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Abstract. The purpose of this paper is to introduce a class of stochastic processes that we call
step semi-Markov processes and to illustrate the modelling capacity of such processes in practical
applications. The name of this process comes from the fact that we have a semi-Markov process and
the transition between two states is done through several steps. We first introduce these models and the
main quantities that characterize them. Then, we derive the recursive evolution equations for two-step
semi-Markov processes. The interest of using this type of model is illustrated by means of an application
in manpower planning.
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1. Introduction

Semi-Markov processes are an important class of stochastic processes that have been widely studied and
applied in several fields, see e.g. [1, 16, 19, 21]. In this paper we introduce a class of stochastic processes, called
step semi-Markov processes (SSMP) that generalizes ordinary semi-Markov processes. To be more specific,
SSMP are semi-Markov processes for which an additional insight is brought: the sojourn time in a state before
making a transition represents the addition of two or several times that correspond to different physical causes.
A typical example in survival analysis would be a time that is the sum between the incubation time of a disease
and the waiting time before a change of state occurs. Clearly, this type of phenomenon could be modelled
through a classical multi-state model (semi-Markov or other), by introducing a new state for each different time
(see [10]), but the interest of our approach comes from several points:

(i) It is a different modelling technique that can capture some features that are not taken into account by
existing frameworks. As previously mentioned, the holding time in a state before moving to another state
is formed by two times, of different natures. Another point is that the transition from one state to another
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2 Dipartimento di Farmacia, Università “G. d’Annunzio” di Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy.
g.damico@unich.it
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depends on the first time spent in the state; note also that the second time depends on the length of the
first time.
For instance, in Section 5 we consider an application in manpower management, where the states of the
system represent the different positions of an employee in a company and the holding time in a state is the
sum of two times: the time spent from the last promotion and the time the employee does a training for a
potential upgrade.

(ii) The type of dependence considered in our model is more general than the one obtained by extending the
state space of the process.

(iii) In some applications involving complex systems or networks, there is a natural interest to reduce the
number of states to a minimum that is necessary, something that is achieved by the type of model that we
propose.

In this paper we define SSMP and we discuss their relation with ordinary semi-Markov processes, the latter
being a special case of the former. We study the evolution equations of the transition probability function of
the model. We are interested in the general model where we take into account the initial backward process,
as well as in the simplest model, without considering the initial backward. We show that, according to the
existing relation between the value of the backward recurrence time process and the length of the first step of
the transition, there are two different evolution equations. This is a characteristic of the two-step semi-Markov
model that is not present for ordinary semi-Markov processes. Furthermore we describe how to get estimation
of the parameters of a SSMP considering a sample path of a two-step semi-Markov model censored at a fixed
arbitrary time M ∈ N

∗. The practical relevance of the advanced model is illustrated by means of an application
in manpower management (MPM), framework that has been an important field of application of Markov and
semi-Markov processes, [6, 7, 14, 17, 22–24, 27–30]. In the application we show the appropriateness of SSMP for
MPM problems and especially for the efficient integration of the training of workers within a manpower planning
model.

Our paper is structured as follows: in the next section we first introduce some classical semi-Markov notations
and we define the step semi-Markov model. Section 3 is devoted to the study of the recursive evolution equations
for step semi-Markov processes. After that, some elements of statistical estimation are presented. In Section 5
we explain how to apply a two-step model in MPM; in this context, an application and related results will be
presented. Some remarks on future work will be given in the last section.

2. The model

Let us consider a random system with finite state space E = {1, . . . , s}. Assume that the time evolution of
the system is governed by a stochastic process Z = (Zk)k∈N. Let us denote by T = (Tn)n∈N the successive time
points when state changes in (Zk)k∈N occur and by J = (Jn)n∈N the successive visited states at these time points.
Set also X = (Xn)n∈N for the successive sojourn times in the visited states. Thus Xn = Tn−Tn−1, n ∈ N

∗, and,
by convention, we set X0 = T0 = 0. The relation between the process Z and the process J of the successively
visited states is given by Zk = JN(k), or, equivalently, Jn = ZTn , n, k ∈ N, where N(k) := max{n ∈ N | Tn ≤ k}
is the discrete-time counting process of the number of jumps in [1, k] ⊂ N.
We denote by ME the set of real matrices on E × E and by ME(N) the set of matrix-valued functions
defined on N, with values in ME . For A ∈ ME(N), we write A = (A(k); k ∈ N), where, for k ∈ N fixed,
A(k) = (Aij(k); i, j ∈ E) ∈ ME .

