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ESTIMATION IN AUTOREGRESSIVE MODEL WITH MEASUREMENT ERROR
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Abstract. Consider an autoregressive model with measurement error: we observe Zi = Xi + εi,
where the unobserved Xi is a stationary solution of the autoregressive equation Xi = gθ0(Xi−1) + ξi.
The regression function gθ0 is known up to a finite dimensional parameter θ0 to be estimated. The
distributions of ξ1 and X0 are unknown and gθ belongs to a large class of parametric regression functions.
The distribution of ε0 is completely known. We propose an estimation procedure with a new criterion
computed as the Fourier transform of a weighted least square contrast. This procedure provides an
asymptotically normal estimator θ̂ of θ0, for a large class of regression functions and various noise
distributions.
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1. Introduction

We consider an autoregressive model with measurement error satisfying{
Zi = Xi + εi,
Xi = gθ0(Xi−1) + ξi

(1.1)

where one observes Z0, . . . , Zn and the random variables ξi, Xi, εi are unobserved. The regression function gθ0

is known up to a finite dimensional parameter θ0, belonging to the interior Θ◦ of a compact set Θ ⊂ R
d.

The assumptions on the random variables (ξi)i≥1 and (εi)i≥0 are the following. The innovations (ξi)i≥1

and the errors (εi)i≥0 are centered, independent and identically distributed (i.i.d.) random variables with finite
variances Var(ξ1) = σ2

ξ and Var(ε0) = σ2
ε . The variable ε0 admits a known density fε with respect to the Lebesgue

measure, and the random variables X0, (ξi)i≥1 and (εi)i≥0 are independent. The Markov chain (Xi)i≥0 admits
an invariant distribution.

The main originalities of the paper are: 1/ the distribution of ξ1 is completely unknown and we do not even
assume that it admits a density with respect to the Lebesgue measure; 2/ we do not assume that the variable
X0 admits a density; 3/ we consider a general non−linear regression function gθ.

The distribution of the innovations being unknown, this model belongs to the family of semi−parametric
models.
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Our aim is to estimate θ0 for a large class of functions gθ, whatever the known error distribution fε, and
without the knowledge of the ξi’s distribution.

Previously known results

Let us start with the special case of linear regression function gθ(x) = θ1x+ θ2 (linear in both θ and x), see e.g.
Andersen and Deistler [1], Nowak [24], Chanda [7,8], Staudenmayer and Buonaccorsi [27], and Costa et al. [10].
The model (1.1) is also an ARMA model (see Sect. 5.1.1 for further details) and consequently, all previously
known estimation procedures for ARMA models can be applied. It is noteworthy that, in this specific case, the
knowledge of the error distribution fε is not required.

For a general regression function, the model (1.1) is a Hidden Markov Model with possibly a non compact
continuous state space.

When the distribution of the innovation ξ1 is known up to a finite dimensional parameter, model (1.1)
becomes fully parametric. In this parametric context, various results are already stated: among others, the
parameters can be estimated by maximum likelihood, and consistency, asymptotic normality and efficiency
have been proved. For further references on estimation in fully parametric Hidden Markov Models, we refer
for instance to Leroux [21], Bickel et al. [3], Jensen and Petersen [20], Douc and Matias [14], Douc et al. [16],
Fuh [17], Genon−Catalot and Laredo [18], Na et al. [23], and Douc et al. [15].

In this paper, the distribution of ξ1 is unknown, and model (1.1) is a semi−parametric Hidden Markov Model.
To our knowledge, the only paper which gives a consistent estimator of θ0 is Comte and Taupin [9]. They

propose an estimation procedure based on a modified least squares minimization. They give an upper bound
for the rate of convergence of their estimator, that depends on the smoothness of the regression function and on
the smoothness of fε. Those results are obtained by assuming that the distribution PX of X0 admits a density
fX with respect to the Lebesgue measure and that the stationary Markov chain (Xi)i≥0 is absolutely regular
(β–mixing).

Comte and Taupin [9] state that their estimator achieves the parametric rate only for very few couples
of regression functions/error distribution. Lastly their dependency conditions are quite restrictive, and the
assumption that X admits a density is not natural in this context.

Our results

We propose a new estimation procedure based on the new contrast function

S(θ) = E[(Z1 − gθ(X0))2 w(X0)],

where w is a weight function to be chosen and E is the expectation Eθ0,PX
.

Firstly, we assume that one can exhibit a weight function w such that (wgθ)∗/f∗
ε and (wg2

θ)∗/f∗
ε are integrable,

where ϕ∗ is the Fourier transform of an integrable function ϕ. This holds for a large class of regression functions.
Examples are given in Section 2.5.

We estimate θ0 by θ̂ = argminθ∈Θ Sn(θ), where

Sn(θ) =
1

2πn

n∑
k=1

Re

∫ ((
Zk − gθ

)2
w
)∗

(t) e−itZk−1

f∗
ε (−t) dt, (1.2)

where Re(u) is the real part of u. This criteria is simple to minimize in most situations. We prove that the
resulting estimator θ̂ is consistent and asymptotically Gaussian. Those results hold under weak dependency
conditions as introduced in Dedecker and Prieur [12]. Compared to Comte and Taupin [9], this procedure is
clearly simpler and its main advantage is that it yields the parametric rate of convergence for a larger class of
regression functions.

Secondly, when it is not possible to exhibit a weight function w such that (wgθ)∗/f∗
ε and (wg2

θ)∗/f∗
ε are

integrable, we propose a more general estimator. We establish a consistency result, and we give an upper bound
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for the quadratic risk, that relates the smoothness properties of the regression function to that of fε. These last
results are proved under α–mixing conditions.

Finally, the asymptotic properties of our estimator are illustrated through a simulation study. It confirms that
our estimator performs well in various contexts, even in cases where the Markov chain (Xi)i≥0 is not β–mixing
(and not even irreducible).

Our estimator always better performs than the so-called naive estimator (built by replacing the non−observed
X by Z in the usual least squares criterion). Our estimation procedure depends on the choice of the weight
function w. The influence of this weight function is also studied in the simulations.

The paper is organized as follows.
In Section 2 we present our notations and assumptions. In Section 3 we propose general conditions (on the

couple w/gθ), under which the estimator is consistent and asymptotically Gaussian. The Section 4 concerns
regression functions for which it seems not easy to exhibit a weight function w that satisfies the conditions
given in Section 2. In this case, we propose a more general estimator which remains consistent and we derive
its asymptotic rate of convergence. Those theoretical results are illustrated by a simulation study, which is
presented in Section 5.

The proofs are gathered in Appendix.

2. Notations and assumptions

We first give some preliminary notations and assumptions to define more rigorously our criterion. Examples
of model (1.1) for which assumptions are satisfied are given in Section 2.5.

2.1. Notations

For θ ∈ R
d, ‖ θ ‖2

�2=
∑d

k=1 θ
2
k, and θ� is the transpose vector of θ. Let

‖ ϕ ‖1=
∫

|ϕ(x)|dx, ‖ ϕ ‖2
2=
∫
ϕ2(x)dx, and ‖ ϕ ‖∞= sup

x∈R

|ϕ(x)|.

The convolution product of two square integrable functions p and q is denoted by p � q(z) =
∫
p(z − x)q(x)dx.

The Fourier transform ϕ∗ of a function ϕ is defined by

ϕ∗(t) =
∫

eitxϕ(x)dx.

For a map (θ, u) �→ ϕθ(u) from Θ × R to R, Θ ⊂ R
d, the derivatives with respect to θ are denoted by

ϕ
(1)
θ (·) =

(
ϕ

(1)
θ,j(·)

)
1≤j≤d

, with ϕ(1)
θ,j(·) =

∂ϕθ(·)
∂θj

for j ∈ {1, . . . , d},

ϕ
(2)
θ (·) =

(
ϕ

(2)
θ,j,k(·)

)
1≤j,k≤d

, with ϕ(2)
θ,j,k(·) =

∂2ϕθ(·)
∂θj∂θk

, for j, k ∈ {1, . . . , d},

and ϕ
(3)
θ (·) =

(
ϕ

(3)
θ,i,j,k(·)

)
1≤i,j,k≤d

, with ϕ(3)
θ,i,j,k(·) =

∂3ϕθ(·)
∂θi∂θj∂θk

, for i, j, k ∈ {1, . . . , d}.

From now, P, E and Var denote respectively the probability Pθ0,PX
, the expected value Eθ0,PX

and the variance
Varθ0,PX

, when the underlying and unknown true parameters are θ0 and PX .
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2.2. Assumptions

We consider three types of assumptions. The two firsts are usual in least squares regression function estima-
tion. The assumption (N1) is quite usual when considering additive errors. As in deconvolution, it ensures the
existence of the estimation criterion.

• Smoothness and moment assumptions

On Θ◦, the function θ �→ gθ admits continuous derivatives with respect to θ up to the (A1)
order 3.

On Θ◦, the quantity w(X0)(Z1 − gθ(X0))2, and the absolute values of its derivatives (A2)
with respect to θ up to order 2 have a finite expectation.

• Identifiability assumptions

S(θ) = E[(gθ0(X) − gθ(X))2w(X)] admits one unique minimum at θ = θ0. (I11)

For all θ ∈ Θ◦, the matrix S(2)(θ) =
(
∂2S(θ)
∂θi∂θj

)
1≤i,j≤d

exists and the matrix (I12)

S(2)(θ0) = 2 E

[
w(X)

(
g
(1)
θ0 (X)

)(
g
(1)
θ0 (X)

)�]
is positive definite.

• Assumptions on fε

The density fε belongs to L2(R) and for all x ∈ R, f∗
ε (x) �= 0. (N1)

2.3. Conditions on the weight function

Let us now detail some conditions on the weight function w which appears in the contrast function.

The functions (wgθ) and (wg2
θ) belong to L1(R), and the functions w∗/f∗

ε , (gθw)∗/f∗
ε , (C1)

(g2
θw)∗/f∗

ε belong to L1(R).

For any i ∈ {1, . . . , d}, sup
θ∈Θ

∣∣∣(g(1)
θ,iw

)∗
/f∗

ε

∣∣∣ and sup
θ∈Θ

∣∣∣(gθg
(1)
θ,iw

)∗
/f∗

ε

∣∣∣ belong to L1(R). (C2)

For i, j ∈ {1, . . . , d}, sup
θ∈Θ

∣∣∣(g(2)
θ,i,jw

)∗
/f∗

ε

∣∣∣ , sup
θ∈Θ

∣∣∣((g2
θw
)(2)
θ,i,j

)∗
/f∗

ε

∣∣∣ , sup
θ∈Θ

∣∣∣(g(3)
θ,i,j,kw

)∗
/f∗

ε

∣∣∣ (C3)

and sup
θ∈Θ

∣∣∣((g2
θw
)(3)
θ,i,j,k

)∗
/f∗

ε

∣∣∣ belong to L1(R);

For k ∈ {1, . . . , d},
∫

|t(gθ0w)∗(t)|dt and
∫

|t(gθ0g
(1)
θ0,kw)∗(t)|dt are finite. (C4)

The first part of Condition (C1) essentially ensures that the estimation criterion Sn(θ) exists for all θ through
the existence of (wgθ)∗ and is not restrictive. The second part of Condition (C1) can be heuristically expressed
as “one can find a weight function w such that wgθ is smooth enough compared to fε”. This is satisfied for
a large class of functions. Examples are given hereafter. Conditions (C2)−(C3) are similar to (C1) (and not
more restrictive than (C1)). Condition (C4), not restrictive at all, is just technical. It is introduced to ensure
the asymptotic normality of the estimator under τ–dependency of the chain (Xi)i≥0.
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2.4. Dependency conditions

The asymptotic properties are stated under dependency properties of the Markov chain (Xi)i≥0. Those depen-
dency properties are described through the coefficient α(M, σ(Y )) which is the usual strong mixing coefficient
defined by Rosenblatt [26], and through the coefficient τ(M, Y ) which has been introduced by Dedecker and
Prieur [12].

Definition 2.1. Let (Ω,A,P) be a probability space. Let Y be a random variable with values in a Banach
space (B, ‖ · ‖B). Denote by Λκ(B) the set of κ–Lipschitz functions, i.e. the functions f from (B, ‖ · ‖B) to R such
that |f(x) − f(y)| ≤ κ ‖ x − y ‖B. Let M be a σ–algebra of A. Let PY |M be a conditional distribution of Y
given M, PY the distribution of Y , and B(B) the Borel σ–algebra on (B, ‖ · ‖B). The dependence coefficients α
and τ are defined by

α(M, σ(Y )) =
1
2

sup
A∈B(B)

E(|PY |M(A) − PY (A)|),

and if E(‖Y ‖B) <∞, τ(M, Y ) = E

(
sup

f∈Λ1(B)

|PY |M(f) − PY (f)|
)
.

