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RISK BOUNDS FOR NEW M-ESTIMATION PROBLEMS *
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Abstract. In this paper, we consider a new framework where two types of data are available:
experimental data Y1,...,Y, supposed to be i.i.d from Y and outputs from a simulated reduced
model. We develop a procedure for parameter estimation to characterize a feature of the
phenomenon Y. We prove a risk bound qualifying the proposed procedure in terms of the
number of experimental data n, reduced model complexity and computing budget m. The
method we present is general enough to cover a wide range of applications. To illustrate our
procedure we provide a numerical example.
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1. INTRODUCTION

In this paper we present some first results about the statistical study of a random variable Y in a new
context: we have at disposal a sample of experimental data resulting from expensive real experiments
or heavy computer code, hence we only have a few data. Besides these costly experiments or codes,
various reduced models are available. Even if they still are complicated, one can use them to perform
simulations in a reasonable computing time and obtain large samples from simulations. This situa-
tion is frequently encountered in various field of industry: meteorology, oil extraction, nuclear safety,
aeronautics, mechanical engineering etc...

Our purpose is to use these two types of information (experimental data, reduced models) to obtain
a good statistical description of a feature of the variable Y: it can be its mean, its median, its variance
or even its probability density function (p.d.f.).
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The reduced models depend on unknown parameters which need to be estimated: examples are a
simple physical equation, linear or non linear regression models among them neural networks, kriging
approximations. They take the following form: (x,0) € X X © — h(x, 0). Generally the variables x used
to build the reduced models are not the same as the ones that have been measured (if they have) as
experimental conditions during the experiments leading to the data Y7,...,Y,,. That is why in this work
we do not suppose that the available data are couples of input/output variables (x;,Y;): the variables x;
are not available or are not the same as those used in the reduced models. Thus our only experimental
data are the Y;’s, what differs from a classical regression framework.

Let us take an example of particular interest coming from EADS® Research department: the effect
of an electromagnetic field on the behavior of an aircraft. When lightning or an electromagnetic field
strikes an aircraft, sensors measure data corresponding to the intensity of such field in various parts
of the aircraft. The data recorded are dispersed due to the intrinsic variability of the phenomenon. In
our framework, information of one sensor is represented by the sample Y7,...,Y,. On another side,
we have at disposal several computer codes h modeling the electromagnetic field in function of the
input variables x and the parameter @ which can be tuned. The result of such a computer code is a
function h(x, 8). The variables x will be modeled by random variables, for instance it could be variables
describing the atmospheric conditions, the angles of the lightning w.r.t. the aircraft, etc. .. The vector
parameter 0 is part of the model and will be estimated. In this case the computer codes have various
degrees of complexity. Actually, one has at disposal a set of models H covering all available models:
from the simplest to the most complicated. Hence, another important issue would be to “select” a model
among the set H for a specific use. We don’t treat this aspect in this paper, we work with only one
model h.

In general these reduced models remain complex in the following meaning: the mean, the variance, a
quantile or the p.d.f. of the output cannot be analytically computed. We will say that h is a complez
model if the feature we are interested in is analytically unreachable as function of 6. Complex models
can arise from several ways. For example, the function h(-,0) may have a complicated form due to the
complexity of the modeling (non linear regression, neural networks), or the function can be a black box
function input/output and so, not with an analytical form. This situation is very common in engineering,
where complex models exist and are only known through simulations.

This aspect and the fact that we only have at disposal the experimental data (Y7,...,Y;,) are the
principal motivations of our work.

In this context, our goal is to construct a Random Simulator, X +— h(X,/B\) with X some random
variable, predicting as well as possible a given feature of the distribution of the observed data Y7,...,Y,.
We present a general method based on a criterion to minimize which depends on both experimental and
simulated data.

Our framework is not very far from the framework of Y. Auffray, P. Barbillon & J-M. Marin where
they look for good metamodels of a time consuming black-box in order to evaluate the probability of
rare events by simulation. Yet, in this paper we are not interested in building or analyzing metamodels,
but we try to optimally use experimental data and simulated data of a given metamodel, which are not
directly coupled. See also the work of P. Barbillon, G. Celeux, Grimaud, Lefebvre and De Rocquigny [1].

