
ESAIM: PS 21 (2017) 113–137 ESAIM: Probability and Statistics
DOI: 10.1051/ps/2016029 www.esaim-ps.org

CENTRAL LIMIT THEOREM FOR SUPERCRITICAL BINARY
HOMOGENEOUS CRUMP-MODE-JAGERS PROCESSES

Benôıt Henry
1,2

Abstract. We consider a supercritical general branching population where the lifetimes of individuals
are i.i.d. with arbitrary distribution and each individual gives birth to new individuals at Poisson times
independently from each others. The population counting process of such population is a known as
binary homogeneous Crump-Jargers-Mode process. It is known that such processes converges almost
surely when correctly renormalized. In this paper, we study the error of this convergence. To this end,
we use classical renewal theory and recent works [A. Lambert, Ann. Probab. 38 (2010) 348–395]. on this
model to obtain the moments of the error. Then, we can precisely study the asymptotic behaviour of
these moments thanks to Lévy processes theory. These results in conjunction with a new decomposition
of the splitting trees allow us to obtain a central limit theorem.
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1. Introduction

In this work, we consider a general branching population where individuals live and reproduce independently
from each other. Their lifetimes follow an arbitrary distribution PV and the births occur at Poisson times with
constant rate b. The genealogical tree induced by this population is called a splitting tree [10, 11, 17] and is of
main importance in the study of the model.

The population counting process Nt (giving the number of living individuals at time t) is a binary homoge-
neous Crump-Mode-Jagers (CMJ) process. Crump-Mode-Jagers processes are very general branching processes.
Such processes are known to have many applications. For instance, in biology, they have recently been used to
model spreading diseases (see [4, 20]). Another example of application appears in queuing theory (see [12, 18]).

In [19], Nerman shows very general conditions for the almost sure convergence of general CMJ processes.
In the supercritical case, it is known that the quantity e−αtNt, where α is the Malthusian parameter of the
population, converges almost surely. This result has been proved in [21] using Jagers−Nerman’s theory of general
branching processes counted by random characteristics. Another proof can be found in [5], using only elementary
probabilistic tools, relying on fluctuation analysis of the process.
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Our purpose in this work is to investigate the behaviour of the error in the aforementioned convergence.
Many papers studied the second order behaviour of converging branching processes. Early works investigate
the Galton−Watson case. In [13,14], Heyde obtained rates of convergence and get central limit theorems in the
case of supercritical Galton−Watson when the limit has finite variance. Later, in [1], Asmussen obtained the
polynomial convergence rates in the general case. In our model, the particular case when the individuals never
die (i.e. PV = δ∞, implying that the population counting process is a Markovian Yule process) has already
been studied. More precisely, Athreya showed in [3], for a Markovian branching process Z with appropriate
conditions, and such that e−αtZt converges to some random variable W a.s., that the error

Zt − eαtW√
Zt

,

converges in distribution to some Gaussian random variable.
In the case of general CMJ processes, there was no similar result although very recent work of Iksanov and

Meiners [15] gives sufficient conditions for the error terms in the convergence of supercritical general branching
processes to be o(tδ) in a very general background (arbitrary birth point process). Although our model is
more specific, we give slightly more precise results. Indeed, we give the exact rate of convergence, e

α
2 t, and

characterized the limit. Moreover, we believe that our method could apply to other general branching processes
counted by random characteristics, as soon as the birth point process is Poissonian.

The first step of the method is to obtain informations on the moments of the error in the a.s. convergence of
the process. Using the renewal structure of the tree and formulae on the expectation of a random integral, we
are able to express the moments of the error in terms of the scale function of a Lévy process. This process is
known to be the contour process of the splitting tree as constructed in [17]. The asymptotic behaviours of the
moments are then precisely studied thanks to the analysis of the ladder height process associated to a similar
Lévy process and to the Wiener−Hopf factorization. The second ingredient is a decomposition of the splitting
tree into subtrees whose laws are characterized by the overshoots of the contour process over a fixed level.
Finally, the error term can be decomposed as the sum of the error made in each subtrees. Our controls on the
moments ensure that the error in each subtree decreases fast enough compared to the growth of the population
(see Sect. 4 for details).

The first section is devoted to the introduction of main tools used in this work. The first part recall the basic
facts on splitting trees which are essentially borrowed from [5–8,17]. The second part recall some classical facts
on renewal equations and the last part gives a useful Lemma on the expectation of a random integral. Section 3
is devoted to the statement of Theorem 3.2 which is a CLT for the population counting process Nt. Section 4
details the main lines of the method. Theorem 3.2 is finally proved in Section 6.

2. Splitting trees and preliminary results

This section is devoted to the statement of results which are constantly used in the sequel. The first subsection
presents the model and states results on splitting trees coming from [5–7,17, 21]. The second subsection recalls
some well-known results on renewal equations. Finally, the last subsection is devoted to the statement and the
proof of a lemma for the expectation of random integrals, which is constantly used in the sequel.

2.1. Splitting trees

In this paper, we study a model of population dynamics called a splitting tree. We consider a branching
tree (see Fig. 1), where individuals live and reproduce independently from each other. Their lifetimes are i.i.d.
following an arbitrary distribution PV . Given the lifetime of an individual, he gives birth to new individuals at
Poisson times with positive constant rate b until his death independently from the other individuals. We also
suppose that the population starts with a single individual called the root.

The finite measure Λ := bPV is called the lifespan measure, and plays an important role in the study of the
model.
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t

Figure 1. Graphical representation of a Splitting tree. The vertical axis represents the bio-
logical time and the horizontal axis has no biological meaning. The vertical lines represent the
individuals, their lengths correspond to their lifetimes. The dashed lines denote the filiations
between individuals. (Image by Lambert).

x

Figure 2. In gray, the set {y ∈ T | y � x}.

In [17], Lambert introduces a contour process Y , which codes for the splitting tree. Suppose we are given a
tree T, seen as a subset of R× (∪k≥0N

k
)

with some compatibility conditions (see [17]). On this object, Lambert
constructs a Lebesgue measure λ and a total order relation � which can be roughly summarized as follows: let
x, y in T, the point of birth of the lineage of x during the lifetime of the root split the tree in two connected
components, then y � x if y belong to the same component as x but is not an ancestor of x (see Fig. 2).

If we assume that λ(T) is finite, then the application,

ϕ : T → [0, λ (T)],
x → λ ({y | y � x}) ,

is a bijection. Moreover, in a graphical sens (see Fig. 2), ϕ(x) measures the length of the part of the tree which
is above the lineage of x. The contour process is then defined, for all s, by,

Ys := ΠR

(
ϕ−1 (s)

)
,

where ΠR is the projection from R × (∪k≥0N
k
)

to R.
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Figure 3. One-to-one correspondence between the tree and the graph of the contour repre-
sented by corresponding colours.

In a more graphical way, the contour process can be seen as the graph of an exploration process of the tree:
it begins at the top of the root and decreases with slope −1 while running back along the life of the root until
it meets a birth. The contour process then jumps at the top of the life interval of the child born at this time
and continues its exploration as before. If the exploration process does not encounter a birth when exploring
the life interval of an individual, it goes back to its parent and continues the exploration from the birth-date of
the just left individual (see Fig. 3). It is then readily seen that the intersections of the contour process with the
line of ordinate t are in one-to-one correspondence with the individuals in the tree alive at time t.