We assume that the chain (J, T ) = (Jn, Tn)n∈N is a Markov renewal chain (MRC) and that the chain
Z = (Zk)k∈N is a semi-Markov chain (SMC) associated to the MRC (J, T ), that is, for all n ∈ N, for all i, j ∈ E,
and for all k ∈ N it satisfies almost surely

P(Jn+1 = j, Tn+1 − Tn = k | J0, . . . , Jn; T0, . . . , Tn) = P(Jn+1 = j, Tn+1 − Tn = k | Jn). (2.1)

All through this paper we consider that equation (2.1) is independent of n, i.e. that (J, T ) is homogeneous. Then,
the discrete-time semi-Markov kernel q̃ is defined by q̃ij(k) := P(Jn+1 = j, Xn+1 = k | Jn = i). We denote
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by p̃ = (p̃ij)i,j∈E ∈ ME the transition matrix of the Markov chain (Jn), defined by

p̃ij := P(Jn+1 = j | Jn = i), i, j ∈ E, n ∈ N.

Let us also introduce the sojourn time distributions in a given state and the conditional distributions de-
pending on the next state to be visited.

Definition 2.1. For all i, j ∈ E, let us define:

(1) f̃ij(·), the conditional distribution of Xn+1, n ∈ N :

f̃ij(k) = P(Xn+1 = k | Jn = i, Jn+1 = j), k ∈ N. (2.2)

(2) F̃ij(·), the conditional distribution function of Xn+1, n ∈ N :

F̃ij(k) = P(Xn+1 ≤ k | Jn = i, Jn+1 = j) =
k∑

l=0

f̃ij(l), k ∈ N. (2.3)

(3) h̃i(·), the sojourn time distribution in state i:

h̃i(k) = P(Xn+1 = k | Jn = i) =
∑
j∈E

q̃ij(k), k ∈ N
∗. (2.4)

(4) H̃i(·), the sojourn time distribution function in state i:

H̃i(k) = P(Xn+1 ≤ k | Jn = i) =
k∑

l=1

h̃i(l), k ∈ N
∗. (2.5)

Note that, for all i, j ∈ E and k ∈ N such that p̃ij �= 0, the semi-Markov kernel verifies the relation

q̃ij(k) = p̃ij f̃ij(k).

For G the cumulative distribution function of a r.v. X, we denote its survival function by
G(n) := 1 − G(n) = P(X > n), n ∈ N.

Let us now consider that the sojourn time Xn+1 in state Tn before going to state Tn+1 is the sum of two
different times, say Un+1 and Vn+1, Xn+1 = Un+1+Vn+1. Consequently, the semi-Markov conditional hypothesis
given in equation (2.1) can be written

P(Jn+1 = j, Un+1 = u, Vn+1 = v | J0, . . . , Jn; U0, . . . , Un, V0, . . . , Vn)
= P(Jn+1 = j, Un+1 = u, Vn+1 = v | Jn). (2.6)

Consequently, the semi-Markov kernel can be written for any time k ∈ N

q̃ij(k) = P(Jn+1 = j, Un+1 + Vn+1 = k | Jn = i)

=
k∑

u=0

P(Jn+1 = j, Un+1 + Vn+1 = k, Un+1 = u | Jn = i)

=
k∑

u=0

P(Vn+1 = k − u | Un+1 = u, Jn = i, Jn+1 = j)

×P(Jn+1 = j | Jn = i, Un+1 = u)P(Un+1 = u | Jn = i)

=
k∑

u=0

piu;jfiu;j(k − u)gi(u), (2.7)
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Figure 1. A two-step semi-Markov chain trajectory.

where we used the following notation:

• piu;j = P(Jn+1 = j | Jn = i, Un+1 = u),
• fiu;j(v) = P(Vn+1 = v | Jn = i, Jn+1 = j, Un+1 = u),
• gi(u) = P(Un+1 = u | Jn = i).

For all states i, j ∈ E and positive integer u ∈ N, note that (gi(k), k ∈ N) and (fiu;j(v), v ∈ N) are probability
distributions, that is ∑

k∈N

gi(k) = 1 and
∑
v∈N

fiu;j(v) = 1.

Note also that for any positive integer u ∈ N, (piu;j)i,j∈E is a stochastic matrix, that is∑
j∈E

piu;j = 1.

Definition 2.2. A Markov renewal chain (J, T ) whose semi-Markov kernel verifies equation (2.7) is called a two-
step Markov renewal chain and the associated semi-Markov chain Z = (Zk)k∈N is called a two-step semi-Markov
chain.

A trajectory of a two-step semi-Markov chain is illustrated in Figure 1.
Several remarks are worth to be done here.

Remark 2.3. Note that a two-step Markov renewal chain (respectively a two-step semi-Markov chain) is just a
usual Markov renewal chain (respectively a usual semi-Markov chain), endowed with a supplementary structure:
the waiting times are the sum of two times (denoted here by Un and Vn), representing two different types of
randomness.

