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PARTIALLY LINEAR ESTIMATION USING SUFFICIENT DIMENSION
REDUCTION

Takuma Yoshida
1

Abstract. In this paper, we study estimation for partial linear models. We assume radial basis func-
tions for the nonparametric component of these models. To obtain the estimated curve with fitness and
smoothness of the nonparametric component, we first apply the sufficient dimension reduction method
to the radial basis functions. Then, the coefficients of the transformed radial basis functions are esti-
mated. Finally, the coefficients in the parametric component can be estimated. The above procedure is
iterated and hence the proposed method is based on an alternating estimation. The proposed method
is highly versatile and is applicable not only to mean regression but also quantile regression and gen-
eral robust regression. The

√
n-consistency and asymptotic normality of the estimator are derived. A

simulation study is performed and an application to a real dataset is illustrated.
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1. Introduction

Partial linear models generalize multiple linear regression and nonparametric regression, and combine their
two regressions. That is, the partial linear model has the following structure

Y = XT β + g(Z) + ε, (1.1)

where Y is the scalar response, X, Z are p and q dimensional predictors, β is an unknown parametric vector, g is
an unknown smooth function and ε is the error. Many authors have developed partial linear regression, including
Heckman [18], Chen [3], Bhattacharya and Zhao [1] and Xia and Härdle [37]. Härdle [14] has written recent book
on partial linear models. The partial linear model is an efficient technique not only for mean regression but also
for quantile regression. Quantile regression estimates the conditional 100τ% points of Y given predictors and
was suggested by Koenker and Bassett [23]. He and Shi [17], Lee [24] and Sun [32] studied partial linear models
with quantile regression. A typical problem of partial linear regression is that nonparametric components are
subject to the curse of dimensionality and hence their estimates become complicated. To avoid this, an additive
structure in the nonparametric component is often considered [16]. It is known that the additive model is a very
simple and useful model. However it is based on a somewhat unsuitable assumption that there is no interaction
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between components of the predictor vector. This has motivated us to investigate the surface smoothing problem
in the nonparametric component of partial linear models.

In this paper, we consider (1.1), investigate the conditional mean and quantile of Y given predictors, and
propose a smooth estimation of g. When q ≥ 2, the computational cost of the estimation of g grows and
estimation is unstable if nonparametric smoothing methods such as the kernel or spline method, are used. This
is particularly prominent in quantile regression. Therefore to simplify the estimation of g, we approximate g
using the radial basis function models defined as

S(z) =
K∑

k=1

ckφk(z) = cT φ(z),

where φ(z) = (φ1(z), . . . , φK(z))T is a known radial basis function vector and c = (c1, . . . , cK)T is an unknown
parameter vector. We estimate c1, . . . , cK instead of estimating g directly. Although (1.1) is regarded as a fully
parametric model when using the radial basis function models, the least squares estimation leads a wiggly curve
being obtained. Therefore we should improve the estimation of g to have both fitness and smoothness. Wood [36]
proposed thin plate regression splines, which is the penalized least squares method with an integral of the square
of the mth derivative of S(z). Although his method is useful, it can only be applied to mean regression. We
want to construct an efficient estimator that works even with for quantile regression. In general, we consider
M -estimation including mean, quantile and general robust regression. We propose a new estimation method
using the sufficient dimension reduction (SDR) method.

Before describing the proposed method, we now briefly introduce the SDR method. For the response Y ∈ R

and the predictor Z ∈ R
q, consider the matrix B ∈ R

q×d(d < q) satisfying

Y ⊥⊥Z | BT Z. (1.2)

In other words, the conditional distribution of Y given Z is similar to that of Y given BT Z. Thus, the dimension
of the predictor is reduced from q to d. The matrix B satisfying (1.2) and its common space are called a dimension
reduction subspace. There are a variety of SDR methods in the literature, including sliced inverse regression [26],
sliced average variance estimation [6], minimum average variance estimation [38], directional regression [27] and
related methods by several other authors. The SDR method for partial linear models has also been developed
by Chiaromonte et al. [5], Wang et al. [35] and Feng et al. [12]. The partial dimension reduction subspace is
defined as the matrix B such that

Y ⊥⊥Z | X, BT Z (1.3)

and its common spaces. Roughly speaking, the partial linear model combined with the SDR method is given as

Y = XT β + g(BT Z) + ε.

When the number of rows of B is d = 1, the model can be regarded as a partial linear single index model.
For this case, Carroll et al. [2], Yu and Ruppert [39], Xia and Härdle [37] and Ding et al. [8] studied the
estimation methods and properties of mean regression. Wang et al. [35] proposed the SDR method for partial
linear single index models. However to find B satisfying (1.3) for d = 1 or greater, the nonparametric regression
with response X and predictor Z is needed. Therefore when the dimension of X is larger than 2, the estimation
becomes complicated. This motivates us to apply the SDR method (1.2) (but not (1.3)) to the nonlinear
component of the partial linear models.

Our idea is simple and our proposed method is based on alternating estimation. If β is know in (1.1), then
the problem is reduced to the nonlinear regression between Y − XT β and g(Z). Together with radial basis
functions, we consider the matrix Θ ∈ R

K×d(d < K) satisfying

Y − XT β⊥⊥φ(Z) | ΘT φ(Z).



PARTIALLY LINEAR ESTIMATION USING SUFFICIENT DIMENSION REDUCTION 3

Using this Θ, (1.1) is modified to
Y − XT β = h(ΘT φ(Z)) + ε,

where h is redefined as the function from R
d to R. Since ΘT φ(Z) is the linear transformation of the nonlinear

predictor, we expect to estimate g well even if h has a simple form. Actually, in this paper, h is assumed to be
the linear model h(x1, . . . , xd) = w1x1 + . . .+wdxd, where w1, . . . , wd are unknown parameters. In practice, the
pilot estimator of β is needed to estimate Θ. Therefore by first using an initial β0, we estimate Θ and g. Then,
β is estimated via multiple linear regression with Y − ĝ versus X, where ĝ is the estimator of g obtained in the
previous step. Thus, the alternating estimation is proceed. To find and estimate Θ, an existing method can be
used. In our paper, a comparison with the SDR method is not discussed and we mainly use the sliced inverse
regression (SIR). The proposed method can be applied to mean regression, quantile regression and general
robust regression. Futher, it can also be applied it to composite quantile regression [42]). A composite quantile
regression (CQR) assumes that there exist common covariate effects in a range of quantiles such that the quantile
levels only differ in terms of the intercept. Zou and Yuan [42] showed that the relative efficiency of the CQR
is 70% greater than that of the least squares estimators. Furthermore CQR performs well even if the error
distribution is non-normal. These efficient properties of the CQR motivate us to develop the proposed method
for CQR.

The remainder of this paper is organized as follows. In Section 2, we elaborate on the new estimation method
for partial linear models. We then use the general convex loss function and hence construct the estimator based
on the literature of robust regression literature. The estimation is based on alternation. Section 3 investigates
the

√
n-consistency and asymptotic normality of the estimator. Section 4 describes an example of the regression

problem to which the proposed method is applicable. In Section 5, we report the results of a simulation study
and provide an application to real data. Discussion and future study are given in Section 6. Proofs of the main
theorem of this paper are in the Appendix.

