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EXPONENTIAL CONCENTRATION INEQUALITIES FOR ADDITIVE
FUNCTIONALS OF MARKOV CHAINS ∗, ∗∗
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Abstract. Using the renewal approach we prove exponential inequalities for additive functionals and
empirical processes of ergodic Markov chains, thus obtaining counterparts of inequalities for sums of
independent random variables. The inequalities do not require functions of the chain to be bounded and
moreover all the involved constants are given by explicit formulas whenever the usual drift condition
holds, which may be of interest in practical applications e.g. to MCMC algorithms.
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1. Introduction

This paper concerns exponential type concentration inequalities for additive functionals of Markov chains,
i.e. for sums of the form

f(X0) + . . .+ f(Xn−1),

where (Xi)i∈N is a Markov chain.
Such inequalities are widely used in Markov Chain Monte Carlo theory to provide estimates on the rate of

convergence for certain algorithms. Moreover, in certain statistical applications (e.g. for M-estimators) one is
interested in estimates on suprema of such functionals over some classes F of functions.

Concentration phenomenon in the Markov chain setting has been studied in many papers to men-
tion [1, 6, 10, 12, 14, 23, 25, 26, 32, 43]. Clearly in general one cannot hope to recover classical results for sums
of independent random variables at their full strength. Therefore the goal is to provide counterparts of the
inequalities for independent summands under conditions, which are relatively easy to verify and involve only
“computable” characteristics of the chain. From the practical point of view, it is also important to derive
estimates with explicit and “reasonable” constants.

Among the most successful approaches developed to obtain deviation inequalities for Markov chains one
can list the transportation of measure method (see [32, 43]), related coupling techniques [10], martingale
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approximation [23] and renewal theory [1,12,14] based on the splitting technique introduced by Nummelin [35]
and Athreya and Ney [3] (for general introduction see [34], Chaps. 5,17 and [11,36]).

In this paper we follow the renewal approach, i.e. we decompose the sum of functionals of a Markov chain
into excursions from and to an existing or artificially created atom. This concept allows to reduce the question of
exponential inequalities for Markov chains to the concentration of sums of independent (or nearly independent)
random variables at the expense of some further technical work. Moreover, under additional assumptions, it
allows to incorporate in the estimates the limiting variance of a rescaled functional and thus to obtain Bernstein
type inequalities corresponding to the central limit theorem. For reader’s convenience and further use we recall
below the classical formulation for independent summands (see e.g. [9]).

Bernstein’s inequality. Let (ξi)∞i=0 be independent random variables such that Eξi = 0 and |ξi| ≤ M . Let
Eξ2i = σ2, then for any t > 0,

P

(∣∣∣∣∣
n−1∑
i=0

ξi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2(nσ2 +Mt/3)

)
·

If one insists on having an estimate in terms of the variance, Bernstein’s inequality requires that all random
variables be bounded, which is rather restrictive. Clearly one expects similar results to hold under more general
assumptions about integrability of the summands, e.g. when E exp(|ξi|α/cα) ≤ 2 for some α > 0 (which
corresponds to finiteness of exponential Orlicz norms). This is indeed the case, though the inequality is a little
bit weaker (see the results by Borovkov [7, 8]). In a more general context of empirical processes inequalities for
independent summands with finite exponential Orlicz norms were proved in [1].

Let us now describe in more detail the setting we consider and state some of the results we obtain. We remark
that for simplicity in the Introduction we present precise estimates only for a special case of geometrically
ergodic Markov chains, however the results we obtain allow to deduce bounds under weaker assumptions of
subexponential ergodicity. Below we indicate the form of the inequality we will obtain in the general case,
postponing precise definition of the parameters involved to the main body of the article.

Let X = {Xk : k ∈ Z+} be a time-homogeneous Harris ergodic Markov chain defined on the state space
(X ,B) (to avoid certain measurability issues we will assume that B is countably generated, which is enough for
all the applications we have in mind) and let Xm denote its m-skeleton, i.e. Xm = {Xmk : k ∈ Z+}. We will
denote by (Ω,F ,P) the general probability space on which the process is defined and by Pμ its conditional
version where the starting distribution equals μ, i.e. Pμ(X0 ∈ A) = μ(A), A ∈ B. For simplicity we write Px

whenever μ = δx. Let P(x,A), x ∈ X , A ∈ B denote the Markov chain transition function and let P be the
operator on the measurable functions given by (Pf)(x) = Exf(X1) =

∫
f(y)P(x, dy).

The general theory of Markov chains states that whenever the chain is aperiodic and there exists an invariant
probability measure π on (X ,B) then the small set condition is verified, i.e. there exists C ∈ B of positive
π-measure, a probability measure ν, ν(C) > 0, δ > 0 and an integer m, such that

Pm(x,B) ≥ δν(B), x ∈ C, B ∈ B. (1.1)

Moreover the m-step chain {Xkm : k ∈ Z+} may be split to form a chain that possesses a recurrent atom. The
construction is well-known and as references we recommend ([34], Chaps. 5,17 and [11,36]). We recall it briefly
and present its basic properties in Section 2.

Following the general regeneration approach to Markov chains, one can apply inequalities for independent
or one-dependent unbounded random variables to excursions from and to an existing or artificially constructed
atom of a chain.
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Using this strategy we provide bounds on Px(|
∑n−1

k=0 f(Xk)| > t) in the form close to the one of Bernstein’s
inequality, i.e. for some α ∈ (0, 1] and all t ≥ 0,

Px

(∣∣∣∣∣
n−1∑
i=0

f(Xi)

∣∣∣∣∣ > t

)
≤C exp

(
−c1t

α

aα

)
+ Cπ∗(θ)−1 exp

(
−c2 t

α

bα

)
+ C exp

(
− c3t

α

2(4c)α

)

+ C exp
(
− c4t

2

(�n/(2m)�σ2 +Mt/6)

)
,

with M = c(3α−2 log(n/m))1/α, where a,b, c are certain parameters of the chain and σ2 = Es20 is the variance
of the block appearing in the regeneration construction, θ is the artificially created atom of the split chain, π∗

its stationary measure and the constants C, ck depend only on α (through explicit formulas). At this point, to
avoid technicalities, we do not present precise definition of the parameters appearing in the above inequality or
the assumptions under which it holds and mention only that in Section 3 we provide tools allowing to estimate
them by means of various drift conditions, which in the Markov chain setting are the most convenient and
widely used technique for proving exponential integrability. In general it is known [26] that for α = 1 one cannot
avoid geometric drifts that are usually difficult to work with and verify in practice (see Sect. 3.1). To avoid this
obstacle we show that the usual drift condition related to (sub)-geometric ergodicity also provides a bound,
however with α < 1 (see Sect. 3.2).

The simplest setting we describe is that of geometric ergodicity where we show a class of functions that
depends on the drift condition only for which one can obtain strong concentration results. Again we pay attention
to provide explicit constants in the estimates which may allow for applications in MCMC algorithms. Recall
thus the classical drift condition, which is satisfied if for some V : X → [1,∞),

(PV )(x) − V (x) ≤ −λV (x) + b1C(x). (1.2)

It is well-known that the above condition is equivalent to geometric ergodicity of the chain, i.e. to exponential
convergence ‖Pn(x, ·)−π‖TV ≤ C(x)ρn for some ρ ∈ (0, 1) and all x ∈ X (see [34], Chaps. 14−16 for the general
theory).

The following theorem (which follows from our general results) provides concentration for additive functionals
of geometrically ergodic strongly aperiodic (i.e. satisfying (1.1) with m = 1) Markov chains in terms of the
parameters appearing in (1.1) and (1.2). To simplify the presentation and postpone technical details we provide
here a simplified version of the result, which at full strength is given in Theorem 5.6 in Section 5.

Theorem 1.1. Assume that {Xn}n≥0 is a Harris recurrent strongly aperiodic Markov chain on the space (X ,B)
admitting a unique stationary measure π. Assume furthermore that conditions (1.1) with m = 1 and (1.2) are
satisfied. Let finally s > 0 and consider an arbitrary measurable function g : X → R such that

|g(x)| ≤ κ
(

logV (x)
)s

for some κ ≥ 0. Set α = 1/(s+ 1). Then for every x ∈ X , η ∈ (0, 1] and t > 0,

Px

(∣∣∣∣∣
n−1∑
i=0

g(Xi) − nπg

∣∣∣∣∣ > t

)
≤ 2 exp

(
− (tη)α

Aα1

)
+ C exp

(
− (tη)α

Aα2

)
(1.3)

+ e8 exp
(
− (ηt)α

Aα3

)
+ 21+η/(2+η) exp

(
− t2

2((1 + η)σ2n+A4(η)(log n)1/αt)

)
,

where

σ2 = lim
n→∞

Varπ(
∑n−1

i=0 g(Xi))
n

= Varπg(X0)2 + 2
∞∑
i=1

Covπ(g(X0), g(Xi)), (1.4)



EXPONENTIAL CONCENTRATION INEQUALITIES FOR ADDITIVE FUNCTIONALS OF MARKOV CHAINS 443

the constants C,A1, A2, A3 depend only on δ, V, α, λ, b, κ and the constant A4(η) depends only on δ, V, α, λ, b, κ, η
(in all cases the dependence is explicit, A4(η) 
 1/η for η 
 0).

We also provide a counterpart of the above result for suprema of empirical processes (in the spirit of
Talagrand’s inequalities in the independent case).

Theorem 1.2. Assume that {Xn}n≥0 is a Harris recurrent strongly aperiodic Markov chain on the space (X ,B)
admitting a unique stationary measure π. Assume furthermore that conditions (1.1) with m = 1 and (1.2) are
satisfied. Let finally s > 0 and consider a countable class G of measurable functions g : X → R such that for all
g ∈ G,

|g(x)| ≤ κ
(

logV (x)
)s

for some κ ≥ 0. Set α = 1/(s+ 1). Denote

Z = sup
g∈G

∣∣∣∣∣
n−1∑
i=0

(g(Xi) − πg)

∣∣∣∣∣
and

σ2 = sup
g∈G

lim
n→∞

Varπ(
∑n−1

i=0 g(Xi))
n

= sup
g∈G

(
Varπg(X0) + 2

∞∑
i=1

Covπ(g(X0), g(Xi))

)
.

Then for every η ∈ (0, 1) and all t > 0,

P̄x∗
(
Z ≥ (1 + η)EZ + t

)
≤ exp

(
− t2

2(1 + η)nσ2

)
+ C exp

(
− tα

2Bα1

)
+ C exp

(
− tα

Bα2

)

+ C exp
(
− tα

Bα3

)
+ C exp

(
− n

B4

)
+ C exp

(
− t

B5 logn

)
,

where the constants C,B1, . . . , B5 depend only on δ, V, α, λ, b, κ, η.

Remarks. Since there are many concentration inequalities for additive functionals of Markov chains with all
sorts of assumptions and sometimes it is difficult to compare their strength, we will now provide a few remarks
concerning the above theorem as well as other results of the paper (even though their precise formulation is
postponed to further sections), which should explain their strength and shortcomings.

1. As already mentioned, Theorem 1.1 is just a single explicit example, which can be recovered from our
estimates for additive functionals. In the paper we consider a more general abstract setting in which similar
exponential inequalities hold. From this setting one can obtain inequalities under other, more general drift
conditions, guaranteeing subexponential convergence to the stationary distribution (such drift conditions have
been considered in e.g. [13,14]). However, since the structure of the estimates on the counterparts of A1, . . . , A4

in these inequalities may depend on the drift condition, we restrict here to the most classical drift condition (1.2).
2. An important feature of our results is that all the constants and parameters in our inequalities are given by

explicit formulas. This allows for potential use of our inequalities in the MCMC setting to get quantitative results
for various algorithm. In Sections 3.2 and 5 we illustrate it with a simple example of a Metropolis−Hastings
algorithms on N and on R.

Unfortunately, the dependence of constants on the parameters, especially on δ, is rather bad. In certain
situations one may “amplify” the parameter δ by considering a lazy version of the random walk, however in
most situations the bounds we obtain by combining our inequalities with known estimates on the parameters
δ, λ, b are not good enough to be applied in algorithmic practice. From this point of view our result may be
considered the first step towards more practical estimates.
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3. A fact important from the theoretical perspective is that the subgaussian coefficient in our inequality (1.3)
is (2 + η)nσ2, where σ2 is the variance of the limiting Gaussian variable in the CLT for

f(X0) + . . .+ f(Xn−1) − nπf√
n

(see [11, 34, 36]).
Moreover one can easily obtain from our result a tail estimate of the form

P

(
n−1/2

∣∣∣∣∣
n−1∑
i=0

f(Xi) − nπf

∣∣∣∣∣ ≥ t

)
≤ C exp

(
− t2

(2 + η)σ2

)
+ C exp

(
− tαnα/2

Rηaα,f logn

)
,

where C is a universal constant Rη depends only on η and aα,f depends only on f, α and the parameters in (1.1)
and (1.2). Thus for large n the estimate almost coincides with the tail of the limiting Gaussian variable. This is
closely related to the moderate deviation principle (see [33] for moderate deviation results for mixing sequences),
which however is an asymptotic statement.

Similarly, the coefficient σ2 in Theorem 1.2 corresponds to the weak variance of the limiting Gaussian process
(provided it exists, see e.g. [4,40,46] for various criteria guaranteeing it) and thus corresponds to the Gaussian
concentration inequality.

The fact that the constant in front of σ2 can be made arbitrarily close to the optimal value 2 may be important
in strong limit theorems for various statistics involving additive functionals or their suprema as it is the case
for independent summands.

4. Finally let us compare our results with some other estimates for additive functionals of Markov chains
known in the literature.

As we already mentioned there are many results concerning exponential inequalities. A huge part of the
literature is devoted to uniformly ergodic Markov chains (see e.g. [23, 43]). Methods designed to handle the
uniformly ergodic case usually do not allow to deal with general geometrically or subgeometrically ergodic
chains as the parameters of the inequalities grow too rapidly with the sample size (see Sect. 3.5 of [1] for a more
detailed discussion).

In the Markov chains literature existing results have been mostly concerned with the case of bounded f .
One could mention here e.g. [1, 12, 14, 43]. Our results can be seen as a generalization of [1]. An advantage
of our results with respect to the previous ones is that they work for unbounded functions f and as already
mentioned the dependence of constants on the parameters of the drift criterion is explicit. Also, contrary to the
results in [12, 14] (which were based on the Fuk−Nagaev’s inequality), the logarithmic dependence on n in our
inequalities is optimal (see the discussion in [1]).

Another approach, which is used in the Markov chain literature, mostly in the continuous time or discrete
state-space case is based on spectral gap inequalities. Its advantage stems from the fact that it often allows
to recover a precise Bernstein type inequality for bounded functions of the same form as in the independent
case (see e.g. [17,30]). We note however that the Markov chains we consider do not have to satisfy the spectral
gap as in the non-reversible case it is not implied by geometric ergodicity (see [24]). Moreover, the examples
in [1] show that in the non-reversible case such an inequality cannot hold (which is a consequence of the already
mentioned optimality of the factor logn in our estimates). Also, even in the reversible discrete time case, we are
not aware of a Bernstein type inequality with the right subgaussian coefficient (meaning a universal constant
multiplied by the limiting variance).

Other interesting results concerning concentration inequalities can be found in literature on mixing sequences
(see [33, 41, 43, 47, 48]). The results obtained there usually are not directly comparable with ours as they are
expressed in terms of different quantities and also often correspond rather to Azuma−Hoeffding inequalities
than to the Bernstein inequality (meaning that the parameter σ2 is not taken into account). We are aware of
one exception, namely a very general result of [33]. Since the inequality presented in [33] works in a much more
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general setting than ours and is of a very similar form, we would like now to present a more detailed comparison
and explain why, despite formal similarity, our results provides in certain cases additional information.