Remark 2.4. Although all the work presented in this paper is carried out in discrete time, note that the same
type of results can be presented in continuous time.
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Remark 2.5. Note also that there is a very simple and intuitive explanation behind the equation (2.7), describ-
ing the dynamics of the system from state i to state j, after a global holding time equal to u + v: first, the first
waiting time in state i, Un+1 = u, is randomly chosen according to the probability distribution (gi(k), k ∈ N);
then, the next state to be visited is randomly chosen, depending on this first time u, and this choice is done
according to the Markov transition matrix (piu;j)i,j∈E ; finally, the second waiting time in state i before going to
state j is randomly chosen, depending on the first time u, and this choice is done according to the probability
distribution (fiu;j(v), v ∈ N).

Let us also introduce the following notation:

• qiu;j(v) = P(Jn+1 = j, Vn+1 = v | Jn = i, Un+1 = u) = piu;jfiu;j(v),
• hiu(v) = P(Vn+1 = v | Jn = i, Un+1 = u) =

∑
j∈E fiu;j(v)piu;j ,

• Hiu(v) = P(Vn+1 ≤ v | Jn = i, Un+1 = u),
• Fiu;j(v) = P(Vn+1 ≤ v | Jn = i, Jn+1 = j, Un+1 = u),
• Gi(u) = P(Un+1 ≤ u | Jn = i).

As previously mentioned, for G the cumulative distribution function of a r.v., the associated survival function
is denoted by G(n). Consequently, for all states i, j ∈ E and positive integer u ∈ N, we put F iu;j , Hiu and Gi

for the corresponding survival functions.

Remark 2.6. Note that Definition 2.2 can immediately be generalized in order to define a m−step Markov
renewal chain or m−step semi-Markov chain. On the one hand, the only thing to be considered is that the
sojourn time Xn+1 in state Tn before going to state Tn+1 is the sum of m different times, say U1

n+1, . . . , Um−1
n+1

and Vn+1, Xn+1 = U1
n+1 + . . . + Um−1

n+1 + Vn+1. On the other hand, the interest (and the difficulty) of studying
such models comes from the fact that the dependence between these different holding times has to be specified.
For instance, we can write

P(Jn+1 = j, U1
n+1 = u1, . . . , Um−1

n+1 = um−1, Vn+1 = v | Jn = i)

= P(Jn+1 = j, Vn+1 = v | Jn = i, U1
n+1 = u1, . . . , Um−1

n+1 = um−1)

×P(U1
n+1 = u1, . . . , Um−1

n+1 = um−1 | Jn = i).

Note that both quantities in the right hand term could be written in various ways, taking into account different
types of dependence between the times U1

n+1, . . . , Um−1
n+1 and Vn+1.

It is obvious that such a process would be more flexible than a two-step process and maybe more adapted
for some applications. A possible drawback of such a model is that, as it is more complex, it is more difficult to
work with, to estimate parameters, etc. Note also that one could consider processes with a different number of
steps for each transition; possible situations could occur when this number m of steps depends on the present
state or on the future state or on both; with the notation used in the previous equation, we could have m = mi

or m = mj or m = mij , i, j ∈ E). This will be the object of a future work.

The relations between the characteristics of a semi-Markov process (semi-Markov kernel q̃ij(k), conditional
holding time distributions f̃ij(k), Markov transition probability p̃ij) and the corresponding quantities of a
two-step semi-Markov process are given in the next proposition. The proof of these results is immediate.

Proposition 2.7. For all states i, j ∈ E and nonnegative k ∈ N we have:

(1) p̃ij =
∑

u∈N
piu;jgi(u),

(2) q̃ij(k) =
∑k

u=0 qiu;j(k − u)gi(u) =
∑k

u=0 piu;jfiu;j(k − u)gi(u),

(3) f̃ij(k) = q̃ij(k)
p̃ij

=
∑k

u2=0 piu2;jfiu2;j(k−u2)gi(u2)∑
u1∈N

piu1;jgi(u1) , for p̃ij �= 0.

The following remark, although quite obvious, will be needed in the sequel.



560 V. STEFAN BARBU

Remark 2.8. Note that P(Un+1 = u | Jn = i) in general is not equal to P(Un+1 = u | Jn = i, Jn+1 =
j), i, j ∈ E, u ∈ N. Intuitively, this fact is clear because there is a dependence between Jn+1 and Un+1. A direct
computation of both terms yields the same conclusion.

3. Evolution equations

In this section, we will study the evolution equations of the transition probabilities of a two-step semi-Markov
chain.

Let us first consider the case when we take into account the initial backward time of the semi-Markov process.
The evolution of the semi-Markov process can be described by the semi-Markov transition probabilities that
are defined as follows.