This paper is the theoretical part of a work on industrial applications in the field of “Uncertainty
Management” [3]. The results we present are theoretical in that the estimation procedures we pro-
pose don’t include practical implementations. The same is true for the modeling aspect: we deal with
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(input/output) models without specifying what can be done in practice. We do not deal with the
pertinence of the possible reduced models (metamodels) (see [10,18,20,25]). The impact of modeling
technics will be treated in a forthcoming paper where we will apply some results obtained in this study
in an industrial context [17].

The main tool behind the theoretical results we present is the empirical processes theory. This theory
constitutes a mathematical toolbox of asymptotic statistics and more recently non-asymptotic statistics.
It was first explored in the 1950’s by the work on Functional Central Limit Theorem [4]. Along the years,
the development of empirical processes theory increased successfully thanks to work of many contribu-
tors, Dudley [5], Pollard [16], Gaenssler [6], Shorack and Wellner [19] and others. More recently, many
references give a general overview of this theory with its applications to statistics, for example [12, 22, 24].

Essential developments of non-asymptotic theory have been done in the last decade by the use of
concentration inequalities to derive risk bounds [11,15,21] among others. Our work directly derives
from these advances.

The starting point of our procedure of estimation is to minimize a contrast. Estimation based on
minimizing a function was introduced by Huber in 1964 [8] where he proposed to generalize the maximum
likelihood estimation. The resulting estimators are called M-estimator [9]. Asymptotic properties of these
estimators were widely studied in a general context, and many authors like [22] or [23] used empirical
processes theory, which turn out to be a very valuable tool.

This paper is organized as follows. In Section 2 we describe our general framework. In Section 3 we
present our method of estimation. Our main result is presented in Section 4: we establish Theorem 4.4
providing a risk bound based on both experimental and simulated data. A numerical illustration is given
in Section 5. In Section 6 we make some comments. Then we postponed in Annex A the discussion of
the constants in Theorem 4.4. Finally Annex B is devoted to the proofs.

2. GENERAL SETTING

We first present the framework we use along this article.

2.1. The model

— Probabilistic modeling.
Let (2, A, P) be a probability space. We assume that all random variables are defined on this probability
space.

Let a complex phenomenon be modeled by a random real valued variable Y € ). with unknown
distribution @ and f the associated p.d.f.. Let us assume that Y C [-M, M], M > 0.

Let us suppose that a n-sample Y7,...,Y,, is available: we call it experimental data.
Next, we assume that this complex phenomenon can be approximately represented by the outputs
h(x,0) of a reduced model h.

h: Xx0 —Y
(x,0) — h(x,0)

where X C R? (input space), © C R compact (parameter space).

We equip the input space X’ with a probability measure P* and we get a probability space (X, B, P*).
The probability measure P* is not supposed to be known, we will only assume that a sample drawn
from this distribution is available.
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FIGURE 1. Example of model outputs with 2 different parameters.

The input vector is a random vector X defined on this space, and so, for each 8 € @ the output vector
h(X, 0) is a random real valued variable. We suppose given m realizations of the input random vector X,

Xy, Xon
which provides m outputs called simulated data
h(X1,0),...,h(X,,,0) forall 0€06.

We emphasize that the X;’s are the variables used to produce the model outputs but are not the inputs
that gave the Y;’s.

In practice, the data Xy, ..., X,, either arise from simulations of the random variable X with known
distribution P* or from a large database.

The space Y is equipped with a og-algebra £ so as to ensure the measurability of the functions

h(ae) : (X’B,Px) _)(yag)
X+ h(X,0).

In this paper, we develop a general method for estimating the parameter @ based on the training
data made of the experimental results Y7,...,Y,, and the simulated inputs of the reduced model h,
X1,...,X;,. The outputs of the model will depend on the parameter 8 to be estimated.

The method we propose is general enough to include some specific problems met in practice. Two
kinds of statistical analysis involving inverse problems can be considered:

e On the one hand to estimate the “true” parameter 8*. It aims at estimating “physical” parameters
having a real signification like dimensions or material properties for instance.

e On the other hand to estimate a parameter 8* (not necessarily unique) in order to predict the random
phenomenon Y. One hopes that A(X,0%) ~ Y, in the sense that its distribution shares some features
with the distribution of Y: the same mean, variance, probability tail or the same p.d.f.

Here, the parameter 8 may have no real (physical) meaning. For instance it is the case when
using reduced models given by a Multi-Layer Perceptron, where the parameter is the values of the
connections.
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2.2. Tools for evaluating the estimation performance

Let us introduce some tools to evaluate the quality of a model h parameterized by 8 € 9.
— Feature of probability measure, model, contrast and Risk function.