Definition 2.2. Let X = (Xi)i≥0 be a strictly stationary Markov chain of real−valued random variables.
On R

2, we put the norm ‖x‖R2 = (|x1| + |x2|)/2. For any integer k ≥ 0, the coefficients αX(k) and τX,2(k) of
the chain are defined by

αX(k) = α(σ(X0), σ(Xk))
and if E(|X0|) <∞, τX,2(k) = sup {τ(σ(X0), (Xi1 , Xi2)), k ≤ i1 ≤ i2} .

Dependency assumptions. We consider the two following conditions:

(α–mixing) The inverse cadlag Q|X1| of the tail function t→ P(|X1| > t) is such that (D1)∑
k≥1

∫ αX(k)

0

Q2
|X1|(u)du <∞.

(τ–dependence) Let G(t) = t−1
E(X2

11X2
1>t).The inverse cadlag G−1 of G is such that (D2)∑

k>0

G−1(τX,2(k))τX,2(k) <∞.

Note that, if E(|X0|p) <∞ for some p > 2, then Condition (D1) is satisfied provided that
∑

k>0 k
2/(p−2)αX(k) <

∞, and Condition (D2) holds provided that
∑

k>0(τX,2(k))(p−2)/p <∞.

2.5. Examples of models (1.1) satisfying all the assumptions

We give some examples of regression functions for which a weight function w satisfying Conditions (C1)−(C4)
can be exhibited with different noise fε (Gaussian or Laplace for instance):

(A-1) Linear function gθ(x) = θ1x+ θ2 (see Sect. 5),
(A-2) Cauchy function gθ(x) = θ/(1 + x2) (see Sect. 5),
(A-3) Gauss function gθ(x) = exp(−θx2),
(A-4) Sinusoidal function gθ(x) =

∑p
j=1 θj sin(jx).

Now, assume that E(|ξ0|s) <∞ for some s > 1. For θ0 such that gθ0 is ρ–Lipschitz, for some ρ < 1 (for instance
if |θ01| < 1 in (A.1), |θ0| < 8

√
3/9 in (A.2), θ0 ∈]0, e/2[ in (A.3), and

∑p
j=1 j|θ0j | < 1 in (A.4)), there exists a

unique invariant probability measure π such that
∫ |x|sπ(dx) < ∞, and the coefficient τX,2(k) decreases with

an exponential rate. Hence, Condition (D2) holds (see Appendix A for more details).
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We could also consider polynomial regression function, but the existence of stationary distribution forX would
be ensured only under more restrictive assumptions on the distribution of ξ (compactly supported distribution
for instance).

3. Estimation procedure and asymptotic properties

Consider here that the Markov chain (Xi)i is strictly stationary, with π the invariant probability measure.
An extension to π–almost all starting points is given in Section 3.3.1.

3.1. Definition of the estimator

Our method starts from the least square criterion

S(θ) = E[(Z1 − gθ(X0))2 w(X0)], (3.3)

which is minimum when θ = θ0 under the identifiability assumption (I11).
If (C1) holds, E(w(X)), E(w(X)gθ(X)) and E(w(X)g2

θ(X)) can be easily estimated. Indeed, for ϕ such that
ϕ and ϕ∗/f∗

ε belong to L1(R), by the independence between ε0 and X0, we have

E[ϕ(X0)] = E

(
1
2π

∫
ϕ∗(t)e−itX0dt

)
= E

(
1
2π

∫
ϕ∗(t)e−itZ0

f∗
ε (−t) dt

)
. (3.4)

Hence, E[ϕ(X0)] is estimated by
1
2π

Re

∫
ϕ∗(t)n−1

∑n
j=1 e−itZj

f∗
ε (−t) dt.

Following this general idea, we propose to estimate S(θ) by

Sn(θ) =
1

2πn

n∑
k=1

Re

∫ ((
Zk − gθ

)2
w
)∗

(t) e−itZk−1

f∗
ε (−t) dt. (3.5)

According to (3.4), E(Sn(θ)) = E[(Z1−gθ(X0))2w(X0)], and Sn(θ) is an unbiased estimator of S(θ). We propose
to estimate θ0 by minimizing the empirical criterion Sn(θ) :

θ̂ = argmin
θ∈Θ

Sn(θ). (3.6)

The choice of the weight function w is crucial to ensure that Conditions (C1)−(C4) are satisfied. Often, for
a specific regression function, various weight functions can handle with Conditions (C1)−(C4). The numerical
properties of the resulting estimators will differ from one choice to another. See the simulation study in Section 5.

3.2. Consistency and
√

n–asymptotic normality

We present the asymptotic properties of our estimator. The first result to mention is the consistency of our
estimator.

Theorem 3.1. Under assumptions (A1)−(A2), (I11), (I12), (N1), and conditions (C1)−(C2), θ̂ defined
by (3.6) converges in probability to θ0.

Now, we state the asymptotic normality of θ̂ when the Markov chain (Xi) is α–mixing.
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Theorem 3.2. Let Σ1 be the covariance matrix defined in (B.4). Under assumptions (A1), (A2),
(I11), (I12), (N1), conditions (C1)−(C3) and α–mixing condition (D1), then θ̂ defined by (3.6) is a

√
n–

consistent estimator of θ0 which satisfies
√
n(θ̂ − θ0) L−→

n→∞ N (0, Σ1).

Next, we state the asymptotic normality of θ̂ when the Markov chain (Xi) is τ–dependent.

Theorem 3.3. Let Σ1 be the covariance matrix defined in (B.4). Under assumptions (A1), (A2),
(I11), (I12), (N1), Conditions (C1)−(C4) and τ–dependence condition (D2), then θ̂ defined by (3.6) is a√
n–consistent estimator of θ0 which satisfies

√
n(θ̂ − θ0) L−→

n→∞ N (0, Σ1).

Our estimation procedure allows to achieve the parametric rate for a large class of regression functions,
larger than what was previously proposed in the literature. A first example is the sinusoidal regression function.
Whatever the error distribution, the rate proposed in the literature was always slower than the parametric rate,
that we obtain here. For example, with Gaussian errors, the best proposed rate was of order exp{p√logn}/√n
(see Comte and Taupin [9]). A second example is the Cauchy regression function. To our knowledge, θ̂ is the
first consistent estimator proposed in the literature.

Finally, Theorems 3.2 and 3.3 do not require the Markov chain to be absolutely regular. Consequently they
apply to autoregressive models with weak dependency conditions (see examples in Sect. 2.5). This was not the
case in Comte and Taupin [9].

3.3. Extensions

3.3.1. Results for almost all starting points

We still denote by Xi the strictly stationary Markov chain with invariant distribution π, and by Xx
i the

chain starting from the point x. We observe Zx
k = Xx

k + εk. We define then the empirical contrast with initial
condition x by

Sx
n(θ) =

1
2πn

n∑
k=1

Re

∫ ((
Zx

k − gθ

)2
w
)∗

(t) e−itZx
k−1

f∗
ε (−t) dt. (3.7)

We propose to estimate θ0 by

θ̂(x) = argmin
θ∈Θ

Sx
n(θ). (3.8)

The following results hold

• Under the assumptions of Theorem 3.1, for π–almost all starting point x, the estimator θ̂(x) defined by (3.8)
converges in probability to θ0.

• Under the assumptions of Theorem 3.2 or of Theorem 3.3, where Σ1 is defined in (B.4), for π–almost every
starting point x, the estimator θ̂(x) defined by (3.8) is a

√
n–consistent estimator of θ0 which satisfies

√
n(θ̂(x) − θ0) L−→

n→∞ N (0, Σ1).

The proof of the consistency follows exactly that of Theorem 3.1 (see Appendix B.1), by replacing Sn(θ) by
Sx

n(θ) and by noting that, by the ergodic theorem: for π–almost all starting point x, Sx
n(θ) converges in L

1 to
S(θ), and E(supθ∈Θ0 ‖ (Sx

n)(1)(θ) ‖�2) is bounded thanks to assumption (C2). The asymptotic normality for
π–almost all starting points is true because the proofs of Theorems 3.2 and 3.3 are based on condition (B.6)
of Appendix B.2. Now, under Condition (B.6), the central limit theorem holds for π–almost starting points, as
proved in Theorem 2.1 of Dedecker et al. [11].
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3.3.2. Results for martingale differences innovations ξ

We consider now a more general model: (Xi)i≥0 is a Markov chain which admits an ergodic invariant proba-
bility, and the autoregression function is known up to a finite dimensional parameter θ, that is

gθ0(x) = E(X1|X0 = x).

We observe Zi = Xi + εi for i = 0, . . . , n, where (εi)i≥0 is i.i.d. and independent of (Xi)i≥0.
Clearly, this model is a generalization of (1.1), since we do not assume, that (ξi)i≥1 is i.i.d., but only that

(ξi)i≥1 is a martingale difference sequence with respect to the filtration Fi = σ(Xk, k ≤ i). Under the same
assumptions, and following the same proofs, the estimator θ̂ defined by (3.6) has exactly the same asymptotic
properties as those described in Section 3.2. This is mainly due to the fact that, since E(ξ1|X0) = 0, we have
S(θ) = E[(Z1−gθ(X0))2 w(X0)] = E[(gθ0(X0)−gθ(X0))2 w(X0)]+E[(ξ21 +ε21)w(X0)]. And then S(θ) is minimal
for θ = θ0.

Let us give an example of this more general model. Consider the Markov chain

Xi = Aif(Xi−1) + Bi,

where the coefficients (Ai, Bi)i≥1 are random, i.i.d. and independent of X0. Here, for a = E(A1) and b = E(B1),
E(Xi|Xi−1 = x) = af(x)+b. Thus, Xi = af(Xi−1)+b+ξi with non independent ξi’s. An interesting example is
the random AR(1) model Xi = AiXi−1 +Bi, where we want to estimate (E(A1),E(B1)) from the observations
Zk = Xk + εk.

If θ0 = (a, b), under the assumptions of Theorem 3.2 or 3.3, θ̂ defined by (3.6) is a consistent and asymptot-
ically normal estimator of θ0. Note that if E(|A1|) < ∞ and E(|B1|) < ∞, and if |f(x) − f(y)| ≤ κ|x − y| for
κ < 1/E(|B1|), then the chain is τ–dependent with τX,2(k) = O(κk).

4. A more general estimator

For some specific regression functions it seems not straightforward to find a weight function satisfying con-
ditions (C1)−(C4), for instance if gθ(x) = θ�[0,1].

In this section we propose a generalization of our estimator under weaker conditions than Condi-
tions (C1)−(C4). Here the Markov chain (Xi) is assumed to be strictly stationary.

4.1. Definition of the general estimator

The key idea for this construction relies on deconvolution tools and more specifically, it relies to a truncation
of integrals in (3.5). Let Kn,Cn be a density deconvolution kernel defined via its Fourier transform

K∗
n,Cn

(t) =
K∗(t/Cn)
f∗

ε (−t) :=
K∗

Cn
(t)

f∗
ε (−t) , (4.9)

where K∗ is the Fourier transform of K and Cn is a sequence which tends to infinity with n. The kernel K is
chosen to belong to L

2(R) with a compactly supported Fourier transform K∗ and satisfying |1−K∗(t)| ≤ �|t|≥1.
Then, for any integrable function Φ, one has limn→∞ n−1

∑n
i=1 Φ � Kn,Cn(Zi) = E(Φ(X)). Hence we estimate

E(Φ(X)) by n−1
∑n

i=1 Φ � Kn,Cn(Zi).
We propose to estimate θ0 by

θ̂ = argmin
θ∈Θ

with Sn(θ) =
1
n

n∑
i=1

Re

∫
(Zi − gθ(x))

2
w(x)Kn,Cn(Zi−1 − x)dx. (4.10)

This procedure still works under (C1)−(C4) by choosing K∗(t/Cn) = �|t|≤Cn
with Cn = +∞.
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4.2. Asymptotic properties under general conditions

Under milder conditions than (C1)−(C4), the estimator θ̂ defined in (4.10) is still consistent, but its rate is
not necessarily the parametric rate. For the sake of simplicity we only consider the case of α–mixing Markov
chains.

We assume that

On Θ◦, the quantity w2(X0)(Z1 − gθ(X0))4 and the absolute values of its derivatives (A3)

with respect to θ up to order 2 have a finite expectation.