2. Estimation

We suppose that an independent and identically distributed (i.i.d.) random sample {(Yi, Xi, Zi) : i =
1, . . . , n} of (Y, X, Z) is modeled by a partial linear model

Yi = μ + XT
i β + g(Zi) + εi, (2.1)

where Y is an one dimensional response, X ∈ R
p and Z ∈ R

q are predictor, β = (β1, . . . , βp)T is an unknown
parameter vector, g : R

q → R is an unknown function and εi is the error and is assumed to be independent of
(X , Z).

Then, we assume the function g can be written by radial basis function models as follows

g(z) = g(φ(z)) =
K∑

k=1

ukφk(z) = uT φ(z), (2.2)

where μ is an unknown intercept parameter, u = (u1, . . . , uK)T ∈ R
K is an unknown vector, φ(z) =

(φ1(z), . . . , φK(z))T , φk(z) = φ(||z − κk||) and κ1, . . . , κK ∈ R
q are q-dimensional fixed knots. Here for any

vector a, ||a|| =
√

aT a. Although several φ can be considered, we use the thin plate spline basis, which is of
the form

φk(z) = φ(||z − κk||) =
{ ||z − κk||2m−q, q odd,
||z − κk||2m−q log ||z − κk||, q even,

where m is an integer satisfying 2m − q > 0 that controls the smoothness of φ.
Applying this, (2.1) can be written as

Yi = μ + XT
i β + uT φ(Zi) + εi.
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We wish is to estimate (β, u) in the context of general robust methods. Using the objective function ρ : R → R,
the ordinary estimator (μ̃, β̃, ũ) of (μ, β, u) is defined as

(μ̃, β̃, ũ) = argmin
μ,β,u

{
n∑

i=1

ρ(Yi − (μ + XT
i β + uT φ(Zi)))

}
. (2.3)

However in this method, the estimator g̃(z) = ũT φ(z) of g is not suitable for prediction since g̃ will have a
wiggly curve with large K. Furthermore the controlling the number and location of the knots is a very serious
problem. Wood [36] proposed the penalized least squares method, but this method is only useful for mean
regression.

To improve this issue, we propose to obtain an estimator of (β, u) with fitness and smoothness. We apply the
SDR method to the nonlinear term g. Let F (y −βT x|Z) be the conditional distribution of Y −βT X given Z.
We then consider the equation

F (y − βT x|φ(Z)) = F (y − βT x|ΘT φ(Z)), (2.4)

where Θ is a K × d matrix. Suppose there exists Θ such that (2.4) is satisfied. Then (2.1) can be written as

Yi − XT
i β = μ + h(ΘT φ(Zi)) + εi,

where h : R
d → R satisfies

h(ΘT φ(Z)) = h(θT
1 φ(Z), . . . , θT

d φ(Z)),

with Θ = [θ1, . . . , θd] and θj ∈ R
K , j = 1, . . . , d. Furthermore we assume that

h(x1, . . . , xd) =
d∑

j=1

wjxj ,

where w = (w1, . . . , wd)T is an unknown parameter vector. We note that the function h is reduced to (2.2)
when d = K. In other words, the proposed method becomes similar to (2.3). Therefore we generally consider
d � K. We rewrite Θ = [θ1, . . . , θd]

Let Ξ = {Θ ∈ R
K×d|F (y − xT β|φ(Z)) = F (y − xT β|ΘT φ(Z))} Then the parameters are estimated via

min
μ,β,w

n∑
i=1

ρ
(
Yi − μ − βT Xi − wT ΘT φ(Zi)

)
subject to Θ ∈ Ξ. (2.5)

However the optimization of the solution of (2.5) is difficult and hence the estimation is based on mutual
iteration. If β is known, then the model is

Yi − βT Xi = μ + wT ΘT φ(Zi) + εi.

and we can then estimate Θ by the SDR method and (μ, w) by minimizing the loss function ρ. On the other
hand, β can be estimated via the ordinary parametric method when Θ and (μ, w) are known. Thus, we estimate
the parameters in accordance with the model at each stage. The algorithm is that for a given initial β(0) and
t = 1, 2, . . ., we iterate

Θ(t) = Applying the SDR method to {(Yi − βT
(t−1)Xi, φ(Zi)) : i = 1, . . . , n},

(μ(t), w(t)) = argmin
μ,w

{
n∑

i=1

ρ(Yi − μ̂ − βT
(t−1)X i − wT (ΘT

(t)φ(Zi)))T )

}
,

β(t) = argmin
β

{
n∑

i=1

ρ(Yi − μ(t) − βT Xi − μ(t) − wT
(t)Θ

T
(t)φ(Zi))

}
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until (β(t), μ(t), w(t), Θ(t)) converges. For the SDR method, sliced inverse regression (SIR), sliced average vari-
ance estimation (SAVE), minimum average variance estimation (MAVE) and others can be used.

Remark 2.1. We assume that the joint distribution of (Yi, Xi, Zi) and (Yj , Xj , Zj) are independent and
same. This i.i.d. setting is needed to use the SDR method in the estimation of the nonlinear component. In
the estimation of the parametric component, this i.i.d. assumption would be relaxed. However for this, the
additional discussion is needed and this beyond the scope of this paper.

Remark 2.2. In our method, (μ, β, w) and Θ are estimated separately. It is known that for such alternating
method, there is the uncertainty of the estimator in estimation of Θ is not incorporated in the estimation of
(μ, β, w) and vice versa. From this, it is possible to encounter the problem that the estimation may be bias or
the standard error of the estimators of (μ, β, w) or Θ may be under-estimated. Therefore additional step to
incorporate the estimation uncertainty in the first step is desired but it may be difficult since the relationship
between Θ and β is nonlinear. On the other hand, we expect that the approximation of bias and variance of the
estimator can be calculated using bootstrap method. However in each replication of bootstrap, the dimension d
of Θ is different and hence this should be adjusted appropriately. Thus the problem of the estimation uncertainty
of the proposed method is important but this is posited as future study in this paper.

Remark 2.3. The intercept μ should be included in the nonlinear component g but not the parametric com-
ponent. Otherwise, the nonlinear smoothing Yi − XT

i β(t) versus {Θ(t)}T φ(Zi) is not able to work well.

Remark 2.4. The algorithm is stopped when ||β(t) − β(t−1)||∞ < δ for some constant δ, where || · ||∞ is the
maximum norm. In Section 5, we set δ = 10−6. On the other hand, it is sufficient that the iteration number
of the estimation is low when a fixed d and a good initial estimate β(0) are used. In fact, β̂ in (2.3) works
reasonably well, in contrast to the nonlinear component. In the numerical study in Section 5, we see that a
low iteration number leads to good performance although it is not further discussed in this paper since the
discussion of the optimal iteration time is beyond its scope.