A feature of the distribution p is a quantity of the form pr(u) € F where F is called the feature
space.

Notice that the feature space F can be either a scalar space (mean, threshold probability, etc...) or a
functional space (density distribution, cumulative distribution function). The former case is part of the
later one, identifying scalars to constant functions.

We equip the feature space F with the norm | - ||z which can be a L,-norm (r > 1) when F is a
space of functions defined on ).

In all what follows, we denote by pn(€) a feature of the distribution of the random model output
h(X,0).

We call model (feature space) a subset F' C F. In particular, we will deal with a model induced by h
given by

Fh,@ = {ph(e), 0c 9} c F. (2.1)

Definition 2.1 (Contrast and risk function).
A contrast function (with value in L1(Q)) is any function

U F— L(Q) (2.2)
pr—U(p,) : y €Y r—¥(p,y),
such that
p* =ArgminEy ¥ (p,Y)
peEF
is unique.

We call risk function the application
VpeF, Rulp):=Ey¥(p,Y).
On the model F} o C F, we denote the risk by
Rw(h,0):=Ey ¥ (pn(0),Y), (2.3)

where, for a random variable &, we used the notation E¢ for the expectation w.r.t. the variable .

Example 2.2 (Some classical features, associated contrasts and classical risk functions).

— F = R (constant functions): we may consider pp(0) = Exh(X,0) (mean), pp(d) =
Ex 1[5 +o0[(h(X,0))(exceeding probability).

Mean-contrast

U (py)=(y—p)°. Ru(h,0)=(EY) - pu(6))" + Var(Y)
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— F = {set of density functions}

log-contrast

¥ (p,y) = —logp(y), Ru(h,0) = KL(f,pn(0)) —E(log(Y)),

where KL(g1, g2) = [log(£:)(y) g1(y) dy
Lo-contrast

v (p,y) = llpl3 = 2p(y), Ru(h,0) =pn(0) — fII3 — [I]I3-

745

In view of these examples, it makes sense to investigate models h or/and parameters 6 providing small

risk values. Here we restrict our study to parameters of one model h.

3. THE METHOD.

Our goal is to compute a parameter € @ making the risk function Ry (h, 0) as small as possible.

Let us introduce our method:
We want to estimate a parameter 8 minimizing the risk (2.3), i.e.

0" € Argmin Ry (h,0).
0co

(3.1)

Notice that it may exist more than one parameter minimizing the risk Ry (h, 0). The minimal risk we

can reach is Ry (h,0%), also called ideal risk.

However, the risk function Ry (h, 0) is not computable (hence 8*) for two reasons: the measure @Q is

unknown, and we are dealing with complex models.
We aim at computing a parameter 0 that performs as well as 8%, that is

R (h,0) ~ Ry (h, 6%).
In what follows, we establish a risk bound of the form
Ry (h,0) < Ry (h,0%) + A.

We propose the following estimation procedure to built 0.
As @ is unknown, we replace it by its empirical version

1 n
Q, = E;éyl

based on Yi,...,Y,. The approximation of the risk becomes

LS (n(0), Vi)

Then, it remains the feature py (@) which is supposed analytically intractable (for each 8). We propose

to estimate the feature as follows.
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— Plug-in estimator.

We denote by p}*(0) a plug-in estimator of pj,(6) based on h(X1,0),...,h(X,,,8). We suppose that
ppt(0) takes the following form

pr(6) = — > F(h(X,.0)) (3.2)

1
m

where %ﬁ . Y — F is a weight function depending on the contrast ¥ considered.
For sake of simplicity, we may also call p weight function.

Example 3.1 (Examples of weight functions).

— mean-contrast
1 _
(y) =

Y
—7 <
m m

— log-contrast or Ls-contrast density estimation

50)() = - Kol —)

where K(+ —y) = $ K(-5) for a kernel K and a bandwidth b (See Figure 2 for an illustration). It
means that the method of estimation relies on kernel density estimation.

Another choice is to use an expansion on a given (truncated) Lo-basis, (¢;,0 < j < L), which leads
to the weight function

—p
m

1 L
—pu)() = —>_@i()ei(w)
j=1

Remark 3.2. The weight function %ﬁ(y) evaluated at y € Y can be either a scalar value (% for
the mean) or a function (for the density). So that without loss of generality, one can see the weight

function %ﬁ(y) at a point y € ) as a function,

py) = A€V r—py)(A).
For instance, in the case where = 5(y) = £, the function p(y)(A) is constant in A.