In the case where λ(T) is infinite, one has to consider the truncations of the tree above fixed levels in
order to have well-defined contours (see [17] for more details). In [17], Lambert shows that the contour process
(Y (t)
s , s ∈ R+) of a splitting tree which has been pruned from every part above t (called truncated tree above

t), has the law of a spectrally positive Lévy process started at the lifespan V of the root, reflected below t and
killed at 0, with Laplace exponent ψ given by

ψ(x) = x−
∫

(0,∞]

(
1 − e−rx

)
Λ(dr), x ∈ R+. (2.1)

In particular, the Laplace transform of PV can be expressed in terms of ψ,∫
R+

e−λvPV (dv) = 1 +
ψ(λ) − λ

b
· (2.2)

The largest root of ψ, denoted α, characterizes the way the population expend. In this paper, we only investigate
the behavior of the population in the supercritical case, when α > 0. In particular, using the convexity of ψ
(see [16]), this is equivalent to ψ′(0+) < 0. Now, since

ψ′(x) = 1 −
∫

R+

xe−xv bPV (dv), ∀x ∈ R+, (2.3)

one can see that the condition ψ′(0+) < 0 is also equivalent to have bE [V ] > 1 which is a more usual supercritical
condition. In the supercritical case, the population grows exponentially fast on the survival event with rate α.
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According to (2.2), one can also see that ∫
R+

e−αvPV (dv) = 1 − α

b
· (2.4)

As said earlier, an important feature of the contour process is that the number of alive individuals at time t
equals

Card{Y (t)
s = t | s ∈ R+}.

This set is the number of times the contour process hits t. This allows getting, thanks to the theory of Lévy
processes, the law of the unidimensional marginals of the process (Nt, t ∈ R+). Indeed, let τt (resp. τ0) be the
hitting time of t (resp. of 0) by the contour process Y (t). Now, for any positive integer k, the strong Markov
property entails that

P (Nt = k | Nt > 0) = E

{
Pt∧V

(

{Y (t)

s = t | s ≥ 0} = k | τt < τ0

)}
= Pt

(

{Y (t)

s = t | s > 0} = k − 1
)
.

Once again, the strong Markov property gives

Pt

(

{Y (t)

s = t | s > 0} = k − 1
)

= Pt (τt < τ0) Pt

(

{Y (t)

s = t | s > 0} = k − 2
)

= Pt (τt < τ0)
k−1

Pt

(

{Y (t)

s = t | s > 0} = 0
)
.

Now, using fluctuation identities for spectrally positive Lévy processes (see Thm. 8.1 in [16] for the spectrally
negative case), we have that

Pt (τt < τ0) = 1 − 1
W (t)

,

where W is the scale function of the Lévy process whose Laplace exponent is given by (2.1). The function W
is the unique increasing function whose Laplace transform is given by

TLW (t) =
∫

(0,∞)

e−rtW (r)dr =
1

ψ(t)
, t > α, (2.5)

where α is the largest root of ψ.
From the discussion above, we see that Nt is a geometric random variable conditionally on {Nt > 0}. More

precisely, for a positive integer k,

P (Nt = k | Nt > 0) =
1

W (t)

(
1 − 1

W (t)

)k−1

· (2.6)

In particular,
E [Nt | Nt > 0] = W (t). (2.7)

Moreover, it can be showed (see [21]), that

ENt = W (t) −W � PV (t), (2.8)

and

P (Nt > 0) = 1 − W � PV (t)
W (t)

, (2.9)

where
W � PV (t) :=

∫
[0,t]

W (t− s)PV (ds).

For the rest of this paper, unless otherwise stated, the notation Pt refers to P (. | Nt > 0) whereas P∞ refers
to the probability measure conditioned on the non-extinction event (which has positive probability in the
supercritical case).
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Finally, we recall the asymptotic behaviour of the scale function W (t) which is widely used in the sequel,

Lemma 2.1 ([6], Thm. 3.21). There exist a positive constant γ such that,

e−αtψ′(α)W (t) − 1 = O (
e−γt

)
.

From this Lemma and (2.9), one can easily deduce that

P (NonEx) = lim
t→∞ P (Nt > 0) =

α

b
, (2.10)

where NonEx refer to the non-extinction event.
To end this section, let us recall the law of large number for Nt.

Theorem 2.2. There exists a random variable E, such that

e−αtNt →
t→∞

E
ψ′(α)

, a.s. and in L2.

Moreover, under P∞, E is exponentially distributed with parameter one.

2.2. A bit of renewal theory

The purpose of this part is to recall some facts on renewal equations borrowed from [9]. Let h : R → R be a
function bounded on finite intervals with support in R+ and Γ a probability measure on R+. The equation

F (t) =
∫

R+

F (t− s)Γ (ds) + h(t),

called a renewal equation, is known to admit a unique solution finite on bounded interval.
Here, our interest is focused on the asymptotic behavior of F . We said that the function h is DRI (directly

Riemann integrable) if for any δ > 0, the quantities

δ

n∑
i=0

sup
t∈[δi,δ(i+1))

f(t)

and

δ

n∑
i=0

inf
t∈[δi,δ(i+1))

f(t)

converge as n goes to infinity respectively to some real numbers Iδsup and Iδinf , and

lim
δ→0

Iδsup = lim
δ→0

Iδinf <∞.

In the sequel, we use the two following criteria for the DRI property:

Lemma 2.3. Let h a function as defined previously. If h satisfies one of the next two conditions, then h is
DRI:

(1) h is non-negative decreasing and classically Riemann integrable on R+,
(2) h is càdlàg and bounded by a DRI function.

We can now state the next result, which is constantly used in the sequel.
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Theorem 2.4. Suppose that Γ is non-lattice, and h is DRI, then

lim
t→∞F (t) = γ

∫
R+

h(s)ds,

with

γ :=

(∫
R+

s Γ (ds)

)−1

,

if the above integral is finite, and zero otherwise.

Remark 2.5. In particular, if we suppose that Γ is a measure with mass lower than 1, and that there exists a
constant α ≥ 0 such that ∫

R+

eαtΓ (dt) = 1,

then, one can perform the change a measure

Γ̃ (dt) = eαtΓ (dt),

in order to apply Theorem 2.4 to a new renewal equation to obtain the asymptotic behavior of F . (See [9] for
details). This method is also used in the sequel.

2.3. A lemma on the expectation of a random integral with respect to a Poisson random
measure

Lemma 2.6. Let ξ be a Poisson random measure on R+ with intensity θλ(da) where θ is a positive real
number and λ the Lebesgue measure. Let also (X(i)

u , u ∈ R+)i≥1 be an i.i.d. sequence of non-negative càdlàg
random processes independent of ξ. Let also Y be a random variable independent of ξ and from the family
(X(i)

u , u ∈ R+)i≥1. If ξu denotes ξ([0, u]), then, for any t ≥ 0,

E

∫
[0,t]

X(ξu)
u 1Y >u ξ(du) =

∫ t

0

P (Y > u) θEXudu,

where (Xu, u ∈ R+) = (X(1)
u , u ∈ R+). In addition, for any t ≤ s, we have

E

[∫
[0,t]

X(ξv)
v �Y >v ξ(dv)

∫
[0,s]

X(ξu)
u �Y >u ξ(du)

]
=

∫ t

0

θE
[
X2
u

]
P (Y > u) du

+
∫ t

0

∫ s

0

θ2EXuEXvP (Y > u, Y > v) dudv.

Proof. Since the proof the two formulas lies on the same ideas, we only give the proof of the second equation.
First of all, let f : R

2
+ → R+ be a positive measurable deterministic function. We recall that, for a Poisson

random measure, the measures of two disjoint measurable sets are independent random variables. That is, for
A,B in the Borel σ-field of R+, ξ(A ∩Bc) is independent from ξ(B), which leads to

E [ξ(A)ξ(B)] = Eξ(A)Eξ(B) + Varξ(A ∩B).

Using the approximation of f by an increasing sequence of simple function, as in the construction of Lebesgue’s
integral, it follows from the Fubini−Tonelli theorem and the monotone convergence theorem, that

E

∫
[0,t]×[0,s]

f(u, v) ξ(du)ξ(dv) =
∫ t

0

θf(u, u) du+
∫ t

0

∫ s

0

θ2f(u, v) dudv.
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Since the desired relation only depends on the law of our random objects, we can assume without loss of
generality that ξ is defined on a probability space (Ω,F ,P) and the family (X(i)

s , s ∈ R+)i≥1 is defined on an
other probability space (Ω̃, F̃ , P̃). Then, using a slight abuse of notation, we define ξ on Ω × Ω̃ by ξ(ω,ω̃) = ξω,
and similarly for the family X .