Definition 3.1. The transition function with initial backward process of the two-step semi-Markov chain Zt

is the matrix-valued function bΦ = ( bφiu1 ;j(l; t); i, j ∈ E, u1, l, t ∈ N) ∈ ME defined by

bφiu1;j(l, t) := P(Zt = j | Z0 = i, B0 = l, U1 = u1), (3.8)

where the left upper-script b in bφ stands for the initial backward and Bt := t − TN(t) is the backward time
process associated to the semi-Markov process.

The following proposition establishes a recursive formula for computing the transition probability function
bΦ of the two-step semi-Markov chain.

Proposition 3.2. For all states i, j ∈ E and times u1, l, t ∈ N, such that u1 < l we have

bφiu1 ;j(l, t) = δij
Hiu1(t + l − u1)

Hiu1 (l − u1)

+
t∑

m=1

qiu1;j(m + l − u1)
Hiu1 (l − u1)

· Gj(t − m − 1) (3.9)

+
∑
k∈E

t∑
m=1

t−m−1∑
u2=1

qiu1;k(m + l − u1)
Hiu1(l − u1)

· gk(u2) · bφku2 ;j(0, t − m).

Similarly, if u1 ≥ l, then

bφiu1 ;j(l, t) = δijHiu1(t + l − u1)

+
t∑

m=u1−l

qiu1;j(m + l − u1) · Gj(t − m − 1) (3.10)

+
∑
k∈E

t∑
m=u1−l

t−m−1∑
u2=1

qiu1;k(m + l − u1) · gk(u2) · bφku2 ;j(0, t − m).

The usual conventions Gj(−1) = 1 and
∑−1

s=0 = 0 apply.

Proof. Let us consider first the case u1 < l.
In general, the probability function can be represented as follows:

bφiu1 ;j(l, t) := P(Zt = j | Z0 = i, B0 = l, U1 = u1)
= P(Zt = j, T1 > t | Z0 = i, B0 = l, U1 = u1) (3.11)

+ P(Zt = j, T1 ≤ t | Z0 = i, B0 = l, U1 = u1). (3.12)
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Now consider the first addendum (3.11) on the right hand side of the former equation for which the following
chain of equalities holds true.

P(Zt = j, T1 > t | Z0 = i, B0 = l, U1 = u1)
= P(Zt = j | T1 > t, Z0 = i, B0 = l, U1 = u1)P(T1 > t | Z0 = i, B0 = l, U1 = u1)
= δijP(T1 > t | Z0 = i, B0 = l, U1 = u1)
= δijP(T1 − T0 > t − T0 | J0 = i, T0 = −l, T1 > 0, U1 = u1)
= δijP(U1 + V1 > t + l | J0 = i, T0 = −l, T1 > 0, U1 = u1)
= δijP(V1 > t + l − u1 | J0 = i, T0 = −l, T1 > 0, U1 = u1)

= δij
P(V1 > t + l − u1, T1 > 0 | J0 = i, T0 = −l, U1 = u1)

P(T1 > 0 | J0 = i, T0 = −l, U1 = u1)
· (3.13)

The numerator of (3.13) can be evaluated as follows:

P(V1 >t + l − u1, T1 >0 | J0 = i, T0 = −l, U1 = u1) = P(V1 > t + l − u1, V1 > l − u1 | J0 = i, T0 = −l, U1 = u1)

= P(V1 > t + l − u1, | J0 = i, U1 = u1) = Hiu1(t + l − u1).
(3.14)

The denominator of (3.13) can be evaluated as follows:

P(T1 > 0 | J0 = i, T0 = −l, U1 = u1) = P(T1 − T0 > 0 − T0 | J0 = i, U1 = u1)
= P(U1 + V1 > l | J0 = i, U1 = u1)

= P(V1 > l − u1 | J0 = i, U1 = u1) = Hiu1(l − u1). (3.15)

This proves that

P(Zt = j, T1 > t | Z0 = i, B0 = l, U1 = u1) = δij
Hiu1(t + l − u1)

Hiu1(l − u1)
· (3.16)

Now, let us consider the second addendum (3.12).

P(Zt = j, T1 ≤ t | Z0 = i, B0 = l, U1 = u1)

=
∑
k∈E

t∑
m=1

∑
u2≥0

P(Zt = j, T1 = m, J1 = k, U2 = u2 | Z0 = i, B0 = l, U1 = u1)

=
∑
k∈E

t∑
m=1

∑
u2≥0

P(Zt = j | T1 = m, J1 = k, U2 = u2, J0 = i, T0 = −l, T1 > 0, U1 = u1)

× P(U2 = u2 | T1 = m, J1 = k)P(T1 = m, J1 = k | J0 = i, T0 = −l, T1 > 0, U1 = u1)

=
∑
k∈E

t∑
m=1

∑
u2≥0

bφku2 ;j(0; t − m) · gk(u2) · qiu1;k(m + l − u1)
Hiu1(l − u1)

· (3.17)

Formula (3.17) can be rewritten as follows:

∑
k∈E

t∑
m=1

(
t−m−1∑
u2=0

bφku2 ;j(0; t − m) · gk(u2) · qiu1;k(m + l − u1)
Hiu1(l − u1)

+
∑

u2≥t−m

bφku2 ;j(0; t − m) · gk(u2) · qiu1;k(m + l − u1)
Hiu1 (l − u1)

⎞⎠ · (3.18)
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When u2 ≥ t − m, the probability bφku2;j(0; t − m) = δkj and, therefore, we have that

∑
u2≥t−m

bφku2 ;j(0; t − m) · gk(u2) · qiu1;k(m + l − u1)
Hiu1(l − u1)

=
∑

u2≥t−m

δkj · gk(u2) · qiu1;k(m + l − u1)
Hiu1(l − u1)

, (3.19)

which, in turn, implies that

∑
k∈E

t∑
m=1

∑
u2≥t−m

bφku2 ;j(0; t − m) · gk(u2) · qiu1;k(m + l − u1)
Hiu1 (l − u1)

=
t∑

m=1

∑
u2≥t−m

qiu1;j(m + l − u1)
Hiu1(l − u1)

· gj(u2)

=
t∑

m=1

qiu1;j(m + l − u1)
Hiu1 (l − u1)

· Gj(t − m − 1). (3.20)

A substitution of (3.20) into (3.18) and the consideration of formula (3.16) leads to formula (3.9).
Given the similarity with formula (3.9), we shall only sketch the proof of formula (3.10).
We consider the usual representation of the probability function

bφiu1;j(l, t) = P(Zt = j, T1 > t | Z0 = i, B0 = l, U1 = u1) (3.21)
+ P(Zt = j, T1 ≤ t | Z0 = i, B0 = l, U1 = u1). (3.22)

Now, for u1 ≥ l, the computations are modified as follows.
First,

P(Zt = j, T1 > t | Z0 = i, B0 = l, U1 = u1) = δijP(T1 − T0 > t − T0 | J0 = i, T0 = −l, T1 > 0, U1 = u1)

= δij
P(V1 > t + l − u1 | J0 = i, U1 = u1)
P(T1 > 0 | J0 = i, T0 = −l, U1 = u1)

= δij
Hiu1(t + l − u1)

1
= δijHiu1 (t + l − u1). (3.23)

(3.24)

For T1 ≤ t we have

P(Zt = j, T1 ≤ t | Z0 = i, B0 = l, U1 = u1)

=
∑
k∈E

t∑
m≥u1−l

∑
u2≥0

P(Zt = j | T1 = m, J1 = k, U2 = u2, J0 = i, T0 = −l, T1 > 0, U1 = u1)

× P(U2 = u2 | T1 = m, J1 = k)P(T1 = m, J1 = k | J0 = i, T0 = −l, T1 > 0, U1 = u1)

=
∑
k∈E

t∑
m≥u1−l

∑
u2≥0

bφku2 ;j(0; t − m) · gk(u2) · qiu1 ;k(m + l − u1). (3.25)

A decomposition of the sum
∑

u2≥0 =
∑t−m−1

u2=0 +
∑

u2≥t−m and the fact that for u2 ≥ t−m the probability
bφku2 ;j(0; t − m) = δkj yield equation (3.10), after some simple substitutions. �

The transition function bφiu1;j(l, t) gives the probabilistic evolution of the system and is dependent on the
backward process value, B0 = l. An interesting case is obtained for B0 = 0, that is, when the current time zero
is a transition time. In this case, the transition probability function simplifies considerably. Indeed, note first of
all that u1 cannot be less than l(= 0); note also that the first case (u1 < l) makes no sense anymore. Second,
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for u1 ≥ l = 0, we have

bφiu1 ;j(0, t) := φiu1 ;j(t) = δijHiu1(t − u1)

+
t∑

m=u1

qiu1;j(m − u1) · Gj(t − m − 1) (3.26)

+
∑
k∈E

t∑
m=u1

t−m−1∑
u2=1

qiu1;k(m − u1) · gk(u2) · φku2 ;j(0, t − m).

The evolution equations for the two-step semi-Markov chain model can be further generalized when taking
into account the initial or final backward and forward processes as done for non-homogeneous semi-Markov
chains (see [5]).

4. Some associated estimation topics

Starting from available data, one can obtain empirical estimators of the quantities of interest defining our
model. Let us consider a sample path of a two-step semi-Markov model censored at a fixed arbitrary time
M ∈ N

∗,
J0, U1, V1, J1, U2, V2, . . . , JN(M)−1, UN(M), VN(M), JN(M), BM , (4.27)

where N(M) := max{n | Tn ≤ M} is the counting process of the number of jumps in [1;M ] and
BM := M − TN(M) is the censored sojourn time in the last visited state JN(M).