In the sequel, the examples of density estimation will be carried out from the kernel method. We
chose this method because it is simple to write and so very popular in the uncertainty management in
industrial context. Notice that we will assume some adaptivity of our kernel estimator by choosing a
bandwidth b = b,, that will depend on m.

Definition 3.3. We denote by o}"(0), called simulation error, the error committed while estimating
the feature p (@) by the estimator pi*(0),

i (6) := [Py (8) — pr(0)]| #-
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FIGURE 2. Example of weight function in the case of the mean (top) and in the case
of the density (bottom).

By triangular inequality and the fact that Exp(h(X, 8)) = Ex, . pp*(0), it holds

o7(8) = i (6) — pn(8)]1 =

— 197(6) — Bx, o (6) + Ex, o' (6) — pn ()]l >

— [167"(8) — Exp(h(X, 0)) + Ex(h(X, 0)) — pn(8)] =

< 197(8) — Exp(h(X,0) 5 + [ExA(h(X, 6)) — pu(6)] 5

= |23 ;. 00) — Bxipn(x, 0|+ By(0) (3.3)
j=1 -

with

By(6) = [Exp(h(X, 0)) — pn(8)]1» (3.0

the bias error.

The first term in the right hand side of inequality (3.3) is a variance (random) term, and the second is
a bias (deterministic) term.

Assumption 3.4. We assume that the plug-in estimator p;*(0) (3.2) has a uniformly bounded bias,
i.e. it exists some constant Bp(m) depending on h and m such that the bias error (3.4) satisfies

sup Bj'(0) < Bp(m) < 0. (3.5)
6co

We give an example of such a constant Bp(m) in Annex A.
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Finally, the criterion we propose to minimize has the form

1 m
0= Argmln—zy'/ EZp (X;,0) ,Yi), (3.6)

or equivalently

3=

0 = Argmin v
gin )

> Ah(X;,6)), Yi) :
j=1

. 2
In the various cases we mentioned it gives 8y = Argmingcg Y . Z (Y; — h( X],B))> for the
mean-contrast, 510g = Argming.o — > ., log (Za L K (Y — h(XJ,O))) for the log-contrast and

0., = Argmingee{Hzgﬁ_le(-—h(Xj,B))H2—Tmzl LT K (Y —h(xj,e))} for the

Lo-contrast.

Remark 3.5. The estimator 0 depends on the model A, the number of experimental data n and the
number of simulation data m. The number of simulations m has to be thought greater than n. In our
framework experimental data are difficult to obtain whereas simulated data are more reachable.

Now the issue is to find the statistical properties of this procedure taking into account the two kinds
of data: experimental and simulated data. R

Once we defined the procedure for computing 6, we have to qualify the quality of this procedure,
which is the topic of the following section.

4. MAIN RESULT

In this section, we aim at establishing a risk bound which provides a qualification of the estimation
procedure previously defined. We recall that

Ru(h,0) =Ey ¥ (pn(6),Y),

0™ € Argmin Ry (h,0),
0co

and that @ is defined by (3.6). Now, we give some definitions and notations useful to set Theorem 4.4.
Denote by

and

K, = Vm(P}, = P),
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TABLE 1. Example of classes of functions and constant Ay (see Annex A).

” W) | Psn) | Awp |
mean-contrast y— (y— N2, x — h(x,0), 4 M
rey 0co
log-contrast y— —log (Ky(y — A)), x — Kp(A — h(x,0)), [ fll2/n
rey NB)eO XY
Lo-contrast Y= [[Kp(- = A2 =2 Kp(y — ), idem 2(Ifll + B)
ey

the @-empirical process (based on Yi,...,Y,) and the P*-empirical process (based on Xi,...,X,,),
respectively.
Let’s define the classes of functions

W) ={y €Y —=P(p(N), y), A € Y}, (4.1)

P = {x € X = p(h(x,0))(N), (0,7) € © x V}. (4.2)

Next, we use the following notation: let P be some measure and G a class of real valued functions. We
denote by

Pg— /g(u)P(du) geg

and
[ Pllg :=sup|P gl.
geg

With this notation, for a class of functions Gy : Y — R we have
Gug = / 9(1)Gn(du)
— n / )(Q, — Q)(du)

\/—Z ¥))-

Likewise, for a class of functions Gy : X — R

KX g = fz E(g(X))).