Remark 2.5. If a different d is used in each iteration, one should determine that the stopping rule of the
iteration depends only on β. In this case, the convergence of w may be pointless since the dimension of w is
different in each iteration. Incidentally, several techniques to determine d have been proposed. In particular, Zhu
et al. [41] proposed an elegant method using a so-called Bayesian information criterion (BIC). Their method is
also useful in our models (see Sect. 5).

Remark 2.6. One of related technique to our method is that the single index models (SIM). In SIM, the linear
transformation of the predictor vector is considered. Then the dimension of the predictor is reduced to one
dimension and the nonparametric smoothing is applied to the scalar response and the transformed predictor.
On the other hand, the proposed method considers the linear transformation of the nonlinear function of the
predictor. Next the multiple linear regression method is applied. The disadvantage of SIM is that the transformed
predictor is always one dimension and hence the loss of information may be occurred. In our method, there is
no such restriction. Not that the second step estimation becomes complicated since we use the multiple linear
regression. Thus, our method is easy to use. In Section 5, we compare the proposed method with SIM and other
existing methods.

3. Theoretical result

In this section, theoretical properties of the proposed method are studied. In particular, the
√

n−consistency
and asymptotic normality of (β(t), μ(t), w(t), Θ(t)) are derived. The estimators β(t) and μ(t), w(t) are obtained
by minimizing the loss function. However, the estimating system of Θ(t) is different from minimizing ρ. First,
we consider the consistency of Θ(t) although it has already been shown to be consistent for SIR (see, [26]). Next
the asymptotic normality of (β(t), μ(t), w(t)) is derived.
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For simplicity, for any function U , we write E[U(Y, x, z)] ≡ E[U(Y, X, Z)|X = x, Z = z]. Furthermore when
U is a vector, Cov[U(Y, x, z)] is the covariance matrix of U . We define the true parameters β, μ, w, Θ. Note that
Θ is concerned with SIR. We define the dimension reduction subspace Θ = {Θ ∈ R

K×d|F (y − xT β0|φ(Z)) =
F (y − xT β0|ΘT φ(Z))}. To use SIR, let Λ = Cov[φ(Z) − E[φ(Z)]|Y − XT β0] and G = Cov[φ(Z)]. Then we
consider the eigen equation

Λθj = λjGθj , j = 1, . . . , K,

where λ1 ≥ . . . ≥ λK ≥ 0 are eigenvalues and θ1, . . . , θK are corresponding eigenvectors. We then define
Θ = [θ1, . . . , θd] for d ≤ K. The parameter β0 is not specified here although a brief discussion is presented in
Remark 8. Using the above Θ, the true (β, μ, w) is defined as the minimizer of

E[ρ(Y − μ − xT β − wT ΘT φ(z))]. (3.1)

For the asymptotic consistency of Θ(t), the following assumptions are needed.

Assumptions A.

A1. For any c ∈ R
K , E[cT φ(Z)|ΘT φ(Z)] is linear in {θT

1 φ(Z), . . . , θT
d φ(Z)}.

A2. For any s ∈ R, the function m(s) = E[φ(Z)|Y − XT β0 = s] has continuous first order differentials.
A3. The matrix G = E[{φ(Z) − E[φ(Z)]}2] is positive definite.

Assumption A1 is important because it requires the vectors {θ1, . . . , θd} to be contained in the dimension
reduction subspace. Assumptions A2 and A3 are needed to construct the

√
n-consistent estimator of Θ ∈ Θ.

Assumption B. For t-steps of iteration, β(t−1) = β0 + OP (n−1/2).

Theorem 3.1. Under the assumptions A and B, for n → ∞,

Θ(t) = Θ + OP (n−1/2)

and Θ(t) converges to an dimension reduction subspace at order
√

n.

Using Theorem 3.1, we derive the asymptotics for w(t) and β(t). Then we give some additional assumptions
for the loss function ρ. To simplify, we define r(x, z) = xT β + wT Θφ(z). Let Ψ(s) = E[ρ(Y − r(x, z) − s)],
Ψ ′(s) = dΨ(s)/ds and Ψ ′′(s) = d2Ψ(s)/ds2.

Assumptions C.

C1. Ψ(0|X) is not 0.
C2. Ψ(s), Ψ ′(s) and Ψ ′′(s) as functions of s are bounded and continuous for the neighborhood of 0.
C3. There exists γ > 0 such that for any x and z,

E[|ρ′(Y − r(x, z))|2+γ ] < ∞.

C4.
lim
s→0

1
s2

E[{ρ (Y − r(x, z) − s) − ρ (Y − r(x, z)) − ρ′ (Y − r(x, z)) s}2] = 0.

Assumptions C are important for the asymptotic theory of robust regression (see, [11, 13]) To show the
asymptotic normality of w(t) and β(t), we present some new notation. For the function ν of Y , let Σx(ν) =
Cov[

√
E[ν(Y )|X, Z]X] and let Σφ(ν) be the covariance matrix of

√
E[ν(Y )|X , Z][1 {Θφ(Z)}T ]T .

Theorem 3.2. Under the Assumptions A, B and C, as n → ∞,

√
n

[
μ(t) − μ
w(t) − w

]
D−→ N(0, Σφ(ρ′′)−1Σφ({ρ′}2)Σφ(ρ′′)−1),

√
n(β(t) − β) D−→ N(0, Σx(ρ′′)−1Σx({ρ′}2)Σx(ρ′′)−1).
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We describe the additional discussion about the proposed estimator. From SDR method, the regression model
can be expressed as

E[Y − βT X|ΘT φ(Z)] = μ + h(ΘT φ(Z)) = μ + wT ΘT φ(Z)

under Assumption A1 and the following Remark 3.6. If the dimension d equals K, the K-vector w can be
replaced to w = ΘT (ΘΘT )−1u for u ∈ R

K . Thus, the nonlinear regression model is reduced to h(ΘT φ(Z)) =
uT φ(Z) = g(Z). Therefore the proposed estimator with d = K is similar to the ordinary estimator g̃(z)
and this tends to have an overfitting curve. It is generally known that the complicated model becomes more
overfitting. To decrease the overfitting of the estimator, it is good to reduce the number of adjustable parameter,
i.e, the dimension of w. Therefore when d < K is used, the proposed estimator has smooth curve rather than
the ordinary estimator. In other words, the overfitting curve has a large variance. Consequently, the proposed
method can be regarded as the variance reduction method.

Remark 3.3. In this section, we showed the asymptotic results of the estimator under the assumption that
the true nonparametric function g(z) is equivalent to the radial basis function basis model S(z). I other words,
we assume that the model bias between g(z) and S(z) is 0. It seems that deriving the model bias is unsolved
problem and is challenging. Thus, it is posited as future work.

Remark 3.4. The definition of β0 is important for obtaining Theorem 3.1. In practice, Assumption B is natural
although it may seems very strong. For the initial estimates β(0), we can use (2.3). Although Assumptions C
are necessary, β(0) then converges to β0, which is the minimizer of E[ρ(Y − xT β − uT φ(z))]. In other words,
the initial estimator β(0) is already consistent estimator of β0. For this β0, Theorems 3.1 and 3.2 are satisfied.
Next for t = 1, 2, . . ., β0 is defined as the minimizer of (3.1). Thus, in each iteration, β0 can be defined so that
it satisfies Assumption B.