The quantity sup
n

sup
j∈{1,...,d}

E

(
sup

θ∈Θ◦

∣∣∣ ∂
∂θj

Sn(θ)
∣∣∣) is finite. (A4)

sup
θ∈Θ

|wgθ|, |w| and sup
θ∈Θ

|wg2
θ | belong to L1(R). (A5)

X0 admits a density fX with respect to the Lebesgue measure and there exist two (A6)

constants C1(g2
θ0) and C2(gθ0) such that ‖ gθ0fX ‖2

2≤ C1(gθ0), and
‖ g2

θ0fX ‖2
2≤ C2(g2

θ0).
sup
z∈R

E[g2
θ0(X0)fε(z −X0)] and sup

z∈R

E[fε(z −X0)] are finite. (A7)

We say that a function ψ ∈ L1(R) satisfies (4.11) if for a sequence Cn we have

min
q=1,2

‖ ψ∗(K∗
Cn

− 1) ‖2
q +n−1 min

q=1,2

∥∥∥∥ψ∗K∗
Cn

f∗
ε

∥∥∥∥2

q

= o(1). (4.11)

Theorem 4.1. Under assumptions (I11), (I12), (N1), (A1) (A3)–(A5), let θ̂ defined in (4.10) with Cn such
that (4.11) holds for w, wgθ and wg2

θ and their first derivatives with respect to θ. Assume that the sequence (Xk)
is α–mixing that is

αX(k) −→
n→∞ 0, as k −→

n→∞ ∞.

Then E(‖θ̂ − θ0‖2
�2) = o(1), as n→ ∞ and θ̂ is a consistent estimator of θ0.

We now give upper bounds for the rate of convergence under assumptions (A6)−(A7). The following theorem
still holds when X0 does not admit a density, under a slightly different moment assumption.

Theorem 4.2. Suppose that the assumptions of Theorem 4.1 hold. Assume moreover that the sequence (Xk)k≥0

is α–mixing with
∑

k≥1

√
αX(k) <∞, and that, for all θ ∈ Θ, the functions w, gθw and g2

θw and their derivatives
up to order 3 with respect to θ satisfy (4.11).

1) Assume that the sequence X0 admits a density with respect to the Lebesgue measure and that assumption (A6)
holds. Then θ̂ − θ0 = Op(ϕ2

n) with ϕn = ‖(ϕn,j)‖�2 , ϕ2
n,j = B2

n,j + Vn,j/n, j = 1 . . . , d, where

Bn,j=min
{
B

[1]
n,j , B

[2]
n,j

}
and Vn,j=min

{
V

[1]
n,j , V

[2]
n,j

}
and for q = 1, 2

B
[q]
n,j =

∥∥∥(wf (1)
θ,j )∗(K∗

Cn
− 1)

∥∥∥2

q
+
∥∥∥(wgθ0f

(1)
θ0,j)

∗(K∗
Cn

− 1)
∥∥∥2

q
,

and

V
[q]
n,j=

∥∥∥∥(wf (1)
θ0,j)

∗K
∗
Cn

f∗
ε

∥∥∥∥2

q

+
∥∥∥∥(wgθ0f

(1)
θ0,j)

∗K
∗
Cn

f∗
ε

∥∥∥∥2

q

.
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2) Under (A7), θ̂ − θ0 = Op(ϕ2
n) with ϕn = ‖(ϕn,j)‖�2 , ϕ2

n,j = B2
n,j + Vn,j/n, j = 1 . . . , d, where Bn,j =

B
[1]
n,j and Vn,j = min

{
V

[1]
n,j , V

[2]
n,j

}
.

This theorem states an upper bound for the quadratic risk under very general conditions. It holds under mild
conditions on w, gθ and fε. We refer to Table 1 in Butucea and Taupin [6] for more details on the resulting
rates.

5. Simulation study

We investigate the numerical properties of our estimator for different regression functions and error distri-
butions, on simulated data. We consider two error distributions: the Laplace distribution and the Gaussian
distribution. When ε1 is centered with variance σ2

ε and the Laplace distribution, its density and Fourier trans-
form are

fε(x) =
1

σε

√
2

exp
(
−

√
2

σε
|x|
)
, and f∗

ε (x) =
1

1 + σ2
εx

2/2
· (5.12)

When ε1 is centered with variance σ2
ε and Gaussian, its density and Fourier transform are

fε(x) =
1

σε

√
2π

exp
(
− x2

2σ2
ε

)
, and f∗

ε (x) = exp(−σ2
εx

2/2). (5.13)

For each of these error distributions, we consider linear and Cauchy regression functions.

5.1. Linear regression function

Consider Model (1.1) with gθ(x) = ax + b, where |a| < 1 and θ = (a, b)T . Here, we choose to illustrate the
numerical properties of our estimator under the weakest of the dependency conditions, that is τ–dependency.
As recalled in Appendix 2.5, when gθ0 is linear with |a| < 1, if ξ0 has a density bounded from below in a
neighborhood of the origin, then the Markov chain (Xi)i≥0 is α–mixing. When ξ0 does not have a density, then
the chain may not be α–mixing (and not even irreducible), but it is always τ–dependent.

Here, we consider the case of discrete innovation distribution, in such a way that the stationary Markov Chain
is τ–dependent but not α–mixing. We also consider two distinct values of θ0. For the first value, the stationary
distribution of Xi is absolutely continuous with respect to the Lebesgue measure. For the second value, the
stationary distribution is singular with respect to the Lebesgue measure. In both cases Theorem 3.3 applies,
and θ̂ is asymptotically Gaussian.

• Case A (absolutely continuous stationary distribution). If θ0 = (1/2, 1/4)T , X0 is uniformly distributed over
[0, 1], and (ξi)i≥1 is a sequence of i.i.d. random variables, independent of X0 and such that P(ξ1 = −1/4) =
P(ξ1 = 1/4) = 1/2. Then the strictly stationary Markov chain is defined for i > 0 by

Xi =
1
4

+
1
2
Xi−1 + ξi. (5.14)

Its stationary distribution is the uniform distribution over [0, 1], with σ2
X0

= 1/12. This chain is non−irreducible,
and the dependency coefficients are such that αX(k) = 1/4 (see for instance Bradley [4], p. 180) and τX,2(k) =
O(2−k). Thus the Markov chain is not α–mixing, but it is τ–dependent. We start the simulation with X0

uniformly distributed over [0, 1], so the simulated chain is stationary.

• Case B (singular stationary distribution). If θ0 = (1/3, 1/3)T , X0 is uniformly distributed over the Cantor
set, and (ξi)i≥1 is a sequence of i.i.d. random variables, independent of X0 and such that P(ξ1 = −1/3) =
P(ξ1 = 1/3) = 1/2. Hence, the strictly stationary Markov chain is defined for i > 0 by

Xi =
1
3

+
1
3
Xi−1 + ξi. (5.15)
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Its stationary distribution is the uniform distribution over the Cantor set, with σ2
X = 1/8. This chain is

non−irreducible, and the dependency coefficients satisfy αX(k) = 1/4 and τX,2(k) = O(3−k). The Markov chain
is not α–mixing, but is τ–dependent. For the simulation, we start with X0 uniformly distributed over [0, 1], and
set Xi = Xi+1000 since we consider that the chain is close to the stationary chain after 1000 iterations.

We first give the explicit expression of θ̂ for two choices of weight functions w, satisfing conditions (C1)−(C4),
and recall the classic estimator when X is directly observed, the ARMA estimator, and the so-called naive
estimator.

5.1.1. Expression of the estimator.

Set

w(x) = N(x) = exp{−x2/(4σ2
ε)} and w(x) = SC(x) =

1
2π

(
2 sin(x)

x

)4

· (5.16)

Conditions (C1)−(C4) hold for both weight functions N and SC, and the two associated estimators θ̂N and
θ̂SC are

√
n–consistent estimator of θ0. There are two main differences between these two weight functions.

First, N depends on the variance error σ2
ε . Hence the estimator should be adaptive to the noise level. On the

contrary, it may be sensitive to very small error variance as it appears in the simulations (see Fig. 1). Second,
SC has strong smoothness properties since its Fourier transform is compactly supported.

The two associated estimators are based on Sn(θ) expressed as

Sn(θ) =
1
n

n∑
k=1

[(Z2
k + b2 − 2Zkb)I0(Zk−1) + a2I2(Zk−1) − 2a(Zk − b)I1(Zk−1)],

with Ij(Z) =
1
2π

Re

∫
(pjw)∗(u)

e−iuZ

f∗
ε (−u)

du, (5.17)

where pj(x) = xj for j = 0, 1, 2, w being either w = N or w = SC. Hence, θ̂ = (â, b̂)T satisfies

â =
∑n

k=1 ZkI1(Zk−1)
∑n

k=1 I0(Zk−1) −
∑n

k=1 ZkI0(Zk−1)
∑n

k=1 I1(Zk−1)∑n
k=1 I2(Zk−1)

∑n
k=1 I0(Zk−1) −

(∑n
k=1 I1(Zk−1)

)2 , (5.18)

b̂ =
∑n

k=1 ZkI0(Zk−1)∑n
k=1 I0(Zk−1)

− â

∑n
k=1 I1(Zk−1)∑n
k=1 I0(Zk−1)

· (5.19)

We now compute Ij(Z) for j = 0, 1, 2 and the two weight functions. In the following we respectively denote
Ij,N (Z) and Ij,SC(Z) the previous integrals when the weight function is either w = N or w = SC.

We start with w = N and give the details of the calculations for the two error distributions (Laplace and
Gaussian), which are explicit. Then, with the weight function w = SC, we present the calculations, which are
not explicit whatever the error distribution fε.

• When w = N , Fourier calculations provide that

N∗(t) =
√

2π
√

2σ2
ε exp(−σ2

ε t
2)

(Np1)∗(t) =
√

2π
√

2σ2
ε exp(−σ2

ε t
2)
(− 2σ2

εt/i
)
,

(Np2)∗(t) = −
√

2π
√

2σ2
ε exp(−σ2

εt
2)
(− 2σ2

ε + 4σ4
εt

2
)
.
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It follows that

I0,N (Z) =
1
2π

Re

∫ √
2π
√

2σ2
ε exp(−σ2

ε t
2)

e−itZ

f∗
ε (−t)dt,

I1,N (Z) =
1
2π

Re

∫ √
2π
√

2σ2
ε exp(−σ2

ε t
2)
(− 2σ2

εt/i
) e−itZ

f∗
ε (−t)dt,

I2,N (Z) =
1
2π

Re

∫ √
2π
√

2σ2
ε exp(−σ2

ε t
2)
(
2σ2

ε − 4σ4
εt

2
) e−itZ

f∗
ε (−t)dt.

If fε is the Laplace distribution (5.12), replacing f∗
ε by its expression we get

I0,N (Z) = e−Z2/(4σ2
ε) − σ2

ε

2
∂2

∂Z2
N(Z) =

[
5/4 − Z2/(8σ2

ε)
]
e−Z2/(4σ2

ε),

I1,N (Z) =
[
7Z/4 − Z3/(8σ2

ε)
]
e−Z2/(4σ2

ε), and I2,N (Z) =
[−σ2

ε + 9Z2/4 − Z4/(8σ2
ε)
]
e−Z2/(4σ2

ε).

If fε is the Gaussian distribution (5.13), replacing f∗
ε by its expression we obtain

I0,N (Z) =
√

2e−Z2/(2σ2
ε), I1,N (Z) = 2

√
2Ze−Z2/(2σ2

ε) and I2,N (Z) =
√

2(4Z2 − 2σ2
ε)e−Z2/(2σ2

ε).

Hence we deduce the expression of âN and b̂N by applying (5.18) and (5.19).

•When w = SC, Fourier calculations provide that

SC∗(t) = �[−4,−2](t)(t3/6 + 2t2 + 8t+ 32/3) + �[−2,0](t)(−t3/2 − 2t2 + 16/3)

+�[2,4](t)(−t3/6 + 2t2 − 8t+ 32/3) + �[0,2](t)(t3/2 − 2t2 + 16/3)

(SCp1)∗(t) =
∂

∂t
SC∗(t)/i and (SCp2)∗(t) =

∂2

∂t2
SC∗(t)/(i2).

The integrals Ij,SC(Z), defined for j = 0, 1, 2 by

Ij,SC(Z) =
1
2π

Re

∫
(SCpj)∗(t)

e−itZ

f∗
ε (−t)dt, (5.20)

have no explicit form and have to be numerically computed. More precisely, we consider a finite Fourier series
approximation of (SCpj)∗(t)/f∗

ε (t) whose Fourier transfom is calculated using IFFT Matlab function. The
results are taken as approximations of Ij,SC(Z), in (5.18) and (5.19) to get âSC and b̂SC .

5.1.2. Comparison with classical estimators

We compare the two estimators θ̂N and θ̂SC with three classical estimators, the usual least square estimator
when there is no observation noise, the ARMA estimator, and the so-called naive estimator.

• Estimator without noise. In the case where εi = 0, that is (X0, . . . , Xn) is observed without error, the
parameters can be easily estimated by the usual least square estimators

âX =
n
∑n

i=1XiXi−1 −
∑n

i=1Xi

∑n
i=1Xi−1

n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)2

and b̂X =
1
n

(
n∑

i=1

Xi

)
− âX

1
n

(
n∑

i=1

Xi−1

)
.