Remark 4.1. The quantities |G, | g, and ||KX,|g, are nonnegative real valued random variables.

In our applications, the class of functions Gy is W(; w) and Gy is P(; ), respectively defined in (4.1)
and (4.2).

We make the following assumptions.
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Assumption 4.2. Let WE% ) be the class of functions

1 m
WE oy = € L= pN)yl, MNicjcm €I™
(p.w) yeye m;p( i)y | Nihgi< y

We assume that it exists some universal constant v > 0 such that almost surely (a.s.)
1Gallwgz o, <7 1Gallwgys
where W wy is given in (4.1).

This assumption may be explained by the fact that the “complexity” of the class of functions W('g )
is “close” to the complexity of W ) which can be viewed as W w) = W(T/’Jl:;) In other words, we
assume that the summation of functions p(\;) does not have a significant impact on the behavior of
HGn”W"f .

(P 7)

Assumption 4.3. Let us assume that the contrast ¥ satisfies

— for all p1,p2 € F
Ey [#(p1,Y) = ¥(p2,Y)| < Aw [[p1 — p2ll7

with a constant Ay < co independent of py, pa.
In Annex A we compute the constant Ay in various cases (see Tab. 1).

Then our main result follows:

Theorem 4.4 (Risk bound for Parameter Estimation).

Under the assumptions (4.2), (4.3) and (3.4), suppose that the sequences of random wvariables
1Grllwg.e, and (K3 [P, are tight. Denote by K¢ ) and K7, the associated constants, uniform
(or decreasing) in n and m, respectively.

Let the feature space F be equipped with either the absolute value norm, or some L, norm.

Then, for all € > 0, with probability at least 1 — 2¢ it holds

R (1 0) < inf (Ru(h0) + 0 (14 [7 (e 4 p
w(h, )_912@( w(h, ))‘*‘7 + E( (p.n) T m)

g

whege the)constants K(Eﬁy), K&h) depend on K(ZLW)’ K(Eﬁ,h)’ Ay, M andr. By, is a bias factor depending
on Bp(m).

Remark 4.5. This result may yield consistency results if we assume that Bp(m) tends to 0 when m
tends to co. They would depend on the choice of the contrast.
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5. NUMERICAL ILLUSTRATION
Let us consider the following academic example. Suppose that the random phenomenon Y follows
Y =sin(§) +0.01¢, (5.1)

where ¢ and ¢ are two standard gaussian independent random variables.
Denote by Y7,...,Y, n ii.d realizations of the random variable Y. We aim at estimating the p.d.f.
of Y, that we denote by f, from the n-sample Y7,...,Y,, and the following model h given by

h(X,0) =01 +0: X+ 0 X% X ~N(0,1), 0 = (01,02,03). (5.2)

In this example the Taylor expansion of the sin function takes place of a “metamodel”.
Now our problem amounts to estimating the parameter 6 by an estimator 8, and then predict the
p.d.f. of Y by the p.d.f. of the random variable h(X, 6).

In the previous setting, we built the estimator € as a M-estimator given by (3.6)

n m
1
0 =Argmin » ¥ — Y p(h(X;,0)),Y; ]|,
0co ; mi3 ! '
for some contrast ¥ : F — L1(Q) and m realizations Xy, ..., X,, i.i.d from X. For this illustration, we

propose to use the log-contrast
@ (p,y) = —log(p)(y),
and the weight function
Py)() = Ke(- —y)
where K,(- —y) = $K(-5%) with the gaussian kernel K(u) = —A= e="*/2 and a bandwidth b = by

V2
computed from the sample h(X;,0), j =1,...,m for @ € O, by the Silverman’s rule-of-thumb:

m=1.06m"'/% 5. (5.3)

The quantity &g is the empirical standard deviation of the sample h(X;,0), j=1,...,m

2

R 1 & 1 &
69 = aZ hX;,0) — aZh(x 0)
j=1 j=1
Finally, the estimator 0 becomes
1 m
6 = Argmin — Z log - Z Ky (Y — 1(X;,0)) | - (5.4)
0€0 i=1 =1

Figure 3 shows the p.d.f. of the random variable h(X, 0) with h(,-) given in (5.2), for the three
computed values 0= (01, 92, 93) in Table 2. The computation of the p.d.f. of h(X 5) is made through
an intensive kernel smoothing.