Then, by Fubini−Tonneli Theorem, with the notation ξvω = ξω ([0, v]),

E

[∫
[0,t]×[0,s]

X(ξv)
v X(ξu)

u ξ(du)ξ(dv)

]
=

∫
Ω×Ω̃

∫
[0,t]×[0,s]

X
(ξvω)
v (ω̃)X(ξuω)

u (ω̃) ξω(du)ξω(dv) P ⊗ P̃ (dω, dω̃)

=
∫
Ω

∫
[0,t]×[0,s]

[∫
Ω̃

X
(ξvω)
v (ω̃)X(ξuω)

u (ω̃)P̃ (dω̃)
]
ξω(du)ξω(dv) P(dω).

But since the X(i) are identically distributed and ξ is a simple measure (purely atomic with mass one for each
atom) we deduce that, if u and v are two atoms of ξω , ξvω = ξuω if and only if u = v, which implies that∫

Ω̃

X
(ξvω)
v (ω̃)X(ξuω)

u (ω̃)P̃ (dω̃) =

{
EXuEXv, u 
= v,

EX2
u, u = v,

ξω − a.e.

The result follows readily, and the case with the indicator function of Y is left to the reader. �

3. Statement of the theorem

The a.s. convergence stated in Section 2.1 suggests to study the second order properties of this convergence
to get central limit theorems. We recall that the Laplace distribution with zero mean and variance σ2 is the
probability distribution whose characteristic function is given by

λ ∈ R �→ 1
1 + 1

2σ
2λ2

·

It particular, it has a density given by

x ∈ R �→ 1
2σ

e−
|x|
σ ·

We denote this law by L (
0, σ2

)
. We also recall that, if G is a Gaussian random variable with zero mean

and variance σ2 and E is an exponential random variable with parameter 1 independent of G, then
√EG is

Laplace L (
0, σ2

)
.

Before stating the main result of the paper, let us recall the law of large number for Nt.

Theorem 3.1. In the supercritical case, that is bE [V ] > 1, there exists a random variable E, such that

e−αtNt →
t→∞

E
ψ′(α)

, a.s. and in L2.

In particular, under P∞, E is exponentially distributed with parameter one.

In this work we prove the following theorem on the second order properties of the above convergence.

Theorem 3.2. In the supercritical case, we have, under P∞,

e−
α
2 t

(
ψ′(α)Nt − eαtE) (d)−→

t→∞ L (0, 2 − ψ′(α)) .

The proof of this theorem is the subject of Section 6. Note that, according to (2.3), we have

2 − ψ′(α) = 1 +
∫

R+

ve−αv bPV (dv) > 0.
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4. Strategy of proof

Let (Gn)n≥1 be a sequence of geometric random variables with respective parameter 1
n , and (Xi)i≥1 a L2

family of i.i.d. random variables with zero mean independent of (Gn)n≥1. It is easy to show that the characteristic
function of

Zn :=
1√
n

Gn∑
i=1

Xi, (4.1)

is given by

EeiλZn =
1 + on(1)

1 + λ2EX2
1 + on(1)

, (4.2)

from which we deduce that Zn converges in distribution to L(0,EX2
1 ).

If we suppose that the population counting process N is a Yule Markov process, it clearly follows from the
branching property that, for s < t,

Nt =
Ns∑
i=1

N i
t−s, (4.3)

where the family
(
N i
t−s

)
i≥1

is an i.i.d. sequence of random variables distributed as Nt−s and independent of Ns.
Moreover, since Ns is geometrically distributed with parameter e−αs, taking the renormalized limit leads to,

lim
t→∞ e−αtNt =: E = e−αs

Ns∑
i=1

Ei,

where E1, . . . , ENs is an i.i.d. family of exponential random variables with parameter one, and independent of Ns.
Hence,

Nt − eαtE =
Ns∑
i=1

(
N i
t−s − eα(t−s)Ei

)
,

is a geometric sum of centered i.i.d. random variables. This remark and (4.1) suggest the desired CLT in the
Yule case.

Remark 4.1. Let N be a integer valued random variable. In the sequel we say that a random vector with
random size (Xi)1≤i≤N form an i.i.d. family of random variables independent of N , if and only if

(X1, . . . , XN ) d=
(
X̃1, . . . , X̃N

)
,

where (X̃i)i≥1 is a sequence of i.i.d. random variables distributed as X1 independent of N .

However, in the general case, we need to overcome some important difficulties. First of all, equation (4.3) is
wrong in general. Nevertheless, a much weaker version of (4.3) can be obtained in the general case. To make
this clear, if u < t are two positive real numbers, then the number of alive individuals at time t is the sum
of the contributions of each subtrees T (Oi) induced by each alive individuals at time u (see Fig. 4). Provided
there are individuals alive at time u, we denote by (Oi)1≤i≤Nu the residual lifetimes (see Fig. 4) of the alive
individuals at time u indexed using that the ith individual is the ith individual visited by the contour process.
Hence,

Nt =
Nu∑
i=1

N i
t−u (Oi) , (4.4)

where
(
N i
t−u (Oi)

)
i≤Nu denote the population counting processes of the subtrees T(Oi) induced by each indi-

vidual. The notation refers to the fact that each subtree has the law of a standard splitting tree with the only
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u
O1

T(O1)

O2

T(O2) T(O3)

O3

T(O4)

O4

t

Figure 4. Residual lifetimes with subtrees associated to living individuals at time u.

t

O1

O2 O3 O4

O5

Figure 5. Reflected JCCP with overshoot over t. Independence is provided by the Markov
property.

difference that the lifelength of the root is given by Oi. More precisly, we define, for all i ≥ 1 and o ∈ R+,
N i
t−u(o) the population counting process of the splitting tree constructed from the same random objects as the

ith subtree of Figure 4, where the life duration of the first individual is equal to o. Hence, from the independence
properties between each individuals,

(
N i
t−u (o) , t ≥ u, o ≥ 0

)
i≥1

is a family of independent processes, indepen-
dent of (Oi)1≤i≤Nu , and

(
N i
t−u(o), t ≥ u

)
has the law of the population counting process of a splitting tree but

where the lifespan of the ancestor is o. Note that the lifespans of the other individuals are still distributed as V .
From the discussion above, it follows that the family of processes

(
N i
t−u (Oi) , t ≥ u

)
1≤i≤Nu are dependent only

through the residual lifetimes (Oi)1≤i≤Nu and the law of (Nt (Oi) , t ∈ R+) under Pu is the law of standard
population counting process of splitting tree where the lifespan of the root is distributed as Oi under Pu.

Unfortunately, the computation of (4.2) does not apply to (4.4). This issue is solved by the following lemma,
whose proof is very similar to one of Proposition 5.5 of [17].

Lemma 4.2. Let u in R+, we denote by Oi for i an integer between 1 and Nu the residual lifetime of the ith
individuals alive at time u. Then under Pu, the family (Oi, i ∈ �1, Nu�) form a family of independent random
variables, independent of Nu, and, expect O1, having the same distribution, given by, for 2 ≤ i ≤ Nt,

Pu(Oi ∈ dx) =
∫

R+

W (u− y)
W (u) − 1

bP (V − y ∈ dx) dy. (4.5)
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Moreover, it follows that the family (Ns(Oi), s ∈ R+)1≤i≤Nu is an independent family of process, i.i.d. for i ≥ 2,
and independent of Nu.