• ARMA estimator. When the regression function is linear, the model may be written as

Zi − aZi−1 − b = ξi + εi − aεi−1.
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The auto-covariance function γY of the stationary sequence Yi = ξi + εi − aεi−1 is given by

γY (0) = (1 + a2)σ2
ε + σ2

ξ , γY (1) = −aσ2
ε , and γY (k) = 0 for k > 1.

It follows that Yi is an MA(1) process, which may be written as

Yi = ηi − βηi−1,

where ηi is the innovation, and |β| < 1 (note that |β| �= 1 because γY (0) − 2|γY (1)| > 0). Moreover, one can
give the explicit expression of β and σ2

η in terms of a, σ2
ξ and σ2

ε . It follows that, if |a| < 1, (Zi)i≥0 is the causal
invertible ARMA(1,1) process

Zi − aZi−1 = b+ ηi − βηi−1. (5.21)

Note that a �= β except if a = 0. Hence, if |a| < 1 and a �= 0, one can estimate the parameters (a, b, β) by
maximizing the so-called Gaussian likelihood. These estimators are consistent and asymptotically Gaussian.
Moreover they are efficient when both the innovations and the errors ε are Gaussian (see Hannan [19] or
Brockwell and Davis [5]). Note that this well−known approach does not require the knowledge of the error
distribution, but of course it works only in the particular case where the regression function gθ is linear. For the
computation of the ARMA estimator we use the function arma from the R tseries package (see Trapletti and
Hornik [28]). The resulting estimators are denoted by âarma and b̂arma.

• Naive estimator. The naive estimator is constructed by replacing the unobserved Xi by the observation Zi in
âX and b̂X :

ânaive =
n
∑n

i=1 ZiZi−1 −
∑n

i=1 Zi

∑n
i=1 Zi−1

n
∑n

i=1 Z
2
i−1 − (

∑n
i=1 Zi−1)2

and b̂naive =
1
n

( n∑
i=1

Zi

)
− ânaive

1
n

(
n∑

i=1

Zi−1

)
.

As confirmed by the simulation study, θ̂naive is an asymptotically biased estimator of θ0.

5.1.3. Simulation results

For each error distribution, we simulate 100 samples with size n, n = 500, 5000 and 10 000. We consider
different values of σε such that the ratio signal to noise s2n = σ2

ε/Var(X) is 0.5, 1.5 or 3. The comparison of
the five estimators is based on the bias, the Mean Squared Error (MSE), and the box plots. If θ̂(k) denotes the
value of the estimation for the k-th sample, the MSE is evaluated by the empirical mean over the 100 samples:

MSE(θ̂) =
1

100

100∑
k=1

(θ̂(k) − θ0)2.

Results are presented in Figures 1−2 and Tables 1−4.
The first thing to notice is that, not surprisingly, θ̂naive presents a bias, whatever the values of n, s2n and

the error distribution. The estimator θ̂X has the good expected properties (unbiased and small MSE), but it is
based on the observation of the Xi’s. The previously known estimator θ̂arma has good asymptotic properties.
However its bias is often larger than the biases of θ̂N and θ̂SC , except when s2n = 0.5 and ε is Gaussian.

We now consider the two estimators θ̂N and θ̂SC . Whatever the weight function w, the two estimators θ̂N and
θ̂SC present good convergence properties. Their biases and MSEs decrease when n increases. But their numerical
behaviors are not the same. For not too large s2n, θ̂SC has a MSE smaller than θ̂N (see Fig. 1 and Tables 1−4,
when s2n ≤ 3). With large s2n, the estimator θ̂N seems to have better properties (see Fig. 2 when s2n = 6).
This is expected since N depends on σ2

ε and is thus more sensitive to small values of σ2
ε . The error distribution

seems to have a slight infuence on the MSEs of the two estimators. The MSEs are often smaller when fε is the
Laplace density. This may be related with the theoretical properties in density deconvolution. In that context
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Figure 1. Results for linear Case B and Gaussian error, with n = 5000 and σ2
ε/Var(X) = 0.5.

Box plots of the five estimators âarma, âN , âSC , âX and ânaive, from left to right, based on
100 replications. True value is 1/3 (horizontal line).
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Figure 2. Results for linear Case B and Gaussian error, with n = 5000 and σ2
ε/Var(X) = 6.

Box plots of the five estimators âarma, âN , âSC , âX and ânaive, from left to right, based on
100 replications. True value is 1/3 (horizontal line).
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Table 1. Estimation results for Linear Case A, Laplace error. Mean estimated values of the five
estimators θ̂arma, θ̂N , θ̂SC , θ̂X and θ̂naive are presented for various values of n (1000, 5000 or 10 000)
and s2n (0.5, 1.5, 3). True values are a0 = 1/2, b0 = 1/4. MSEs are given in brackets.

ratio Estimator

n s2n θ̂arma(MSE) θ̂N (MSE) θ̂SC(MSE) θ̂X(MSE) θ̂naive(MSE)
1000 0.5 a 0.487 (0.008) 0.459 (0.020) 0.489 (0.002) 0.493 (0.001) 0.328 (0.030)

b 0.257 (0.002) 0.262 (0.002) 0.255 (0.001) 0.253 (0.001) 0.336 (0.008)

1.5 a 0.494 (0.015) 0.488 (0.013) 0.492 (0.006) 0.501 (0.001) 0.198 (0.092)
b 0.251 (0.004) 0.253 (0.002) 0.253 (0.002) 0.249 (0.001) 0.399 (0.023)

3 a 0.461 (0.044) 0.502 (0.029) 0.503 (0.026) 0.493 (0.001) 0.121 (0.145)
b 0.270 (0.012) 0.249 (0.001) 0.249 (0.001) 0.253 (0.001) 0.440 (0.037)

5000 0.5 a 0.497 (0.001) 0.499 (0.004) 0.499 (0.001) 0.499 (0.001) 0.332 (0.028)
b 0.252 (0.001) 0.251 (0.001) 0.251 (0.001) 0.251 (0.001) 0.334 (0.007)

1.5 a 0.498 (0.003) 0.508 (0.003) 0.503 (0.002) 0.499 (0.001) 0.199 (0.091)
b 0.250 (0.001) 0.247 (0.001) 0.248 (0.001) 0.250 (0.001) 0.399 (0.022)

3 a 0.487 (0.008) 0.492 (0.004) 0.495 (0.004) 0.500 (0.001) 0.123 (0.143)
b 0.256 (0.002) 0.253 (0.001) 0.252 (0.001) 0.250 (0.001) 0.437 (0.035)

10 000 0.5 a 0.496 (0.001) 0.501 (0.002) 0.500 (0.001) 0.499 (0.001) 0.334 (0.028)
b 0.252 (0.001) 0.250 (0.001) 0.250 (0.001) 0.250 (0.001) 0.333 (0.007)

1.5 a 0.504 (0.002) 0.500 (0.001) 0.501 (0.001) 0.500 (0.001) 0.200 (0.090)
b 0.248 (0.001) 0.250 (0.001) 0.250 (0.001) 0.250 (0.001) 0.401 (0.023)

3 a 0.493 (0.003) 0.499 (0.001) 0.499 (0.002) 0.498 (0.001) 0.124 (0.142)
b 0.254 (0.001) 0.250 (0.001) 0.250 (0.001) 0.251 (0.001) 0.438 (0.036)

it is well known that the rate of convergence is slower when fε is the Gaussian density. The two estimators θ̂N

and θ̂SC have comparable numerical behaviors in the two linear autoregressive models. Let us recall that in
both cases, the simulated chain X are non−mixing but are τ–dependent. In Case A, the stationary distribution
of X is continuous whereas it is not the case in Case B. This explains the relative bad properties of θ̂arma in
Case B. Indeed, due to its construction, this estimator is expected to have good properties when the stationary
distribution of the Markov Chain is close to the Gaussian distribution. On the contrary our estimators have
similar behavior in both cases.

5.2. Cauchy regression model

We consider the model (1.1) with gθ(x) = θ/(1+ x2) = θf(x). The true parameter is θ0 = 1.5. For the law of
ξ0 we take ξ0 ∼ N (0, 0.01). In this case, an empirical study shows that σ2

X is about 0.1. Moreover αX(k) = O(κk)
for some κ ∈]0, 1[ and the Markov chain is α–mixing (see Appendix 2.5). For w suitably chosen, Theorem 3.2
applies and states that θ̂ is asymptotically normal. For the simulation, we start with X0 uniformly distributed
over [0, 1], and we consider that the chain is close to the stationary chain after 1000 iterations. We then set
Xi = Xi+1000.

To our knowledge, the estimator θ̂ is the first consistent estimator in the literature for this regression function.
We first detail the estimator for two choices of the weight function w. Then we recall the classic estimator when
X is directly observed and the so-called naive estimator.
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Table 2. Estimation results for Linear Case A, Gaussian error. Mean estimated values of the
five estimators θ̂arma, θ̂N , θ̂SC , θ̂X and θ̂naive are presented for various values of n (1000, 5000
or 10 000) and s2n (0.5, 1.5, 3). True values are a0 = 1/2, b0 = 1/4. MSEs are given in brackets.

ratio Estimator

n s2n θ̂arma(MSE) θ̂N (MSE) θ̂SC(MSE) θ̂X(MSE) θ̂naive(MSE)
1000 0.5 a 0.483 (0.006) 0.539 (0.039) 0.496 (0.002) 0.495 (0.001) 0.331 (0.030)

b 0.259 (0.002) 0.243 (0.003) 0.253 (0.001) 0.253 (0.001) 0.336 (0.008)

1.5 a 0.497 (0.021) 0.516 (0.027) 0.507 (0.009) 0.499 (0.001) 0.200 (0.091)
b 0.251 (0.005) 0.243 (0.005) 0.246 (0.002) 0.249 (0.001) 0.399 (0.023)

3 a 0.456 (0.031) 0.521 (0.082) 0.481 (0.030) 0.501 (0.001) 0.120 (0.145)
b 0.272 (0.008) 0.244 (0.016) 0.260 (0.007) 0.250 (0.001) 0.441 (0.037)

5000 0.5 a 0.497 (0.001) 0.492 (0.006) 0.499 (0.001) 0.498 (0.001) 0.333 (0.028)
b 0.251 (0.001) 0.252 (0.001) 0.250 (0.001) 0.250 (0.001) 0.333 (0.007)

1.5 a 0.490 (0.002) 0.510 (0.006) 0.502 (0.001) 0.499 (0.001) 0.120 (0.090)
b 0.254 (0.001) 0.245 (0.001) 0.248 (0.001) 0.250 (0.001) 0.399 (0.022)

3 a 0.471 (0.010) 0.512 (0.008) 0.503 (0.005) 0.498 (0.001) 0.124 (0.141)
b 0.263 (0.002) 0.245 (0.002) 0.249 (0.001) 0.251 (0.001) 0.437 (0.035)

10 000 0.5 a 0.504 (0.006) 0.500 (0.003) 0.498 (0.001) 0.499 (0.001) 0.331 (0.028)
b 0.249 (0.001) 0.250 (0.001) 0.251 (0.001) 0.251 (0.001) 0.335 (0.007)

1.5 a 0.495 (0.002) 0.501 (0.002) 0.499 (0.001) 0.501 (0.001) 0.200 (0.090)
b 0.253 (0.001) 0.250 (0.001) 0.251 (0.001) 0.250 (0.001) 0.401 (0.023)

3 a 0.492 (0.004) 0.498 (0.004) 0.500 (0.003) 0.500 (0.001) 0.126 (0.140)
b 0.254 (0.001) 0.251 (0.001) 0.251 (0.001) 0.250 (0.001) 0.437 (0.009)

5.2.1. Expression of the estimator

We consider the two following weight functions:

Nc(x) = (1 + x2)2 exp{−x2/(4σ2
ε)} and SCc(x) = (1 + x2)2

1
2π

(
2 sin(x)

x

)4

, (5.22)

These choices of w ensure that conditions (C1)−(C4) hold and θ̂ is asymptotically Gaussian. As in the linear
case, these two weight functions differ by their dependence on σ2

ε and their smoothness properties. The two
estimators are based on the expression of Sn(θ),

Sn(θ) =
1
n

n∑
k=1

[Z2
kIw(Zk−1) + θ2Iwf2(Zk−1) − 2θZkIwf (Zk−1)],

where

Iw(Z) =
1
2π

Re

∫
(w)∗(u)

e−iuZ

f∗
ε (−u)

du, Iwf (Z) =
1
2π

Re

∫
(wf)∗(u)

e−iuZ

f∗
ε (−u)

du

and Iwf2(Z) =
1
2π

Re

∫
(wf2)∗(u)

e−iuZ

f∗
ε (−u)

du.