In [33] the authors consider a sequence of centered random variables (Xi)i∈Z which is α-mixing with the
mixing coefficient α(n) ≤ exp(−cnγ1) (we refer to [33] for the definition of the mixing coefficients and explain
only that in the geometrically ergodic case we have γ1 = 1) and such that ‖Xi‖ψγ2

≤ b for some γ2 such that
γ := γ1γ2

γ1+γ2
< 1 (see Sect. 2 for the definition of the norms ‖ ·‖ψα). For such random variables the authors obtain

an inequality of the form

P
(

max
j≤n

|X1 + . . .+Xn| ≥ t

)
≤n exp

(
− tγ

C1

)
+ exp

(
− t2

C2(1 + nV )

)
(1.5)

+ exp
(
− t2

C3n
exp

(
tγ(1−γ)

C4(log t)γ

))
,

where the constants C1, . . . , C4 depend only on b, c, γ1, γ2 and

V = sup
M>0

sup
i>0

⎛
⎝VarϕM (Xi) + 2

∑
j>i

|Cov(ϕM (Xj), ϕM (Xi))|
⎞
⎠ ,

with ϕM (x) = (x ∧M) ∨ (−M).
Before we proceed with a comparison, let us explain that the parameter γ above, although defined in a

different language than α in Theorem 1.1, agrees with it (this can be seen by looking at the general case
considered in Section 3.2, where analogous formulas appear).

For comparison let us disregard the fact that the above inequality deals with maxima of partial sums (it can
be obtained from a version without maxima with a recent result from [21]).

As we already mentioned, the above inequality is much more general than ours, however the sets of assump-
tions are slightly different, namely ours is expressed in terms of drift parameters, which are quite common in
MCMC practice, while (1.5) is more abstract, as it deals with general mixing sequences. From this point of view,
verification of our assumptions is simpler and more straightforward. Moreover, in our result the constants are
explicit. Finally, the subgaussian coefficient V in (1.5) is not the variance of the limiting Gaussian distribution,
contrary to our σ2 (although there are some formal similarities between the formula for V and the expansion of
σ2 given in (1.4)). Also the constant in front of the subgaussian coefficient in (1.5) is not universal, but depends
on the parameters γi.

Thus, while (1.5) is more general and has many theoretical applications (e.g. the moderate deviation principle
obtained in [33]), our inequality seems potentially more suited e.g. for the algorithmic applications we have in
mind and is more closely related to the CLT for additive functionals.

Let us also mention that using the drift criteria from Section 3.1 we can obtain an inequality with α = 1,
whereas (1.5) deals with γ = α < 1.

5. It would be interesting to extend Theorems 1.1 and 1.2 to Markov chains which are not necessarily strongly
aperiodic (i.e. to chains which satisfy (1.1) only with some m > 1). Our Theorem 5.1 provides an exponential
inequality also in this setting, however the subgaussian coefficient in the general case is no longer the variance of
the limiting Gaussian distribution. To our best knowledge the problem of providing a Berstein type inequality
with the “right” subgaussian coefficient for m > 1 remains open even in the case of bounded functions.

The organization of the paper is as follows: in Section 2 we discuss the Markov chain theory and a variety of
integrability conditions we need to prove exponential concentration and in Section 3 we state their characteri-
zations in terms of drift conditions; in Section 4 we prove the main tool which is the exponential inequality for
almost independent random variables; finally in Section 5 previous results are combined to prove exponential
concentration inequalities for Markov chains.
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2. The exponentially fast decaying tails of Markov chain excursions

2.1. Notation and preliminaries

Since we are interested in exponential inequalities let us first recall the definition of exponential Orlicz norms,

‖Y ‖ψα,μ = inf
{
c > 0 : Eμ exp

( |Y |α
cα

)
≤ 2
}
.

Note that the subscript above indicates the measure with respect to which the Orlicz norm is taken. Sometimes,
when the underlying measure is clear from the context or when it is not relevant we will also write ‖ · ‖ψα .

Let us now briefly recall the regeneration method. We outline only the main points needed for our further
applications and refer to ([34, 36], Chaps. 5, 17) for an extensive exposition.
The split chain construction is based on introducing auxiliary variables Yk ∈ {0, 1} that denote the level of the
split m-skeleton at time km. We will consider the collection of random variables X̄m = {X̄m

k : k ∈ Z+} =
{(Xkm, Yk) : k ∈ Z+} together with “intermediate” variables {Xkm+i : k ∈ Z+, 1 ≤ i ≤ m − 1}. The
distribution of the new chain is defined by conditional probabilities

P̄(Yk = 1, Xkm+1 ∈ dx1, . . . , X(k+1)m−1 ∈ dxm−1, X(k+1)m ∈ dy|FX
km,FY

k−1, Xkm = x)
= P̄(Y0 = 1, X1 ∈ dx1, . . . , Xm−1 ∈ dxm−1, Xm ∈ dy|X0 = x)

= 1C(x)
δν(dy)

Pm(x, dy)
P(x, dx1) . . .P(xm−1, dy)

and

P̄(Yk = 0, Xkm+1 ∈ dx1, . . . , X(k+1)m−1 ∈ dxm−1, X(k+1)m ∈ dy|FX
km,FY

k−1, Xkm = x)
= P̄(Y0 = 0, X1 ∈ dx1, . . . , Xm−1 ∈ dxm−1, Xm ∈ dy|X0 = x)

=
(

1 − 1C(x)
δν(dy)

Pm(x, dy)

)
P(x, dx1) . . .P(xm−1, dy),

where FX
km = σ((Xi)i≤km) and FY

k−1 = σ((Yi)i≤k−1). The above condition means simply that we arrange the
conditional distribution of the intermediate parts of the chain so that they fit to the split m-skeleton. Note that

P̄(Yk = 1, X(k+1)m ∈ dy|FX
km,FY

k−1, Xkm = x) = 1C(x)δν(dy),

and consequently P̄(Yk = 1|FX
km,FY

k−1, Xkm = x) = δ1C(x) and P̄(X(k+1)m ∈ dy|FX
km,FY

k , Yk = 1) = ν(dy).
Therefore, whenever Xkm enters C, with probability δ we decide on Yk = 1, and if so distribute X(k+1)m

according to the measure ν.
One also checks easily that the marginal process {Xn : n ∈ Z+} defined with the above construction is a

Markov chain with transition function P. Since the validity of concentration inequalities depends only on the
distribution of the process, we may and will assume that the Markov chains we consider are obtained by the
above construction and in particular are equipped with the auxiliary variables Yk.

For each initial measure μ we denote by μ∗ the measure on X ×{0, 1} such that μ∗(A×{0}) = μ(A∩C)(1−
δ) + μ(A ∩Cc) and μ∗(A× {1}) = μ(A ∩C)δ. We continue the convention P̄x∗ = P̄δ∗x , where δx stands for the
Dirac mass at x. The clear consequence of the construction is that

{Xi, Yj : i ≤ km, j ≤ k} is independent of {Xi, Yj : i ≥ (k + 1)m, j ≥ k + 1}
under the condition that Yk = 1. Moreover, under this condition, {Xi, Yj : i ≥ (k + 1)m, j ≥ k + 1} has the
same distribution as the P̄ν∗ distribution of the process {Xi, Yj , i, j ≥ 0}, where

P̄ν∗(Y0 = 1, X0 ∈ dx) = δ1C(x)ν(dx).
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Therefore we can treat θ = C ×{1} as an atom of the chain X̄m. Our approach to deviation inequalities will
be based on the decomposition of the sum

∑n−1
i=0 f(Xi) into almost independent excursions between consecutive

return times to θ.
Let σ = σ(0) = min{k ≥ 0 : Yk = 1} and

σ(i) = min{k > σ(i− 1) : Yk = 1}, k > 0

and in the same way τ = τ(1) = min{k ≥ 1 : Yk = 1} and

τ(i) = min{k > τ(i− 1) : Yk = 1}, k > 1.

For each i we define

si(f) =
mσ(i+1)+m−1∑
j=m(σ(i)+1)

f(Xj) =
σ(i+1)∑
j=σ(i)+1

Zj(f),

where Zj(f) =
∑m−1

k=0 f(Xjm+k). The main result on the excursions is the following ([34], Thm. 17.3.1)

Theorem 2.1. The two collections of random variables

{si(f) : 0 ≤ i ≤ k − 2}, {si(f) : i ≥ k}

are independent for any k ≥ 2. The distribution of si(f) is for any i equal to the P̄θ distribution of∑τm+(m−1)
k=m f(Xk) which is equal to P̄ν∗ distribution of

∑σm+(m−1)
k=0 f(Xk). Moreover the common mean of

si(f) may be expressed as Ēsi(f) = δ−1π(C)−1m
∫
fdπ.

Therefore if π(f) = 0 then also Ēsi(f) = 0. We use the above result to decompose the path into three parts

∣∣∣∣∣
n−1∑
k=0

f(Xk)

∣∣∣∣∣ ≤
∣∣∣∣∣∣
min(mσ+(m−1),n−1)∑

k=0

f(Xk)

∣∣∣∣∣∣+
∣∣∣∣∣
N∑
i=1

si−1(f)

∣∣∣∣∣+
∣∣∣∣∣∣1N>0

mσ(N)+(m−1)∑
k=n

f(Xk)

∣∣∣∣∣∣
=: Un(f) + Vn(f) +Wn(f), (2.1)

where

N = inf{i ≥ 0 : mσ(i) + (m− 1) ≥ n− 1}. (2.2)

Note that N is a stopping time with respect to the filtration Fi = σ(s0, . . . , si−1, σ(0), . . . , σ(i)).
In order to prove exponential inequalities we need to provide appropriate integrability conditions for all the

summands above. They will be expressed in terms of the following exponential norms:

a =

∥∥∥∥∥
σ∑
i=0

|Zi(f)|
∥∥∥∥∥
ψα,P̄x∗

<∞;

b =

∥∥∥∥∥
σ∑
i=0

|Zi(f)|
∥∥∥∥∥
ψα,P̄π∗

<∞;

c = ‖si(f)‖ψα,P̄
<∞. (2.3)

The above quantities are rather troublesome to use (as expressed in terms of the split chain on the enlarged
probability space), therefore we prefer their counterparts expressed in terms of the original chain, i.e. without
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referring to the auxiliary variables Yi. They are

A =

∥∥∥∥∥
τC−1∑
i=0

|Zi(f)|
∥∥∥∥∥
ψα,Px

; B =

∥∥∥∥∥
τC−1∑
i=0

|Zi(f)|
∥∥∥∥∥
ψα,Pπ

;

C = sup
x∈C

∥∥∥∥∥
τC−1∑
i=1

Zi(f)

∥∥∥∥∥
ψα,Px

; D = sup
x∈C

‖Z0(f)‖ψα,Px
,

where τC = τC(1) = inf{k ≥ 1: Xkm ∈ C}. For later use define also τC(i) = inf{k > τC(i − 1): Xkm ∈ C} for
i > 1.

Note that for m = 1, D = supx∈C |f(x)|.
Let r ≥ 1 be the unique solution of

2
1
r δ1−

1
r + 21+ 1

r (1 − δ)1−
1
r = 2 (2.4)

(recall that δ is the number appearing in the minorization condition (1.1)).
In particular if δ = 1, then r = 1. Moreover by the concavity of x1− 1

r and monotonicity of the left hand side
above in r ∈ [1,∞) we get r ≤ log( 6

2−δ )/ log( 2
2−δ ).

The following proposition provides a comparison between a,b, c and A,B, C,D.

Proposition 2.2. In the setting described above with α ∈ (0, 1] the following inequalities hold:

a ≤ r
1
α ((max{A, C})α + Dα)

1
α ;

b ≤ r
1
α ((max{B, C})α + Dα)

1
α ;

c ≤ r
1
α (Cα + Dα)

1
α .

Proof. Recall that distributions of si(f) are the same for all i and equal to the P̄ν∗ distribution of
∑σ

k=0 Zk(f).
Let a ∈ C be an arbitrary point. We will write Ēa,i (i = 0, 1) to denote the conditional expectation (on the
enlarged probability space) given X0 = a, Y0 = i. In particular by the construction of the split process the
distribution of (Xm, Xm+1, . . .) under Ēa,1 is independent of a ∈ C (and equal to the P̄ν∗ distribution of
(X0, X1, . . .)). Thus by standard conditioning arguments, the following inequalities hold for any c > 0,

Ē exp
(
c−α |si(f)|α) ≤ Ēa,1 exp

⎛
⎝c−α

∣∣∣∣∣∣
τC−1∑
j=1

Zj(f)

∣∣∣∣∣∣
α⎞
⎠

×
∞∑
k=1

⎡
⎣(1 − δ) sup

x∈C
Ēx,0 exp

⎛
⎝c−α

∣∣∣∣∣∣
τC−1∑
j=0

Zj(f)

∣∣∣∣∣∣
α⎞
⎠
⎤
⎦
k−1

sup
x∈C

δĒx,1 exp(c−α|Z0(f)|α).

Therefore (for 1 − δ sufficiently small)

Ē exp(c−α|si(f)|α) ≤ δĒa,1 exp(c−α|∑τC−1
j=1 Zj(f)|α) supx∈C Ēx,1 exp(c−α|Z0(f)|α)

1 − (1 − δ) supx∈C Ēx,0 exp(c−α|∑τC−1
j=0 Zj(f)|α)

·
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Set c = r
1
α (Cα + Dα)

1
α . Let p−1 = Cα

Cα+Dα and q−1 = Dα

Cα+Dα . Recall that r ≥ 1. By Hölder’s inequality

sup
x∈C

Ēx,0 exp

⎛
⎝c−α

∣∣∣∣∣∣
τC−1∑
j=0

Zj(f)

∣∣∣∣∣∣
α⎞
⎠

≤
(

sup
x∈C

Ēx,0 exp
(D−α|Z0(f)|α)) 1

rq

⎛
⎝sup
x∈C

Ēx,0 exp

⎛
⎝C−α

∣∣∣∣∣∣
τC−1∑
j=1

Zj(f)

∣∣∣∣∣∣
α⎞
⎠
⎞
⎠

1
rp

,

sup
x∈C

Ēx,1 exp
(
c−α|Z0(f)|α) ≤ (sup

x∈C
Ēx,1 exp

(D−α|Z0(f)|α)) 1
qr

and

Ēa,1 exp

⎛
⎝c−α

∣∣∣∣∣∣
τC−1∑
j=1

Zj(f)

∣∣∣∣∣∣
α⎞
⎠ ≤

⎛
⎝Ēa,1 exp

⎛
⎝C−α

∣∣∣∣∣∣
τC−1∑
j=1

Zj(f)

∣∣∣∣∣∣
α⎞
⎠
⎞
⎠

1
pr

.

Define

X = sup
x∈C

Ēx,0 exp

⎛
⎝C−α

∣∣∣∣∣∣
τC−1∑
j=1

Zj(f)

∣∣∣∣∣∣
α⎞
⎠ , Y = Ēa,1 exp

⎛
⎝C−α

∣∣∣∣∣∣
τC−1∑
j=1

Zj(f)

∣∣∣∣∣∣
α⎞
⎠

and
V = sup

x∈C
Ēx,0 exp(D−α|Z0(f)|α), W = sup

x∈C
Ēx,1 exp(D−α|Z0(f)|α).