Proof. Let
(
Y (i)

)
0≤i≤Nu a family of independent Lévy processes with Laplace exponent

ψ(x) = x−
∫

(0,∞]

(
1 − e−rx

)
Λ(dr), x ∈ R+,

conditioned to hit (u,∞) before hitting 0, for i ∈ {0, . . . , Nu − 1}, and conditioned to hit 0 first for i = Nu. We
also assume that,

Y
(0)
0 = u ∧ V,

and
Y

(i)
0 = u, i ∈ {1, . . . , Nu} .

Now, denote by τi the exit time of the ith process out of (0, u) and

Tn =
n−1∑
i=0

τi, n ∈ {0, . . . , Nu + 1} .

Then, the process defined, for all s, by

Ys =
Nu∑
i=0

Y
(i)
s−Ti�Ti≤s<Ti+1 ,

has the law of the contour process of a splitting tree cut above u. Moreover, the quantity Yτi−Yτi− is the lifetime
of the ith alive individual at time t. The family of residual lifetimes (Oi)1≤i≤Nu has then the same distribution as
the sequence of the overshoots of the Y above u. Thus, the Markov property ensures us that (Oi, i ∈ �2, Nu�) is
an i.i.d. family of random variables. The Markov property also ensures that O1 is independent of the other Oi’s.

It remains to derive the law of Oi. Let Y be a Lévy process with Laplace exponent ψ. We denote by τ+
u the

time of first passage of −Y above u and τ−0 the time of first passage of −Y below 0. Then, for all i ≥ 2,

Pu (Oi ∈ dx) = P0

(
−Yτ−

0
∈ dx | τ−0 < τ+

u

)
.

On the other hand, Theorem 8.7 of [16] gives for any measurable subsets A ⊂ [0, u], B ⊂ (0,−∞),

P0

(
−Yτ−

0
∈ B,−Yτ−

0 − ∈ A
)

=
∫
A

P−V (B − y)
W (u − y)
W (u)

dy·

The result follows easily from

P
(
τ−0 < τ+

u

)
= 1 − 1

W (u)
· �

Remark 4.3. It is important to note that the law of the residual lifetimes of the individuals considered above
depends on the particular time u we choose to cut the tree. That is why, in the sequel, we may denote O(u)

i for
Oi when we want to underline the dependence in time of the law of the residual lifetimes.

In addition, as suggested by (4.2), we need to compute the expected quadratic error in the convergence of Nt,

E

[(
ψ′(α)Nt − eαtE)2

]
,

which implies to compute ENtE .
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Although, this moment is easy to obtain in the Markovian case, the method does not extend easily to the
general case. One idea is to characterize it as a solution of a renewal equation in the spirit of the theory of
general CMJ processes.

To make this, we use the renewal structure of a splitting tree: the splitting trees can be constructed (see [17])
by grafting i.i.d. splitting tree on a branch (a tree with a single individual) of length V∅ distributed as V .
Therefore, there exists a family (N (i)

t , t ∈ R+)i≥1 of i.i.d. population counting processes with the same law as
(Nt, t ∈ R+), and a Poisson random measure ξ on R+ with intensity b da such that

Nt =
∫

[0,t]

N
(ξu)
t−u �V∅>u ξ(du) + �V∅>t, a.s., (4.6)

where ξu = ξ ([0, u]).
Another difficulty comes from the fact that unlike (4.1), the quantities summed in (4.4) are time-dependent,

which requires a careful analysis of the asymptotic behaviour of their moments.
The calculus and the asymptotic analysis of these moments is made in Section 6.1.1: In Lemma 6.1, we

compute ENtE , and then with Lemmas 6.2 and 6.4, we study the asymptotic behaviour of the error of order
2 and 3 respectively. Section 6.1.2 is devoted to the study of the same questions for the population counting
processes of the subtrees described in Figure 4 (when the lifetime of the root is not distributed as V ). Finally,
Section 6.2 is devoted to the proof of Theorem 3.2.

One of the difficulties in studying the behaviour of the moments is to get better estimates on the scale function
W than those of Lemma 2.1. This is the subject of the next section.

5. Precise estimates on W using Lévy processes

Before stating and proving the result of this section, we need to recall some facts about Lévy processes. We
follow the presentation of [16]. First, we recall that the law of a spectrally positive Lévy process (Yt, t ∈ R+) is
uniquely characterized by its Laplace exponent ψ,

ψY (λ) = log E
[
e−λY1

]
, λ ∈ R+,

which in our case take the form of (2.1):

ψY (λ) = x−
∫

(0,∞]

(
1 − e−rx

)
bPV (dr), λ ∈ R+.

In this section, we suppose that Y0 = 0. For a such Lévy process, 0 is irregular for (0,∞) and in this case the
local time at the maximum (Lt, t ∈ R) can be defined as

Lt =
nt∑
i=0

ei, t ∈ R+,

where (ei)i≥0 is a family of i.i.d. exponential random variables with parameter 1, and

nt := Card
{

0 < s ≤ t | Ys = sup
u≤s

Yu

}
,

is the number of times Y reaches its maximum up to time t. Finally, the ascending ladder process associated to
Y is defined as

Ht = sup
s≤L−1

t

Ys, t ∈ R+,
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where
(
L−1
t , t ∈ R+

)
is the right-inverse of L. It is known that H is a subordinator whose values are the

successive new maxima of Y . Conversely, in our case, the process (infs≤t Ys, t ∈ R+) is a local time at the
minimum, denoted (L̂t, t ∈ R+). The descending ladder process Ĥ is then defined from L̂ as H was defined
from L.

We can now state, the celebrated Wiener−Hopf factorization which allows us to connect the characteristic
exponent ψY of Y with the characteristic exponents of the bivariate Lévy processes ((Lt, Ht) , t ∈ R+) and
((L̂t, Ĥt), t ∈ R+), respectively denoted by κ and κ̂. In our particular case, where Y is spectrally negative, we
have ⎧⎪⎨⎪⎩

κ(α, β) =
α− ψY (β)
φY (α) − β

, α, β ∈ R+,

κ̂(α, β) = φY (α) + β, α, β ∈ R+,

where φY is the right-inverse of ψY . Taking α = 0 allows us to recover the Laplace exponent ψH of H from
which we obtain the relation,

ψY (λ) = (λ− φY (0))ψH(λ). (5.1)

We have now all the notation to state and prove the main result of this section.

Proposition 5.1 (Behavior of W ). There exists a positive non-increasing càdlàg function F such that

W (t) =
eαt

ψ′(α)
− eαtF (t), t ≥ 0,

and

lim
t→∞ eαtF (t) =

⎧⎪⎨⎪⎩
1

bEV − 1
if EV <∞,

0 otherwise.

Proof. Let Y 
 be a spectrally negative Lévy process with Laplace exponent given by

ψ
(λ) = λ−
∫

R+

(
1 − e−λx

)
e−αxb PV (dx).

It is known that Y 
 has the law of the contour process of the supercritical splitting tree with lifespan measure
PV conditioned to extinction (see [17]). In this case the largest root of ψ
 is zero, meaning that the process Y 


does not go to infinity and that φY �(0) = 0. Elementary manipulations on Laplace transform show that the
scale function W 
 of Y 
 is related to W by

W 
(t) = e−αtW (t), t ∈ R+.

Let H
 be the ascending ladder subordinator associated to the Lévy process Y 
. In the case where φY �(0) = 0,
and in this case only, the scale function W 
 can be rewritten as (see [16] or use Laplace transform),

W 
(t) =
∫ ∞

0

P
(
H

x ≤ t

)
dx. (5.2)

In other words, if we denote by U the potential measure of H
,

W 
(t) = U [0, t].

Now, it is easily seen from (5.1) that the Laplace exponent ψH� of H
 takes the form,

ψH� (λ) = ψ′(α) −
∫

[0,∞]

(
1 − e−λr

)
Υ (dr),
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where

Υ (dr) =
∫

(r,∞)

e−αvbPV (dv)dr = E
[
e−αV �V >r

]
bdr.