The estimator can be expressed as

θ̂ =
∑n

k=1 ZkIwf (Zk−1)∑n
k=1 Iwf2(Zk−1)

· (5.23)
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Table 3. Estimation results for Linear Case B, Laplace error. Mean estimated values of the
five estimators θ̂arma, θ̂N , θ̂SC , θ̂X and θ̂naive are presented for various values of n (1000, 5000
or 10 000) and s2n (0.5, 1.5, 3). True values are a0 = 1/3, b0 = 1/3. MSEs are given in brackets.

ratio Estimator

n s2n θ̂arma(MSE) θ̂N (MSE) θ̂SC(MSE) θ̂X(MSE) θ̂naive(MSE)
1000 0.5 a 0.288 (0.021) 0.341 (0.013) 0.330 (0.002) 0.326 (0.001) 0.217 (0.015)

b 0.354 (0.005) 0.331 (0.001) 0.333 (0.001) 0.335 (0.001) 0.389 (0.004)

1.5 a 0.298 (0.050) 0.332 (0.009) 0.335 (0.007) 0.330 (0.001) 0.136 (0.040)
b 0.349 (0.012) 0.331 (0.002) 0.329 (0.002) 0.335 (0.001) 0.429 (0.010)

3 a 0.240 (0.127) 0.343 (0.017) 0.343 (0.018) 0.330 (0.001) 0.084 (0.063)
b 0.385 (0.033) 0.333 (0.003) 0.333 (0.003) 0.338 (0.001) 0.465 (0.018)

5000 0.5 a 0.333 (0.004) 0.335 (0.003) 0.335 (0.001) 0.333 (0.001) 0.223 (0.012)
b 0.333 (0.001) 0.332 (0.001) 0.332 (0.001) 0.334 (0.001) 0.388 (0.003)

1.5 a 0.331 (0.011) 0.328 (0.002) 0.334 (0.001) 0.334 (0.001) 0.433 (0.041)
b 0.334 (0.003) 0.334 (0.001) 0.329 (0.001) 0.332 (0.001) 0.132 (0.010)

3 a 0.290 (0.030) 0.329 (0.003) 0.329 (0.004) 0.333 (0.001) 0.083 (0.063)
b 0.355 (0.008) 0.335 (0.008) 0.335 (0.008) 0.334 (0.001) 0.459 (0.016)

10 000 0.5 a 0.337 (0.002) 0.335 (0.002) 0.334 (0.001) 0.334 (0.001) 0.222 (0.012)
b 0.331 (0.001) 0.332 (0.001) 0.332 (0.001) 0.332 (0.001) 0.388 (0.003)

1.5 a 0.322 (0.006) 0.336 (0.001) 0.336 (0.001) 0.334 (0.001) 0.134 (0.040)
b 0.339 (0.002) 0.332 (0.001) 0.332 (0.001) 0.333 (0.001) 0.433 (0.010)

3 a 0.329 (0.010) 0.336 (0.002) 0.336 (0.002) 0.334 (0.001) 0.083 (0.063)
b 0.335 (0.002) 0.332 (0.001) 0.332 (0.001) 0.332 (0.001) 0.457 (0.015)

We denote by Iwf,Nc(Z), Iwf2,Nc
(Z), Iwf,SCc(Z) and Iwf2,SCc

(Z) the previous integrals when w is either
w = Nc or w = SCc, and set θ̂Nc and θ̂SCc the corresponding estimators of θ0.

• When w = Nc, Fourier calculations provide that

(Ncf)∗(t) =
√

2π
√

2σ2
ε exp(−σ2

ε t
2)
(
1 + 2σ2

ε(1 − 2σ2
εt

2)
)

and (Ncf
2)∗(t) =

√
2π
√

2σ2
ε exp(−σ2

ε t
2).

If fε is the Laplace distribution (5.12), replacing f∗
ε by its expression we obtain

Iwf,Nc(Z) = exp(−Z2/(4σ2
ε))
[
Z4 − 18Z2σ2

ε + Z2 + 8σ4
ε − 10σ2

ε

]
/(8σ2

ε),

and Iwf2,Nc
(Z) = exp(−Z2/(4σ2

ε))
[
1 +

1
4

(
1 − Z2

2σ2
ε

)]
.

If fε is the Gaussian distribution (5.13), replacing f∗
ε by its expression we obtain

Iwf,Nc(Z) =
√

2e−Z2/(2σ2
ε)(1 − 2σ2

ε + 4Z2), and Iwf2,Nc
(Z) =

√
2e−Z2/(2σ2

ε).

• When w = SCc, I0,SC(Z) and I2,SC(Z) defined by (5.20) satisfy

Iwf,SCc(Z) = I0,SC(Z) + I2,SC(Z) and Iwf2,SCc
(Z) = I0,SC(Z).

As before, I0,SC(Z) and I2,SC(Z) have no explicit form, and are numerically approximated via the IFFT function.
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Table 4. Estimation results for Linear Case B, Gaussian error. Mean estimated values of the
five estimators θ̂arma, θ̂N , θ̂SC , θ̂X and θ̂naive are presented for various values of n (1000, 5000
or 10 000) and s2n (0.5, 1.5, 3). True values are a0 = 1/3, b0 = 1/3. MSEs are given in brackets.

ratio Estimator

n s2n θ̂arma(MSE) θ̂N (MSE) θ̂SC(MSE) θ̂X(MSE) θ̂naive(MSE)
1000 0.5 a 0.327 (0.016) 0.349 (0.035) 0.330 (0.003) 0.326 (0.001) 0.218 (0.014)

b 0.338 (0.004) 0.332 (0.002) 0.336 (0.001) 0.337 (0.001) 0.392 (0.004)

1.5 a 0.290 (0.061) 0.355 (0.021) 0.345 (0.008) 0.332 (0.001) 0.133 (0.041)
b 0.353 (0.015) 0.324 (0.004) 0.328 (0.002) 0.333 (0.001) 0.432 (0.010)

3 a 0.234 (0.153) 0.329 (0.049) 0.329 (0.051) 0.326 (0.001) 0.077 (0.067)
b 0.383 (0.040) 0.337 (0.010) 0.337 (0.010) 0.337 (0.001) 0.461 (0.017)

5000 0.5 a 0.329 (0.004) 0.341 (0.005) 0.333 (0.001) 0.332 (0.001) 0.220 (0.013)
b 0.335 (0.001) 0.332 (0.001) 0.334 (0.001) 0.334 (0.001) 0.399 (0.003)

1.5 a 0.329 (0.009) 0.331 (0.003) 0.332 (0.002) 0.333 (0.001) 0.132 (0.041)
b 0.335 (0.002) 0.334 (0.001) 0.333 (0.001) 0.333 (0.001) 0.433 (0.010)

3 a 0.315 (0.022) 0.348 (0.008) 0.348 (0.008) 0.334 (0.001) 0.084 (0.062)
b 0.343 (0.006) 0.327 (0.002) 0.328 (0.002) 0.332 (0.001) 0.459 (0.016)

10 000 0.5 a 0.330 (0.002) 0.333 (0.003) 0.333 (0.001) 0.332 (0.001) 0.221 (0.013)
b 0.335 (0.001) 0.333 (0.001) 0.333 (0.001) 0.334 (0.001) 0.389 (0.003)

1.5 a 0.328 (0.006) 0.336 (0.002) 0.334 (0.001) 0.333 (0.001) 0.132 (0.041)
b 0.336 (0.002) 0.333 (0.001) 0.334 (0.001) 0.334 (0.001) 0.435 (0.010)

3 a 0.312 (0.014) 0.334 (0.004) 0.334 (0.004) 0.333 (0.001) 0.083 (0.063)
b 0.344 (0.003) 0.333 (0.001) 0.333 (0.001) 0.333 (0.001) 0.458 (0.016)

5.2.2. Comparison with classical estimators.

We compare θ̂Nc and θ̂SCc with two estimators, the usual least square estimator without observation noise,
and the naive estimator.
• Estimator without noise. When εi = 0, (X0, . . . , Xn) is observed without errors, and θ0 is simply estimated
by the usual least square estimator

θ̂X =
∑n

i=1Xif(Xi−1)∑n
i=1 f

2(Xi−1)
·

• Naive estimator. As confirmed by the simulation study, the naive estimator which is an asymptotically biased
estimator of θ0, can be expressed as

θ̂naive =
∑n

i=1 Zif(Zi−1)∑n
i=1 f

2(Zi−1)
·

5.2.3. Simulations results

For each error distribution, we simulate 100 samples with size n, n = 500, 5000 and 10 000. We consider
different values of σε such that the ratio signal to noise s2n = σ2

ε/Var(X) is 0.5, 1.5 or 3. The comparison of the
four estimators is based on the bias, the Mean Squared Error (MSE), and the box plots, presented in Figure 3
and Tables 5−6.



ESTIMATION IN AUTOREGRESSIVE MODEL WITH MEASUREMENT ERROR 295

Table 5. Estimation results for Cauchy, Laplace error. Mean estimated values of the four
estimators θ̂Nc , θ̂SCc , θ̂X and θ̂naive are presented for various values of n (1000, 5000 or 10 000)
and s2n (0.5, 1.5, 3). True value is θ0 = 1.5. MSE are given in brackets.

ratio Estimator

n s2n θ̂Nc(MSE) θ̂SCc(MSE) θ̂X(MSE) θ̂naive(MSE)
1000 0.5 1.5095 (0.0042) 1.5024 (0.0006) 1.5004 (0.0000) 1.4333 (0.0050)

1.5 1.5006 (0.0021) 1.5005 (0.0013) 1.5002 (0.0000) 1.3657 (0.0190)
3 1.5017 (0.0024) 1.5005 (0.0024) 1.5002 (0.0000) 1.3267 (0.0314)

5000 0.5 1.5045 (0.0008) 1.5005 (0.0001) 1.5003 (0.0000) 1.4320 (0.0047)
1.5 1.5003 (0.0004) 1.4994 (0.0003) 1.4997 (0.0000) 1.3647 (0.0185)
3 1.4989 (0.0005) 1.4992 (0.0005) 1.5000 (0.0000) 1.3223 (0.0318)

10 000 0.5 1.5033 (0.0004) 1.5002 (0.0001) 1.5000 (0.0000) 1.4315 (0.0047)
1.5 1.5000 (0.0002) 1.5000 (0.0001) 1.4998 (0.0000) 1.3650 (0.0183)
3 1.4972 (0.0002) 1.4970 (0.0002) 1.4998 (0.0000) 1.3222 (0.0317)

Table 6. Estimation results for Cauchy, Gaussian error. Mean estimated values of the four
estimators θ̂Nc , θ̂SCc , θ̂X and θ̂naive are presented for various values of n (1000, 5000 or 10 000)
and s2n (0.5, 1.5, 3). True value is θ0 = 1.5. MSE are given in brackets.

ratio Estimator

n s2n θ̂Nc(MSE) θ̂SCc(MSE) θ̂X(MSE) θ̂naive(MSE)
1000 0.5 1.4979 (0.0027) 1.4998 (0.0006) 1.5000 (0.0000) 1.4230 (0.0064)

1.5 1.4995 (0.0029) 1.5001 (0.0015) 1.5005 (0.0000) 1.3336 (0.0287)
3 1.5080 (0.0049) 1.5058 (0.0042) 1.4997 (0.0000) 1.2832 (0.0487)

5000 0.5 1.5033 (0.0006) 1.5011 (0.0001) 1.4999 (0.0000) 1.4250 (0.0057)
1.5 1.5011 (0.0004) 1.5001 (0.0003) 1.4999 (0.0000) 1.3351 (0.0274)
3 1.4998 (0.0009) 1.4996 (0.0008) 1.5002 (0.0000) 1.2767 (0.0501)

10 000 0.5 1.5017 (0.0003) 1.4997 (0.0000) 1.4996 (0.0000) 1.4236 (0.0059)
1.5 1.5025 (0.0003) 1.5027 (0.0002) 1.5001 (0.0000) 1.3375 (0.0265)
3 1.5016 (0.0004) 1.5021 (0.0004) 1.5002 (0.0000) 1.2778 (0.0495)

1.3

1.35

1.4

1.45

1.5

1.55

thetahatN thetahatSC thetahatX thetahatnaive

Figure 3. Results for Cauchy and Gaussian error, with n = 5000 and σ2
ε/Var(X) = 1.5. Box

plots of the four estimators θ̂Nc , θ̂SCc , θ̂X and θ̂naive, from left to right, based on 100 replications.
True value is 1.5 (horizontal line).
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Not surprisingly, θ̂naive presents a bias and converges to (false) values which are different according to s2n
(see Tabs. 5−6). The estimator θ̂X has the good expected properties (unbiased and small MSE), but it is based
on the observation of the Xi’s.

The two estimators θ̂SCc and θ̂Nc present good convergence properties. Their biases and MSEs decrease when
n increases. The MSEs of θ̂SCc increase when s2n increases. This is not the case for the MSE of θ̂Nc . This
is probably due to the fact that the weight function chosen for the construction of θ̂Nc depends on σ2

ε . This
estimator is thus more adaptive to changes in s2n.