Remark 3.5. We use SIR as the SDR method in this paper. On the other hand, we could have used SAVE,
MAVE or other SDR method. However SAVE does not have

√
n-consistency unless there is the additional

assumption of the so-called constant variance condition (see [29]) and a bias correction is performed. When d = 1,
the MAVE has

√
n-consistency. However when d > 1, there is no result related to the MAVE. Particularly for

d ≥ 3, MAVE needs further study. Although the principle Hessian direction [26] has
√

n-consistency, it is useful
only for mean regression and is not suitable for quantile regression. Thus from the viewpoint of

√
n-consistent

estimates and utilizing quantile regression, we use SIR.

Remark 3.6. Assumption A1 is needed in order to SAVE is included in the dimension reduction subspace.
In real data analysis, it is very difficult to decide whether φ(Z) satisfies Assumption A1. However, if the
distribution of φ(Z) is elliptically symmetric, then this condition is guaranteed (see, [7]). Furthermore Diaconis
and Freedman [7] showed that all low-dimensional projections of high-dimensional data are approximately
normal. In our setting, we should choose a large K to capture the smooth function g. In fact we set K = 81 in
the simulation study in Section 5. In this sense, it appears that φ(Z) satisfies Assumption A1 naturally.

4. Example

The proposed method depends on the functional form of the loss function ρ. We describe some examples in
this section.

4.1. Mean regression

When ρ(u) = u2 is used, our purpose is to obtain the estimator of the conditional mean function of Y given
(X , Z). Then we assume that ε in (2.1) has mean 0 and variance σ2 < ∞. In this case, the exact form of the
estimator β(t) and w(t) can be obtained and can be expressed as

(μ(t), w
T
(t))

T = (ΘT
(t)Φ

T (I − Px)ΦΘ(t))−1ΘT
(t)Φ

T (I − Px)y,

β(t) = (XT (I − Pz(t))X)−1XT (I − Pz(t))y,
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where y = (y1, . . . , yn)T , X = (x1, . . . , xn)T , Φ = (1n, φ(z1), . . . , φ(zn))T , Px = X(XT X)−1XT and Pz(t) =

ΦΘ(t)

(
ΘT

(t)Φ
T ΦΘ(t)

)−1

ΘT
(t)Φ

T .

In Theorem 3.2, we observe that Σφ(ρ′′) = Σφ(1) and Σφ({ρ′}2) = σ2Σφ(1), where σ2 = V [Y |X , Z]. Thus,
the asymptotic variance of [μ(t), w

T
(t)]

T is reduced to σ2Σφ(1)−1. Similarly, the covariance matrix of β(t) becomes
σ2Σφ(1)−1.

4.2. Quantile regression

Quantile regression estimates the conditional 100τ% quantile of the conditional Y given X and Z:

μ(τ) + β(τ)T x + w(τ)T ΘT φ(z), τ ∈ (0, 1).

To estimate μ(τ), β(τ), w(τ), we use ρ(u) = ρτ (u) = (τ − I(u < 0))u, which is a so called check function
(see [22]). Quantile regression can be more efficient than mean regression when the variance of Y is large (or ∞)
and an outlier is included in the dataset. Since the exact form of the coefficients can not be written, the minimizer
of ρτ can be calculated using a linear programming algorithm. Several optimizing methods and related packages
have been developed in statistical software R by many authors.

In Theorem 3.2, we obtain Σφ(ρ′′) = Σφ(1)/fε(bτ ) and Σφ({ρ′}2) = τ(1 − τ)Σφ(1), where fε is the density
of ε and bτ is the 100τ% percentile of ε. Therefore the asymptotic variance of [μ(t), w

T
(t)]

T can be written as
(τ(1 − τ)/fε(bτ ))Σφ(1)−1. By similar arguments, the covariance matrix of β(t) is (τ(1 − τ)/fε(bτ ))Σφ(1)−1.

4.3. Composite quantile regression

Composite quantile regression (CQR) as proposed by Zou and Yuan [42] has good asymptotic efficiency
properties compared with least squares in mean regression. The benefit of CQR is that the coefficients of the
predictor are the same across different quantile levels. The features of the differences between each quantile
level are observed from slope. Let 0 < τ1 < . . . < τL < 1 be τ� = �/(1 + L)(� = 1, . . . , L). Then the estimation
algorithm for w and β are as follows:

(μ1,(t), . . . , μL,(t), w(t))

= argmin
μ1,...,μL,w

{
L∑

�=1

n∑
i=1

ρτ�
(Yi − μ� − βT

(t−1)Xi − wT ΘT
(t)φ(Zi)))

}
,

(b1,(t), . . . , bL,(t), β)

= argmin
b1,...,bL,β

{
L∑

�=1

n∑
i=1

ρτ�
(Yi − b� − βT Xi − wT

(t)Θ
T
(t)φ(Zi)))

}
,

where μ� is the conditional 100τ�% percentile of Y −xT β given Z and b(�) is the conditional 100τ�% percentile
of Y − wT ΘT φ(z) given X . The estimation of Θ is not changed. Then we define ĝ(z) = μ(t) + wT

(t)Θ
T
(t)φ(z),

where μ(t) = (1/L)
∑L

�=1 μ�,(t). However this μ(t) is not suitable when ε does not have symmetric density. In
the Monte Carlo simulation of Section 5.1, since we assume that ε has symmetric density, the performance of
our method for CQR is evaluated. However in the data example of Section 5.2, this ε’s assumption is uncertain.
Therefore we will not use CQR in our example and its improvement is beyond the scope of this paper.

In terms of optimization methods, the MM algorithm proposed by Hunter and Lange [19] is empirically
efficient. Although this MM algorithm is for quantile regression, it can easily be extended to CQR.

From the proof of Theorem 2.1 of Zou and Yuan [42], we obtain

E[{ρ′(Y − h(x, z))}2|X, Z] =
K∑

k,�=1

min(τk, τ�)(1 − max(τk, τ�))
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and E[ρ′′(Y − h(x, z))|X , Z] = 1/
∑K

k=1 fε(μk). The asymptotic variance of [μ(t), w
T
(t)]

T and β(t) can be ex-

pressed as B(τ)Σφ(1)−1 and B(τ)Σx(1)−1, where B(τ) =
∑L

k,�=1 min(τk, τ�)(1 − max(τk, τ�))/(
∑L

k=1 fε(μk))2.

4.4. M-type robust regression

One robust estimation method is M -type robust regression. In M -type robust regression, we use the Huber
loss function

ρc(u) =
{

u2, |u| ≤ c,
2c|u| − c2, |u| > c.