For any states i, j ∈ E and u, v ∈ N
∗, let us consider:

(1) Ni(M) :=
∑N(M)−1

n=0 1{Jn=i} =
∑M

n=0 1{Jn=i,Tn+1≤M} - the number of visits to state i of the MC (Jn)n∈IN,
up to time M ;

(2) Ni(u, M) :=
∑N(M)

n=1 1{Jn−1=i,Un=u} =
∑M

n=1 1{Jn−1=i,Un=u,Tn≤M} - the number of visits to state i of the
MC (Jn)n∈IN, up to time M, with sojourn time U = u in state i;

(3) Nij(u, M) :=
∑N(M)

n=1 1{Jn−1=i,Jn=j,Un=u} =
∑M

n=1 1{Jn−1=i,Jn=j,Un=u,Tn≤M} - the number of transitions of
the MC (Jn)n∈IN from state i to state j, up to time M, with sojourn time U = u in state i;

(4) Nij(u, v, M) :=
∑N(M)

n=1 1{Jn−1=i,Jn=j,Un=u,Vn=v}
=
∑M

n=1 1{Jn−1=i,Jn=j,Un=u,Vn=v,Tn≤M} - the number of transitions of the MC (Jn)n∈IN from state i to state
j, up to time M, with sojourn time U = u and V = v in state i.

Consequently, the empirical estimators of the quantities of interest defining the model are given by:

p̂iu;j(M) :=
Nij(u, M)
Ni(u, M)

; (4.28)

ĝi(u, M) :=
Ni(u, M)
Ni(M)

; (4.29)

f̂iu;j(v, M) :=
Nij(u, v, M)
Nij(u, M)

. (4.30)

From classical arguments, these estimators are strongly consistent, as M → ∞.

If one considers several (say K) sample paths of a two-step semi-Markov model censored at a fixed arbitrary
time M ∈ N

∗,

J l
0, U

l
1, V

l
1 , J l

1, U
l
2, V

l
2 , . . . , J l

N(M)−1, U
l
N(M), V

l
N(M), J

l
N(M), B

l
M , l = 1, . . . , K,
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then the corresponding empirical estimators are given by

p̂iu;j(K) :=
Nij(u, K)
Ni(u, K)

,

ĝi(u, K) :=
Ni(u, K)
Ni(K)

,

f̂iu;j(v, K) :=
Nij(u, v, K)
Nij(u, K)

,

where the quantities Nij(u, K), Ni(u, K), Nij(u, v, K), Ni(K) are defined taking into account the counting over
all the K sample paths. As before, these estimators are strongly consistent, as K → ∞.

At this point it is possible to estimate the probability qiu;j(v) through the estimator q̂iu;j(v, K) :=
p̂iu;j(K)f̂iu;j(v, K). The transition functions can be estimated by plugging-in p̂iu;j(K), f̂iu;j(v, K) and q̂iu;j(v, K)
inside equations (3.9) and (3.10).

It is worth noticing that one can consider the estimation framework when the U ′
ns and V ′

ns are not directly
observed, but the observations are J0, X1, J1, X2, . . . , JN(M)−1, XN(M), JN(M), BM , where Xn := Un + Vn

represent the successive holding times. This case with latent variables Un and Vn can correspond to some
important applied situations. In this case, estimating the (conditional) distribution of Un and Vn could be a
challenging topic, involving convolution estimation for dependent random variables. When considering general
m−step semi-Markov chains instead of two-step semi-Markov ones, like in Remark 2.6, this problem of estimation
could be even more complicated. This research direction represents the topic of a future work.

5. Application to manpower management

5.1. Manpower dynamics using two-step semi-Markov models

The application of our model tackles the problem of time evolution of salary lines and more precisely of the
ongoings in the case of promotion. This problem is part of the larger problem of manpower planning. Manpower
management (MPM) is an interdisciplinary topic. The literature is copious and the interested reader can refer
to [4, 11] for older references and to [6, 8, 13] for newer references on this topic.

At the beginning of the seventies, Markov processes were applied to this topic (see for example [4, 20]).
This approach was further developed in the following years; we can mention the contributions of [2, 12, 25]. A
considerable improvement was realized by introducing semi-Markov processes, see e.g. [3, 18, 23, 24, 26]. Note
also that in [18] and in [15] a generalization of semi-Markov processes was also presented to introduce the age
and the seniority into the model.

Recently the important problem of integrating the modelling of the training of workers within a manpower
planning model of a company has been considered in [9, 12] and extended in [10] by considering the so called
augmented semi-Markov models.

In this subsection we show how natural is the integration of the training period in a manpower system
modelled by a two-step semi-Markov model.