Moreover,
Υ (R+) = 1 − ψ′(α),

which mean that H
 is a compound Poisson process with jump rate 1 − ψ′(α), jump distribution J(dr) :=
E[e−αV �V>r]

1−ψ′(α) dr, and killed at rate ψ′(α). It is well known (or elementary by conditioning on the number of
jumps at time x), that

PH�x
(dt) = e−ψ

′(α)x
∑
k≥0

e−(1−ψ′(α))x ((1 − ψ′(α)) x)k

k!
J�k(dt).

Some calculations now lead to,
U(dx) =

∑
k≥0

Υ �k(dx).

From this point, since Υ is a sub-probability, U(x) := U [0, x] satisfies the following defective renewal equation,

U(x) =
∫

R+

U(x− u)Υ (du) + �R+(x).

Finally, since ∫
R+

eαxΥ (dx) = 1,

and since, from Lemma 2.3,
t→ U(t,∞),

is clearly a directly Riemann integrable function as a positive decreasing integrable function. Hence, as suggested
in Remark 2.5,

eαx (U(R+) − U(x)) −→
x→∞

1
αμ

,

with

μ =
∫

R+

reαrΥ (dr) =
1
α

(bEV − 1) ,

if V is integrable. In the case where V is not integrable, the limit is 0.
To end the proof, note using relation (5.2) and the fact that H
 is killed at rate ψ′(α) that,

W 
(t) =
1

ψ′(α)
− U(t,∞). �

6. Proof of Theorem 3.2

We begin the proof of Theorem 3.2 by computing moments, and analysing their asymptotic behaviours. A
first part is devoted to the case of a splitting tree where the lifetime of the root is distributed as V whereas a
second part study the case where the lifespan of the root is arbitrary (for instance, as the subtrees described by
Fig. 4).
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6.1. Preliminary moments estimates

This section is devoted to the calculus of the expectation of (Nt − eαtE)2. We start with the simple case
where the initial individual has life-length distributed as V . Secondly, we study the asymptotic behavior of
these moments. In Section 6.1.2, we prove similar result for arbitrary initial distributions.

The expectations above are given with respect to P, however since Nt and E vanish on the extinction event,
we can easily recover the results with respect to Pt by using (2.10) and (2.9) (see Cor. 6.3).

6.1.1. Case V∅
L= V

We start with the computation of ENtE .

Lemma 6.1 (Join moment of E and Nt).
The function t→ E [NtE ] is the unique solution bounded on finite intervals of the renewal equation,

f(t) =
∫

R+

f(t− u)be−αuP (V > u) du

+ αbE [N·] �

(∫
R+

e−αvP (V > ·, V > v) dv

)
(t)

+ α

∫
R+

e−αvP (V > t, V > v) dv, (6.1)

and its solution is given by (
1 +

α

b
− e−αt

)
W (t) − (

1 − e−αt
)
W � PV (t).

Proof. As explained in Section 4,

Nt =
∫

[0,t]

N
(ξu)
t−u �V∅>u ξ(du) + �V∅>t,

where ξ a Poisson point process with rate b on the real line, (N (i))i≥1 is a family of independent CMJ processes
with the same law as N and V∅ is the lifespan of the root. Moreover, the three objects N (u), ξ and V∅ are
independent.

It follows that, for s > t

NtNs =
∫

[0,t]×[0,s]

N
(ξu)
t−uN

(ξv)
s−v�V∅>u�V∅>v ξ(du)ξ(dv)

+
∫

[0,t]

N
(ξu)
t−u �V∅>u ξ(du)�V∅>s +

∫
[0,s]

N
(ξu)
s−u�V∅>u ξ(du)�V∅>t + �V∅>t�V∅>s,

and, using Lemma 2.6,

ENtNs =
∫

[0,t]

bE [Nt−uNs−u] P (V > u) du

+
∫

[0,t]×[0,s]

b2E [Nt−u] E [Ns−v] P (V > u, V > v) du dv

+ P (V > s)
∫

[0,t]

bE [Nt−u] du +
∫

[0,s]

bE [Ns−u] P (V > u, V > t) du+ P (V > s) .
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Then, thanks to the estimate W (t) = O (eαt) (see Lem. 2.1 or 5.1) and the L1 convergence of W (s)−1NtNs to
NtE as s goes to infinity (since, by Thm. 2.2, Ns

W (s) converge in L2 and using Cauchy–Schwarz inequality), we
can exchange limit and integrals to obtain,

lim
s→∞ ENt

Ns
W (s)

= ENtE︸ ︷︷ ︸
:=f(t)

=
∫

[0,t]

E [Nt−uE ] e−αu P (V > u) b du︸ ︷︷ ︸
=:f�G(t)

+
∫

[0,t]×[0,∞)

αbE [Nt−u] e−αvP (V > u, V > v) du dv︸ ︷︷ ︸
=:ζ1(t)

+
∫

[0,∞]

αe−αvP (V > v, V > t) dv︸ ︷︷ ︸
=:ζ2(t)

,

where we used that lim
t→∞W (t)−1

ENt = α
b .

Now, we need to solve the last equation to obtain the last part of the lemma. To do that, we compute the
Laplace transform of each part of the equation. Note that, since W (t) = O (eαt), it is easy to see that the
Laplace transform of each term of (6.1) is well-defined as soon as λ > α (using Cauchy–Schwarz inequality for
the first term). Now, using (2.2),

TLeα·G(λ) = b

∫
R+

e−λtP (V > t) dt = b

∫
R+

e−λt
∫

(t,∞)

PV (dv) dt

=
1
λ

∫
R+

(
1 − e−λv

)
bPV (dv) = 1 − ψ(λ)

λ
· (6.2)

So,

TLG(λ) = 1 − ψ(λ+ α)
λ+ α

·
Then,

TLζ1(λ) =αTLEN.(λ)TL

(
b

∫
R+

e−αvP (V > ·, V > v) dv

)
(λ)

=
(

λ

ψ(λ)
− 1

)
TL

(
α

∫
R+

e−αvP (V > ·, V > v) dv

)
(λ)︸ ︷︷ ︸

=Lζ2(λ)

.

and, using (6.2), we get

TLζ2(λ) = α

∫
R+

e−λt
∫

R+

e−αvP (V > t, V > v) dv dt =
1
b

(
ψ (λ+ α)

λ
− ψ(λ)

λ

)
·

Finally, we obtain,

TLf(λ) = TLf(λ)
(

1 − ψ(λ+ α)
λ+ α

)
+

(
λ

ψ(λ)
− 1

)
1
b

(
ψ (λ+ α)

λ
− ψ(λ)

λ

)
+

1
b

(
ψ (λ+ α)

λ
− ψ(λ)

λ

)
·

Hence,

TLf(λ) =
λ

b

(
1

ψ(λ)
− 1
ψ(λ+ α)

)
·
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Finally, using (2.5) and

bTL (W � PV ) (λ) =
(ψ(λ) − b+ λ)

ψ(λ)
,

allows to inverse the Laplace transform of f and get the result. �

Lemma 6.1 allows us to compute the expected quadratic error.

Lemma 6.2 (Quadratic error in the convergence of Nt). Let E the a.s. limit of ψ′(α)e−αtNt. Then,

lim
t→∞ e−αtE

(
ψ′(α)Nt − eαtE)2 =

α

b
(2 − ψ′(α)) .

Proof. Let
μ := lim

t→∞ eαtF (t),

where F is defined in Proposition 5.1. We have, using Proposition 5.1 and (2.4),∫
[0,t]

W (t− u)PV (du) =
eαt

ψ′(α)

(
1 − α

b

)
− μ− eαt

ψ′(α)

∫
(t,∞)

e−αuPV (du) +
∫

[0,t]

(
μ− eα(t−u)F (t− u)

)
PV (du)

=
eαt

ψ′(α)

(
1 − α

b

)
− μ+ o(1).