Using the above inequalities we get

Ē exp(c−α|si(f)|α) ≤ δY
1

prW
1

qr

1 − (1 − δ)X
1

pr V
1

qr

·

By the definition of C,D and the split chain construction

(1 − δ)X + δY = sup
x∈C

Ex exp

⎛
⎝C−α

∣∣∣∣∣∣
τC−1∑
j=1

Zj(f)

∣∣∣∣∣∣
α⎞
⎠ ≤ 2 (2.5)

and

(1 − δ)V ≤ sup
x∈C

Ex exp(D−α|Z0(f)|α) ≤ 2 and δW ≤ sup
x∈C

Ex exp
(D−α|Z0(f)|α) ≤ 2. (2.6)

Thus by the definition of r,

Ē exp(c−α|si(f)|α) ≤ δ1−
1
r 2

1
r

1 − (1 − δ)1−
1
r 2

1
r

= 2,

which proves the required bound on c.
We will now estimate a and b. In fact we will prove a more general statement. Consider any probability

measure μ on X and denote Mμ = ‖∑σC−1
i=0 |Zi(f)|‖ψα,P̄μ∗ , where σC = inf{i ≥ 0: Xim ∈ C}. Note that

Mμ ≤ ‖∑τC−1
i=0 |Zi(f)|‖ψα,Pμ . In particular Mπ ≤ B and Mδx ≤ A. Thus to end the proof it is enough to show

that ∥∥∥∥∥
σ∑
i=0

|Zi(f)|
∥∥∥∥∥
ψα,P̄μ∗

≤ r1/α((max{Mμ, C})α + Dα)1/α. (2.7)
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Arguing as above we obtain that for any c > 0,

Ēμ∗ exp

(
c−α

(
σ∑
i=0

|Zi(f)|
)α)

≤ δEμ exp(c−α(
∑σC−1
i=0 |Zi(f)|)α) supy∈C Ēy,1 exp(c−α|Z0(f)|α)

1 − (1 − δ) supy∈C Ēy,0 exp(c−α(
∑τC−1

j=0 |Zj(f)|)α)
·

Set c = r
1
α ((max{Mμ, C})α + Dα)

1
α . Let p−1 = (max{Mμ,C})α

(max{Mμ,C})α+Dα and q−1 = Dα

(max{Mμ,C})α+Dα Applying the
notation of X,V,W and Hölder’s inequality we get

Ēμ∗ exp

(
c−α

(
σ∑
i=0

|Zi(f)|
)α)

≤ δ(Eμ exp(M−α
μ (

∑σC−1
i=0 |Zi(f)|)α))

1
prW

1
qr

1 − (1 − δ)X
1

pr V
1

qr

and thus by (2.5) and (2.6) we deduce that

Ēμ∗ exp

(
c−α

(
σ∑
i=0

|Zi(f)|
)α)

≤ δ1−
1

qr 2
1

pr 2
1

qr

1 − (1 − δ)1−
1
r 2

1
r

≤ δ1−
1
r 2

1
r

1 − (1 − δ)1−
1
r 2

1
r

= 2

by the definition of r. This ends the proof of (2.7). �

3. Drift conditions

Our next goal is to provide conditions guaranteeing that A,B, C,D are finite, which via Proposition 2.2 and
inequalities for independent summands will allow us to control the quantities Un(f), Vn(f),Wn(f) in (2.1).

One of the standard tools that have proved useful in the analysis of integrability properties for the excursions
of Markov chains are drift conditions.

Below we consider two types of drift criteria. The first one is the multiplicative drift condition introduced
in [25, 26] to deal with pure exponential integrability (i.e. with α = 1). It is known [26] that in the case of
m = 1 this condition is equivalent to exponential integrability (finiteness of ψ1 norms) of

∑τC−1
i=0 f(Xi). Below

we analyze the drift condition expressed for the m-skeleton and properly modified function, obtaining sufficient
conditions for the finiteness of the parameters A,B, C,D. We also show that the multiplicative drift condition is
in a sense a minimal requirement for proving exponential integrability of the excursion, in particular obtaining
good constants in the equivalence proved in [26].

The multiplicative drift condition, although important from theoretical point of view, is of limited use in
applications, as it is difficult to verify when compared to classical drift criteria used to obtain integrability of
the regeneration time. Therefore we subsequently analyze what integrability properties of the excursion can
be obtained with such simplified drift conditions. We show that by assuming integrability conditions on the
regeneration time and a simple drift condition on the function f , one can still obtain ψα integrability, however
with α < 1. This still allows to obtain meaningful exponential inequalities, which for moderate values of t agree
with the classical Bernstein’s bound.

3.1. Multiplicative geometric drift condition

Observe that for any initial measure ν and α ∈ (0, 1],

∥∥∥∥∥
τC−1∑
k=0

Zk(f)

∥∥∥∥∥
ψα,ν

≤
∥∥∥∥∥
τC−1∑
k=0

|Zk(f)|α
∥∥∥∥∥

1
α

ψ1,ν

. (3.1)

In particular, in order to bound a,b, c it suffices to control the usual exponential ψ1 norms of
∑τC−1

k=0 |Zk(f)|α.
Let thus denote g(x) = logEx exp(2c−1|Z0(f)|α) and assume that for some c it verifies the multiplicative
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geometric drift condition from [25,26], i.e. that there exists a function V : X → R+ and constants b ≥ 0,K > 0
such that

exp(−V (x))Pm(exp(V ))(x) ≤ exp(−g(x) + b1C(x)), (3.2)

and V (x) ≤ K for x ∈ C.
The drawback of the drift condition (3.2) in comparison with the usual drift criteria is that in practice its

direct verification is difficult. At the same time it turns out that it is in fact equivalent to

sup
x∈C

Ex exp

(
τC−1∑
k=0

g(Xm
k )

)
=: d <∞ and ∀x∈X Ex exp

(
τC−1∑
k=0

g(Xm
k )

)
<∞ (3.3)

(we recall that Xm = {Xm
k : k ∈ Z+} is the m-skeleton of X). This follows from ([26], Thm. 2.5). Below in

Theorem 3.1 we provide a quantitative version of this fact.
Note that (3.3) implies

sup
x∈C

∥∥∥∥∥
τC−1∑
k=0

|Zk(f)|α
∥∥∥∥∥
ψ1,Px

<∞ and ∀x∈X

∥∥∥∥∥
τC−1∑
k=0

g(Xm
k )

∥∥∥∥∥
ψ1,Px

<∞ (3.4)

due to the Schwarz’s inequality

Ex exp

(
c−1

τC−1∑
k=0

|Zk(f)|α
)

≤ Ex exp

(
c−1

τC∑
k=0

|Zk(f)|α
)

(3.5)

≤
[
Ex exp

(
τC∑
k=0

g(Xm
k )

)] 1
2
[
Ex exp

(
τC∑
k=0

(2c−1|Zk(f)|α − g(Xm
k ))

)] 1
2

≤
[
Ex exp

(
τC∑
k=0

g(Xm
k )

)] 1
2

≤
[
Ex exp

(
τC−1∑
k=0

g(Xm
k )

)
sup
y∈C

exp(g(y))

] 1
2

≤
[
Ex exp

(
τC−1∑
k=0

g(Xm
k )

)
sup
y∈C

Ey exp

(
τC−1∑
k=0

g(Xm
k )

)] 1
2

.

Note also that if m = 1, then g(X1
k) = 2c−1|f(X1

k)|α and so we do not need the additional argument above
to pass from (3.3) to (3.4).

We will now prove that the drift condition for g is of the same power as (3.3). More precisely, we have the
following.

Theorem 3.1. Conditions (3.2) and (3.3) are equivalent in the sense that

1. Whenever (3.2) holds then so does (3.3). Moreover for every x ∈ X ,

Ex exp

(
τC−1∑
k=0

g(Xm
k )

)
≤ exp(b1C(x) + V (x))

and as a consequence,

sup
x∈C

∥∥∥∥∥
τC−1∑
k=0

|Zk(f)|α
∥∥∥∥∥
ψ1,Px

≤ max
{

1,
b+K

log 2

}
c.
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2. Whenever (3.3) holds, then the function g satisfies (3.2) with V (x) = log(GC(x, g)), where

GC(x, g) = Ex exp

(
σC∑
k=0

g(Xm
k )

)
,

and b = 2 log d, K = log d.

Proof. Suppose that (3.2) holds. Let Fk = σ(Xm
0 , X

m
1 , . . . , X

m
k ), k = 0, 1, 2, . . ., and define the exponential

martingale

Mk =
exp(V (Xm

k ))
E(exp (V (Xm

k )|Fk−1))
. . .

exp(V (Xm
1 ))

E(exp(V (Xm
1 ))|F0)

exp(V (Xm
0 )). (3.6)

Therefore for the stopping time τC ∧ n we have

ExMτC∧n = exp(V (x)), for x ∈ X . (3.7)

Due to (3.2) we obtain that

exp(V (Xm
i−1))

Ex(exp(V (Xm
i ))|Fi−1)

=
exp(V (Xm

i−1))
Pm(exp(V ))(Xm

i−1)
≥ exp(g(Xm

i−1) − b1C(Xm
i−1))

and hence

Mk exp(−V (Xm
k )) =

k∏
i=1

exp(V (Xm
i−1))

E (exp(V (Xm
i ))|Fi−1)

≥ exp

(
k∑
i=1

g(Xm
i−1) − b1C(Xm

i−1)

)
.

Consequently by (3.6) and (3.7) for every x ∈ X ,

Ex exp

⎛
⎝(τC∧n)−1∑

k=0

g(Xm
k )

⎞
⎠ ≤ exp(b1C(x) + V (x)),

therefore by letting n→ ∞ and using Fatou’s lemma we get

Ex exp

(
τC−1∑
k=0

g(Xm
k )

)
≤ exp(b1C(x) + V (x)).

Now, by (3.5)

Ex exp

(
c−1

τC−1∑
k=1

|Zk(f)|α
)

≤ exp((b1C(x) + V (x) + b+K)/2),

which via Hölder’s inequality implies the second inequality of point 1.
To prove the second assertion observe that

(PmGC)(x) = Ex exp

(
τC∑
k=1

g(Xm
k )

)

= exp(−g(x))Ex exp

(
σC∑
k=0

g(Xm
k )

)
exp

(
1C(x) log

(
Ex exp

(
τC∑
k=1

g(Xm
k )

)))

= exp(−g(x) + 1C(x) log

(
Ex exp

(
τC∑
k=1

g(Xm
k )

))
GC(x, g),
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i.e.

exp(−V (x))(Pm exp(V ))(x) = exp

(
−g(x) + 1C(x) log

(
Ex exp

(
τC∑
k=1

g(Xm
k )

)))
.

From the definition of d in (3.3) we conclude that g(x) ≤ log d for x ∈ C and

sup
x∈C

Ex exp

(
τC∑
k=1

g(Xk)

)
≤ d2.

Therefore

sup
x∈C

log

(
Ex exp

(
τC∑
k=1

g(Xk)

))
≤ 2 log d.

and
V (x) = log(GC(x, g)) = g(x) ≤ log d, for x ∈ C.

This shows that (3.2) holds with b = 2 log d and K = log d. �

Corollary 3.2. If (3.2) is satisfied then

A ≤
(

max{2b+ V (x) +K, 2 log 2}
2 log 2

c

) 1
α

,

B ≤
(

max{2b+ 2 logπ(exp(V/2)) +K, 2 log 2}
2 log 2

c

) 1
α

,

C,D ≤
(

max{b+K, log 2}
log 2

c

) 1
α

·

Proof. It is enough to combine the estimate Cα,Dα ≤ supx∈C ‖∑τC−1
k=0 |Zk(f)|α‖ψ1,Px , the first part of

Theorem 3.1 (integrated with respect to π in the case of the quantity B), observation (3.5) and the Hölder
inequality. �

3.2. “Regular” drift condition

As we have already mentioned, the multiplicative drift condition is difficult to check. Therefore we would like
to replace it with a simpler criterion such as the usual drift condition (see [34], Sect. 14.2.1). The price to pay
is strengthening the requirements on τC . Namely we assume that

sup
x∈C

‖τC‖ψβ ,Px <∞,

where β > α. Note that if β = 1 then we are in the setting of geometric ergodicity. We would like to point out
that one can verify such integrability conditions on τC by using classical drift criteria (see e.g. [34], Sect. 15.2.2)
for β = 1 or its modified versions presented e.g. in [14] for β < 1. In the latter reference also concentration
inequalities for bounded f were presented. Our aim now is to provide drift conditions on f , simpler than
those discussed in the previous section, which would complement the ψβ integrability of τC and yield strong
exponential inequalities in the unbounded case.

Let h(x) = logEx exp(c−γ |Z0(f)|γ), γ = αβ
β−α (note that for m = 1 we have h(x) = c−γ |f(x)|γ). The drift

condition we will consider is of the form: suppose there exists V : X → R+, b > 0 such that

(PmV )(x) − V (x) ≤ − exp(h(x)) + b1C(x), (3.8)
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and V (x) ≤ K for x ∈ C. The usual martingale argument (see [34]) shows that for all x ∈ X ,

Ex

τC−1∑
k=0

exp
( |Zk(f)|γ

cγ

)
≤ b+ V (x). (3.9)

Proposition 3.3. For α ∈ (0, 1] and β > α, if (3.8) is satisfied, then

sup
x∈C

∥∥∥∥∥
τC−1∑
k=0

|Zk(f)|
∥∥∥∥∥
ψα,Px

≤ c1c2,

where c1 = supx∈C ‖τC‖ψβ ,Px , c2 = c(max( log(b+K)
log 2 , 1))1/γ.

Proof. For u, v > 0 the Young’s inequality holds, i.e.

uαvα ≤ α

β
uβ +

(
1 − α

β

)
v

αβ
β−α ,

Consequently

Ex exp

(
c−α1 c−α2

∣∣∣∣∣
τC−1∑
k=0

Zk(f)

∣∣∣∣∣
α)

≤ Ex exp

(
(c−1

1 τC)α
(
τ−1
C

τC−1∑
k=0

c−1
2 |Zk(f)|

)α)

≤ Ex exp

(
α

β

τβC

cβ1

)
exp

⎛
⎝(1 − α

β
)

(
τ−1
C

τC−1∑
k=0

c−1
2 |Zk(f)|

) αβ
β−α

⎞
⎠ .

Therefore by the Hölder’s inequality

Ex exp

(
c−α1 c−α2

∣∣∣∣∣
τC−1∑
k=0

Zk(f))

∣∣∣∣∣
α)

≤
(

Ex

(
exp

(
τβC
cβ1

)))α
β

⎛
⎝Ex

(
exp

(
τ−1
C

τC−1∑
k=0

c−1
2 |Zk(f)|

)) αβ
β−α

⎞
⎠

1−α
β

.

Note that if c1 = supx∈C ‖τC‖ψβ,Px , then

Ex exp

(
τβC

cβ1

)
≤ 2, for x ∈ C.

Now we will estimate the second term. We have

Ex

(
exp

(
τ−1
C

τC−1∑
k=0

c−1
2 |Zk(f)|

)γ)
≤ Ex exp

(
max

0≤k≤τC−1

|Zk(f)|γ
cγ2

)
≤ Ex

(
τC−1∑
k=0

exp
( |Zk(f)|γ

cγ

)) cγ

c
γ
2

.

Since c2 = c(max( log(b+K)
log 2 , 1))1/γ , (3.9) implies that

Ex

(
τC−1∑
k=0

exp
( |Zk(f)|γ

cγ

)) cγ

c
γ
2

≤
(

Ex

τC−1∑
k=0

exp
( |Zk(f)|γ

cγ

)) cγ

c
γ
2

≤ 2

and so

sup
x∈C

Ex exp

(
c−α1 c−α2

∣∣∣∣∣
τC−1∑
k=0

Zk(f)

∣∣∣∣∣
α)

≤ 2,

which completes the proof. �

Basically the same idea can be used to bound A and B. We summarize the result in the following.
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Theorem 3.4. Let α ∈ (0, 1], β > α. Whenever the drift condition (3.8) is satisfied the following inequalities
hold:

1. Let c1 = supx∈C ‖τC‖ψβ,Px , c2 = c(max( log(b+K)
log 2 , 1))1/γ , then

C,D ≤ sup
x∈C

∥∥∥∥∥
τC−1∑
k=0

|Zk(f)|
∥∥∥∥∥
ψα,Px

≤ c1c2.

2. Let c3 = ‖τC‖ψβ,Px , c4 = c(max( log(V (x)+b)
log 2 , 1))1/γ , then

A =

∥∥∥∥∥
τC−1∑
k=0

|Zk(f)|
∥∥∥∥∥
ψα,Px

≤ c3c4.

3. Let c5 = ‖τC‖ψβ,Pπ , c6 = (max( log(πV+b)
log 2 , 1))1/γ, then

B =

∥∥∥∥∥
τC−1∑
k=0

|Zk(f)|
∥∥∥∥∥
ψα,Pπ

≤ c5c6.

If β = 1 then γ = α/(1 − α) and the requirement on τC is equivalent to geometric ergodicity. Therefore in the
simplest case of m = 1 to obtain meaningful bounds on the A,B, C,D it is enough e.g. to assume the classical
drift condition (1.2) and a pointwise bound on the function generating the additive functional.