Let us consider a MPM that incorporates the need of the employees to attend a period of training before
being upgraded. Let us assume that a worker has just entered state i of the organization (company). First,
we can imagine that he/she will maintain this position until a random time selected by the distribution gi(·).
Second, after a random time u (realization of gi(·)), he/she starts a period of training for potential upgrade
(change) of his/her position. Furthermore it may be reasonable to assume that:

– Next position is selected according to the probability distribution piu;· and therefore depends on the current
position i and on how long the worker occupied the position i, that is, on the time u;

– After selecting the next position, say state j, he/she will transit into j after the completion of the necessary
training that will have a random length sampled from fiu;j(·). This may be the case because the necessary
training can depend on the past experience of the worker (i, u), as well as on the new position j to be held.
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Table 1. The total population subdivided by age and state.

Ages I Empl II Empl I Func II Func Exec tot age
≤24 27 0 0 0 0 27

25–29 429 1 1 0 0 431
30–34 1510 95 14 0 0 1619
35–39 1969 307 71 4 3 2354
40–44 1794 361 206 6 5 2372
45–49 2354 675 479 30 9 3727
50–54 2766 934 1085 106 41 4932
55–59 927 261 499 95 39 1821
≥60 138 27 61 20 19 265

tot deg 12 094 2661 2416 261 116 17 548

Figure 2. The probability to be promoted between two ranks of employees; the abscissa axis
gives the seniority years.

Notice that, during the training period (second part of the sojourn time), the worker stays in state i because
the upgrade is not yet completed and the company will pay a wage according to class i.

This description shows that the two-step semi-Markov chain model is a good candidate to study the career
evolution of workers in a company and naturally can include among its main features the training period.

5.2. Data description

We have used an old dataset of a primary Italian bank. There were 15 ranks in the bank: 7 ranks of office
workers, 5 of functionary workers and 3 of executives. The dataset contains only transitions among classes
obtained by an aggregation of ranks into five states. The first state was formed by the first 5 ranks of office
workers, the second one by the other two employee ranks, the third state was formed by the first four ranks of
functionary workers. The last two states were formed by the last rank of functionary workers and by the three
states of executives, respectively.

The total number of considered workers was exactly 17 548, out of which 5325 were females and 12223 males.
The initial distribution of the workers in the five states and their age structure is illustrated in Table 1.

We can also note that the probability to be promoted is higher with a lower seniority in the rank (time elapsed
in the rank since the entrance in the rank) and decreases as the seniority is increasing. Figure 2 illustrates this
phenomenon.
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Figure 3. Histograms of values of U (top-left), V (top-right) and X (bottom-left).

Table 2. Descriptive statistics of pdf of Un, Vn and Xn.

Variable Mean Standard Mode Median Pearson
deviation asymmetry

U 9.822 3.507 8 8 1.558
V 3.371 2.128 1 2 1.932
X 13.193 3.898 12 12 0.918

Our dataset is not complete for the application of the two-step semi-Markov model because neither did we
have information on how the waiting time is divided in the two steps nor on whether the bank implemented a
training scheme for the promotions. To overcome this problem we decided to work with a Monte Carlo simulation
for the reconstruction of the subdivision of the waiting times into two steps. We worked in the following way. For
each individual h in the dataset we dispose of the sequence of the waiting times {X(h)

n+1} for n = 0, 1, ...., N (h).
We decided that the length of U

(h)
n+1 should be about three times the length of the time V

(h)
n+1 or equivalently,

U
(h)
n+1 is, in average, the 75% of X

(h)
n+1 and V

(h)
n+1 the remaining 25%. Then given the total length of X

(h)
n+1 we did

a pseudo-random number extraction from a Uniform distribution with support [0,
X

(h)
n+1
2 ]∩ IN and then we fixed

U
(h)
n+1 =

X
(h)
n+1
2 + x where x is the result of the extraction. This operation is done for each waiting time of each

individual.
In this way we reconstructed a dataset that contains all the necessary information for the implementation

of the two-step semi-Markov model. In Figure 3 we report in the top-left corner the histogram of the absolute
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Figure 4. Probability function bφiu1 ;j(l, t) for l = 0 and u1 = 1, as a function of time t,

for different couples of states i and j. Average shares U
X and V

X : 70−30% (top-left), 75−25%
(top-right), 80−20% (bottom-left), 85−15% (bottom-right).

frequencies of the U variable; on the top-right corner the histogram is relative to the variable V and in the
bottom-left corner the histogram of the waiting time X . In Table 1 we report some descriptive statistics of those
histograms. As it is possible to see, the mean length of the waiting times X is 13 years and the mean value of
the first step U is 9.822, so that U is 74.45% of X . The column of the standard deviations tells us that the
variance of X is less than the sum of the variances of U and V . This is the case because in our simulation the
variables U and V are negatively correlated because their sum is fixed by the value of X , hence, large values of
U are associated with low values of V and vice versa. The three distributions show a positive asymmetry which
is more pronounced for the second step V .