Appendix A. Covariance inequalities and coupling

The following results are the key arguments to prove the asymptotic normality of θ̂.
With the same notations as in Definition (2.1), we first recall a covariance inequality due to Rio [25]. For any

positive random variable Z, let QZ be the inverse cadlag of the tail function t → P(Z > t). Let X and Y be
two real valued random variables such that Cov(X,Y ) is well defined. The following inequality holds

|Cov(Y,X)| ≤ 4
∫ α(σ(Y ),σ(X))

0

Q|X|(u)Q|Y |(u)du. (A.1)

Next, we recall the coupling properties of τ (see Dedecker and Prieur [12]): enlarging Ω if necessary, there
exists X∗ distributed as X and independent of M such that

τ(M, X) = E(‖X −X∗‖B). (A.2)

Let us now give some specific criteria for autoregressive models illustrating dependence conditions (D1)
or (D2), as described in particular in Mokkadem [22] and Ango−Nzé [2].

Assume that

• the law of ξ0 has a density fξ such that fξ > c > 0 on a neighborhood of zero, and there exists s ≥ 1 such
that (|ξ0|s) <∞.

• gθ0 is continuous and there exist r ≥ 1 and ρ ∈]0, 1[ such that: for any |x| ≥ r, |gθ0(x)| ≤ ρ|x|.
The stationary Markov chain (Xi)i≥0 admits an unique invariant distribution measure, and it satisfies αx(k) =
o(κk) for any κ ∈]ρ, 1[ and is α–mixing.
Now, if the second point is weakened to

• gθ0 is continuous and there exist r ≥ 1 and δ ∈]0, 1[ such that: for any |x| ≥ r, |gθ0(x)| ≤ |x|(1 − |x|−δ).

then there exists a unique invariant probability measure, and the stationary markov chain (Xi)i≥0 satisfies
αx(k) = o(k1−s/δ) and is α–mixing.

If we do not assume that ξ0 has a density, then the chain may not be α–mixing (and not even irreducible).
However, under appropriate assumptions on gθ0 , it is still possible to obtain upper bounds for the coefficient τ .
For instance assume that

• there exists s ≥ 1 such that (|ξ0|s) <∞.
• |gθ0(x) − gθ0(y)| ≤ ρ|x− y| for some ρ ∈]0, 1[.

Then there exists a unique invariant probability measure, and the stationary markov chain (xi)i≥0 satisfies
τx,2(k) = o(ρk) and is τ–dependent. Now if the second point is weakened to

• there exist δ in [0, 1[ and c in ]0, 1] such that |g′θ0(t)| ≤ 1 − c(1 + |t|)−δ almost everywhere.

Then there exists a unique invariant probability measure, and for s > 1+δ the stationary markov chain (Xi)i≥0

satisfies τx,2(n) = o(n(δ+1−s)/δ) and is τ–dependent.
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Appendix B. Proofs of theorems

B.1. Proof of Theorem 3.1

The proof mainly consists in showing the two following points

i) for any θ in Θ, Sn(θ) L
1

−→
n→∞ S(θ), with S(θ) admitting a unique minimum in θ = θ0.

ii) For ω2(n, ρ) = sup {|Sn(θ) − Sn(θ′)| : ‖θ − θ′‖�2 ≤ ρ} , there exists a sequence ρk tending to 0, such that

E(ω2(n, ρk)) = O(ρk). (B.1)

Let us start with the proof of i) by writing Sn(θ) as a function of a strictly stationary and ergodic sequence of
random variables

Sn(θ) =
1
n

n∑
k=1

Ψ(Zk, Zk−1), with Ψ(Z1, Z0) =
1
2π

Re

∫ ((
Z1 − gθ

)2
w
)∗

(t)e−itZ0

f∗
ε (−t) dt.

We apply the ergodic theorem under Assumption (A2) and conclude that for any θ ∈ Θ,

Sn(θ) L
1−→

n→∞ E(ψ(Z1, Z0)) = S(θ).

Now, combining Assumption (C2) and the fact that

sup
‖θ−θ′‖�2≤ρ

|Sn(θ) − Sn(θ′)| ≤ sup
‖θ−θ′‖�2≤ρ

‖ θ − θ′ ‖�2 sup
θ∈Θ0

‖ S(1)
n (θ) ‖�2 , (B.2)

we infer that there exists a sequence ρk tending to 0, such that (B.1) holds.

B.2. Proof of Theorem 3.2

From the smoothness properties of θ �→ wgθ and the consistency of θ̂, we have S(1)
n (θ̂) = S

(1)
n (θ0)+S(2)

n (θ0)(θ̂−
θ0) +Rn(θ̂ − θ0) = 0, with Rn =

∫ 1

0
[S(2)

n (θ0 + s(θ̂ − θ0)) − S
(2)
n (θ0)]ds. This implies that

θ̂ − θ0 = −[S(2)
n (θ0) +Rn]−1S(1)

n (θ0). (B.3)

Consequently, we have to check the three following points.

i)
√
nS

(1)
n (θ0) L−→

n→∞ N (0, Σ0,1);

ii) S
(2)
n (θ0) IP−→

n→∞ S(2)(θ0);

iii) Rn
IP−→

n→∞ 0.

Note that the covariance matrix Σ0,1 in i) satisfies Σ0,1 = Σ/4π2, with Σ defined by the equation (B.5) below.
According to ii) and iii), the covariance matrix Σ1 satisfies

Σ1 =
1

4π2
[S(2)(θ0)]−1Σ[S(2)(θ0)]−1, with Σ defined by (B.5). (B.4)

We only detail the proof of i). The proofs of ii) and iii) follow by the same arguments.
Under Assumption (C2),(√

nS(1)
n (θ0)

)
i
=

1
2π

√
n

n∑
k=1

Re

∫ (
∂

∂θi
((Zk − gθ)2)w

∣∣∣
θ=θ0

)∗
(t)

e−itZk−1

f∗
ε (−t) dt.
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We have thus to prove that

1
2π

√
n

n∑
k=1

Re

∫ (− 2(Zk − gθ0)g(1)
θ0 w

)∗(t)e−itZk−1

f∗
ε (−t) dt L−→

n→∞ N (0, Σ0,1).

We first use that E(Sn(θ)) = S(θ) and thus E(S(1)
n (θ0)) = S(1)(θ0) = 0. Next we write

√
nS(1)

n (θ0) =
√
nS(1)

n (θ0) − E[
√
nS(1)

n (θ0)] =
1

2π
√
n

n∑
k=1

Tk

with Tk = −2Wk,1 + 2Wk,2, and

Wk,1 = ZkRe

∫ (
g
(1)
θ0 w

)∗(t)e−itZk−1

f∗
ε (−t) dt− E

[
ZkRe

∫ (
g
(1)
θ0 w

)∗(t)e−itZk−1

f∗
ε (−t) dt

]
Wk,2 = Re

∫ (
gθ0g

(1)
θ0 w

)∗(t)e−itZk−1

f∗
ε (−t) dt− E

[
Re

∫ (
gθ0g

(1)
θ0 w

)∗(t)e−itZk−1

f∗
ε (−t) dt

]
.

Let M1 = σ(X0, X1, ε0, ε1). According to Dedecker and Rio [13], n−1/2
∑n

k=1 Tk converges to a centered
Gaussian vector with covariance matrix

Σ = Cov(T1, T1) + 2
∑
k>1

Cov(T1, Tk), (B.5)

as soon as for any (p, q) in {1, . . . , d} × {1, . . . , d}
∞∑

k=3

E|(T1)pE((Tk)q|M1)| <∞. (B.6)

For any (p, q) in {1, . . . , d} × {1, . . . , d} and any i, j ∈ {1, 2}, we shall give an upper bound for

E |(W1,i)pE((Wk,j)q|M1)| .
The sequence (εk, εk−1) is independent of M1 ∨ σ(Xk, Xk−1), for i, j ∈ {1, 2}, and thus

E |(W1,i)pE((Wk,j)q|M1)| = E

∣∣∣(W1,i)pE((W̃k,j)q|M1)
∣∣∣ ,

with (W̃k,1)q = Xk

∫ (
g
(1)
θ0,qw

)∗(t)e−itXk−1dt− E

[
Xk

∫ (
g
(1)
θ0,qw

)∗(t)e−itXk−1dt
]

(W̃k,2)q =
∫ (

gθ0g
(1)
θ0,qw

)∗(t)e−itXk−1dt− E

[∫ (
gθ0g

(1)
θ0,qw

)∗(t)e−itXk−1dt
]
.

Since P(Xk−1,Xk)|σ(ε0,ε1,X0,X1) = P(Xk−1,Xk)|σ(X1), we infer that

E |(W1,i)pE((Wk,j)q|M1)| = E

∣∣∣(W1,i)pE((W̃k,j)q|X1)
∣∣∣ .

Next we use that under condition (C2),

|(W1,1)p| ≤ |Z1|
∫ ∣∣∣∣(g(1)

θ0,pw
)∗(t) e−itZ0

f∗
ε (−t)

∣∣∣∣ dt+ E

{
|Z1|

∫ ∣∣∣∣(g(1)
θ0,pw

)∗(t) e−itZ0

f∗
ε (−t)

∣∣∣∣dt}
≤ |Z1|

∫ ∣∣∣∣(g(1)
θ0,pw

)∗(t) 1
f∗

ε (−t)
∣∣∣∣ dt+ E

{
|Z1|

∫ ∣∣∣∣(g(1)
θ0,pw

)∗(t) 1
f∗

ε (−t)
∣∣∣∣dt}

≤ C1(|Z1| + E(|Z1|)).
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In the same way we get that |(W1,2)p| ≤ C2. Now, since ε1 is independent of X1, for j ∈ {1, 2}

E

∣∣∣(W1,1)pE((W̃k,j)q|X1)
∣∣∣ ≤ C1E

[
(|Z1| + E(|Z1|))

∣∣∣E((W̃k,j)q|X1)
∣∣∣]

≤ CE

[
(|X1| + E(|X1|))

∣∣∣E((W̃k,j)q|X1)
∣∣∣] . (B.7)

In the same way
E

∣∣∣(W1,2)pE((W̃k,j)q|X1)
∣∣∣ ≤ CE

∣∣∣E((W̃k,j)q|X1)
∣∣∣ . (B.8)

Note that

E

[
(|X1| + E(|X1|))

∣∣∣E((W̃k,1)q|X1)
∣∣∣] = Cov((|X1| + E(|X1|))sign(E((W̃k,1)q|X1)), (W̃k,1)q).

Now, we use the covariance Inequality (A.1). Note first that

(|X1| + E(|X1|))sign(E((W̃k,1)q|X1)) ≤ |X1| + E(|X1|)
and

|(W̃1,1)q| ≤ D(|X1| + E(|X1|)).
Since (Xi)i≥0 is a strictly stationary Markov chain, it is well known that

α(σ(X1), σ(Xk−1, Xk)) = α(σ(X1), σ(Xk−1)) = αX(k − 2). (B.9)

Hence, applying (A.1),

E

∣∣∣(W1,1)pE((W̃k,1)q|X1)
∣∣∣ ≤ C

∫ αX(k−2)

0

Q2
|X1|(u)du.

We conclude that ∑
k≥3

E |(W1,1)pE((Wk,1)q|M1)| ≤ C
∑
k≥3

∫ αX(k−2)

0

Q2
|X1|(u)du.

Finally, using similar arguments for the three quantities∑
k≥3

E |(W1,2)pE((Wk,1)q|M1)| ,
∑
k≥3

E |(W1,1)pE((Wk,2)q|M1)| and
∑
k≥3

E |(W1,2)pE((Wk,2)q|M1)|

we conclude that

√
nS(1)

n (θ0) L−→
n→∞ N (0, Σ/(4π2)) as soon as

∑
k≥1

∫ αX(k)

0

Q2
|X1|(u)du <∞.

B.3. Proof of Theorem 3.3

Following the proof of Theorem 3.2, we check that (B.6) holds. Starting from inequalities (B.7) and (B.8), let

(W̃k,1)q = (W̃k,1)q(Xk, Xk−1).

Let ψM be the truncating function defined by ψM (x) = (x ∧M) ∨ (−M). Applying (A.2), let (X∗
k , X

∗
k−1) be

the random variable distributed as (Xk, Xk−1) and independent of X1 such that

1
2
(‖Xk −X∗

k‖1 + ‖Xk−1 −X∗
k−1‖1) = τ(σ(X1), (Xk−1, Xk)) ≤ τX,2(k − 2).