,

where c > 0 is the cutoff constant. If c is too large, then ρc approaches ρ(u) = u2. Note that M -type robust
regression is similar to the mean regression. On the other hand, when c is very small, M -type robust regression
approximately equals the median regression, which is the quantile regression with τ = 0.5. Thus the estimator
from the M -type robust regression lies between the mean curve and the median curve. In fact, M -type robust
regression is regarded as mean regression mitigated by the influence of outliers. In Section 5, we confirm the
performance of the proposed method for mean, quantile and composite quantile regression but not M -type
robust regression. However as mentioned above, the performance of M -type robust regression is similar to or
between the performances of the mean regression and the median regression. The computation is detailed by
Lee and Oh [25].

5. Numerical study

In this section, the dimension of the nonparametric component is fixed as q = 2. Hence the surface regression
is explored numerically. We use φk(z) = ||z − κk||2 log ||z − κk||2 as the radial basis function.

5.1. Simulation

We demonstrate the performance of our approach via a Monte Carlo simulation. In this simulation, we
consider mean regression, quantile regression and CQR. We use z = (z1, z2)T in the nonparametric function g
as follows:

g(z) =
0.75

πσ1σ2
exp[−(z1 − 0.2)2/σ2

1 − (z2 − 0.3)2/σ2
2 ]

+
0.45

πσ1σ2
exp[−(z1 − 0.7)2/σ2

1 − (z2 − 0.8)2/σ2
2 ],

where σ1 = 0.3 and σ2 = 0.4. Note that this surface function g was used by Wood [36]. The responses yi are
generated from the regression model

yi = xT
i β + g(zi) + εi, i = 1, . . . , n,

where β = (1, 2,−3) and zi1, zi2 are independently generated from the uniform distribution on the interval [0, 1].
For the predictor of the parametric components, we consider (i) xi = (xi1, xi2, xi3)T independently generated
from N(0, diag[1, 22, 0.52]), (ii) xi1 ∼ B(1, 1/2), xi2 ∼ B(1, 1/3) and xi3 ∼ B(1, 1/4), and (iii) xi1 ∼ N(0, 1),
xi2 ∼ B(1, 1/2) and xi3 ∼ B(1, 1/3). For the distribution of the error, we consider (i) the standard normal
distribution, (ii) the t-distribution with 3 degrees of freedom (df) and (iii) the so-called slash distribution
N(0, 1)/U(0, 1). In the mean regression, the predictors (i), (ii), (iii) and the error (i) are simulated. In the
quantile regression and the CQR, the predictor (i) and the errors (i), (ii) and (iii) are applied. Two sample sizes
n = 200 and n = 1000, and R = 1000 replications were used.

We estimate β and g via the proposed method. For the number and location of knots included in the thin
plate spline function model, 9 equidistant knots were used for the z1-axis and z2-axis, leading to a total number
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Table 1. MSE of the estimator of β̂1, β̂2, β̂3 and the MISE of ĝ(z1, z2) in each setting for
mean regression. All entries for MSE and MISE are 102 times their actual values for ease of
presentation.

d BIC d = 1 d = 10 d = K PLAM SIM BKS
Design n 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

Normal

β1 0.601 0.092 0.651 0.107 0.716 0.108 0.801 0.105 0.642 0.121 0.623 0.094 0.652 0.124
β2 0.131 0.021 0.134 0.028 0.138 0.027 0.330 0.124 0.151 0.041 0.154 0.052 0.161 0.042
β3 0.212 0.038 0.210 0.038 0.243 0.058 0.249 0.177 0.251 0.044 0.213 0.051 0.304 0.062

g(z) 4.125 0.837 4.290 0.915 5.028 0.805 9.275 5.371 4.521 0.934 4.631 1.035 4.821 1.241

Binary

β1 2.475 0.328 2.535 0.368 2.723 0.373 2.795 0.884 2.534 0.372 2.571 0.412 2.715 0.531
β2 2.127 0.327 2.337 0.455 2.493 0.458 2.486 1.049 2.342 0.516 2.421 0.503 2.631 0.652
β3 2.781 0.327 2.938 0.494 2.996 0.495 3.067 0.754 3.151 0.618 3.212 0.601 3.313 0.526

g(z) 34.46 3.845 39.74 4.172 74.86 9.586 74.67 24.12 37.24 4.232 39.41 4.622 43.24 4.631

Hybrid

β1 0.434 0.083 0.714 0.106 0.736 0.106 0.720 0.124 0.721 0.124 0.731 0.141 0.772 0.184
β2 2.359 0.436 3.179 0.448 2.625 0.458 2.466 0.456 3.199 0.447 3.192 0.460 3.214 0.561
β3 3.152 0.146 3.423 0.498 3.125 0.496 3.185 0.492 3.455 0.502 3.472 0.523 3.642 0.634

g(z) 27.62 2.491 30.28 4.111 53.55 13.59 73.90 51.13 28.18 4.311 30.51 4.032 33.18 4.721

of knots K = 81. For the SDR method, we used SIR proposed by Li [26]. The dimension d of the SIR was fixed
at d = 1, d = 10 and d = K = 81, and selected via BIC. The BIC for SIR was studied by Li and Yin [28]. We
note that when d = K is used, the estimator was reduced to that obtained via the ordinary method (2.3). The
performance of β̂ and ĝ were evaluated using the mean squares error (MSE) and the mean integrated squares
error (MISE) with 1000 replications, respectively. The MISE of ĝ(z1, z2) was estimated by

MISE =
1

1000

1000∑
r=1

1
N

N∑
i=1

{ĝr(z∗i1, z
∗
i2) − g(z∗i1, z

∗
i2)}2,

where ĝr is the estimator of g for the r-th repetition and {(z∗i1, z∗i2) : i = 1, . . . , N} is the N = 50 × 50 regular
grid on the unit square. For comparison, we calculate the MSE and the MISE of the estimators with following
three existing approaches: (i) partial linear additive model (see [30]), (ii) single index model (see [20]) and (iii)
the bivariate kernel smoothing method (see [40]). In the partial linear additive model (PLAM), we use the cubic
B-spline method with 5 equidistant knots to estimate the univariate regression function. For the single index
model (SIM) and the bivariate kernel smoothing (BKS), we use the Epanechnikov kernel and the bandwidth
selected by the generalized cross-validation.

In Table 1, the simulation result for mean regression is illustrated. In each setting, the performance of β̂ and ĝ
improved when the sample size increased. This indicates that the estimator has consistency. In the nonlinear
component, the proposed estimators with d = 1 performed better rather than those with large d in all settings of
the design. Thus the efficiency of the proposed method is observed. On the other hand, we see that the behavior
of the estimator in the parametric component is almost similar with regard to the dimension d.

The results for the quantile regression with τ = 0.5, 0.75 and 0.9 are reported in Table 2. First for all τ and
error, the asymptotic consistency of the estimator can be observed. Overall, the estimator with small d behaved
better than that with the ordinary method (d = K). It appears from the results that the BIC is able to select
the appropriate d. The performance of the estimator with normal error is better than that with t3 or the error
of the slash distribution although it is obvious. However even if the error is distributed on a slash distribution
that has a heavy tail, the MSE and the MISE are not large when n = 1000. This indicates that the robustness
of the quantile estimation is maintained for the proposed method.