In order to carry out a sensitivity analysis, the simulation has been repeated not only dividing the waiting
times X into first and second steps of shares 75−25% but also in three other different proportions: 70−30%,
80−20% and 85−15%.

By using the estimators presented in Section 4 we were able to have estimates of the main parameters of the
model.

5.3. Results and discussion

In Figure 4 we show the behaviour of the probability bφiu1 ;j(l, t) for l = 0, u1 = 1 as a function of time t for
different couples of states i and j.
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Figure 5. Probability function bφiu1;j(l, t) for l = 0, u1 = h, t = h + 1, as a function of h,

for different couples of states i and j. Average shares U
X and V

X : 70−30% (top-left), 75−25%
(top-right), 80−20% (bottom-left), 85−15% (bottom-right).

As we can see, in all the four cases these probabilities exhibit a decreasing behaviour for all couples of
states. This means that if the worker entered state i at current time and after one unit of time he/she begins
the training for possible promotion, it is more probable that he/she will be promoted within a short time.
The passage from state 1 to state 2 shows more chance, in contrast to the promotion from state 3 to state 4,
which is harder. It is also relevant to note that, as the percentage of time the individual is in the first step of
the waiting time increases, the transition probability decreases. The differences are moderate because the total
waiting time X = U + V is kept fixed and also because the sharing of the waiting time in the two steps is done
independently from the initial and final states of the waiting time.

In Figure 5 we show the behaviour of the probability bφiu1 ;j(l, t) for l = 0, u1 = h, t = h+1 as a function of h
for different couples of states i and j. For any considered couple of states i and j we see that this probability
exhibits first a decreasing path and then it shows a reversion, with an increasing behaviour of the function. This
means that if the worker entered state i at current time and after h units of time he/she begins the training,
the probability to be promoted within one year is very high if the training starts anon, then decreases in time
and then it starts to increase on the long time horizon. This tells us that, in our organization, the best workers
(those starting a training in a short time) have more chances to be promoted compared to average workers. It
is also evident that bad workers (those entering the training later than the others) have a high chance to be
promoted, but since they do it on a long time horizon they will make only one promotion in their career. In
Figure 6 we report the same probability evaluated after 5 years from the start of a training period. Obviously,
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Figure 6. Probability function bφiu1;j(l, t) for l = 0, u1 = h, t = h + 5, as a function of h,

for different couples of states i and j. Average shares U
X and V

X : 70−30% (top-left), 75−25%
(top-right), 80−20% (bottom-left), 85−15% (bottom-right).

the probabilities in this case are higher as compared to those in Figure 5. Also in these cases we remark a
decrease of the transition probability as the percentage of time the individual is in the first step of the waiting
time increases; moreover, the general shape of the functions is kept unaltered.

Finally in Figure 7 we report the probability bφiu1 ;j(l, t) for u1 = 6, t = 10 as a function of the backward
time l for different couples of states i and j. This shows a duration effect that is important to be captured by the
process. Indeed, the transition probability shows a marked dependence on the value of the backward recurrence
time process.

6. Conclusion

In this paper, we introduced a particular type of semi-Markov models, that we called step semi-Markov
models. The interest of these models comes from the fact that the sojourn times are the sum of two (or several)
times. This type of stochastic tool could be particularly useful for investigating the behaviour of some particular
real systems for which the sojourn times between two visited states are realised through successive “steps”. We
illustrate the interest of our technique through an example in manpower management.

As a continuation of the present work, several directions could be investigated.
First, in a future work we will adapt our methodology in order to investigate problems of interest in reliability

and survival analysis.
Second, from a theoretical point of view, in the present paper we concentrated mainly on two-step semi-Markov

models. As stated in Remark 2.6, the generalization to m−step semi-Markov chains can be immediately done,
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Figure 7. Probability function bφiu1;j(l, t) for u1 = 6, t = 10, as a function of the backward
time l, for different couples of states i and j. Average shares U

X and V
X : 70−30% (top-left),

75−25% (top-right), 80−20% (bottom-left), 85−15% (bottom-right).

with the difficulty/challenge of choosing the interesting type of dependence, different numbers of steps for each
transition, etc.

As we discussed at the end of Section 4, another important topic for further research is to undertake the
estimation of the main quantities defining the model, in the case of latent variables Un and Vn, when the only
available observations of the sojourn times are Xn = Un + Vn, n = 1, 2, . . .

Other natural extensions of the models that we presented in this paper are those of non-homogeneous step
semi-Markov models and continuous-time step semi-Markov processes. These represent different points that we
focus on in our ongoing and future work.

Another important point would be to consider that the Bank is an open system, by taking into account what
is called a Markov/semi-Markov system, that is allowing individuals to enter or leave the system. This point
will be the topic of a further work.
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