Proposition 3.5. Let α ∈ (0, 1]. Assume that (1.1) is satisfied with m = 1 and that for some function V : X →
[1,∞) and λ ∈ (0, 1), b ∈ R+ the drift condition (1.2) holds. Set K = supx∈C V (x). Assume moreover that
g : X → R satisfies

|g(x)| ≤ κ
(

logV (x)
) 1−α

α

for some κ > 0 and set f = g − πg. Then

A ≤Adrift := κ
1

log 1
1−λ

max
(

log(V (x)1Cc(x) + (b(1 − λ)−1 +K)1C(x))
log 2

, 1
)

×
[(

max
(

log(V (x)λ−1 + bλ−1)
log 2

, 1
))1−α

+
1

(log 2)1−α
(π|g|/κ)α

]1/α

,

B ≤Bdrift := κ
1

log 1
1−λ

max
(

log(πV + (b(1 − λ)−1 +K)π(C))
log 2

, 1
)

×
[(

max
(

log(πV λ−1 + bλ−1)
log 2

, 1
))1−α

+
1

(log 2)1−α
(π|g|/κ)α

]1/α

,

C,D ≤Cdrift := κ
1

log 1
1−λ

max
(

log(b(1 − λ)−1 +K)
log 2

, 1
)

×
[(

max
(

log(bλ−1 +Kλ−1)
log 2

, 1
))1−α

+
1

(log 2)1−α
(π|g|/κ)α

]1/α

.

Moreover

π|g| ≤

⎧⎪⎨
⎪⎩
κ
(

log(bπ(C)λ−1)
) 1−α

α

for α ≥ 1/2,

κ
(

log(bπ(C)λ−1) + 1−2α
α

) 1−α
α − κ

(
1−2α
α

) 1−α
α

for α < 1/2
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and

πV ≤ bπ(C)
λ

· (3.10)

To prove the above proposition we will need the following.

Lemma 3.6. Assume that (1.1) is satisfied with m = 1 and that for some function V : X → [1,∞) and
λ ∈ (0, 1), b ∈ R+ the drift condition (1.2) holds. Set K = supx∈C V (x). Then

‖τC‖ψ1,Px ≤ max
(

log(V (x)1Cc(x) + (b(1 − λ)−1 +K)1C(x))
log 2

, 1
)

1
log 1

1−λ
,

‖τC‖ψ1,Pπ ≤ max
(

log(πV + (b(1 − λ)−1 +K)π(C))
log 2

, 1
)

1
log 1

1−λ
,

sup
x∈C

‖τC‖ψ1,Px ≤ max
(

log(b(1 − λ)−1 +K)
log 2

, 1
)

1
log 1

1−λ
·

Proof. From Proposition 4.1. (ii) in [5] we obtain

Ex(1 − λ)−τC ≤
{

V (x) if x /∈ C,
b(1 − λ)−1 +K if x ∈ C.

(note that due to different conventions regarding the drift condition “λ in [5]” is “our (1 − λ)”, moreover
“K in [5]” is trivially bounded by “our (1 − λ)K + b”). This implies the lemma by integration and Hölder’s
inequality. �

We will also need the following well-known lemma. Since we haven’t been able to find its proof in the literature,
we provide it for completeness.

Lemma 3.7. For any α ∈ (0, 1] and any random variables X,Y we have

‖X + Y ‖ψα ≤ (‖X‖αψα
+ ‖Y ‖αψα

)1/α
.

Moreover

‖X‖ψα ≤
(

1
log 2

) 1−α
α

‖X‖ψ1.

Proof. For α = 1, the first inequality reduces to the well-known triangle inequality for ‖ · ‖ψ1 . The general case
follows easily from this special one and the identity ‖X‖ψα = ‖|X |α‖1/α

ψ1
.

For the second inequality, note that by Young’s inequality for p > 1 we have |xy| ≤ p−1|x|p + q−1|y|q, where
q is the conjugate of p, and so by convexity, for any random variables X,Y ,

E exp
( |XY |
‖X‖ψp‖Y ‖ψq

)
≤ p−1E exp

(( |X |
‖X‖ψp

)p)
+ q−1E exp

(( |Y |
‖Y ‖ψq

)q)
≤ 2,

which implies that ‖XY ‖ψ1 ≤ ‖X‖ψp‖Y ‖ψq . Now setting Y = 1 we get

‖X‖ψ1 ≤ ‖X ||ψp

(
1

log 2

)1/q

.

Now we again use that ‖X‖αψα
= ‖|X |α‖ψ1 , ‖|X |α‖ψ1/α

= ‖X‖αψ1
and apply the above estimate with p−1 = α,

q−1 = 1 − α (and |X |α instead of X), which gives the second inequality of the Lemma. �
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Proof of Proposition 3.5. By Theorem 14.3.7. in [34] we have πV < ∞. By the drift condition (1.2) we get
πV = πPV ≤ (1 − λ)πV + bπ(C), which implies (3.10).

Set now Ṽ = V λ−1, b̃ = bλ−1. Then (1.2) is satisfied also with Ṽ , b̃ instead of V, b resp. Using this together
with the assumption on f one easily shows that for β = 1 the condition (3.8) with Ṽ , b̃ instead of V, b resp. and
c = κ is also satisfied.

By the second part of Lemma 3.7 we have ‖τCπg‖ψα ≤ (log 2)1−1/α‖τC‖ψ1π|g|. Thus by the first part of the
lemma ∥∥∥∥∥

τC−1∑
k=0

|Zk(f)|
∥∥∥∥∥
ψα

≤
⎛
⎝
∥∥∥∥∥
τC−1∑
k=0

|Zk(g)|
∥∥∥∥∥
α

ψα

+
1

(log 2)1−α
‖τC‖αψ1

(π|g|)α
⎞
⎠

1/α

.

To prove the estimates on the parameters A,B, C,D it is thus enough to use Theorem 3.4 (with Ṽ , b̃ and β = 1)
combined with the above bound and Lemma 3.6 (this lemma is applied with V, b as it does not involve the
function g).

It remains to prove the bound on π|g|. For α ≥ 1/2 the function x �→ (log x)(1−α)/α is concave on [1,∞)
(recall that by assumption V ≥ 1), so the bound of Proposition 3.5 follows from the assumption on g, Jensen’s
inequality and (3.10). For α < 1/2 the function x �→ ((1 − 2α)/α+ log x)(1−α)/α is concave. Thus we can write
(using the inequality (x+ y)s ≥ xs + ys for s ≥ 1 and x, y ≥ 0),

π(log V )(1−α)/α ≤ π

(
log(V ) +

1 − 2α
α

)(1−α)/α

−
(

1 − α

α

)(1−α)/α

and apply Jensen’s inequality to the first summand on the right hand side. The proof is again concluded
by (3.10). �

Remark 3.8. We would like to stress that drift conditions of the form (1.2) (with explicit constants or con-
stants which can be obtained from the proofs) have been verified for many models of practical interest, see
e.g. [18–20,31, 42]. There is also some literature concerning models for which Theorem 3.4 can be applied with
β < 1 (see [13, 14]). In such models a modified drift condition holds, which implies a bound on ‖τ‖ψβ

, which
can be easily combined with Theorem 3.4 to give a counterpart of Proposition 3.5. Since such a bound would
depend on the form of the drift condition we restrict our attention to the most classical case given by (1.2).

Examples. We will now provide two examples related to potential applications of our results. They will both
consider Markov chains used in the Metropolis–Hastings algorithm (on N and on R). Let us first recall briefly
the basic ideas behind this algorithm. Assume that π is a density of a probability measure on X , which is
only known up to a factor, i.e. only the rations π(x)/π(y) are known. Assume also that Q(·, ·) is a transition
function of a Markov chain on X and that Q(x, ·) has density q(x, y). Then the Metropolis–Hastings algorithm
of approximating π relies on generating a Markov chain Xn, such that whenever Xn = x then one first generates
a new point y according to Q(x, ·) and sets Xn+1 = y or Xn+1 = x with probability respectively α(x, y) and
1 − α(x, y), where

α(x, y) =

{
min

(
π(y)q(y,x)
π(x)q(x,y) , 1

)
if π(x)q(x, y) > 0

1 if π(x)q(x, y) = 0.

One then easily checks that Xn is a Markov chain admitting π as an invariant measure.

Example 3.9 (A sub-geometric measure on N). Consider a probability measure π on N (which we will identify
with the sequence of weights (πi)i∈N). Assume that for some ρ < 1 we have 0 < π(i + 1) ≤ ρπ(i). Let us
consider a Metropolis–Hastings algorithm, starting from 0 and such that q(0, 1) = q(0, 0) = 1/2 and for i > 0,
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q(i, i− 1) = q(i, i+ 1) = 1/2. Thus the transition function P is given by

P (i, i+ 1) =
π(i+ 1)
2π(i)

,

P (i, i− 1) =
1
2
,

P (i, i) =
1
2
− π(i+ 1)

2π(i)

for i > 0 and

P (0, 1) =
π(1)
2π(0)

,

P (0, 0) = 1 − π(1)
2π(0)

·

Thus C = {0} is an atom and (1.1) is satisfied with δ = 1.
Consider a drift function given by V (n) = An+1 with A > 1 to be fixed later. We have for i > 0,

PV (i) ≤ 1
2
Ai +

ρ

2
Ai+2 +

1 − ρ

2
Ai+1 ≤ (1 − λ)V (i)

for any A ∈ (1, ρ−1) and

λ = λA = 1 − 1
2A

− ρA

2
− 1 − ρ

2
> 0.

Moreover, we have PV (0) ≤ (1−ρ/2)A+ρA2/2. Thus the the drift condition (1.2) is satisfied with λ defined
above and b = (A− 1)/2. Note also that K = V (0) = A. Consider now a function g : N → R such that for some
s > 0 and κ,

|g(n)| ≤ κ(1 + n)s.

Since for α = 1/(s+ 1) we have (1 − α)/α = s and logV (n) = (1 + n) logA, we get

|g| ≤ κ

(logA)s
(

logV (n)
) 1−α

α

.

Using Proposition 3.5 we obtain for κ̃ = κ/(logA)s, f = g − πg and x = 0,

A, C,D ≤ Adrift = Cdrift = κ̃
1

log 1
1−λ

max
(

log(2−1(A− 1)(1 − λ)−1 +A)
log 2

, 1
)

×
[(

log(Aλ−1 + 2−1(A− 1)λ−1)
log 2

) s
s+1

+
1

(log 2)s/(s+1)
(π|g|/κ̃)1/(s+1)

]s+1

,

B ≤ Bdrift = κ̃
1

log 1
1−λ

max
(

log(πV + (2−1(A− 1)(1 − λ)−1 +A)π(0))
log 2

, 1
)

×
[(

log(πV λ−1 + 2−1(A− 1)λ−1)
log 2

) s
s+1

+
1

(log 2)s/(s+1)
(π|g|/κ̃)1/(s+1)

]s+1

,

Thus, using the fact that for δ = 1, the r defined by (2.4) equals to 1, we get

a, c ≤ 2s+1Cdrift,b ≤
(
(max{Adrift,Bdrift})1/(s+1) + B1/(s+1)

drift

)s+1

. (3.11)
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The quantities πV and π|g| can be estimated by Proposition 3.5, however in this case they can be also
controlled just in terms of ρ (by comparison with the geometric distribution with probability of success equal
to 1 − ρ). We skip the standard details.

Example 3.10 (Densities on R which are log-concave in tails). Let us now consider the Metropolis–Hastings
algorithm of estimating an integral with respect to a probability measure on R, which is log-concave in tails
(see below for the definition). For such a measure an explicit drift condition (1.2) has been established in [31].
We remark that a generalization to measures on R

d, satisfying some additional technical conditions (which can
be easily verified for spherically symmetric measures) has been obtained in [42]. For clarity of the exposition we
will stick to the one-dimensional case.

Here we will consider a special case of estimating a symmetric positive density π on R, which is log-concave
in tails, i.e. such that there exists ρ > 0 and x1 such that for all y > x > x1

log π(x) − log π(y) ≥ ρ(y − x). (3.12)

Moreover we will assume that q(x, y) = q(x− y) for some symmetric positive density q on R. In this setting
the arguments from [31] can be used to obtain an explicit form of drift function V and constants λ, b in (1.2).
We remark that the symmetry assumption on π can be relaxed by imposing further restrictions on q. Since our
purpose here is just to provide an illustration to our Proposition 3.5 (and the concentration inequalities we will
derive later), we will not consider the general case. Also, since this is just a question of scaling the measure, to
simplify slightly the formulas we will assume that ρ = 2.

By Lemmas 1.1. and 1.2. in [31] the chain is π-irreducible and strongly aperiodic and by the calculations in
the proof of this lemma any compact set C is a small set (i.e. it satisfies (1.1)), with m = 1 and

δ = π(C)
infx,y∈C q(y − x)

supx∈C π(x)
(3.13)

(with the measure ν = π(·|C)). We will now set C = [−x∗, x∗] for some x∗ > x1. By arguments used in the
proof of Theorem 3.2. in [31] one can easily obtain that (1.2) is satisfied with

V (x) = exp(|x| + 1),

λ =
∫ x∗

0

q(z)(1 − e−z)2dz − 2
∫ ∞

x∗
q(z)dz, (3.14)

b =

(
1 + 2

∫ ∞

x∗
q(z)dz + 2ex

∗
∫ x∗

0

q(z)dz

)
e.

We remark that in [31] the authors considered drift functions of the form x �→ exp(μ|x|) for 0 < μ < ρ (recall
that we consider the case ρ = 2). Our modification (the choice of μ = 1 and multiplication by e) aims at
simplifying the formulas we are about to obtain from Proposition 3.5.

Note that for x∗ sufficiently large λ > 0, moreover for every x∗, b < ∞. Note also that for a specific choice
of q, the values of λ, b can be estimated or computed (as is the case e.g. for q(x) = 2−1 exp(−|x|), a choice
which is very convenient for simulations due to explicit formulas on the distribution function of the one sided
exponential distribution).

Assume now that g : R → R is a function of polynomial growth, more specifically that for some constants
s > 0 and κ,

|g(x)| ≤ κ(1 + |x|)s. (3.15)

Since for α = 1/(s+ 1) we have (1 − α)/α = s and logV (x) = (1 + |x|), we get

|g(x)| ≤ κ
(

logV (x)
) 1−α

α

.
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Finally set f = g − πg. Then by Proposition 3.5 we obtain that for α = 1/(s + 1), and the chain starting
from x = 0,

A ≤Adrift = κ
1

log 1
1−λ

log(b(1 − λ)−1 + ex
∗+1)

log 2

×
[(

log(eλ−1 + bλ−1)
log 2

) s
s+1

+
1

(log 2)s/(s+1)
(π|g|)1/(s+1)

]s+1

,

B ≤Bdrift = κ
1

log 1
1−λ

log(πV + b(1 − λ)−1 + ex
∗+1)

log 2

×
[(

log(πV λ−1 + bλ−1)
log 2

) s
s+1

+
1

(log 2)s/(s+1)
(π|g|)1/(s+1)

]s+1

,

C,D ≤Cdrift = κ
1

log 1
1−λ

log(b(1 − λ)−1 + ex
∗+1)

log 2

×
[(

log(bλ−1 + ex
∗+1λ−1)

log 2

) s
s+1

+
1

(log 2)s/(s+1)
(π|g|)1/(s+1)

]s+1

.

We also get an estimate on π|g| and πV , namely

π|g| ≤
{
κ
(
log(bπ(C)λ−1)

)s for s ≤ 1,

κ
(
log(bπ(C)λ−1) + (s− 1)

)s − (s− 1)s for s > 1.

and
πV ≤ bπ(C)λ−1.

Now Proposition 2.2 together with the inequality Adrift ≤ Cdrift imply

a, c ≤(2r)s+1Cdrift ≤ κ

(
2
log( 6

2−δ )

log( 2
2−δ )

)s+1

Cdrift (3.16)

b ≤rs+1

(
max{Bdrift, Cdrift} 1

s+1 + C
1

s+1
drift

)s+1

≤κ
(

log( 6
2−δ )

log( 2
2−δ )

)s+1 (
max{Bdrift, Cdrift} 1

s+1 + C
1

s+1
drift

)s+1

,

where r is defined by (2.4).
Note that the values of the parameters appearing in the above estimates are directly computable from (3.14),

the only exception being δ (given by (3.13)), the estimation of which may require some additional knowledge
concerning the density π (other than the ratios of π(x)/π(y) for x, y ∈ R). Note also that the parameter λ
improves (increases) as we increase x∗, contrary to the parameters b and δ. This leaves some room for rather
nontrivial optimization in x∗, which however would be specific to a given form of π and q.