Hence, the expression of ENtE given by Lemma 6.1 can be rewritten, thanks to Lemmas 5.1, as

ENtE =
2αeαt

bψ′(α)
− α

b

(
1

ψ′(α)
+ μ

)
+ o(1), (6.3)

Using (2.6) and (2.9) in conjunction with Proposition 5.1, we also have

e−αtEN2
t = 2

αeαt

bψ′(α)2
− 2αμ
bψ′(α)

− α

bψ′(α)
+ o(1). (6.4)

Hence, it finally follows from (6.3) and (6.4) that

e−αtE
(
ψ′(α)Nt − eαtE)2 = ψ′(α)2e−αtEN2

t − 2ψ′(α)ENtE +
2αeαt

b

= −2
αμ

b
ψ′(α) − αψ′(α)

b
+ 2

α

b
(1 + ψ′(α)μ) + o(1)

=
α

b
(2 − ψ′(α)) + o(1). �

It is worth noting that, using (2.9) and the method above, we have the following result.

Corollary 6.3. We have
1

P (Nt > 0)
=
b

α
− bμψ′(α)

α
e−αt + o(e−αt), (6.5)

which leads to

EtNtE =
2eαt

ψ′(α)
− 1
ψ′(α)

− 3μ+ o(1). (6.6)

Our last estimate is the boundedness of the third moments.

Lemma 6.4 (Boundedness of the third moment). The third moment of the error is asymptotically bounded,
that is

E

[∣∣e−α
2 t

(
ψ′(α)Nt − eαtE)∣∣3] = O (1) .
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Proof. We define for all t ≥ 0, N∞
t as the number of individuals alive at time t which have an infinite descent.

According to Proposition 6.1 of [5], N∞ is a Yule process under P∞.
We have

E

[∣∣∣∣ψ′(α)Nt − eαtE
e
α
2 t

∣∣∣∣3
]
≤ 8E

[∣∣∣∣ψ′(α)Nt −N∞
t

e
α
2 t

∣∣∣∣3
]

+ 8E

[∣∣∣∣N∞
t − eαtE

e
α
2 t

∣∣∣∣3
]
·

Now, we know according to the proof of Theorem 6.2 of [5] (and this is easy to prove using the decomposition
of Fig. 4) that N∞ can be decomposed as

N∞
t =

Nt∑
i=1

B
(t)
i ,

where (B(t)
i )i≥1 is a family of independent Bernoulli random variables, which is i.i.d. for i ≥ 2, under Pt. Hence,

Et

[∣∣∣∣ψ′(α)Nt −N∞
t

e
α
2 t

∣∣∣∣3
]
≤ e−

3
2αtEt

⎡⎣( Nt∑
i=1

(
ψ′(α) −B

(t)
i

))4
⎤⎦

3
4

.

Since, it is known from the proof of Theorem 6.2 of [5] that

EB
(t)
2 = ψ′(α) + O (

e−αt
)
,

it is straightforward that

Et

[∣∣∣∣ψ′(α)Nt −N∞
t

e
α
2 t

∣∣∣∣3
]

is bounded.
On the other hand, we know that a Yule process is a time-changed Poisson process (see for instance [2],

Thm. III.11.2), that is, if Pt is a Poisson process independent of E under P∞,

E

[∣∣∣∣N∞
t − eαtE

e
α
2 t

∣∣∣∣3
]

= E∞

[∣∣∣∣PE(eαt−1) − eαtE
e
α
2 t

∣∣∣∣3
]

P(NonEx).

Now, using Hölder inequality, it remains to bound

E∞

[(
PE(eαt−1) − eαtE

e
α
2 t

)4
]

= e−2αt

∫
R+

E∞
[(
Px(eαt−1) − eαtx

)4
]
e−xdx.

Finally, for a Poissonian random variable X with parameter ν, straightforward computations give that
E

[
(X − ν)4

]
= 3ν2 + ν, which allows us to end the proof. �

6.1.2. Case with arbitrary initial distribution PV∅

In order to study the behavior of the sub-splitting trees involved in the decomposition described in Figure 4,
we investigate the behaviour of a splitting tree where the ancestor lifelength is not distributed as V , but follows
an arbitrary distribution. Let Ξ be a random variable in (0,∞], giving to the life-length of the ancestor and by
N(Ξ) the associated population counting process.

Using the decomposition of N(Ξ) over the lifespan of the ancestor, as described in Section 4, we have

Nt(Ξ) =
∫

R+

N
(ξu)
t−u �Ξ>u ξ(du) + �Ξ>t, (6.7)
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where (N i)i≥1 is a family of i.i.d. CMJ processes with the same law as N independent of Ξ and ξ, as described
in Section 4. Let, for all i ≥ 1, Ei be

Ei := lim
t→∞ψ′(α)e−αtN i

t , a.s, (6.8)

and, let E (Ξ) be the random variable defined by

E (Ξ) :=
∫

[0,∞]

E(ξu)e−αu�Ξ>u ξ(du). (6.9)

Lemma 6.5 (First moment). The first moment is asymptotically bounded, that is

E
(
ψ′(α)Nt(Ξ) − eαtE(Ξ)

)
= O(1),

uniformly with respect to the random variable Ξ.

Proof. Using Lemma 2.6, (6.7) and (6.9) with have

E
(
ψ′(α)Nt(Ξ) − eαtE(Ξ)

)
=

∫
[0,t]

(
ψ′(α)ENt−u − eα(t−u)

EE
)

e−αuP (Ξ > u) bdu,

which leads using (2.8) and (2.10) to

E
(
ψ′(α)Nt(Ξ) − eαtE(Ξ)

)
=

∫
[0,t]

(
ψ′(α)W (t − u) − ψ′(α)W � PV (t− u) − α

b
eα(t−u)

)
︸ ︷︷ ︸

=:It−u

e−αuP (Ξ > u) bdu.

(6.10)
We get using Proposition 5.1 and (2.4),

Is =eαs − ψ′(α)eαsF (s) − eαs
(
1 − α

b

)
+ ψ′(α)

∫
[0,s]

eα(s−v)F (s− v)PV (dv) + eαs
∫

(s,∞)

e−αvPV (dv) − α

b
eαs

=eαs
∫

(s,∞)

e−αvPV (dv) + o(1).

Hence, (Is)s≥0 is bounded. The result, now, follows from (6.10). �

Lemma 6.6 (L2 convergence in the general case). ψ′(α)e−αtNt(Ξ) converge a.s. and in L2 to E (Ξ), and

lim
t→∞ e−αtE

(
ψ′(α)Nt(Ξ) − eαtE(Ξ)

)2 =
α

b
(2 − ψ′(α))

∫
R+

e−αsP (Ξ > s) bds,

where the convergence is uniform with respect to Ξ in (0,∞]. In the particular case when Ξ follows the distri-
bution of O(βt)

2 given by (4.5), we have, for 0 < β < 1
2 ,

lim
t→∞ eαtEβt

(
e−αtψ′(α)Nt(O

(βt)
2 ) − E(O(βt)

2 )
)2

= (2 − ψ′(α))ψ′(α).