Table 3 reports the performance of the CQR estimates. For quantile points, we use τ� = �/(1+L)(� = 1, . . . , L)
with L = 19. However the estimations of β and w are not sensitive to the number of quantiles L. In all errors,
the proposed estimator has good behavior and the MSE of β̂ is the same as that in quantile regression. In this
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Table 2. MSE of the estimator of β̂1, β̂2, β̂3 and the MISE of ĝ(z1, z2) in each setting for
quantile regression for τ = 0.5, 0.75 and 0.9. All entries for MSE and MISE are 102 times their
actual values for ease of presentation.

50% quantile (τ = 0.5)

d BIC d = 1 d = 10 d = K PLAM SIM BKS

Error n 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

Normal

β1 0.823 0.168 0.888 0.189 0.922 0.184 0.899 0.187 0.912 0.191 0.931 0.202 1.002 0.252

β2 0.202 0.043 0.219 0.041 0.201 0.040 0.229 0.040 0.220 0.043 0.231 0.051 0.272 0.082

β3 1.426 0.425 1.775 0.144 1.603 0.295 3.908 0.676 3.213 0.315 3.521 0.414 4.266 0.471

g(z) 5.237 0.313 5.948 0.353 8.690 0.743 10.49 7.024 6.012 0.413 6.371 0.512 7.032 0.421

t3

β1 1.236 0.202 1.376 0.221 1.457 0.226 1.180 0.803 1.412 0.214 1.468 0.242 1.641 0.622

β2 0.221 0.072 0.230 0.056 0.358 0.050 0.248 0.142 0.232 0.055 0.241 0.059 0.251 0.073

β3 4.324 0.846 5.064 0.986 5.116 0.913 4.883 0.997 5.021 0.821 5.142 0.933 5.624 1.256

g(z) 12.46 5.237 12.77 4.087 13.33 6.149 43.57 10.48 12.51 4.125 13.25 4.512 14.14 5.882

Slash

β1 3.462 0.641 3.830 0.720 5.814 0.691 2.951 0.844 3.931 0.731 4.124 0.851 4.316 0.931

β2 1.245 0.151 1.347 0.187 1.726 0.207 2.902 2.171 1.521 0.312 1.631 0.212 1.522 0.221

β3 5.731 3.042 6.118 3.148 7.896 2.740 16.08 4.012 6.421 3.422 6.755 3.432 7.121 4.243

g(z) 54.26 12.33 52.36 15.73 70.08 22.01 121.7 76.26 51.26 14.92 55.21 16.23 61.26 17.23

75% quantile (τ = 0.75)

d BIC d = 1 d = 10 d = K PLAM SIM BKS

Error n 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

Normal

β1 0.433 0.125 0.833 0.177 0.985 0.162 1.096 0.194 0.842 0.181 0.862 0.211 0.943 0.234

β2 0.215 0.043 0.259 0.045 0.502 0.045 0.891 0.048 0.262 0.051 0.272 0.064 0.291 0.072

β3 3.416 0.921 4.689 0.810 4.156 0.845 6.607 2.903 4.839 0.851 4.719 0.872 4.812 0.893

g(z) 11.25 3.315 12.45 3.745 23.67 9.254 33.74 27.64 12.12 3.124 12.65 3.535 13.62 3.826

t3

β1 1.426 0.261 1.571 0.339 1.591 0.319 1.821 0.346 1.633 0.461 1.722 0.372 1.928 0.511

β2 0.328 0.048 0.418 0.054 0.401 0.048 0.444 0.078 0.472 0.052 0.491 0.062 0.511 0.093

β3 7.127 1.128 7.333 1.263 8.073 1.092 7.576 1.319 7.812 1.621 7.925 1.521 7.762 1.427

g(z) 26.35 5.856 22.95 5.864 45.52 9.452 89.84 40.64 23.21 6.114 26.21 6.241 31.25 8.844

Slash

β1 4.352 1.572 4.847 1.950 11.32 1.762 10.99 1.847 4.731 1.724 4.812 1.911 4.931 2.021

β2 1.524 0.225 1.822 0.386 2.356 0.378 2.064 0.329 1.732 0.321 1.841 0.341 2.132 0.501

β3 7.272 6.355 9.431 6.019 48.41 5.960 42.50 6.324 8.622 6.429 9.421 6.739 10.33 6.831

g(z) 54.52 9.456 62.72 10.56 71.61 10.29 118.1 42.61 56.22 10.14 59.32 11.01 61.24 12.31

90% quantile (τ = 0.9)

d BIC d = 1 d = 10 d = K PLAM SIM BKS

Error n 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

Normal

β1 1.124 0.226 1.264 0.254 1.452 0.263 1.978 0.375 1.421 0.323 1.531 0.272 1.835 0.315

β2 0.420 0.072 0.410 0.074 0.406 0.070 0.463 0.067 0.461 0.081 0.512 0.092 0.511 0.102

β3 7.124 1.124 7.366 1.084 5.308 1.016 6.632 1.310 7.521 1.126 7.941 1.721 8.216 1.831

g(z) 22.15 7.835 22.32 7.365 35.01 9.649 74.63 26.10 22.21 7.215 23.57 7.622 27.47 7.821

t3

β1 4.413 0.410 4.270 0.380 3.477 0.415 4.598 1.036 4.312 0.512 4.824 0.413 4.952 0.481

β2 0.837 0.126 0.957 0.188 1.110 0.191 1.209 0.198 0.962 0.184 0.972 0.202 1.127 0.341

β3 4.372 0.716 6.822 0.956 9.045 3.205 10.28 4.127 6.214 0.834 6.321 0.912 7.102 1.026

g(z) 53.29 7.312 59.09 7.732 74.31 12.32 86.26 47.69 54.21 7.632 59.23 7.763 60.33 8.252

Slash

β1 26.29 5.137 28.09 5.414 21.66 3.887 30.33 6.855 26.32 5.244 27.21 5.354 28.12 5.834

β2 11.24 3.231 12.84 3.302 5.702 2.740 7.048 3.705 12.52 3.235 12.86 3.438 13.23 3.464

β3 20.32 4.316 22.72 5.177 24.49 4.097 60.73 8.380 21.24 5.037 22.34 5.312 23.42 5.325

g(z) 112.3 16.34 122.2 18.04 190.5 46.43 547.2 101.04 114.3 17.34 121.4 19.24 129.3 21.24
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Table 3. MSE of the estimator of β̂1, β̂2, β̂3 and the MISE of ĝ(z1, z2) in each setting for CQR.
All entries for MSE and MISE are 102 times their actual values for ease of presentation.

d BIC d = 1 d = 10 d = K PLAM SIM BKS
Error n 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