4. The main tool. Exponential inequalities in the independent case

In this section we develop some inequalities for sums of independent (or one-dependent) unbounded random
variables, which we will later combine with the renewal approach to obtain results for Markov chains. Let
us remark that there is a vast literature on concentration inequalities for sums of i.i.d. unbounded random
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variables with finite ψα norms for α ≤ 1 (see in particular a series of papers by Borovkov [7, 8]). However, the
tail inequalities, provided by those estimates quite often involve constants depending on the distribution of the
underlying sequence, or when the constants depend only on α, also the constant in front of the sub-gaussian
coefficient is not universal (see e.g. inequality (1.4.) in [33] and note that it cannot hold with c1 being a universal
constant multiplied by the variance and c2 
 ‖Xi‖ψγ , as is witnessed e.g. by considering symmetric variables
with P(Xi = ±1) = 1/n and P(Xi = 0) = 1−2/n, i = 1, . . . , n, n→ ∞). For this reason, while such inequalities
often perform better than ours for very large t, they are not well suited for the applications we have in mind.
We do believe that inequalities which would work in our framework could be obtained by following the proofs
from the aforementioned papers, but since the arguments we really need reduce to truncation and Bernstein
type bounds on the Laplace transform, we prefer to provide complete proofs. Let us also stress that the results
of this section are developed solely as technical tools for proving the corresponding results in the Markov chain
setting and we do not claim any novelty of the methods we use.

The first lemma will let us truncate the variables and reduce the problem to well-known inequalities for
bounded summands. Contrary to the approach in [1] at this point we do not need Talagrand’s inequalities and
thus we are able to obtain explicit constants (this happens at the cost of weakening the generality of the result in
the independent case, but improves the inequalities which are then applied to Markov chains). To avoid formal
problems below we adopt the convention “logn := log(n ∨ e)”.

Lemma 4.1. Let ξ0, . . . , ξn−1 be i.i.d. random variables such that E exp(c−α|ξi|α) ≤ 2 for some α ∈ (0, 1]. Let
M = c(3α−2 logn)1/α and Yi = ξi1|ξi|>M . Then for any 0 ≤ λ ≤ 1/(21/αc),

E exp

(
λα

n−1∑
i=0

(|Yi| + E|Yi|)α
)

≤ exp(8).

Proof. Note that by independence

E exp

(
λα

n−1∑
i=0

(|Yi|α + (E|Yi|)α)

)
= exp

(
nλα(E|ξ0|1|ξ0|>M )α

)(
E exp(λα|ξ0|α1|ξ0|>M )

)n
. (4.1)

By Markov’s inequality

P(|ξ0| > t) ≤ e−
tα

cα E exp
( |ξi|α
cα

)
≤ 2e−

tα

cα . (4.2)

We thus obtain that

E|ξi|1|ξi|>M =
∫ ∞

0

P(|ξi|1|ξi|>M > t)dt = MP (|ξi| > M) +
∫ ∞

M

P(|ξi| > t)dt

≤ 2Me−
Mα

cα + 2
∫ ∞

M

e−
tα

cα dt. (4.3)

To bound the last term in (4.3) we need the following lemma.

Lemma 4.2. If M ≥ 21/αα− 1
α c then ∫ ∞

M

exp
(
− tα

cα

)
dt ≤Me−

Mα

cα .

Proof. The change of variables s = tα/cα implies that∫ ∞

M

e−
tα

cα dt =
c

α

∫ ∞

Mα

cα

s
1
α−1e−sds.
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Then again by the change of variables we deduce that

∫ ∞

M

e−
tα

cα dt =
c

α
e−

Mα

cα

∫ ∞

0

(
Mα

cα
+ s

) 1
α−1

e−sds.

Using the inequality 1 + x ≤ exp(x) we have

∫ ∞

0

(
Mα

cα
+ s

) 1
α−1

e−sds =
M1−α

c1−α

∫ ∞

0

(
1 +

cα

Mα
s

) 1
α−1

e−sds ≤

=
M1−α

c1−α

∫ ∞

0

exp
(
−s
(

1 −
(

1
α
− 1
)

cα

Mα

))
ds =

M1−α

c1−α

(
1 −

(
1
α
− 1
)

cα

Mα

)−1

·

Since by assumption Mα/cα ≥ 2/α, the right hand side above is bounded by Mα/c and thus∫ ∞

M

exp
(
− tα

cα

)
dt ≤M exp

(
−M

α

cα

)
· �

Plugging the estimate from Lemma 4.2 into (4.3) we conclude that

exp
(
λα
(
E|ξ0|1|ξ0|>M

)α) ≤ exp
(
λα
[
4Me−

Mα

cα

]α)
.

By definition M = c(3α−2 logn)1/α ≥ c(2α−2 logn+ α−2)1/α, therefore

exp
(
nλα(E|ξ0|1|ξ0|>M )α

) ≤ exp
(

3 · 4αnλαcαα−2 logn
n2α−1 e−α

−1
)

≤ exp
(

3 · 4αλαcα 4
e2

logn
n

)
,

where we used the fact that supα∈(0,1) α
−2 exp(−α−1) = 4/e2. Since e2 ≥ 7, we see that whenever λαcα ≤ 1/2,

we have

exp
(
nλα(E|ξ0|1|ξ0|>M )α

) ≤ exp(4). (4.4)

Now we proceed to the estimate on E exp(λα|ξ0|α1|ξ0|>M |).
There is the following representation

E exp
(
λα|ξ0|α1|ξ0|>M

)
= 1 +

∫ ∞

1

P
(
|ξ0|1|ξ0|>M > λ−1 log

1
α t
)

dt.

Let t0 = exp(λαMα), i.e. M = λ−1 log
1
α t0. Observe that one can split the integral bound into two terms∫ ∞

1

P(|ξ0|1|ξ0|>M > λ−1 log
1
α t))dt = (t0 − 1)P(|ξ0| > M) +

∫ ∞

t0

P(|ξ0| > λ−1 log
1
α t)dt.

Applying (4.2) again we obtain that∫ ∞

1

P
(
|ξ0|1|ξ0|>M > λ−1 log

1
α t
)

dt ≤ 2t0e−
Mα

cα + 2
∫ ∞

t0

t−λ
−αc−α

dt

≤ 2t0e−
Mα

cα + 2
λαcα

1 − λαcα
t1−λ

−αc−α

0 .

Since t0 = exp(λαMα) we have t0e−
Mα

cα = t1−λ
−αc−α

0 and thus we conclude that whenever λc < 1,

E exp(λα|ξ0|α1|ξ0|>M ) ≤ 1 +
2

1 − λαcα
exp

(
−(1 − λαcα)

Mα

cα

)
·
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Thus requiring that λαcα ≤ 1/2 we guarantee that

E exp(λα|ξ0|α1|ξ0|>M ) ≤ 1 + 4e−
Mα

2cα ·

Since M ≥ c(2 logn)
1
α we deduce

E exp(λα|ξ0|α1|ξ0|>M ) ≤ 1 +
4
n
·

This gives

(E exp(λα|ξ0|α1|ξ0|>M ))n ≤
(

1 +
4
n

)n
≤ exp(4), (4.5)

which together with (4.1) and (4.4) ends the proof. �

Lemma 4.3. Let ξ0, . . . , ξn−1 be i.i.d. mean zero random variables such that |ξi| ≤ M for i ∈ {0, . . . , n − 1},
with variance σ2 and let T ≤ n be a stopping time (with respect to some filtration Fi ⊇ σ(ξ0, . . . , ξi−1) such that
ξi is independent of Fi). Then for every a > 0, ε ∈ (0, 1) and

λ ≤ min

(
3

2M(1 + ε)
,

√
ε

(1 + ε)σ
√‖(T − a)+‖ψ1

)
, (4.6)

we have

E exp

(∣∣∣∣∣λ
T∑
i=1

ξi−1

∣∣∣∣∣
)

≤ 21+ε/(1+ε) exp
(

λ2a(1 + ε)σ2

2(1 − λ(1 + ε)M/3)

)

Proof. Let us consider the martingale

Mk =
exp

(
λ(1 + ε)

∑k
i=1 ξi−1

)
(E exp(λ(1 + ε)ξ0))

k
·

By Doob’s theorem EMT = 1 and thus by the Hölder’s inequality

E exp

(
λ

T∑
i=1

ξi−1

)
= E exp

(
λ

T∑
i=1

ξi−1

)
(E exp (λ(1 + ε)ξ0))

−T/(1+ε) (E exp(λ(1 + ε)ξ0))T/(1+ε)

≤ (EMT )1/(1+ε)
(
E(E exp(λ(1 + ε)ξ0))T/ε

)ε/(1+ε)
=
(
E(E exp(λ(1 + ε)ξ0))T/ε

)ε/(1+ε)
.

The classical Bernstein bound (e.g. [9]) gives

E exp (λ(1 + ε)ξ0) ≤ exp
(

λ2(1 + ε)2σ2

2(1 − λ(1 + ε)M/3)

)

and thus

E exp(λ
T∑
i=1

ξi−1) ≤
(
E exp

(
λ2(1 + ε)2σ2T

2ε(1 − λ(1 + ε)M/3)

))ε/(1+ε)

≤ exp
(

λ2(1 + ε)σ2a

2(1 − λ(1 + ε)M/3)

)(
E exp

(
λ2(1 + ε)2σ2(T − a)+
2ε(1 − λ(1 + ε)M/3)

))ε/(1+ε)
·
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Thus if

λ ≤ 3
M(1 + ε)

(
M2ε

9‖(T − a)+‖ψ1σ
2

(
−1 +

√
1 +

18σ2‖(T − a)+‖ψ1

M2ε

))
(4.7)

then the inequality in question holds. Note that (4.6) implies (4.7) (one can also directly see that (4.6) implies
the assertion of the lemma). �

The next proposition gives a bound on the tail of sums of independent or one-dependent random variables
with finite ψα norms. This second part may seem to be formulated in a somewhat artificial way, however when
dealing with the Markov case this formulation will help us introduce the asymptotic variance of the additive
functional to the inequalities.

Proposition 4.4.

(i) Let ξ0, . . . , ξn−1 be a one-dependent sequence of mean zero, variance σ2 random variables, such that
E exp(c−α|ξi|α) ≤ 2 and let m be a positive integer. Let M = c(3α−2 log(n/m))1/α, then for any t ≥ 0,

P

(
sup

k<n/m

∣∣∣∣∣
k∑
i=1

ξi−1

∣∣∣∣∣ > t

)
≤ 2e8e−

tα

2(4c)α + 4 exp
(
− t2

32(�n/(2m)�σ2 +Mt/6)

)
·

(ii) Assume additionally that the variables ξi are independent and let N be a stopping time (wrt some filtration
Fi ⊇ σ(ξ0, . . . , ξi−1) such that ξi is independent of Fi) such that N ≤ n. Let M = c(3α−2 logn)1/α. Then
for any ε ∈ (0, 1), a > 0 and p, q > 0 such that p−1 + q−1 = 1, we have for all t ≥ 0,

P

(∣∣∣∣∣
N∑
i=1

ξi−1

∣∣∣∣∣ > t

)
≤ e8e−

(p−1t)α

2cα + 21+ε/(1+ε) exp
(
− q−2t2

2((1 + ε)aσ2 + μ−1tq−1)

)
,

where

μ = min

(
3

4M(1 + ε)
,

√
ε

(1 + ε)σ
√‖(N − a)+‖ψ1

)
·

Proof. First observe that the case of one-dependent random variables can be easily transformed to the question
of independent ones. Indeed it suffices to split the sum into odd and even part, namely we use

P

(
sup

k<n/m

∣∣∣∣∣
k∑
i=1

ξi−1

∣∣∣∣∣ > t

)
≤ P

(
sup

k<n/m

∣∣∣∣∣
∞∑
i=0

ξ2i12i<k

∣∣∣∣∣ > t/2

)
+ P

(
sup

k<n/m

∣∣∣∣∣
∞∑
i=0

ξ2i+112i+1<k

∣∣∣∣∣ > t/2

)
. (4.8)

Then decompose with respect to M , i.e. let ξi = ξi1|ξi|>M + ξi1|ξi|≤M and denote

Yi = ξi1|ξi|>M − Eξi1|ξi|>M , Zi = ξi1|ξi|≤M − Eξi1|ξi|≤M .

This results in the following inequality

P

(
sup

k<n/m

∣∣∣∣∣
∞∑
i=0

ξ2i12i<k

∣∣∣∣∣ > t/2

)
≤ P

(
sup

k<n/m

∣∣∣∣∣
∞∑
i=0

Y2i12i<k

∣∣∣∣∣ > t/4

)
+ P

(
sup

k<n/m

∣∣∣∣∣
∞∑
i=0

Z2i12i<k

∣∣∣∣∣ > t/4

)
. (4.9)

We use the usual Laplace transform argument on each of the summands. We have by Markov’s and triangle
inequalities (recall that α ∈ (0, 1], so |x+ y|α ≤ |x|α + |y|α),

P

(
sup

k<n/m

∣∣∣∣∣
∞∑
i=0

Y2i12i<k

∣∣∣∣∣ > t/4

)
≤ e−λ

αtα/4α

E exp

(
λα

∞∑
i=0

|Y2i|α12i<(n−1)/m

)
.
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By Lemma 4.1, for λ ≤ 1/(21/αc),

E exp

(
λα

∞∑
i=0

|Y2i|α12i<(n−1)/m

)
≤ exp(8),

which gives

e−
λαtα

4α E exp

(
λα

∣∣∣∣∣
∞∑
i=0

Y2i12i<(n−1)/m

∣∣∣∣∣
α)

≤ exp(8)e−
tα

2(4c)α .

This shows that the unbounded part of the sum is well concentrated.
Let us now pass to the bounded part. Similarly as before, we have for all μ̄ ≥ 0

P

(
sup

k<n/m

∣∣∣∣∣
∞∑
i=0

Z2i12i<k

∣∣∣∣∣ > t/4

)
≤ e−μ̄t/4E exp

(
μ̄

∣∣∣∣∣
∞∑
i=0

Z2i12i<(n−1)/m

∣∣∣∣∣
)
,

where we have used Doob’s maximal inequality [39] together with the fact that the sequence Mk =
exp(μ̄|∑∞

i=0 Z2i12i<k|) is a submartingale.
Since |Z0| ≤ 2M , we can now use the classical Bernstein bound (again see [9]) to get for 0 ≤ μ̄ < 3/(2M),

E exp

(
μ̄

∣∣∣∣∣
∞∑
i=0

Z2i12i<(n−1)/m

∣∣∣∣∣
)

≤ 2 exp
(
μ̄2σ2�n/2m�

2(1 − 2Mμ̄/3)

)
,

optimizing in μ̄ ≥ 0 we deduce that

P

(
sup

k<n/m

∣∣∣∣∣
∞∑
i=0

Z2i12i<k

∣∣∣∣∣ > t/4

)
≤ 2 exp

(
− t2

32(�n/(2m)�σ2 +Mt/6)

)
·

Combining this inequality with the previous estimate on the unbounded part gives

P

(
sup

k<n/m

∣∣∣∣∣
∞∑
i=0

ξ2i12i≤k

∣∣∣∣∣ > t/2

)
≤ e8e−

tα

2(4c)α + 2 exp
(
− t2

32(�n/(2m)�σ2 +Mt/6)

)
·

Using an analogous argument for P(supk<n/m |∑∞
i=0 ξ2i+112i+1<k| > t/2) and then (4.8) we finally derive the

inequality asserted in part (i) of the proposition.
Let us now consider part (ii). We will use the above notation with obvious modifications, which we will not

state explicitly (the difference stems from the fact that now there is no need to split the sum into the “odd”
and “even” parts). Instead of the symmetric split we apply any p, q ≥ 1 such that p−1 + q−1 = 1 and then

P

(∣∣∣∣∣
N∑
i=1

ξi−1

∣∣∣∣∣ > t

)
≤ P

(∣∣∣∣∣
N∑
i=1

Yi−1

∣∣∣∣∣ > p−1t

)
+ P

(∣∣∣∣∣
N∑
i=1

Zi−1

∣∣∣∣∣ > q−1t

)
. (4.10)

The unbounded part can be handled in the same way as for part (i). As for the bounded part, from Lemma 4.3,
for any a ≥ 0, ε ∈ (0, 1) and

μ ≤ μ1 = min

(
3

4M(1 + ε)
,

√
ε

(1 + ε)σ
√‖(N − a)+‖ψ1

)
,

we get

E exp

(∣∣∣∣∣μ
N∑
i=1

Zi−1

∣∣∣∣∣
)

≤ 21+ε/(1+ε) exp
(
μ2a(1 + ε)σ2

2(1 − μμ−1
1 )

)
·
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Thus

e−q
−1μtE exp

(
μ

∣∣∣∣∣
N∑
i=1

Zi−1

∣∣∣∣∣
)

≤ e−q
−1μt21+ε/(1+ε) exp

(
a(1 + ε)μ2σ2

2
(
1 − μμ−1

1

)
)
,

from which we deduce like in Bernstein’s inequality (setting μ = q−1t/((1 + ε)aσ2 + μ−1
1 q−1t))

P

(∣∣∣∣∣
N∑
i=1

Zi−1

∣∣∣∣∣ > q−1t

)
≤ 21+ε/(1+ε) exp

(
− q−2t2

2((1 + ε)aσ2 + μ−1
1 tq−1)

)
,

which ends the proof of part (ii). �

Remark 4.5. We note that modifying the martingale argument in part (ii) of Proposition 4.4 one can show a
similar inequality under the assumptions of part (i).