We clearly see that the use of an approximate but reasonable “metamodel” greatly improves the
estimation of f. We also notice, as expected, that increasing n (and m as a consequence) strongly

impacts the quality of the M-estimator 0.
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TABLE 2. M-estimator computations by varying n and m.

I Z | > | bs | k14.H |
n =50, m = 10° (3.9+5).1072 (9.9540.5).107" | (—1.65+£0.4).107" | (49+2).1072
n =500, m = 5.10% || (2.22+0.5).1072 | (9.56 +0.3).10"" | (~1.36+0.3).107" | (2.34+0.4).1072
n = 1000, m = 10* (7+3).107° (9.5240.2).107" | (=1.3140.2).107" | (1.140.2).1072
— pdfof Y
---- kernel smoothing based on a 50-sample
@ _| — — pdf estim. with n=50, m=10e3
= L pdf estim. with n=500, m=5.10e3
-—- pdf estim. with n=1000, m=10e4
i
'''''''' i
« | | T—=SETemeTiveecosa R
o 1 ‘ .I\‘
¥ HIR
o L !
=1 i it
i il
¥ T
i %
g ol 4 N
s ! X T Y O T
-1.0 -0.5 0.0 0.5 1.0

F1GUurE 3. Comparison of probability density functions.

6. SOME COMMENTS

It is of interest to compare the methodology we are developing with the classical framework where the
feature pp,(0) of the random model output h(X, ) is analytically tractable. In this case, the estimation
procedure (3.6) is classically

En = Argmin
6co

1 n
- le (ph(0)7 sz) 3
n-
i=1
and we can derive immediately a risk bound.

Proposition 6.1 (Basic risk bound).
It holds that

2

Ry (h,0,) < ;gf@ (Rw(h,0)) + Tn

||Gn‘|17\;@7
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where .
Wy ={y €Y —¥(p(0), y), 0 €6}

Proof. The proof comes from a classical calculus in M-estimation, see for example [23] (p. 46). O

For most of statistical procedures, as likelihood, regression, classification etc ... risk bound like (6.1)
can be found. Such procedures have been widely studied, with a large literature available. Recently,
authors use the Empirical Processes theory (see [12,22-24] among others) to derive limit theorems.
Indeed, the asymptotic (and non-asymptotic) properties of the estimator /0\71 can be given from the
behavior of the residual term \/LEHGTL”WJ/ In particular, for identification problem (i.e. * is unique),
consistency and rate of convergence are derived from the fluctuations of the random variable |Gy |y, ,
see for example [22].

Suppose for a moment that it exists some constant (uniform in n) such that with high probability

K
then by inequality (6.1), with high probability
o K
Ru(.8,) < jnf (Ru(h.0)) +~— (6.2)

Thus, depending on whether the constant K is sharp or not, one can bound properly the estimation
error. To compute such (sharp) constant K is difficult in general, we can refer to [13,14,21,24].
Inequality (6.1) can not be applied to our framework because the induced procedure én involves the
quantity pp(€) which is untractable for complex models.

The result of Theorem 4.4 is non-asymptotic, i.e. valid for all n > 1 and m > 1 under mentioned
assumptions. The fundamental point of this theorem is the “concentration of the measure phenomenon”
(Ledoux [13], Billingsley [2]). It derives from our assumptions, more precisely, when we supposed the
tightness of the sequences of the random variables ||Gy|w, ,, (Y1.n-dependent) and [|K3,[[p., ., (X1..m-
dependent). Moreover, we insist on the fact that the constants K (5w (that bounds [|Gr|w;, ,,) and
K (.ny (that bounds |[KF [|p, ,)) are uniform (or decreasing) in n and m, respectively. The advantage
of this uniformity is the explicit expression of the residual term

K¢ /
(»,¥) n €

depending on the data (n and m) on one hand, and on the constants K(Eﬁy), K(Eﬁ,h) and B, on the other
hand. However, although the existence of such constants are proved or supposed, their computation is
more tedious. Indeed, we need results about tail bounds for Gaussian and Empirical Processes. We will
discuss in Annex A how to compute such constants using concentration inequalities. Let us assume for
a moment the existence of these constants.