Proof. From (6.7) and (6.9), we have

(
e−αtψ′(α)Nt(Ξ) − E(Ξ)

)2 =

[∫
R+

(
e−α(t−u)ψ′(α)N (ξu)

t−u − E(u)

)
e−αu�Ξ>u ξ(du) + e−αt�Ξ>t

]2

(6.11)
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and, using Lemma 2.6,

E
(
ψ′(α)e−αtNt(Ξ) − E(Ξ)

)2

= E

(∫
R+

(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)
e−αu�Ξ>u ξ(du)

)2

+ e−2αt
P (Ξ > t) + 2e−αtE�Ξ>t

∫
R+

(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)
e−αu�Ξ>u ξ(du),

=
∫

R+

E

[(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)2
]

e−2αu
P (Ξ > u) bdu

+
∫

R+

E

(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)
E

(
ψ′(α)e−α(t−v)N (ξv)

t−v − E(v)

)
e−α(u+v)

P (Ξ > u,Ξ > v) bdu dv

+ e−2αt
P (Ξ > t) + 2e−αt

∫
R+

E

(
ψ′(α)e−α(t−u)N

(ξu)
t−u − E(u)

)
e−αuP (Ξ > u,Ξ > t) bdu.

Moreover, since,
ψ′(α)Ee−αtNt − E = O (

e−αt
)
,

this leads, using Lemma 6.5, to

lim
t→∞ eαtE

(
e−αtψ′(α)Nt(Ξ) − E(Ξ)

)2 =
α

b
(2 − ψ′(α))

∫
R+

e−αuP (Ξ > u) bdu.

Now, we have from (4.5) and Lemma 2.1,

lim
u→∞ Pu (O2 > s) = lim

u→∞

∫
R+

W (u− y)
W (u) − 1

P (V > s+ y) bdy =
∫

R+

e−αyP (V > s+ y) bdy.

It follows then from Lebesgue theorem that,

lim
t→∞

∫
R+

e−αsPβt (O2 > s) bds =
bψ′(α)
α

· �

Lemma 6.7 (Boundedness in the general case). The error of order 3 in asymptotically bounded, that is

e−
3
2αtE

∣∣ψ′(α)Nt(Ξ) − eαtE(Ξ)
∣∣3 = O (1) ,

uniformly w.r.t. Ξ.

Proof. Rewriting N(Ξ) and E (Ξ) as in the proof of Lemma 6.6, we see that,

e−
3
2 t E

∣∣ψ′(α)Nt(Ξ) − eαtE(Ξ)
∣∣3 = e−

3
2 t E

⎡⎣∣∣∣∣∣
∫

[0,t]

(
ψ′(α)N (ξu)

t−u − eα(t−u)E(u)

)
�Ξ>u ξ(du) + ψ′(α)�Ξ>t

∣∣∣∣∣
3
⎤⎦

≤ 8E

∣∣∣∣∣
∫

[0,t]

e−
3
2 (t−u)

(
ψ′(α)N (ξu)

t−u − eα(t−u)E(u)

)
e−

1
2u�Ξ>uξ(du)

∣∣∣∣∣
3

+ 8ψ′(α)e−
1
2 tP (Ξ > t)3
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We denote by I the first term of the r.h.s. of the last inequality, leading to

I ≤ 8E

∫
[0,t]3

3∏
i=1

∣∣∣e− 1
2 (t−si)

(
ψ′(α)N (ξsi )

t−si − eα(t−si)E(si)

)∣∣∣ e−
1
2 si�Ξ>siξ(ds1)ξ(ds2)ξ(ds3)

≤ 8E

∫
[0,t]3

3∑
j=1

∣∣∣∣e− 1
2 (t−sj)

(
ψ′(α)N

(ξsj )
t−sj − eα(t−sj)E(sj)

)∣∣∣∣3 3∏
i=1

e−
1
2 si�Ξ>siξ(ds1)ξ(ds2)ξ(ds3)

≤ 24E

∫
[0,t]

∣∣∣e− 1
2 (t−u)

(
ψ′(α)N (ξu)

t−u − eα(t−u)E(u)

)∣∣∣3 e−
1
2u�Ξ>uξ(du)

(∫
[0,t]

e−
1
2uξ(du)

)2

≤ 24E

∫
[0,t]

∣∣∣e− 1
2 (t−u)

(
ψ′(α)N (ξu)

t−u − eα(t−u)E(u)

)∣∣∣3 e−
1
2u�Ξ>u μ(du),

with

μ(du) =

(∫
[0,t]

e−
1
2 sξ(ds)

)2

ξ(du).

Now, since μ is independent from the family
(
N (i)

)
and

(E(i)

)
, an easy adaptation of the proof of Lemma 2.6,

leads to

e−
3
2 t E

∣∣ψ′(α)Nt(Ξ) − eαtE(Ξ)
∣∣3 ≤ 24E

∫
[0,t]

E

[∣∣∣e− 1
2 (t−u)

(
ψ′(α)Nt−u − eα(t−u)E

)∣∣∣3] e−
1
2u�Ξ>u μ(du)

+ 8ψ′(α)e−
1
2 tP (Ξ > t)

Using Lemma 6.4 to bound

E

∣∣∣e− 3
2 (t−u)

(
Nt−u − eα(t−u)E

)∣∣∣3 ,
in the previous expression, finally leads to

e−
3
2 t E

∣∣ψ′(α)Nt(Ξ) − eαtE(Ξ)
∣∣3 ≤ C

⎛⎝E

(∫
R+

e−
1
2uξ(du)

)3

+ 1

⎞⎠ ,

for some real positive constant C. �

6.2. Proof of Theorem 3.2

We fix a positive real number u. From this point, we recall the decomposition of the splitting tree as described
in Section 4 (see also Fig. 4). We also recall that, for all i in {1, . . . , Nu}, the process

(
N i
s (Oi) , s ∈ R+

)
is the

population counting process of the (sub-)splitting tree T (Oi).
As explained in Section 4, it follows from the construction of the splitting tree, that, for all i in {1, . . . , Nu},

there exists an i.i.d. family of processes
(
N i,j

)
j≥1

independent from Nu with the same law as (Nt, t ∈ R+),

and an i.i.d. family
(
ξ(i)

)
1≤i≤Nu of random measure independent from Nu and from

(
N i,j

)
j≥1

the family with
same law as ξ, such that

N i
t (Oi) =

∫
[0,t]

N i,j
t−u�Oi>u ξ

(i)(du) + �Oi>t, ∀t ∈ R+, ∀i ∈ {1, . . . , Nu} . (6.12)
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As in (6.9), we define, for all i in {1, . . . , Nu},

E (Oi) :=
∫

[0,t]

E
i,ξ

(i)
u

e−αu�Oi>u ξ
(i)(du), (6.13)

where Ei,j := lim
t→∞ψ′(α)e−αtN i,j

t .

Hence, it follows from Lemma 6.6, that e−αtN i
t (Oi) converges to E (Oi) in L2.

Note also that, from Lemma 4.2, the family
(
N i
t (Oi) , t ∈ R+

)
2≤i≤Nu is i.i.d. and independent from Nu

under Pu, as well as the family (E (Oi))2≤i≤Nu (in the sense of Rem. 4.1). Note that the law under Pu of the
processes of the family

(
N i
t (Oi) , t ∈ R+

)
2≤i≤Nu is the law of standard population counting processes where

the lifespan of the root is distributed as O2 under Pu (except for the first one).

Lemma 6.8 (Decomposition of E). We have the following decomposition of E,

E = e−αu
Nu∑
i=1

Ei (Oi) , a.s.

Moreover, under Pu, the random variables (Ei (Oi))i≥1 (defined by (6.13)) are independent, independent of Nu,
and identically distributed for i ≥ 2.

Proof.
Step 1. Decomposition of E.

For all t in R+, we denote by N∞
t the number of individuals alive at time t which have an infinite descent.

For all i, we define, for all t ≥ 0, N∞
t (Oi) from T (Oi) as N∞

t was defined from the whole tree. Now, it is easily
seen that

N∞
t =

Nu∑
i=1

N∞
t−u (Oi) .

Hence, if e−αtN∞
t (Oi) converges a.s. to E (Oi), then

lim
t→∞ e−αtN∞

t = lim
t→∞ e−αu

Nu∑
i=1

e−α(t−u)N∞
t−u (Oi) = e−αu

Nu∑
i=1

E (Oi) .