Let us now pass to corresponding results in the case of suprema of empirical processes. We will consider a
countable class F of functions f : X → R (countability is important only for measurability purposes and clearly
can be relaxed). Let F (x) = supf∈F |f(x)| be the envelope of F . Our goal will be to obtain exponential bounds
for P(S∗

F ≥ (1 + ε)ESF + t), where

SF =

∥∥∥∥∥
n∑
i=1

f(ξi−1)

∥∥∥∥∥
F

:= sup
f∈F

∣∣∣∣∣
n∑
i=1

f(ξi−1)

∣∣∣∣∣
and

S∗
F = max

k≤n
sup
f∈F

∣∣∣∣∣
k∑
i=1

f(ξi−1)

∣∣∣∣∣
(ξi are independent random variables).

Our main tool will be the following version of Talagrand’s inequality, obtained by Klein and Rio [22] in the
case of bounded summands.

Theorem 4.6. Let ξ0, . . . , ξn−1 be i.i.d. random variables and assume that F is a countable class of functions
with an envelope F , such that Ef(ξ0) = 0 for all f ∈ F and |F (ξi)| ≤M a.s. Then for any λ ≤ 2/(3M),

E exp(λS) ≤ exp
(
λES +

(2MES + nσ2)λ2

2 − 3Mλ

)
,

where σ2 = supf∈F Ef(ξ0)2.

Similarly as in [15] (formula (3.2)) by using the fact that exp(supf |
∑k

i=1 f(ξi−1)|) is a submartingale, Doob’s
maximal inequality and Bernstein’s approach we obtain the following.

Corollary 4.7. In the setting of Theorem 4.6, for any t ≥ 0,

P(S∗
F ≥ ESF + t) ≤ exp

(
− t2

2σ2n+ (4ESF + 3t)M

)

and as a consequence for any ε > 0,

P(S∗
F ≥ (1 + ε)ESF + t) ≤ exp

(
− t2

2(1 + ε)nσ2

)
+ exp

(
− t

MDε

)
,

where Dε = (1 + ε−1)(3 + 4ε−1).
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Remark 4.8. Two important aspects of the above inequalities are that the subgaussian behavior of the tail
estimate for small t is governed by the weak-variance σ2 and that the parameter ε can be taken arbitrarily small,
which shows in particular that for Donsker classes F the concentration properties of the empirical process are
almost as good as for the limiting Gaussian process.

We remark that there are other recent inequalities for suprema of empirical processes, which take into account
some other parameters of the process than we consider here and also assume some additional knowledge on the
so called bracketing numbers of the class F (see e.g. [45], where the weak variance is replaced by a Bernstein
type upper bound for moments of individual functions f). In concrete applications their advantage is that they
provide also an upper bound on ESF , however at the same time they are not as general as Talagrand’s inequality.
Our “philosophy” here is that we would like to separate two aspects of the study of empirical processes, i.e.
bounds on the expectation (which are intimately related to concentration properties for individual functions f
and are usually obtained via chaining methods) and concentration for the supremum (which we would like to
express, at least at the subgaussian level, via the weak variance of the process). This is also the reason why we
prefer to introduce the additional parameter ε into the inequalities, since then the right estimate on probability
does not involve the expectation of the supremum any more and in particular the growth with n of the exponents
becomes explicit (note that while the expectation is always of the order at most O(n), in typical situations,
i.e. under some additional geometric assumptions, it is smaller). To the best of our knowledge eliminating the
factor (1 + ε) in front of ESF , without introducing additional parameters (i.e. other than σ2 and M) to the
probability bound remains an open problem.

Our next goal is to give tools, which will allow to prove similar inequalities for suprema of additive functionals
of Markov chains. Combining Corollary 4.7 with Lemma 4.1 we obtain

Proposition 4.9. Consider i.i.d. random variables ξ0, . . . , ξn−1 and assume that F is a countable class of
functions with an envelope F , such that Ef(ξ0) = 0 for all f ∈ F and E exp(c−αF (ξi)α) ≤ 2. Let M =
c(3α−2 logn)1/α and σ2 = supf∈F Ef(ξ0)2. Then for any ε ∈ (0, 1/2) and t ≥ 0,

P(S∗
F ≥ (1 + ε)ESF + t) ≤ exp

(
− (1 − 2ε)2t2

2(1 + ε)nσ2

)
+ e exp

(
− t(1 − 2ε)

2M(1 + ε−1)(3 + 4ε−1)

)

+ e8 exp
(
− (εt)α

2cα

)
·

Proof. For f ∈ F , define the functions f1(x) = f(x)1|F (x)|≤M − Ef(ξ0)1|F (ξ0)|≤M , f2(x) = f(x) − f1(x) =
f(x)1|F (x)|>M − Ef(ξ0)1|F (ξ0)|>M . Let Fi = {fi : f ∈ F}, i = 1, 2. Clearly S∗

F ≤ S∗
F1

+ S∗
F2

, and thus

P(S∗
F ≥ (1 + ε)ESF + t) ≤ P(S∗

F1
≥ (1 + ε)ESF + (1 − ε)t) + P(S∗

F2
≥ εt).

We have

S∗
F2

≤
n∑
i=1

(
F (ξi−1)1|F (ξi−1)|>M + EF (ξi−1)1|F (ξi−1)|>M

)
and so by Lemma 4.1 and Chebyshev’s inequality we get

P(S∗
F2

≥ εt) ≤ e8e−
(εt)α

2cα . (4.11)

Let us note that without loss of generality we can assume that t ≥ 16Mε−1 (otherwise the right hand side of
the inequality in question exceeds one). Therefore

(1 + ε)ESF ≥ (1 + ε)ESF1 − 2ESF2 ≥ (1 + ε)ESF1 − 4nEF (ξ0)1F (ξ0)>M

≥ (1 + ε)ESF1 − 16Mn exp(−Mα/cα) ≥ (1 + ε)ESF1 − 16M
≥ (1 + ε)ESF1 − εt,

where the third inequality follows from Lemma 4.2.
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Taking into account that for every f ∈ F , ‖f1‖∞ ≤ 2M and Ef1(ξ0)2 ≤ Ef(ξ0)2, we get by Corollary 4.7,

P(S∗
F1
> (1 + ε)ESF + (1 − ε)t) ≤ P(S∗

F1
> (1 + ε)ESF1 + (1 − 2ε)t)

≤ exp
(
− (1 − 2ε)2t2

2(1 + ε)nσ2

)
+ exp

(
− t(1 − 2ε)

2MDε

)
,

which ends the proof of the proposition. �

5. Exponential concentration for additive functionals of Markov chains

In this section we will prove tail estimates for Markov chains expressed in terms of quantities introduced in
Section 2.

5.1. Additive functionals

We will start from the most general of our inequalities and later we will add assumptions under which we
are able to improve some aspects of the estimates.

The inequalities we present are expressed in terms of the parameters a,b, c introduced in Section 2, for-
mula (2.3). Our discussion in Section 2 shows that there exist bounds on a,b, c in terms of A,B, C,D (Prop. 2.2),
which in turn can be estimated via drift conditions (Thms. 3.1, 3.4). We do not plug the most general version
of those inequalities into our tail estimates so as not to obscure the already quite involved formulas. At the end
of the section we will do this only in the case of geometrically ergodic Markov chains to obtain Theorem 1.1
from the Introduction with explicit formulas for the parameters involved.

Recall that π∗ is the split of the measure π.

Theorem 5.1. Let α ∈ (0, 1]. Let X be an ergodic Markov chain and Xm its m-skeleton used in the split
chain construction. Assume for simplicity that m|n and let f : X → R be an arbitrary function for which the
parameters a,b, c defined in (2.3) are finite and such that Eπf = 0. Set M = c(3α−2 log(n/m))1/α. Then the
following inequality holds for all t ≥ 0,

Px

(∣∣∣∣∣
n−1∑
i=0

f(Xi)

∣∣∣∣∣ > 3t

)
≤ 2 exp

(
− tα

aα

)
+ 2π∗(θ)−1 exp

(
− tα

bα

)
+ 2e8 exp

(
− tα

2(4c)α

)

+ 4 exp
(
− t2

32(�n/(2m)�σ2 +Mt/6)

)
·

where a,b, c have been defined by formula (2.3) and σ2 = Es20.

Proof. We have introduced all necessary tools to prove the exponential concentration. By the construction of
the split chain,

Px

(∣∣∣∣∣
n−1∑
i=0

f(Xi)

∣∣∣∣∣ > 3t

)
= P̄x∗

(∣∣∣∣∣
n−1∑
i=1

f(Xi)

∣∣∣∣∣ > 3t

)
.

In (2.1) we have decomposed
∑n−1

i=0 f(Xi) into three summands∣∣∣∣∣
n−1∑
k=0

f(Xk)

∣∣∣∣∣ ≤ Un(f) + Vn(f) +Wn(f),

therefore to complete our proof it suffices to bound

P̄x∗(|Un| > t), P̄x∗(|Vn| > t), P̄x∗(|Wn| > t).
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For simplicity we have assumed that m|n, then all the quantities can be expressed in terms of Zk(f), k ≥ 0,
namely

Un(f) =

∣∣∣∣∣∣
min(σ,n/m−1)∑

k=0

Zk(f)

∣∣∣∣∣∣ , Vn(f) =
N∑
i=1

si−1, Wn(f) =

∣∣∣∣∣∣1N>0

σ(N)∑
k=n/m

Zk(f)

∣∣∣∣∣∣ .
To bound the first term note that

P̄x∗(|Un(f)| > t) ≤ 2 exp
(
− tα

aα

)
, (5.1)

where a = ‖∑σ
k=0 |Zk(f)|‖ψα,P̄x∗ . Estimating Wn(f) is more involved. Recall that θ = C × {1} is an atom

of the split chain and τθ = inf{k > 0: (Xm
k , Yk) ∈ θ}. By Pitman’s occupation measure formula ([37, 38], see

also [34], Thm. 10.0.1) we get

∞∑
l=1

Ēθ exp

(
b−α

∣∣∣∣∣
τθ∑
k=l

Zk(f)

∣∣∣∣∣
α)

1τθ≥l = π∗(θ)−1Eπ∗ exp

⎛
⎝b−α

∣∣∣∣∣∣
σ(0)∑
k=0

Zk(f)

∣∣∣∣∣∣
α⎞
⎠ ,

and it follows that

P̄x∗(|Wn(f)| > t) ≤
n/m∑
l=1

P̄x∗(X̄m
n/m−l ∈ θ)P̄θ

(∣∣∣∣∣
τθ∑
k=l

Zk(f)

∣∣∣∣∣ > t & τθ ≥ l

)

≤
n/m∑
l=1

P̄x∗(X̄m
n/m−l ∈ θ)e−

tα

bα Ēθ(1τθ≥l exp

(
b−α

∣∣∣∣∣
τθ∑
k=l

Zk(f)

∣∣∣∣∣
α)

≤
[

max
1≤l≤n/m

P̄x∗(X̄m
n/m−l ∈ θ)

]
e−

tα

bα π∗(θ)−1Eπ∗ exp

⎛
⎝b−α

⎛
⎝σ(0)∑
k=0

|Zk(f)|
⎞
⎠
α⎞
⎠ .

Obviously [
max

1≤l≤n/m
P̄x∗(X̄m

n/m−l ∈ θ)
]
≤ 1,

but we stress here that limn→∞ P̄x∗(X̄m
n/m−l ∈ θ) = π∗(θ), so the bound usually can be much better if we wait

for ergodicity to be observed. However in the general case the above argument shows that

P̄x∗(Wn(f) > t) ≤ e−
tα

bα

⎡
⎣π∗(θ)−1Eπ∗ exp

⎛
⎝b−α

⎛
⎝σ(0)∑
k=0

|Zk(f)|
⎞
⎠
α⎞
⎠
⎤
⎦ ,

so due to the definition of b it yields

P̄x∗(Wn(f) > t) ≤ 2π∗(θ)−1e−
tα

bα . (5.2)

Finally we should give a bound on P̄x∗(Vn > t), yet this is exactly the setting of our main tool. If we set
ξi = si and

c = ‖si(f)‖ψα,P̄ = c,

then Proposition 4.4 gives

P̄x∗(|Vn| > t) ≤ 2e8e−
tα

2(4c)α + 4 exp
(
− t2

32(�n/(2m)�σ2 +Mt/6)

)
,

where σ2 = Ēs21. �
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One of important features of the classical Bernstein’s inequality is that for small t (i.e. t � n) it provides a
subgaussian tail estimate with the subgaussian coefficients given by the variance of the i.i.d. summands. Thus
it shows that for some range of t the tail estimate is almost as good as for the limiting Gaussian variable.

Note that for m > 1 the subgaussian coefficients from Theorem 5.1 differs from the asymptotic variance
(i.e. the variance of the limiting Gaussian distribution), which as is well known (see e.g. [34], Formula (17.32))
is equal to π∗(θ)m−1(Es0(f)2 + 2Es0(f)s1(f)). Moreover also in the case m = 1, the subgaussian coefficients
remains bounded away from the asymptotic variance, which in this case is equal to π∗(θ)Es0(f)2.

We would now like to provide an estimate for additive functionals with the subgaussian coefficients arbitrarily
close to π∗(θ)Es0(f)2. To achieve this we will have to make additional assumptions concerning the Markov chain.
Namely, we will assume that it is geometrically ergodic, i.e. that ‖σ(0)+1‖ψ1,Pν∗ = ‖σ(1)−σ(0)‖ψ1 <∞ (recall
that ν is the minorizing measure used in the splitting construction) and that m = 1 (i.e. the chain is strongly
aperiodic).

Our proof will rely on the second part of Proposition 4.4. In order to use it we will first show that the stopping
time N does not deviate much from nπ∗(θ). The following result is classical and can be found e.g. in [9].

Lemma 5.2 (Bernstein’s ψ1 inequality). If ξ0, . . . , ξn−1 are independent mean zero random variables such that
‖ξi‖ψ1 ≤ c, then for all t ≥ 0,

P

(
n−1∑
i=0

ξi ≥ t

)
≤ exp

(
− t2

4nc2 + 2ct

)
·

Before we formulate the next lemma, let us introduce one more parameter, which quantifies geometric ergod-
icity of the chain. Namely, define

d = ‖σ(1) − σ(0)‖ψ1 = ‖σ(0) + 1‖ψ1,Pν∗ <∞ (5.3)

(note that this definition does not depend on the initial distribution of the chain).
As is well-known geometric ergodicity is equivalent to finiteness of d, which can be effectively bounded by

using classical drift conditions (see e.g. [34], Sect. 15.1.3, [5]). More precisely we have the following.