Normal

β1 0.868 0.135 1.128 0.115 1.653 0.071 1.675 7.719 1.012 0.121 1.112 0.141 1.522 0.151
β2 0.053 0.014 0.077 0.010 0.219 0.011 0.226 0.998 0.062 0.011 0.071 0.012 0.082 0.041
β3 1.035 0.243 1.190 0.233 1.772 0.247 1.327 0.240 1.120 0.242 1.314 0.312 1.621 0.416

g(z) 3.156 0.217 4.412 0.368 9.942 0.551 16.56 3.816 4.123 0.371 4.236 0.331 4.824 0.421

t3

β1 1.373 0.164 1.653 0.234 2.083 0.314 1.238 0.319 1.427 0.312 1.726 0.371 1.682 0.421
β2 0.336 0.013 0.367 0.068 0.849 0.056 0.516 0.066 0.363 0.062 0.366 0.072 0.384 0.082
β3 2.924 0.525 2.854 0.604 3.782 0.795 4.001 0.762 3.234 0.621 3.123 0.671 3.314 0.701

g(z) 5.626 0.669 6.746 0.762 12.54 1.424 33.46 13.39 6.126 0.741 6.464 0.785 7.216 0.837

Slash

β1 23.42 5.813 20.22 5.749 17.78 6.854 4.425 7.101 20.12 5.712 22.16 5.813 24.31 5.931
β2 1.328 0.324 1.994 0.391 2.911 0.463 10.07 0.583 2.013 0.413 2.192 0.492 2.424 0.512
β3 14.27 3.451 15.87 3.607 16.62 3.754 82.49 4.546 15.23 3.712 16.25 3.712 16.81 3.821

g(z) 42.46 13.26 58.76 20.20 97.67 28.26 165.0 81.52 48.72 14.53 53.21 19.34 59.32 20.64

case, we also confirmed the consistency of the estimator. Overall, the performance of CQR is better than that
of mean regression. Thus, we confirmed the efficiency of CQR as Zou and Yuan [42] had reported.

For the mean regression,the quantile regression and the CQR case, we see that the proposed estimator
with d selected by BIC have good performance compared with PLAM, SIM and BKS. In the PLAM, the
interaction structure of the function of covariate can not be captured. SIM is useful method to dimension
reduction in practice. However in generally, the loss of information may be occurred since q-dimensional predictor
is compulsory transformed to 1 dimension. The bivariate kernel method is traditional nonparametric smoothing
technique but the computational cost of the bandwidth selection grows when q ≥ 2. Thus, the proposed method
covers the disadvantages of the above methods. Although we can not compare the proposed method with the
above and other existing nonparametric/nonlinear methods directly, we could found that the proposed method
is one of efficient methods in some settings.

When a BIC is used to select d, the MISE of ĝ improved in comparison with the fixed d. Thus the selection
of d is important. On the other hand the performance with a BIC is quite similar to that with d = 1. Thus, it
appears that BIC selected a small d, indicating that the SDR method controls the fitness and smoothness.

The mean regression with error t3 and a slash distribution are not effective. Thus the simulations in these
case have not been performed. Quantile regression and CQR with designs (ii) and (iii) were however explored.
Although the results are not reported owing to lack of space, the estimators behaved well.

5.2. Data example: Boston housing data

We now apply the proposed method to Boston housing data, which was originally analyzed by Harrison and
Rubinfeld [15]. The data consists of 14 variables (including a binary feature) and 506 samples. The purpose
was to evaluate the effect of various predictor variables on housing price. For the predictors, continuous and
binary variables are included. The binary predictor is an indicator of whether the census tract bordered the
Charles Rivers. This predictor was also used by Harrison and Rubinfeld [15], Wang et al. [35] and others.
In our model, the response is taken to be the median value of owner occupied homes and the partial linear
model is assumed. The predictors x = (x1, . . . , x11) in the parametric component are x1: the crime rate by
town; x2: the percentage of the town’ residential land zoned for lots greater than 25000 square feet; x3: the
percentage of nonmetal business acres per town; x4: the indicator of whether the census tract borders the Charles
Rivers; x5: nitrogen oxide concentration in parts per hundred million (pphm); x6: the weighted distance to five
Boston employment centers from houses; x7: the percentage of owner units built prior to 1940; x8: an index of
accessibility to radial highways; x9: the full tax rate of the property; x10: the pupil-teacher ratio by town school
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Figure 1. Linear regression with partial residual yi−β̂
T
xi and transformed predictor θ̂

T

1 φ(zi).
The solid lines in the left and right panels indicate the mean estimator and the median estimator,
respectively.

Table 4. Estimators of β in the Boston Housing data. MR is the mean regression. QR is the
quantile regression and CQR is the composite quantile regression.

Method β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11

MR –0.132 0.026 –0.015 4.412 11.665 0.026 –0.145 0.084 –0.005 0.293 0.014
QR –0.156 0.021 0.002 6.325 13.701 –0.015 -0.101 0.021 –0.004 0.227 0.012

CQR –0.283 0.088 0.055 2.090 14.983 –0.060 –0.747 0.027 –0.020 0.280 0.012

district and x11: the proportion of the population that is African-American. For the nonlinear component, we
consider the surface of z = (z1, z2), where z1 is the average number of rooms in owner units and z2 is the
percentage of the population in the area having low economic status. The same z was used by Doksum and
Koo [9] for nonparametric smoothing.

We aim to investigate the relationship between the response and the various predictors using mean regression
and median regression. Although we also applied CQR to the data, the efficiency of the estimator of g is not
guaranteed since the error (the residual) does not appear to have symmetric density. Therefore we only discuss
the estimator of β in CQR. We approximate the unknown function in the nonparametric component by the
radial basis function model with the thin plate splines. The number of knots is K = 64 and the location is an
8×8 regular grid on the range of (z1, z2). For the SDR method, we use SIR with 20 data points per slice. However
it was found by Chen and Li [4] that SIR is not sensitive to the number of slices. The dimension of the SIR

is fixed at d = 1 to observe the linear regression with the projected predictor θ̂
T

1 φ(zi) and the partial residual

yi − β̂
T
xi. Although we used a BIC to select d, the results are quite similar. Table 4 shows that the estimator of

β = (β1, . . . , β11)T of the parametric component in the mean regression, median regression (quantile regression
with τ = 0.5) and CQR. The results are quite similar, but the estimators β̂3 and β̂6 in mean regression and
those in median and CQR have a different sign although the size is very small. It appears that the robustness
of quantile regression and CQR develops at difference of these sign.

We focus on the nonparametric component. In Figure 1, the dataset with partial residual yi − β̂
T
xi and

transformed predictor θ̂
T

1 φ(zi) and its linear estimators are illustrated. In each panel, the estimator can capture
the structure of the dataset. Thus, the SDR method gives a good transformation for the radial basis functions
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Figure 2. The estimator ĝ(z1, z2) of the surface g(z1, z2). The left and the right panels show
the mean regression and median regression, respectively. The dots are the location of (zi1, zi2).

even with d = 1. Compared with the mean and median estimators, the mean line is to be pulled toward the
data of the left upper area and some upper outlier points whereas the median line captures the data in a central
area.

Figure 2 illustrates the estimator of surface g(z1, z2). The left panel and the right panel are the mean and
median surface estimator, respectively. Roughly speaking, the surfaces are drawn like a plane from the contour
line. Note that both estimators have a gentle curve. Both surfaces show a rapid change at the bottom-left and
upper-right areas, where there is no data. However in an area where the data is distributed, it appears the
surface can capture the structure of the conditional mean/median. When we look at the contour line carefully
in both panels, the median surface is slightly greater than the mean surface in the same location (z1, z2). This
may indicate that the mean surface is affected by the data deviating from the population unlike the median
surface.