Define the constants K1 and K2 by

K1 =
∫ ∣∣∣(g(1)

θ0,qw
)∗(t)∣∣∣ dt <∞, K2 =

∫
|t|
∣∣∣(g(1)

θ0,qw
)∗(t)∣∣∣ dt <∞.
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Clearly

|X1E((W̃k,1)q(Xk, Xk−1)|X1)| ≤M |E((W̃k,1)q(Xk, Xk−1)|X1)| +K2|X1|1|X1|>M (|Xk| + E(|Xk|)).

Now, since (X∗
k , X

∗
k−1) is independent of X1, one has that

|E((W̃k,1)q(Xk, Xk−1)|X1)| = |E((W̃k,1)q(Xk, Xk−1) − (W̃k,1)q(X∗
k , X

∗
k−1)|X1)|.

By definition of (W̃k,1)q(Xk, Xk−1), there exists a constant C such that

|(W̃k,1)q(Xk, Xk−1) − (W̃k,1)q(X∗
k , X

∗
k−1) − ((W̃k,1)q(ψM (Xk), Xk−1) − (W̃k,1)q(ψM (X∗

k ), X∗
k−1))|

≤ C(|Xk|1|Xk|>M + |X∗
k |1|X∗

k |>M ).

Hence

|E((W̃k,1)q(Xk, Xk−1)|X1)| ≤ |E((W̃k,1)q(ψM (Xk), Xk−1) − (W̃k,1)q(ψM (X∗
k ), X∗

k−1)|X1)|
+ C(|Xk|1|Xk|>M + |X∗

k |1|X∗
k |>M ).

Since ψM is 1−Lipschitz and bounded by M , and since x→ exp(itx) is |t|–Lipschitz and bounded by 1, under
condition (C4), one has

|(W̃k,1)q(ψM (Xk), Xk−1) − (W̃k,1)q(ψM (X∗
k), X∗

k−1)| ≤MK2|Xk−1 −X∗
k−1| +K1|Xk −X∗

k |.

It follows that

|X1E((W̃k,1)q(Xk, Xk−1)|X1)| ≤ K2|X1|1|X1|>M (|Xk| + E(|Xk|)) + CM(|Xk|1|Xk|>M + |X∗
k |1|X∗

k |>M )

+ M2K2|Xk−1 −X∗
k−1| +MK1|Xk −X∗

k |).

Set L(t) = E(X2
01X2

0>t), G(t) = t−1L(t), and G−1 be the inverse cadlag of G. Using that

|X1|1|X1|>M |Xk| ≤ 3
2
X2

11|X1|>M +
1
2
X2

k1|Xk|>M ,

we infer from (B.7) with j = 1 that there exists a positive constant K such that

E

[∣∣∣(W1,1)pE((W̃k,1)q|X1)
∣∣∣] ≤ K(L(M2) +M(M + 1)τX,2(k − 2)).

By choosing M2 = G−1(τX,2(k − 2)) we obtain that

E

[∣∣∣(W1,1)pE((W̃k,1)q|X1)
∣∣∣] ≤ 2K(2G−1(τX,2(k − 2))τX,2(k − 2) +

√
G−1(τX,2(k − 2))τX,2(k − 2)).

It follows that∑
k≥3

E

[∣∣∣(W1,1)pE((W̃k,1)q|X1)
∣∣∣] <∞ as soon as

∑
k>0

G−1(τX,2(k))τX,2(k) <∞.

Easier controls hold for the other terms in (B.7) and (B.8), hence (B.6) holds as soon as (D2) holds, and the
proof is complete.
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B.4. Proof of Theorem 4.1

The consistency proof of Theorem 4.1 is quite different from the one under (C1)−(C2) in Theorem 3.1, since
Sn(θ) is now a triangular array of the form

Sn(θ) =
1
n

n∑
k=1

Ψn(Zk, Zk−1) with Ψn(Z1, Z0) =
1
2π

Re

∫ ((
Z1 − gθ

)2
w
)∗

(t)e−itZ0K∗
Cn

(t)

f∗
ε (−t) dt.

In this context we show that

i) For all θ in Θ, E[(Sn(θ) − S(θ))2] = o(1) as n→ ∞.

ii) The control (B.1) holds.

Note first that ii) follows from the upper bound (B.2) and assumption (A4).
For the proof of i) we check that for all θ ∈ Θ,

E[Sn(θ)] − S(θ) = o(1) and Var(Sn(θ)) = o(1), as n→ ∞. (B.10)

Proof of the first part of (B.10). Since Z0 = X0 + ε0, with ε0 independent of (Z1, X0),

E[Sn(θ)] = E
[
Re
(
(Z1 − gθ)2 w

)
� Kn,Cn(Z0)

]
= E

[(
(Z1 − gθ)2 w

)
� KCn(X0)

]
,

hence

E[Sn(θ)] − S(θ) =
1
2π

∫∫
(f2

θ0(x) + σ2
ξ + σ2

ε)e−iuxw∗(u)(K∗
Cn

− 1)(u)duPX(dx)

− 1
π

∫∫
gθ0(x)e−iux(gθw)∗(u)(K∗

Cn
− 1)(u)duPX(dx)

+
1
2π

∫∫
e−iux(f2

θw)∗(u)(K∗
Cn

− 1)(u)PX(dx)du.

Now, arguing as in Butucea and Taupin [6] we get that |E[Sn(θ)] − S(θ)|2 = o(1).

Proof of the second part of (B.10). Using that the Zi’s are strictly stationary we get that

Var[Sn(θ)] ≤ 1
n

Var (A1,0) +
2
n

n∑
i=2

| Cov
(
A1,0, Ai,i−1

)|
≤ 3
n

Var (A1,0) +
2
n

n∑
k=3

| Cov
(
A1,0, Ak,k−1

)|
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with Ak,k−1 = Re
[(

(Zk − gθ)2 w) � Kn,Cn(Zk−1)
]
. As in Butucea and Taupin [6] we obtain that

limn→∞ n−1 Var (A1,0) = 0 and n−1
∑n

k=3 | Cov
(
A1,0, Ak,k−1

)| is studied using the lemma:

Lemma B.1. Let Ψ such that E(|Ψ(Z)|) <∞ and let Φ be an integrable function. Let

Bk,k−1 = R [eΨ(Zk)Φ � Kn,Cn(Zk−1)] .

Then for k ≥ 3, Cov(Bk,k−1, B1,0) = Cov[Ψ(Zk)Φ � KCn(Xk−1), Ψ(Z1)Φ � KCn(X0)] equals

1
(2π)2

∫∫
Φ∗(t)Φ∗(s)Cov

(
Ψ(Zk)e−itXk−1 , Ψ(Z1)e−isX0

)
K∗

Cn
(t)K∗

Cn
(s)dtds.

It follows from Lemma B.1 that for k ≥ 3,

Cov
(
Ak,k−1, A1,0

)
= Cov

[(
(Zk − gθ)2 w

)
� KCn(Xk−1),

(
(Z1 − gθ)2 w

)
� KCn(X0)

]
=

9∑
i=1

Ci,

with

C1 =
1

(2π)2

∫∫
Cov(e−itXk−1 , e−isX0 )(wg2

θ)∗(t)(wg2
θ)∗(s)K∗

Cn
(s)K∗

Cn
(t)dtds,

C2 =
1
π2

∫∫
Cov(Xke−itXk−1 , X1e−isX0)(wgθ)∗(t)(wgθ)∗(s)K∗

Cn
(t)K∗

Cn
(s)dtds,

C3 =
1

(2π)2

∫∫
Cov[(X2

k + ε2k)e−itXk−1 , (X2
1 + ε21)e

−isX0 ]w∗(t)w∗(s)K∗
Cn

(t)K∗
Cn

(s)dtds,

C4 =
−1
2π2

∫∫
Cov(Xke−itXk−1 , e−isX0 )(wgθ)∗(t)(wg2

θ )∗(s)K∗
Cn

(s)K∗
Cn

(t)dtds,

C5 =
−1
2π2

∫∫
Cov(e−itXk−1 , X1e−isX0 )(wgθ)∗(s)(wg2

θ)∗(t)K∗
Cn

(s)K∗
Cn

(t)dtds,

C6 =
1

(2π)2

∫∫
Cov[(X2

k + ε2k)e−itXk−1 , e−isX0 ]w∗(t)(wg2
θ )∗(s)K∗

Cn
(s)K∗

Cn
(t)dtds,

C7 =
1

(2π)2

∫∫
Cov[e−itXk−1 , (X2

1 + ε21)e
−isX0 ]w∗(s)(wg2

θ)∗(t)K∗
Cn

(s)K∗
Cn

(t)dtds,

C8 =
−1
2π2

∫∫
Cov[(X2

k + ε2k)e−itXk−1 , X1e−isX0 ]w∗(t)(wgθ)∗(s)K∗
Cn

(s)K∗
Cn

(t)dtds,

C9 =
−1
2π2

∫∫
Cov[Xke−itXk−1 , (X2

1 + ε21)e
−isX0 ]w∗(s)(wgθ)∗(t)K∗

Cn
(s)K∗

Cn
(t)dtds

Easy computations give

Cov[(X2
k + ε2k)e−itXk−1 , (X2

1 + ε21)e
−isX0 ] =

Cov(X2
ke−itXk−1 , X2

1e−isX0 ) + σ2
εCov(X2

ke−itXk−1 , e−isX0 )

+ σ2
εCov(e−itXk−1 , X2

1e−isX0) + σ4
εCov(e−itXk−1 , e−isX0 ) .

In the same way,

Cov[(X2
k + ε2k)e−itXk−1 , e−isX0 ] = Cov(X2

ke−itXk−1 , e−isX0 ) + σ2
εCov(e−itXk−1 , e−isX0),

and

Cov[(X2
k + ε2k)e−itXk−1 , X1e−isX0 ] = Cov(X2

ke−itXk−1 , X1e−isX0 ) + σ2
εCov(e−itXk−1 , X1e−isX0).
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We can rewrite
∑9

i=1 Ci =
∑9

i=1Ei, with

E1 =
1

(2π)2

∫∫
Cov(e−itXk−1 , e−isX0 )K∗

Cn
(t)K∗

Cn
(s)

×[(wg2
θ)∗(t)(wg2

θ)∗(s) + σ4
εw

∗(t)w∗(s) + σ2
εw

∗(t)(wgθ)∗(s) + σ2
εw

∗(s)(wgθ)∗(t))]dtds,

E2 = C2 =
1
π2

∫∫
Cov(Xke−itXk−1 , X1eisX0 )(wgθ)∗(t)(wgθ)∗(s)K∗

Cn
(t)K∗

Cn
(s)dtds,

E3 =
1

(2π)2

∫∫
Cov(X2

ke−itXk−1 , X2
1e−isX0 )w∗(t)w∗(s)K∗

Cn
(t)K∗

Cn
(s)dtds,

E4 =
−1
2π2

∫∫
Cov(Xke−itXk−1 , e−isX0 )K∗

Cn
(s)K∗

Cn
(t)(wgθ)∗(t)((wg2

θ )∗(s) + σ2
εw

∗(s))dtds,

E5 =
−1
2π2

∫∫
Cov(e−itXk−1 , X1e−isX0 )K∗

Cn
(s)K∗

Cn
(t)(wgθ)∗(s)((wg2

θ)∗(t) + σ2
εw

∗(t))dtds,

E6 =
1

(2π)2

∫∫
Cov(X2

ke−itXk−1 , e−isX0)K∗
Cn

(t)K∗
Cn

(s)w∗(t)(σ2
εw

∗(s) + (wg2
θ)∗(s))dtds,

E7 =
1

(2π)2

∫∫
Cov(e−itXk−1 , X2

1eisX0 )K∗
Cn

(t)K∗
Cn

(s)w∗(s)(σ2
εw

∗(t) + (wg2
θ)∗(t))dtds,

E8 =
−1
2π2

∫∫
Cov(X2

ke−itXk−1 , X1e−isX0 )w∗(t)(wgθ)∗(s)K∗
Cn

(s)K∗
Cn

(t)dtds,

E9 =
−1
2π2

∫∫
Cov(Xke−itXk−1 , X2

1e−isX0)w∗(s)(wgθ)∗(t)K∗
Cn

(s)K∗
Cn

(t)dtds.

We now apply the following lemma.

Lemma B.2. In model 1.1, with E(X4
1 ) <∞, we have the upper bounds

|Cov(e−itXk−1 , e−isX0 )| ≤ αX(k − 1), |Cov(XkeitXk−1 , eisX0 )| ≤ C

∫ αX(k−1)

0

Q|X|(u)du

|Cov(eitXk−1 , X1eisX0 )| ≤ C

∫ αX(k−2)

0

Q|X|(u)du, |Cov(Xke−itXk−1 , X1e−isX0 )| ≤ C

∫ αX(k−2)

0

Q2
|X|(u)du,

|Cov(X2
ke−itXk−1 , e−isX0)| ≤ C

∫ αX(k−1)

0

Q2
|X|(u)du, |Cov(e−itXk−1 , X2

1e−isX0 )| ≤ C

∫ αX(k−2)

0

Q2
|X|(u)du,

|Cov(X2
ke−itXk−1 , X1e−isX0)| ≤ C

∫ αX(k−2)

0

Q3
|X|(u)du, |Cov(Xke−itXk−1 , X2

1e−isX0 )| ≤ C

∫ αX(k−2)

0

Q3
|X|(u)du

and |Cov(X2
ke−itXk−1 , X2

1e−isX0 )| ≤ C

∫ αX(k−2)

0

Q4
|X|(u)du.