Proposition 5.3. If the chain satisfies (1.1) with m = 1 and the drift condition (1.2), then

d ≤ 2rmax
(

log(b(1 − λ)−1 +K)
log 2

, 1
)

1
log 1

1−λ

≤ 2

(
log( 6

2−δ )

log( 2
2−δ )

)
max

(
log(b(1 − λ)−1 +K)

log 2
, 1
)

1
log 1

1−λ
,

where r is defined by (2.4).

Proof. The proposition follows from the third estimate in Lemma 3.6 and the bound on c given in Proposition 2.2
applied to α = 1 and the function f ≡ 1. �

Recall the stopping time N defined in (2.2) and note that by the law of large numbers, for n � 1 it should
behave like π∗(θ)n. The next lemma quantifies this intuition and gives a bound on deviations of N .

Lemma 5.4. Assume that m = 1 and the Markov chain is geometrically ergodic. Then for any ε ∈ (0, 1) and
every integer k ≥ π∗(θ)n(1 + ε),

P̄x∗(N > k) ≤ exp
(
− k − π∗(θ)n

36π∗(θ)2d2ε−1

)
·

As a consequence,
‖(N − (1 + ε)π∗(θ)n)+‖ψ1,P̄x∗ ≤ 144π∗(θ)2d2ε−1.
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Proof. Set Ti = σ(i) − σ(i − 1) for i ≥ 1 and note that Ti are i.i.d. random variables with common mean
ETi = π∗(θ)−1 ≤ d. We have ‖Ti − ETi‖ψ1 ≤ 2d. Thus for every integer k = π∗(θ)n(1 + ε+ t), t ≥ 0,

P̄x∗(N > k) = P̄x∗(σ(k) < n− 1) ≤ P̄x∗

(
k∑
i=1

Ti < n− 1

)

≤ P̄x∗

(
k∑
i=1

(Ti − π∗(θ)−1) ≤ n− 1 − π∗(θ)−1k

)

= P̄x∗

(
k∑
i=1

(Ti − π∗(θ)−1) ≤ −n(ε+ t) − 1

)

≤ exp
(
− n2(ε+ t)2

16d2π∗(θ)n(1 + ε+ t) + 4(ε+ t)nd

)
,

where we used Lemma 5.2.
Taking into account that π∗(θ)d ≥ 1 and (ε+ t+ 1)/(ε+ t) ≤ 2/ε, this yields

P̄x∗(N > k) ≤ exp
(
− π∗(θ)n(ε+ t)

36π∗(θ)2d2ε−1

)
= exp

(
− k − π∗(θ)n

36π∗(θ)2d2ε−1

)
·

Thus for Z = (N − (1 + ε)π∗(θ)n)+ and a = 36π∗(θ)2d2ε−1, we have

E exp
(
Z

2a

)
= 1 +

∫ ∞

0

etP̄x∗(Z > 2at)dt

= 1 +
∫ 1/(2a)

0

etdt+
∫ ∞

1/(2a)

exp(t− (2at− 1)/a)dt

= e1/(2a) + e1/ae−1/(2a) = 2e1/(2a) ≤ 4,

which proves the Lemma. �

Repeating the proof of Theorem 5.1 and using the second part of Proposition 4.4 instead of the first one,
together with the above Lemma 5.4, we get the following theorem. Note that by playing with the parameters
p, ε we can now make the subgaussian coefficient arbitrarily close to the optimal one (given by the CLT) at the
cost of worsening the remaining constants.

Theorem 5.5. Let α ∈ (0, 1]. Let X be a strongly aperiodic, geometrically ergodic Markov chain. Let f : X → R

be a function for which the parameters a,b, c, defined in (2.3) are finite and such that Eπf = 0. Let p, q > 1
satisfy p−1 + q−1 = 1 and ε ∈ (0, 1). Then the following inequality holds for all t ≥ 0,

Px

(∣∣∣∣∣
n−1∑
i=0

f(Xi)

∣∣∣∣∣ > t

)
≤ 2 exp

(
− (tp−1)α

(2a)α

)
+ 2π∗(θ)−1 exp

(
− (tp−1)α

(2b)α

)

+ e8 exp
(
− (p−1q−1t)α

2cα

)
+ 21+ε/(1+ε)

(
− q−4t2

2((1 + ε)σ2n+M(ε)tq−2)

)
,

where
σ2 = σ2(f) = π∗(θ)Es0(f)2
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and

M(ε) = max
(

4c(3α−2 logn)1/α(1 + ε)
3

,
12π∗(θ)d(1 + ε)σ

ε

)
·

By combining the above theorem with our previous estimates for the parameters a,b, c,d we obtain.

Theorem 5.6. Assume that {Xn}n≥0 is a Harris recurrent strongly aperiodic Markov chain on the space (X ,B)
admitting a unique stationary measure π. Assume furthermore that conditions (1.1) with m = 1 and (1.2) are
satisfied. Let finally s > 0 and consider an arbitrary measurable function g : X → R such that

|g(x)| ≤ κ
(

log(V (x))
)s

for some κ ≥ 0. Set α = 1/(s+ 1). Then for every x ∈ X , η ∈ (0, 1] and t > 0,

Px

(∣∣∣∣∣
n−1∑
i=0

g(Xi) − nπg

∣∣∣∣∣ > t

)
≤ 2 exp

(
− (tη)α

(25a)α

)
+ 2π∗(θ)−1 exp

(
− (tη)α

(25b)α

)
(5.4)

+ e8 exp
(
− (ηt)α

2 · 14αcα

)
+ 21+η/(2+η) exp

(
− t2

2((1 + η)σ2n+M(η)t)

)
,

where

σ2 = π∗(θ)Es0(g − πg)2 (5.5)

= lim
n→∞

Varπ(
∑n−1

i=0 g(Xn))
n

= Eπ(g(X0) − πg)2 + 2
∞∑
i=1

Eπ(g(X0) − πg)(g(Xi) − πg),

and

M(η) = (1 + η)3/4 max
(

4c(3α−2 logn)1/α

3
,
29π∗(θ)dσ

η

)
·

and the numbers a,b, c,d satisfy

a ≤ r1/α
(
(max{Adrift, Cdrift})α + Cαdrift

) 1
α

,

b ≤ r1/α
(
(max{Bdrift, Cdrift})α + Cαdrift

) 1
α

,

c ≤ (2r)1/αCdrift,

d ≤ 2rmax
(

log(b(1 − λ)−1 +K)
log 2

, 1
)

1
log 1

1−λ
,

where

r ≤ log( 6
2−δ )

log( 2
2−δ )

is the unique solution to the equation

21/rδ1−1/r + 21+1/r(1 − δ)1−1/r = 2, (5.6)
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Adrift = κ
1

log 1
1−λ

max
(

log(V (x)1Cc(x) + (b(1 − λ)−1 +K)1C(x))
log 2

, 1
)

×
[(

max(
log(V (x)λ−1 + bλ−1)

log 2
, 1)
)1−α

+
1

(log 2)1−α
(π|g|/κ)α

]1/α

,

Bdrift = κ
1

log 1
1−λ

max
(

log(πV + (b(1 − λ)−1 +K)π(C))
log 2

, 1
)

×
[(

max
(

log(πV λ−1 + bλ−1)
log 2

, 1
))1−α

+
1

(log 2)1−α
(π|g|/κ)α

]1/α

,

Cdrift = κ
1

log 1
1−λ

max
( log(b(1 − λ)−1 +K)

log 2
, 1
)

×
[(

max
(

log(bλ−1 +Kλ−1)
log 2

, 1
))1−α

+
1

(log 2)1−α
(π|g|/κ)α

]1/α

.

Moreover

π|g| ≤
⎧⎨
⎩
κ
(

log(bπ(C)λ−1)
)s

for s ≤ 1,

κ
(

log(bπ(C)λ−1) + s− 1
)s

− κ(s− 1)s for s > 1.

and
πV ≤ bπ(C)λ−1.

Proof of Theorem 5.6. One simply uses Theorem 5.5 with f = g − πg and q4 = 1 + ε =
√

1 + η and performs
some elementary calculations to obtain the dependence on η in the inequalities. To bound the parameters a,b, c
as well as πV, π|g| one uses Propositions 2.2, whereas the bound on d follows from Proposition 5.3.

The second and third equality in (1.4) is a well-known fact concerning the asymptotic variance (see e.g. [11],
Sect. II-3). �

Example continued. The above bounds apply in particular to the algorithmic examples discussed in
Section 3.2, where we estimated all the parameters except for d (for functions of polynomial growth), which
however can be directly estimated by Proposition 5.3. We remark that the constants obtained in these examples,
even in the simplest cases (e.g. for the geometric distribution with parameter 1/2 or for the Gaussian density
and exponential proposal) are rather bad. In the example with the geometric distribution, the value of parame-
ters are for s = 1 of the order 103, in the continuous example there are much worse, since they are additionally
multiplied by the factor corresponding to δ. It is of practical interest to derive bounds with a better dependence
on δ and α, however we are not aware of any previous results which would give exponential inequalities with
any explicit constants.

Let us also mention that the parameter σ, which as we already explained in the Introduction, is important
from the theoretical point of view, in practical situations is unknown and has to be estimated in terms of the
drift. One approach would be to use the bound

‖s0(f)‖2 ≤ 2α−1/2Γ (2/α)1/2‖s0(f)‖ψα = 2α−1/2Γ (2/α)1/2c, (5.7)

where Γ is the Euler function, which follows easily from integration by parts and combine it with estimates on c
from Theorem 5.6. This approach has however the disadvantage that the bound is bad for α small. Some other
estimates, for functions bounded by some small power of V are given in [27]. Their advantage stems from the
fact that they do not go through the ψα norm and thus do not involve dependence on α. On the other hand the
dependence on V is not logarithmic like in our case, but polynomial (which is optimal under the assumptions
of [27]).
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Proof of Theorem 1.1. All the parameters of the inequality from Theorem 5.6 are bounded in terms of the drift
and δ, the only exception being σ and π∗(θ)−1 = Eν∗σ(0) + 1 ≤ d and M (which depends on d and σ). Thus
the theorem follows from Proposition 5.3 and (5.7). �

5.2. Empirical processes

In this section we present estimates for empirical processes of geometrically ergodic Markov chains. The
interest in this type of random variables stems from their wide applicability in statistics and machine learning
theory, e.g. model selection, M-estimation or other statistical methods based on minimization of some empirical
criteria.

We want to obtain concentration inequalities for chains started from arbitrary initial conditions, so in addition
to the parameter d we will introduce its counterpart, measuring how quickly the chain regenerates for a given
starting point

e = ‖σ(0)‖ψ1,P̄x∗ .

We will need this parameter since in the empirical process case we are not able to use the martingale argument
of the second part of Proposition 4.4 and so to obtain the inequalities with the subgaussian term close to the
optimal one, we will have to consider separately the case of large and small N .

We remark that e can be bounded from above similarly as the parameter d, namely we have

Proposition 5.7. If the chain satisfies (1.1) with m = 1 and the drift condition (1.2), then

e ≤r
(

max
(

log(V (x)1Cc(x) + (b(1 − λ)−1 +K)1C(x))
log 2

,
log(b(1 − λ)−1 +K)

log 2
, 1
)

+ 1
)

1
log 1

1−λ
,

where r is given by equation (2.4).

Proof. The proposition follows from the first and third estimate in Lemma 3.6 and the bound on a given in
Proposition 2.2 applied to α = 1 and the function f ≡ 1. �

Our main result concerning empirical processes of Markov chains is the following.

Theorem 5.8. Let X be a strongly aperiodic geometrically ergodic Markov chain. Let F be a countable class of
π-centered functions f : X → R with an envelope F and assume that for some α ∈ (0, 1] the parameters a,b, c
for the function F are finite.

Denote

Z = sup
f∈F

∣∣∣∣∣
n−1∑
i=0

f(Xi)

∣∣∣∣∣ .
Let ε ∈ (0, 1/2) and denote M = c(3α−2 log(n))1/α and

σ2 = π∗(θ) sup
f∈F

Es0(f)2.

Then

P̄x∗
(
Z ≥ (1 + 7ε)EZ + t

)
≤ exp

(
− (1 − 2ε)4t2

2(1 + ε)2nσ2

)
+ e exp

(
− t(1 − 2ε)2

2M(1 + ε−1)(3 + 4ε−1)

)

+ e8 exp
(
− (ε(1 − 2ε)t)α

2cα

)
+ e exp

(
− ε2n

144π∗(θ)d2

)

+ 2 exp
(
− (εt)α

(2a)α
)

+ 2π∗(θ)−1 exp
(
− (εt)α

(2b)α

)
·
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for all t ≥ C(ε), where

C(ε) = ε−1
((

9 + 9e + 27π∗(θ)d2ε−1
)
π(F ) + 9Γ (1 + 1/α)a + 9 · 21/α−1eΓ (1 + 1/α) log1/α(e/π∗(θ))b

)
,

where Γ (z) =
∫∞
0 tz−1 exp(−t)dt is the Euler function.

Remark 5.9. Let us now discuss certain aspects of the above rather technical (and not very friendly looking)
theorem, which may help understand its applicability and limitations.

1. Let us point out that the involved form of the estimate is a result of the effort to obtain a probability bound
which for small t would exhibit the subgaussian behavior with the subgaussian parameter arbitrarily close to
the weak variance (which for Donsker classes of functions is responsible for the concentration of the limiting
Gaussian distribution). Clearly by choosing ε small enough one can approach the right subgaussian coefficient
arbitrarily close at the cost of worsening the constants in the other terms and decreasing the interval for which
the estimate behaves like in the Gaussian case (the length of this interval is of the order n1/(2−α) for α < 1 and
n/ logn for α = 1, which is greater than the CLT scaling

√
n).

2. Second, let us note that the fourth term of the estimate does not involve t, but depends only on n. This is
a consequence of our method and we do not know if one could remove this term completely without worsening
the dependence of the parameters a, . . . ,d in the other terms. It is relatively easy to replace this term e.g. by
exp(−ε2t/(Cπ∗(θ)d2c)), where C is a universal constant, however, since standard applications of this type of
tail estimates involve t of order at most n, for which the ‘troublesome’ term is dominated by terms involving
t, we do not pursue this direction here (see [2] where inequalities of this type are proven in a slightly different
context).
3. Finally, we would like to comment on the threshold C(ε) appearing in the estimates. It is of order ε−2 and is
independent of n, so it does not pose a problem in typical applications (when t is of order nγ). Moreover, even
without this threshold the estimate would not yield any information for t of order smaller then ε−2, since the
denominator of the exponent in the second term is of the order ε−2. At present we do not know whether the
dependence of the threshold and the estimates on ε and parameters d,e and π∗(θ) can be improved (note that
d, e are not related just to the function F but are ‘global’ parameters of the chain). At the end of the article
we will present an example to argue that the above theorem can give meaningful estimates even if we replace
1 + 7ε by an arbitrary constant.
4. In particular the above theorem implies Theorem 1.2 from the Introduction. The dependence of the param-
eters under the drift condition, in the case of parameters a,b, c,d can be derived just as in Theorem 5.6, while
the parameter e has been estimated in Proposition 5.7. We leave the details to the reader.

Let us now pass to the proof of Theorem 5.8. The next lemma is a strengthening of an analogous estimate
from [1] (in particular it incorporates the dependence on ε to the inequality). Its estimate will be used to compare
the expectation of the random sum introduced with the regeneration method and the random variable Z.

Lemma 5.10. Let X be a strongly aperiodic Harris ergodic Markov chain. Let F be a countable class of func-
tions f : X → R with an envelope F . Then for every ε ∈ (0, 1/2),

Ēx∗

∥∥∥∥∥∥
	(1+ε)π∗(θ)n
∑

i=1

si−1(f)

∥∥∥∥∥∥
F

≤ (1 + 4ε)

(
Ēx∗

∥∥∥ N∑
i=1

si−1(f)
∥∥∥
F

+
(

2 + 2Ēx∗σ(0) + 3
π∗(θ)Ēx∗(σ(1) − σ(0))2

ε

)
π(F )

)
.
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Proof. Let n1 = �(1 − ε)π∗(θ)n�, n2 = �(1 + ε)π∗(θ)n� and denote B = σ(
∑n2

i=1 si−1(f) : f ∈ F). By Jensen’s
inequality and exchangeability of random vectors (si(f))f∈F , i = 0, . . . , n− 1, if n1 + 1 ≤ n2, we have

Ēx∗s0(F ) + Ēx∗

∥∥∥∥∥
n1∑
i=1

si−1(f)

∥∥∥∥∥
F
≥ Ēx∗

∥∥∥∥∥
n1+1∑
i=1

si−1(f)

∥∥∥∥∥
F

≥ Ēx∗

∥∥∥∥∥
n1+1∑
i=1

E(si−1(f)|B)

∥∥∥∥∥
F

=
n1 + 1
n2

Ēx∗

∥∥∥∥∥
n2∑
i=1

si−1(f)

∥∥∥∥∥
F
.