6. Discussion

In this work, we proposed a new estimation with the sufficient dimension reduction (SDR) method for partial
linear models. We assumed that the nonparametric component had the radial basis function models and aimed
for the surface regression. Using the SDR method for the nonparametric component, a computationally stable
and smooth curve was obtained, maintaining the performance of the estimates of the parametric component.
The proposed method is considered in robust regression. In terms of the theoretical and numerical results,
the proposed method performs well not only for mean regression but also for quantile and composite quantile
regression. Although we used sliced inverse regression (SIR) as the SDR method, other methods such as sliced
average variance estimation, minimum average variance estimation and directional regression can also be used.
However to satisfy the

√
n-consistency and its condition, SIR is easy to apply.

There are several extensions for future studies. First if the dimension of x is large, then variable selection
should be considered. To do this, the lasso [33], SCAD [10] and other methods have been developed. Direct use of
such methods leads to the practice of variable selection on x. However the smoothing parameter included in the
above method should be selected appropriately. Together with the alternating algorithm and the optimization
of quantile regression, the reduction of the computational cost should be studied. We consider this extension
the most important issue for our next step. Second, the large dimension of z is considered. In this paper, the
dimension q of z is 2 and we focused on the estimation of the nonlinear surface. For q > 3, the radial basis
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function method might not work well as the result of the curse of dimensionality. The regression with q > 3
would be interesting to explore. Finally, in our approach, the ordinary SDR method is used. In contrast, Wang
et al. [35] and Feng et al. [12] studied the partial SDR method. The partial SDR method finds a matrix Θ such
that

Y ⊥⊥Z|(X, ΘZ)

is satisfied. Thus, comparing their method and our method would be interesting. Although it is beyond the scope
of this paper, we believe that the above three and other extensions are promising topics for further research.

Appendix

The proof of Theorem 3.1 is very simple. However we briefly mention this in order to describe where the
assumptions are used.

Proof of Theorem 3.1. For simplicity, we write β̃ = β(t−1) and all new symbols are defined without using the
iteration step t. Let Λ = Cov[φ(Z)]−Cov[E[φ(Z)|Y −XT β]] and let Λ̃ = Cov[φ(Z)]−Cov[E[φ(Z)|Y −XT β̂]].
From Assumption A2 and B, we have

m(y − xT β̃) = m(y − xT β + xT (β̃ − β))
= m(y − xT β) + OP (n−1/2).

Therefore Λ̃ = Λ + OP (n−1/2) and Λ̂ converge to Λ at n−1/2 rate. From the perturbation theory (for example;
Tyler [34]), θ̂j(j = 1, . . . , d) which is the eigenvectors of Λ̂ converge to the corresponding eigenvectors of Λ. By
Assumption A1, Θ fall in the dimension reduction subspace and hence Θ̂ converge to an sufficient dimension
reduction subspace at the order n−1/2. �

Proof of Theorem 3.2. First we show that the asymptotic property of μ̂ = μ(t) and ŵ = w(t). In this proof, for
simplicity we write Θ̃ = Θ(t) and β̃ = β(t−1). By the same argument, the asymptotic consistency of β(t) can be
derived. Let Ui = Yi − xT β − μ − wT ΘT φ(zi) and Ũi = Yi − xT β̃ − μ − wT Θ̃T φ(zi) for i = 1, . . . , n, and

Qn(v, δ) =
n∑

i=1

ρ
(
Ũi − n−1/2v − n−1/2δT Θ̃T φ(zi)

)
− ρ(Ũi).

Then the minimizer of Q is obtained as [
v̂

δ̂

]
=

√
n

[
μ̂ − μ
ŵ − w

]
.

For simplicity, we define for i = 1, . . . , n,

αi(v, δ) = n−1/2v − n−1/2δT Θ̃T φ(zi).

Define

Rn(v, δ, Ũ1, . . . , Ũn) = Qn(v, δ) − E[Qn(v, δ)] −
n∑

i=1

{
ρ′(Ũi) − E[ρ(Ũi)]

}
αi(δ).

It is easy to show that E[Rn(v, δ, Ũ1, . . . , Ũn))] = 0. From

β̃ = β + oP (1), Θ̃ = Θ + oP (1) (A.1)
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and V [Rn(v, δ, U1, . . . , Un)] = o(1) by the tedious but easy calculation, we also obtain

V [Rn(v, δ, Ũ1, . . . , Ũn)] = o(1)

under the Assumption C2 and C4. Consequently, Rn(v, δ, Ũ1, . . . , Ũn) = oP (1). Therefore Qn can be written as

Qn(v, δ) = E[Qn(v, δ)] +
n∑

i=1

{ρ′(Ui) − E[ρ(Ui)]}αi(v, δ) + oP (1).

Next we use the Taylor expansion of Ψ(αi(v, δ)) and Ψ ′(αi(v, δ)) around αi(v, δ) = 0 and

Ψi(αi(v, δ)) = Ψi(0) + Ψ ′
i(0)αi(v, δ) +

1
2
Ψ ′′

i (0){αi(v, δ)}2 + oP (n−1) (A.2)

can be obtained. Since we have from (A.1) that

E[Qn(v, δ)] =
1
n

n∑
i=1

Ψi(αi(v, δ)) − Ψi(0),

and ρ′(Ũi) = ρ′(Ui) + oP (1), (A.2) yields

Qn(v, δ) =
1
2

n∑
i=1

Ψ ′′
i (0){αi(v, δ)}2 +

n∑
i=1

ρ′(Ui)αi(v, δ) + oP (1). (A.3)

Let

W n =
1√
n

n∑
i=1

ρ′(Ui)
[

1
ΘT φ(zi)

]
.

By Assumption C3 and Lyapunov’s theorem, W n converges to the normal with mean 0 and covariance matrix
Σφ({ρ′}2). The matrix Σφ(({ρ′}2) is given in Section 3. Therefore

n∑
i=1

ρ′(Ui)αi(v, δ) = W T
n

[
v
δ

]
D−→ W T

[
v
δ

]
,

where W ∼ N(0, Σφ(({ρ′}2)). Similarly the first term of the right hand side of (A.3) converges to

[v δ]T Σφ((ρ′′)
[

v
δ

]
,

where Σφ((ρ′′) is defined in Section 3. Consequently

Qn(δ) D−→ Q0(δ) ≡ 1
2
[vT δT ]C(Ψ ′′)

[
v
δ

]
+ W

[
v
δ

]
.

From Pollard [31] and Knight [21], the minimizer of Qn converges to the minimizer of Q0 since Q0 is convex

function with respect to [v, δT ]T . Therefore [v̂, δ̂
T
]T is asymptotically distributed on normal with mean 0 and

covariance matrix Σφ(ρ′′)−1Σφ({ρ′}2)Σφ(ρ′′)−1). As the same manner, asymptotic normality of β̂ = β(t) can
be shown. �
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