So, it just remains to prove the a.s. convergence to get the desired result.

Step 2. a.s. convergence of N∞ (Oi) to E (Oi).
For this step, we fix i ∈ {1, . . . , Nu}.
In the same spirit as (6.12) (see also Sect. 4), it follows from the construction of the splitting tree T (Oi), that

there exists, an i.i.d. (and independent of Nu) sequence of processes
(
N j,∞
s , s ∈ R+

)
j≥1

with the same law as
(N∞

t , t ∈ R+) (under P), such that

N∞
t (Oi) =

∫
[0,t]

N
ξ(i)u ,∞
t−u �Oi>u ξ

(i)(du) + �Oi=∞, ∀t ≥ 0.

Now, it follows from Theorem 6.2 of [5], that for all j,

lim
t→∞ e−αtN j,∞

t = Ei,j , a.s.,

where Ei,j was defined in the beginning of this section. Let

Cj := sup
t∈R+

e−αtN j,∞
t , ∀j ≥ 1,



CENTRAL LIMIT THEOREM FOR SUPERCRITICAL BINARY HOMOGENEOUS CRUMP-MODE-JAGERS PROCESSES 135

and
C := sup

t∈R+

e−αtN∞
t .

Then, the family (Cj)j≥1 is i.i.d., since the processes
(
N j,∞)

j≥1
are i.i.d, with the same law as C. Hence,∫

[0,t]

e−α(t−u)N
ξ(i)u ,∞
t−u e−αu�Oi>u ξ

(i)(du) ≤
∫

[0,t]

C
ξ
(i)
u

e−αu�Oi>u ξ
(i)(du). (6.14)

It is easily seen that E [C] = P (NonEx) E∞ [C]. Now, since, from Proposition 6.1 of [5], N∞
t is a Yule process

under P∞ (and hence e−αtN∞
t is a martingale), Doobs’s inequalities entails that the random variable C is

integrable. Hence, the right hand side of the (6.14) is a.s. finite, and we can apply Lesbegue Theorem to get

lim
t→∞ e−αtN∞

t (Oi) =
∫

[0,t]

E
i,ξ

(i)
u

e−αu�Oi>u Γ (du) = E (Oi) , a.s.,

where the right hand side of the last equality is just the definition of E (Oi). �

We have now all the tools needed to prove the central limit theorem for Nt.

Proof of Theorem 3.2. Let u < t, two positive real numbers. From Lemma 6.8 and Section 4, we have

Nt =
Nu∑
i=1

N
(i)
t−u (Oi)

and

eαtE =
Nu∑
i=1

eα(t−u)Ei (Oi) .

Then,
ψ′(α)Nt − eαtE

e
α
2 t

=
Nu∑
i=1

ψ′(α)N (i)
t−u (Oi) − eα(t−u)Ei (Oi)

e
α
2 (t−u)e

α
2 u

. (6.15)

Using Lemma 4.2, we know that, under Pu,
(
N i
t−u(Oi), t > u

)
1≤i≤Nu are independent processes, i.i.d. for i ≥ 2

and independent of Nu. Let us denote by ϕ and ϕ̃ the characteristic functions

ϕ(λ) := E

[
exp

(
iλ

(
ψ′(α)N2

t−u (O2) − eα(t−u)E2 (O2)
e
α
2 (t−u)

))]
, λ ∈ R

and

ϕ̃(λ) := E

[
exp

(
iλ

(
ψ′(α)N1

t−u (O1) − eα(t−u)E1 (O1)
e
α
2 (t−u)

))]
, λ ∈ R.

It follows from (6.15) and Lemma 4.2 that,

Eu

[
exp

(
iλ
ψ′(α)Nt − eαtE

e
α
2 t

)]
=
ϕ̃
(

λ

e
α
2 u

)
ϕ
(

λ

e
α
2 u

)Eu

[
ϕ

(
λ

e
α
2 u

)Nu]

Since Nu is geometric with parameter W (u)−1 under Pu,

Eu

[
exp

(
iλ
ψ′(α)Nt − eαtE

e
α
2 t

)]
=
ϕ̃
(

λ

e
α
2 u

)
ϕ
(

λ

e
α
2 u

) W (u)−1ϕ
(

λ

e
α
2 u

)
1 − (1 −W (u)−1)ϕ

(
λ

e
α
2 u

)
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Using Taylor formula for ϕ, we obtain,

Eu

[
exp

(
iλ
ψ′(α)Nt − eαtE

e
α
2 t

)]
= ϕ̃

(
λ

e
α
2 u

)
1

D(λ, t, u)

where,

D(λ, t, u) =W (u) − (W (u) − 1)

(
1 + iλE

[
ψ′(α)N i

t−u (O2) − eα(t−u)E2 (O2)
e
α
2 (t−u)e

α
2 u

]

− λ2

2
E

⎡⎣(ψ′(α)N i
t−u (O2) − eα(t−u)E2 (O2)

e
α
2 (t−u)e

α
2 u

)2
⎤⎦ +R(λ, t, u)

)

=1 − iλ
W (u) − 1

e
α
2 u

E

[
ψ′(α)N i

t−u (O2) − eα(t−u)E2 (O2)
e
α
2 (t−u)

]

+
λ2

2
W (u) − 1

eαu
E

⎡⎣(ψ′(α)
N i
t−u (O2) − eα(t−u)E2 (O2)

e
α
2 (t−u)

)2
⎤⎦

− (W (u) − 1)R(λ, t, u),

with, for all ε > 0 and all λ in (−ε, ε),

|R(λ, t, u)| ≤ sup
λ∈(−ε,ε)

∣∣∣∣ ∂3

∂λ3
ϕ(λ)

∣∣∣∣ ≤ E

⎡⎣∣∣∣∣∣
(
ψ′(α)N i

t−u (O2) − eα(t−u)E2 (O2)
e
α
2 (t−u)

)∣∣∣∣∣
3
⎤⎦ ε3e−

3
2αu

6
≤ Cε3e−

3
2u, (6.16)

for some real positive constant C obtained using Lemma 6.7.
From this point, we set u = βt with 0 < β < 1

2 . It follows then from the Lemmas 6.6 and 4.2, that

lim
t→∞ Eβt

⎡⎣(ψ′(α)N i
t−βt (O2) − eα(t−βt)E2 (O2)

e
α
2 (t−βt)

)2
⎤⎦ = ψ′(α) (2 − ψ′(α)) . (6.17)

Moreover, we have from Lemma 6.5, and since β < 1
2 ,

lim
t→∞W (βt)e−

α
2 tE

[
ψ′(α)N i

t (O2) − eαtE2 (O2)
]

= 0. (6.18)

Finally, the relations (6.16)−(6.18) lead to

lim
t→∞ Eβt

[
exp

(
iλ
Nt − eαtE

e
α
2 t

)]
=

1
1 + λ2

2 (2 − ψ′(α))
·

To conclude, note that,∣∣∣∣Eβt [exp
(
iλ
Nt − eαtE

e
α
2 t

)]
− E∞

[
exp

(
iλ
Nt − eαtE

e
α
2 t

)]∣∣∣∣ =

∣∣∣∣∣E
[
e
iλ
ψ′(α)Nt−eαtE

e
α
2 t

(
�Nβt>0

P (Nβt > 0)
− �NonEx

P (NonEx)

)]∣∣∣∣∣
≤ E

[∣∣∣∣ �Nβt>0

P (Nβt > 0)
− �NonEx

P (NonEx)

∣∣∣∣]
goes to 0 as t goes to infinity. This ends the proof of Theorem 3.2. �
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[16] A.E. Kyprianou, Fluctuations of Lévy processes with applications. Universitext. Springer, Heidelberg, 2nd edition (2014).
Introductory lectures.

[17] A. Lambert, The contour of splitting trees is a Lévy process. Ann. Probab. 38 (2010) 348–395.
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