Combining the above inequality with the trivial case n1 = n2, we get

Ēx∗

∥∥∥∥∥
n2∑
i=1

si−1(f)

∥∥∥∥∥
F
≤ max

(
n2

n1 + 1
, 1
)(

Ēx∗s0(F ) + Ēx∗

∥∥∥∥∥
n1∑
i=1

si−1(f)

∥∥∥∥∥
F

)
. (5.8)

Moreover

Ēx∗

∥∥∥∥∥
n1∑
i=1

si−1(f)

∥∥∥∥∥
F
≤ Ēx∗

∥∥∥∥∥
n1∑
i=1

si−1(f)

∥∥∥∥∥
F

1{N≥n1} + Ēx∗

∥∥∥∥∥
N∑
i=1

si−1(f)

∥∥∥∥∥
F

1{N<n1} (5.9)

+ Ēx∗

∥∥∥∥∥
n1∑

i=N+1

si−1(f)

∥∥∥∥∥
F

1{N<n1}.

By Doob’s optional sampling theorem,

Ēx∗

∥∥∥∥∥
n1∑
i=1

si−1(f)

∥∥∥∥∥
F

1{N≥n1} ≤ Ēx∗

∥∥∥∥∥
N∑
i=1

si−1(f)

∥∥∥∥∥
F

1{N≥n1}. (5.10)

Moreover, by independence of (si(f))f∈F ,i≥N and N , the third summand on the right hand side of (5.9) does
not exceed

Ēx∗(n1 −N)+Ēx∗s0(F ) = π∗(θ)−1π(F )Ēx∗(n1 −N)+.

To bound Ēx∗(n1 − N)+ we can proceed as in the proof of Lemma 5.4, however this time we do not need
exponential inequalities. Set again Ti = σ(i) − σ(i− 1) for i ≥ 1 and additionally T0 = σ(0).

For t ∈ (0, n1/(π∗(θ)n)) we have

P̄x∗((n1−N)+ > π∗(θ)nt) = P̄x∗(N < n1 − π∗(θ)nt)

≤ P̄x∗(σ(�n1 − π∗(θ)nt�) ≥ n− 1) = P̄x∗

⎛
⎝	n1−π∗(θ)nt
∑

i=0

Ti ≥ n− 1

⎞
⎠

= P̄x∗(T0 ≥ tn/2 − 1) + P̄x∗

⎛
⎝	n1−π∗(θ)nt
∑

i=1

Ti ≥ (1 − t/2)n

⎞
⎠

≤ P̄x∗(2(T0 + 1) ≥ tn) + P̄x∗

⎛
⎝	n1−π∗(θ)nt
∑

i=1

(Ti − ETi) ≥ (1 − t/2)n− (1 − ε− t)n

⎞
⎠

≤ P̄x∗(2(T0 + 1) ≥ tn) +
n1ET 2

1

n2(ε+ t/2)2
≤ P̄x∗(2(T0 + 1) ≥ tn) +

π∗(θ)ET 2
1

n(ε+ t/2)2
,

where we used the fact that for i > 0, ETi = π∗(θ)−1.
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Now

Ēx∗(n1 −N)+ = π∗(θ)n
∫ 1

0

P̄x∗((n1 −N)+ > π∗(θ)nt)dt

≤ π∗(θ)n
∫ 1

0

(
P̄x∗(2(T0 + 1) ≥ tn) +

π∗(θ)ET 2
1

n(ε+ t/2)2

)
dt

≤ 2π∗(θ)(Ēx∗T0 + 1) + 2ε−1π∗(θ)2ĒT 2
1 .

Thus

Ēx∗

∥∥∥∥∥
n1∑

i=N+1

si−1(f)

∥∥∥∥∥
F

1{N<n1} ≤ 2
(

1 + Ēx∗T0 +
π∗(θ)ĒT 2

1

ε

)
π(F ).

Combining the above estimate with (5.8)−(5.10) and the inequality

Ēx∗s0(F ) = π∗(θ)−1π(F ) ≤ π∗(θ)ĒT 2
1 π(F ),

we get

Ēx∗

∥∥∥∥∥
n2∑
i=1

si−1(f)

∥∥∥∥∥
F
≤ max

(
n2

n1 + 1
, 1
)(

Ēx∗

∥∥∥∥∥
N∑
i=1

si−1(f)

∥∥∥∥∥
F

+
(

2 + 2Ēx∗T0 + 3
π∗(θ)ĒT 2

1

ε

)
π(F )

)
.

To finish the proof it suffices to note that for ε ∈ (0, 1/2),

n2

n1 + 1
≤ (1 + ε)nπ∗(θ)

(1 − ε)nπ∗(θ)
≤ 1 + 4ε. �

Corollary 5.11. In the setting of Theorem 5.8, for every ε ∈ (0, 1/2),

Ēx∗

∥∥∥∥∥∥
	(1+ε)π∗(θ)n
∑

i=1

si−1(f)

∥∥∥∥∥∥
F

≤ (1 + 4ε)

(
Ēx∗

∥∥∥∥∥
N∑
i=1

si−1(f)

∥∥∥∥∥
F

+
(
2 + 2e + 6π∗(θ)d2ε−1

)
π(F )

)
.

Proof. We use Lemma 5.10 together with the inequality

1 +
E|X |
‖X‖ψ1

+
EX2

2‖X‖2
ψ1

≤ 2,

which holds for every random variable with ‖X‖ψ1 �= 0. �

Lemma 5.12. In the setting of Theorem 5.8

Ēx∗Un(F ) ≤ 2Γ (1 + 1/α)a,

and
Ēx∗Wn(F ) ≤ 21/αeΓ (1 + 1/α) log1/α(e/π∗(θ))b,

where Γ (z) =
∫∞
0 tz−1 exp(−t)dt is the Euler function.

Proof. The first estimate follows from integration by parts, the estimates P̄x∗(Un(F ) ≥ t) ≤ 2 exp(−(t/a)α)
and the formula for the expectation of Weibull variables. The second one is analogous, one simply needs to note
that the inequality P̄x∗(Wn(F ) ≥ t) ≤ 2π∗(θ)−1 exp(−(t/b)α) (obtained as in the proof of Thm. 5.1) implies
that

P̄x∗(Wn(F ) ≥ t) ≤ exp
(

1 − tα

2 log(eπ∗(θ)−1)bα

)
· �
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Proof of Theorem 5.8. As in the case of a single additive functional, we decompose

Z := sup
f∈F

|
n−1∑
i=1

f(Xi)| ≤ |Un(F )| + sup
f∈F

|Vn(f)| + |Wn(F )|.

Similarly as in the proof of Theorem 5.1 we get

P̄x∗(|Un(F )| ≥ εt/2) ≤ 2 exp
(
− (εt)α

(2a)α

)
(5.11)

and

P̄x∗(|Wn(F )| ≥ εt/2) ≤ 2π∗(θ)−1 exp
(
− (εt)α

(2b)α

)
· (5.12)

Let us also note that by Lemma 5.12

Ēx∗ sup
f∈F

∣∣∣∣∣
n−1∑
i=0

f(Xi)

∣∣∣∣∣ ≥ Ēx∗ sup
f∈F

|Vn(f)| − 2Γ (1 + 1/α)a− 21/αeΓ (1 + 1/α) log1/α(e/π∗(θ))b.

By Corollary 5.11 we get

(1 + 4ε)Ēx∗ sup
f∈F

|Vn(f)| ≥ Ēx∗

∥∥∥∥∥∥
(1+ε)π∗(θ)n∑

i=1

si−1(f)

∥∥∥∥∥∥
F

− (6 + 6e + 18π∗(θ)d2ε−1
)
π(F ),

which together with the previous estimate gives

(1 + 4ε)Ēx∗Z ≥Ēx∗

∥∥∥∥∥∥
(1+ε)π∗(θ)n∑

i=1

si−1(f)

∥∥∥∥∥∥
F

−
(
6 + 6e + 18π∗(θ)d2ε−1

)
π(F )

− 6Γ (1 + 1/α)a − 3 · 21/αeΓ (1 + 1/α) log1/α(e/π∗(θ))b.

When combined with the trivial bound (1 + 4ε)(1 + ε) ≤ (1 + 7ε) for ε ∈ (0, 1/2), this gives

A :=

{
sup
f∈F

|Vn(f)| ≥ (1 + 7ε)Ēx∗Z + (1 − ε)t

}

⊆
⎧⎨
⎩sup
f∈F

|Vn(f)| ≥ (1 + ε)Ēx∗

∥∥∥∥∥∥
(1+ε)π∗(θ)n∑

i=1

si−1(f)

∥∥∥∥∥∥
F

− εC(ε) + (1 − ε)t

⎫⎬
⎭

⊆
⎧⎨
⎩sup
f∈F

|Vn(f)| ≥ (1 + ε)Ēx∗

∥∥∥∥∥∥
(1+ε)π∗(θ)n∑

i=1

si−1(f)

∥∥∥∥∥∥
F

+ t(1 − 2ε)

⎫⎬
⎭

for t ≥ C(ε).
By Lemma 5.4 (applied with ε/2 instead of ε) we get

P̄x∗(N > (1 + ε)π∗(θ)n) ≤ e exp(−ε2n/(144π∗(θ)d2)),

which gives

P̄x∗(A) ≤ P̄x∗(A &N ≤ (1 + ε)π∗(θ)n) + e exp(−ε2n/(144π∗(θ)d2)). (5.13)
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Now Proposition 4.9 gives

P̄x∗(A &N ≤ (1 + ε)π∗(θ)n)

≤ P̄x∗

⎛
⎝ max
k≤	(1+ε)π∗(θ)n


sup
f∈F

∣∣∣∣∣
k∑
i=1

si−1(f)

∣∣∣∣∣ ≥ (1 + ε)E

∥∥∥∥∥∥
	(1+ε)π∗(θ)n
∑

i=1

si−1(f)

∥∥∥∥∥∥
F

+ t(1 − 2ε)

⎞
⎠

≤ exp
(
− (1 − 2ε)4t2

2(1 + ε)2nσ2

)
+ e exp

(
− t(1 − 2ε)2

2M(1 + ε−1)(3 + 4ε−1)

)
+ e8 exp

(
− (ε(1 − 2ε)t)α

2cα

)
,

which in combination with (5.11), (5.12) and (5.13) ends the proof. �

Example 5.13. The difficulty one has to deal with when applying bounds in the spirit of Theorem 5.8 in
concrete situations is controlling the order of EZ. In general this is a difficult problem related to the geometry
of the class F . To illustrate the theorem we will consider a very special situation, namely, when F is a dense set
in the unit ball of some Hilbert space, i.e. we will consider a function G : X → H for a separable Hilbert space
(H, ‖·‖). The choice of the Hilbert space in our example is motivated by the possibility of using the parallelogram
identity to estimate EZ2, however Hilbert space valued random variables appear commonly in probability and
statistics, see e.g. Proposition 2 in [16] for a development related to Markov chains (the Hilbert space considered
there is finite dimensional, but the constants in the inequalities do not depend on the dimension, so it fits our
setting of separable Hilbert spaces).

Assume that πG = 0. We are interested in tail estimates for

Z =

∥∥∥∥∥
n−1∑
i=0

G(Xi)

∥∥∥∥∥ = sup
f∈F

∣∣∣∣∣
n−1∑
i=0

f(G(Xi))

∣∣∣∣∣ .
Set F = ‖G‖ and assume that the chain is geometrically ergodic and strongly aperiodic and that the parameters
a,b, c for F are finite, which is e.g. the case if F is controlled in terms of the drift function, like in Theorem 1.2.
Recall (2.1) and (2.2), which imply that

ExZ ≤ Ēx∗Un(F ) + Ēx∗Wn(F ) + E max
k≤n−1

∥∥∥∥∥
k∑
i=1

si−1(G)

∥∥∥∥∥
≤ 2Γ (1 + 1/α)a + 21/αeΓ (1 + 1/α) log1/α(e/π∗(θ))b + 2

⎛
⎝E

∥∥∥∥∥
n−1∑
i=1

si−1(G)

∥∥∥∥∥
2
⎞
⎠

1/2

,

where we used Lemma (5.12) to handle Ēx∗Un(F ) and Ēx∗Wn(F ) and Doob’s inequality to deal with the last
summand. Now, due to the parallelogram identity, independence and centeredness of the variables si and (5.7)
we have

E

∥∥∥∥∥
n−1∑
i=1

si−1(G)

∥∥∥∥∥
2

= (n− 1)E‖s0(G)‖2 ≤ nEs0(F )2 ≤ 4α−1Γ (2/α)c2n.

Thus we get

ExZ ≤ 2Γ (1 + 1/α)a + 21/αeΓ (1 + 1/α) log1/α(e/π∗(θ))b + 4α−1/2Γ (2/α)1/2c
√
n.
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Thus Theorem 5.8 yields

Px

(∥∥∥∥∥ 1
n

n−1∑
i=0

G(Xi)

∥∥∥∥∥ ≥

(1 + 7ε)

(
2Γ (1 + 1/α)a + 21/αeΓ (1 + 1/α) log1/α(e/π∗(θ))b

n
+

4α−1/2Γ (2/α)1/2c√
n

)
+ t

)

≤ exp
(
− (1 − 2ε)4nt2

2(1 + ε)2σ2

)
+ e exp

(
− nt(1 − 2ε)2

2M(1 + ε−1)(3 + 4ε−1)

)
+ e8 exp

(
− (ε(1 − 2ε)nt)α

2cα

)

+ e exp
(
− ε2n

144π∗(θ)d2

)
+ 2 exp

(
− (εnt)α

(2a)α

)
+ 2π∗(θ)−1 exp

(
− (εnt)α

(2b)α

)

where M = c(3α−2 log(n))1/α, provided that nt ≥ C(ε). In particular for n large enough, depending explicitly
on t and ε we get the same bound on

Px

(∥∥∥∥∥ 1
n

n−1∑
i=0

G(Xi)

∥∥∥∥∥ ≥ 2t

)
.

We note that with this Law of Large Numbers normalization, where one is usually interested in t being a
small constant, independent of n (say t ∈ (0, 1)), the fourth summand on the right hand side above, which is
independent of t, does not dominate the whole sum.

Let us also remark that estimates of the same order for the expectation could be also achieved under some
bracketing or VC-dimension assumption on the class F . This is well-known in the independent case (see e.g.
the monograph [46]) and there are some results concerning Markov chains or mixing sequences (e.g. [4,29,40]).

Acknowledgements. We would like to thank Krzysztof �Latuszyński for interesting discussions and providing us with
references to the statistical literature.
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[6] P. Bertail and S. Clémencon, Sharp bounds for the tails of functionals of Markov chains. Teor. Veroyatost. Primenen. 54
(2009) 609–619; translation in Theory Probab. Appl. 54 (2010) 505–515.

[7] A.A. Borovkov, Estimates for the distribution of sums and maxima of sums of random variables when the Cramér condition
is not satisfied. Sib. Math. J. 41 (2000) 811–848.

[8] A.A. Borovkov, Probabilities of large deviations for random walks with semi-exponential distributions. Sib. Math. J. 41 (2000)
1061–1093.

[9] O. Bousquet, Concentration Inequalities for Sub-additive Functions Using the Entropy Method, Stochastic Inequalities and
Applications. Progr. Probab. Springer, Basel (2003).

[10] J.-R. Chazottes and F. Redig, Concentration inequalities for Markov processes via coupling. Electron. J. Probab. 14 (2009)
1162–1180.

[11] X. Chen, Limit theorems for functionals of ergodic Markov chains with general state space. Mem. Amer. Math. Soc. 139
(1999) 664,
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