M(Z) and suppose that there exists a set B ∈ B(Z) and α, δ ≥ 0 such
that

μ(Bε) ≤ δ, ε < α.

Then, for any μ′ ∈ M(Z), we have

dPr(μ, μ′) ≥ min
(
α, μ′(B) − δ

)
.
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Proof. If dPr(μ1, μ2) ≥ α the assertion is proved, so let us assume that dPr(μ1, μ2) < α. Then, denoting
d∗ := dPr(μ1, μ2), it follows from the assumption that μ(Ad∗

) ≤ δ, so that

μ′(A) ≤ μ(Ad∗
) + d∗

≤ δ + d∗

from which we conclude that μ′(A) − δ ≤ d∗. Therefore, either dPr(μ1, μ2) ≥ α or dPr(μ1, μ2) ≥ μ′(A) − δ,
proving the assertion. �

Lemma A.3. Let S be a separable metric space. Then, for an S-valued random variable X we have

α(X, s) = dPr(L(X), δs)

where α is the Ky Fan metric and s denotes the random variable with constant value s.

Proof. Let us denote α := α(X, s) and ρ := dPr(L(X), δs). Define the set B0 := {s} and Br := Br(s), r > 0
and observe that Br

0 = Br, r > 0. Therefore, by the definition of ρ we have

L(s)(B0) ≤ L(X)(Bρ
0 ) + ρ

and since L(s)(B0) = 1 we obtain
L(X)(Bρ

0 ) ≥ 1 − ρ

from which we obtain P (d(X, s) ≥ ρ) ≤ ρ. Since this implies that

P (d(X, s) > ρ) ≤ P (d(X, s) ≥ ρ) ≤ ρ

we conclude that ρ ≤ α. Since Dudley ([25], Thm. 11.3.5) asserts that α ≤ ρ, the assertion follows. �

Proposition A.4.
dPr(δx1 , δx2) = min

(
1, d(x1, x2)

)

Proof. Consider the set B := {x1}. Then since Bε = Bε(x1), it follows that for ε < d(x1, x2) that x2 /∈ Bε.
Consequently, since δx1(B) = 1, the inequality

δx1(B) ≤ δx2(B
ε) + ε

requires either ε ≥ 1 or x2 ∈ Bε which implies that ε ≥ d(x1, x2). Consequently, dPr(δx1 , δx2) ≥
min

(
1, d(x1, x2)

)
. To obtain equality, suppose that dPr(δx1 , δx2) > d(x1, x2). Then, for any d′ which satisfies

dPr(δx1 , δx2) > d′ > d(x1, x2) there exists a measurable set B such that

δx1(B) > δx2(B
d′

) + d′

Consequently, x1 ∈ B, but d′ > d(x1, x2) implies that x2 ∈ Bd′
, which implies the contradiction 1 > 1+ d′. �
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