The proof of Lemma B.2 which follows from (A.1) and (B.9) is ommitted.
Apply Lemma B.2 to E1, . . . , E9. Since E(X4

1 ) < ∞ and limk→∞ αX(k) = 0, it follows that
limk→∞ | Cov

(
Ak,k−1, A1,0

)| = 0, and we conclude by applying Cesaro’s mean convergence theorem to get
limn→∞ 1

n

∑n
k=3 | Cov

(
A1,0, Ak,k−1

)| = 0.

B.5. Proof of Theorem 4.2

Proof of 1) in Theorem 4.2. Starting from (B.3) we shall check the three following points.

i) E

[
(S(1)

n (θ0) − S(1)(θ0))(S(1)
n (θ0) − S(1)(θ0))�

]
= O[ϕnϕ

�
n ]
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ii) S
(2)
n (θ0) IP−→

n→∞ S(2)(θ0);

iii) Rn
IP−→

n→∞ 0.

The rate of convergence of θ̂ is thus given by the order of

E

[
(S(1)

n (θ0) − S(1)(θ0))(S(1)
n (θ0) − S(1)(θ0))�

]
.

We only give the proof of i), ii) and iii) following by the same arguments. We first write(
S(1)

n (θ)
)

i
=

1
n

n∑
k=1

∂

∂θi
Re
[
((Zk − gθ)2w) � Kn,Cn(Zk−1) − E[(Zk − gθ(Xk−1))2w(Xk−1)]

]
=

1
n

n∑
k=1

(
∂

∂θi
Re(Zk − gθ)2w � Kn,Cn(Zk−1) − E

[
∂

∂θi
(Zk − gθ(Xk−1))2w(Xk−1)

])
.

Study of the bias. As in Butucea and Taupin [6], we get that∣∣∣∣E [(S(1)
n (θ0)

)
j

]∣∣∣∣ ≤ C1(gθ0 , w, fε)min
[
B

[1]
n,jB

[2]
n,j

]
.

Study of the variance. For the variance term, note first that

Var
((
S(1)

n (θ0)
)
j

)
≤ 3
n

Var(D1,0) +
2
n

n∑
k=3

|Cov(D1,0, Dk,k−1)|,

with Dk,k−1 = Re
((− 2Zkf

(1)
θ0,j + 2gθf

(1)
θ0,j

)
w
)
� Kn,Cn(Zk−1). (B.11)

Arguing as in Butucea and Taupin [6] we infer that

1
n

Var(D1,0) ≤
C(σ2

ξ , gθ0 , f
(1)
θ0,j , w, fε)

n
min{V [1]

n,j(θ
0), V [2]

n,j(θ
0)} (B.12)

with V
[q]
n,j , q = 1, 2 defined in Theorem 4.2. We now control the term

1
n

n∑
k=3

|Cov(D1,0, Dk,k−1)|.

Applying again Lemma B.1, we obtain that Cov(D1,0, Dk,k−1) = F1 + F2 + F3 + F4 with

F1 =
1
π2

Re

∫∫
Cov(Xke−itXk−1 , X1e−isX0 )

(
f

(1)
θ0,jw

)∗(t)(f (1)
θ0,jw

)∗(s)K∗
Cn

(t)K∗
Cn

(s)dtds

F2 =
1
π2

Re

∫∫
Cov(e−itXk−1 , e−isX0)

(
gθ0f

(1)
θ0,jw

)∗(t)(gθ0f
(1)
θ0,jw

)∗(s)K∗
Cn

(t)K∗
Cn

(s)dtds

F3 =
−1
π2

Re

∫∫
Cov(Xke−itXk−1 , e−isX0)

(
f

(1)
θ0,jw

)∗(t)(gθ0f
(1)
θ0,jw

)∗(s)K∗
Cn

(t)K∗
Cn

(s)dtds

F4 =
−1
π2

Re

∫∫
Cov(e−itXk−1 , X1e−isX0 )

(
f

(1)
θ0,jw

)∗(t)(f (1)
θ0,jw

)∗(s)K∗
Cn

(t)K∗
Cn

(s)dtds.

Now, we apply Lemma B.2 to each term. Since E(X4
1 ) < ∞, Q|X|(u) ≤ Cu−1/4, and consequently all the

covariance terms are O(
√
αX(k)). Finally, if

∑
k>0

√
αX(k) <∞, then

1
n

n∑
k=3

|Cov(D1,0, Dk,k−1)| ≤ C

n
·
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This, together with (B.12), implies that

Var
[(
S(1)

n (θ0)
)

j

]
≤ C

n
min{V [1]

n,j(θ
0), V [2]

n,j(θ
0)}.

Proof of 2) in Theorem 4.2. The proof of 2) in Theorem 4.2 is quite similar to the proof of 1) with differences
appearing in the bias and variance of S(1)

n (θ0). More precisely, we start from

S(1)
n (θ) =

1
n

n∑
k=1

Re

(
∂

∂θ
(Zk − gθ)2w

)
� Kn,Cn(Zk−1) − E

[
∂

∂θ
(Zk − gθ(Xk−1))2w(Xk−1)

]
.

Study of the bias. Since PZ,X(z, z) = PX(x)fε(z − x), E[S(1)
n (θ0)] − S(1)(θ0) is equal to

−2E

[
gθ0(X0)(g

(1)
θ0 w) � KCn(X0) − gθ0(X0)g

(1)
θ0 (X0)w(X0)

]
+ 2E

[
(g(1)

θ0 gθ0w) � KCn(X0) − (g(1)
θ0 gθ0w)(X0)

]
,

that is E[S(1)
n (θ0)] − S(1)(θ0) is equal to

−2Re

∫∫
gθ0(x)e−iux(g(1)

θ0 w)∗(u)(K∗
Cn

(u)−1)PX(dx) du+2Re

∫∫
e−iux(gθ0g

(1)
θ0 w)∗(u)(K∗

Cn
(u)−1)PX(dx) du.

It follows that for j = 1, . . . , d,
∣∣∣E[(S(1)

n (θ0))j ] − (S(1)(θ0))j

∣∣∣ is less than

E|gθ0(X0)|
∫

|(f (1)
θ0,jw)∗(u)(K∗

Cn
(u) − 1)|du+

∫
|(gθ0f

(1)
θ0,jw)∗(u)(K∗

Cn
(u) − 1)|du.

Study of the variance. We combine the proof in Butucea and Taupin [6] and the proof of 1) of Theorem 4.2.
For these reasons we only give a sketch of the proof, with details only for specific parts. For Dk,k−1 defined
in (B.11), we start from

Var
[
(S(1)

n (θ0))j

]
=

1
n

Var
[
Re

(
∂[−2Zkgθw + g2

θw]
∂θj

|θ=θ0

)
� Kn,Cn(Zk−1)

]
+

2
n2

∑
1≤j<k≤n

Cov(Dk,k−1, Dj,j−1).

The control of (2/n2)
∑

1≤j<k≤n Cov(Dk,k−1, Dj,j−1) is almost the same as in the proof of 1). First

Var
[
(S(1)

n (θ0))j

] ≤ C

n
ReE

[(
Zig

(1)
θ0 w + gθ0g

(1)
θ0 w

)
� Kn,Cn(Zi)

]2
≤ C

n
ReE

[(
(f2

θ0(X0) + σ2
ξ )g(1)

θ0 w + gθ0g
(1)
θ0 w

)
� Kn,Cn(Z0)

]2
.

Now, write that

ReE
[(

(f2
θ0(X0) + σ2

ξ )g(1)
θ0 w + gθ0g

(1)
θ0 w

)
� Kn,Cn(Z0)

]2
= II1 + II2,

with

II1 = Re

∫∫
fε(z − x)(g2

θ0(x) + σ2
ξ )
(∫

(g(1)
θ0 w)(u)Kn,Cn(z − u)du

)2

PX(dx)dz

II2 = Re

∫∫
fε(z − x)

(∫
(gθ0g

(1)
θ0 w)(u)Kn,Cn(z − u)du

)2

PX(dx)dz.
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We apply Hölder Inequality and obtain that

|II1| ≤ sup
z∈R

E[(g2
θ0(X0) + σ2

ξ )fε(z −X0)] ‖ (g(1)
θ0 w) � Kn,Cn ‖2

2,

and that |II1| is also less than

E[(g2
θ0(X0) + σ2

ξ )] ‖ (g(1)
θ0 w) � Kn,Cn ‖2

∞ .

In the same way we have

|II2| ≤ sup
z∈R

E[fε(z −X0)] ‖ (gθ0g
(1)
θ0 w) � Kn,Cn ‖2

2, and II2 ≤‖ (gθ0g
(1)
θ0 w) � Kn,Cn ‖2

∞ .

Consequently we have

Var
[
(S(1)

n (θ0))j

] ≤ C(σ2
ξ , gθ0 , fε)
n

[
‖ (g(1)

θ0 w) � Kn,Cn ‖2
2 + ‖ (gθ0g

(1)
θ0 w) � Kn,Cn ‖2

2

]
(B.13)

and

Var
[
(S(1)

n (θ0))j

] ≤ C1(gθ0)
n

[
‖ (g(1)

θ0 w) � Kn,Cn ‖2
2 + ‖ (gθ0g

(1)
θ0 w) � Kn,Cn ‖2

1

]
. (B.14)

By combining (B.13) and (B.14), for V [q]
n,j , q = 1, 2 defined in Theorem 4.2, we get that

Var
[
(S(1)

n (θ0))j

] ≤ C((gθ0 , σ2
ξ , fε)

n
min{V [1]

n,j(θ
0), V [2]

n,j(θ
0)}. �

Proof of Lemma B.1. By stationarity we write

Cov
(
Bk,k−1, B1,0

)
= E(Bk,k−1B1,0) − E(Bk,k−1)E(B1,0) = E(Bk,k−1B1,0) −

(
E(B1,0)

)2
.

The sequences (Xk)k∈Z and (εk)k∈Z being independent, (Z1, X0) is independent of ε0 and thus

E(B1,0) =
1
2π

Re

∫
Φ∗(t)E[Ψ(Z1)e−itZ0 ]

K∗
Cn

(t)
f∗

ε (−t) dt =
1
2π

∫
Φ∗(t)E[Ψ(Z1)e−itX0 ]K∗

Cn
(t)dt.

In the same way, we conclude the proof by writing that for k ≥ 3,

E(Bk,k−1B1,0) =
1

(2π)2
E

∫∫
Φ∗(s)Φ∗(t)Ψ(Zk)Ψ(Z1)Re

(
e−itZk−1

K∗
Cn

(t)
f∗

ε (−t)
)
Re
(
e−isZ0

K∗
Cn

(s)
f∗

ε (−s)
)
dtds

=
1

(2π)2

∫∫
Φ∗(s)Φ∗(t)E(Ψ(Zk)e−itXk−1Ψ(Z1)e−isX0 )K∗

Cn
(t)K∗

Cn
(s)dtds. �
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[11] J. Dedecker F. Merlevède and M. Peligrad, A quenched weak invariance principle. Technical report, to appear in Ann. Inst.
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[26] M. Rosenblatt, A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 (1956) 43–47.

[27] J. Staudenmayer and J.P. Buonaccorsi, Measurement error in linear autoregressive models. J. Amer. Statist. Assoc. 100 (2005)
841–852.

[28] A. Trapletti and K. Hornik, tseries: Time Series Analysis and Computational Finance. R package version 0.10-25 (2011).

http://fr.arxiv.org/abs/math.ST/arxiv:1204.4554

	Introduction
	Previously known results
	Our results

	Notations and assumptions
	Notations
	Assumptions
	Conditions on the weight function
	Dependency conditions
	Examples of models (1.1) satisfying all the assumptions

	Estimation procedure and asymptotic properties
	Definition of the estimator
	Consistency and n--asymptotic normality
	Extensions
	Results for almost all starting points
	Results for martingale differences innovations 


	A more general estimator
	Definition of the general estimator
	Asymptotic properties under general conditions

	Simulation study
	Linear regression function
	Expression of the estimator.
	Comparison with classical estimators
	Simulation results

	Cauchy regression model
	Expression of the estimator
	Comparison with classical estimators.
	Simulations results


	Appendix A. Covariance inequalities and coupling
	Appendix B. Proofs of theorems
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	References