We showed that the estimation procedure 6 defined in (3.6) “mimics” the ideal risk Ry (h,0%) =
infoco (Rw(h,0)) up to the residual term (6.3). Making m — +oo, this residual becomes simply

% which has the same form as the ones found in classical cases (6.2). We find the usual rate of

convergence /.
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(1+—V§§(K§ﬁ)+fﬁa> >1

we call simulation factor, is due to the simulations used to estimate the feature pj(€) of the random
output h(X, @) by the plug-in estimator p;*(0) we defined in (3.2).
It appears that for a given n, one should have a number of simulation data m greater than n.

The ideal risk is infgco (Rw(h, 0)). It can be understood as the “distance” between the a priori knowl-
edge one has and the observed phenomenon, or a “distance” between the “best” a priori information
available and the “target”. Let’s consider the case of density estimation. If the ideal risk is supposed
equal to zero, it means that we believe that the p.d.f. f belongs to the family of densities {pp(0), 6 € O}.
In this case we obtain for example (Ls-contrast):

K7
1) 2 (P, L2) n
lon®1) = £13 < =222 (14 2 (Kipay + Bn) ).

However, such a priori has to be made with precautions. It is necessary to verify that the model h is
able to reach a sufficiently large range of distributions, so that one believes that f belongs to the model.

In our purpose, the factor

CONCLUSION

We introduced a new framework to estimate some feature of a random variable Y, framework which
corresponds to many situations encountered in practice. In this framework we proposed a procedure of
estimation, that reveals to be satisfactory in a numerical illustration. For a more valuable application
we refer to [17].

Our first theoretical result gives an upper bound for the risk of the estimator we proposed. It can be
used to get consistency results under suitable assumptions.

This article is only a first step, for instance in the asymptotic (n — 0o, m — 00) the next step would
be to obtain a rate of convergence and a central limit theorem. To this end some technical difficulties
related to the class of functions W('g,g,) are to be overcome. We hope to make it in a forthcoming work.

ANNEXES
A. ABOUT THE CONSTANTS IN THEOREM 4.4

Constant Ay

We will show how we obtain the constants Ay in Table (1). Let us recall that Y € [—M, M].
— mean-contrast.
Let y € Y, p1,p2 € F C Y. We have

(=) = (v = p2)?| = lo1r = p2l 120 = (o1 = p2)]
< |p1 — p2|4 M.

This yields Ay = 4M.
— log-contrast.
Let y € Y, p1,p2 € F, with F some set of p.d.f.



RISK BOUNDS FOR NEW M-ESTIMATION PROBLEMS 755

Moreover, suppose that it exists some 7 > 0 such that
VpeF p>n.

By Taylor Lagrange formula, it exists some 7 € (p1(y), p2(y)) such that

|log (p1(y)) —log (p2(y))| = = p1(y) — p2(y)]

< —|p1(y) — p2(v)]

1
-
1
n
since p > n for all p € F and 7 > .

Taking the expectation under the measure @ (with Lebesgue p.d.f. f) involves the quantity
Ey (|p1(Y) — p2(Y)|) in the right member. By Cauchy—Schwarz inequality

By (|1 (Y) = p2(Y)]) < llp1 = pall2 [ fl2,

SO
By flog (p1(1)) ~ 1og (220 )] < L2 oy = o

This yields Ay = ”J;Hz.

— Lo-contrast.

Let y € Y, p1,p2 € F, with F be some set of p.d.f..
Suppose that it exists some B > 0 such that

sup [lpllz < B.
pEF

By triangular inequality

[(lp1ll3 = 201 (®)) = (o203 = 202))] < [llp1ll3 — llp2ll3] + 2 |p2(y) — p2(y)]
|

<
< lpr = p2ll3 + 2 |p2(y) — p2(y).

Taking the expectation under @ and by Cauchy—Schwarz inequality (as before) yields

Ey |(lpll3 =2 p1(Y)) = (lp2ll3 = 2 p2(Y))| < llo1 = o213 + 2 [lp1 = p2ll2 |1 £1]2
<2(B+£ll2) lox = p2ll2-

We get Alp =2 (B + ||f||2)

The two previous assumptions on the densities (uniformly lower bounded or upper bounded in Ls)
are restrictive. Yet many densities with a fixed compact support belong to one or the other set, which
allows to choose between the two contrasts. Of course it needs an a priori information, which is not
always available or true.

Constant By (m)

When the plug-in estimator p}*(6) is unbiased, the bias term B;}*(0) defined in (3.4) is zero for all
6 € © and all m > 0, hence Bj(m) = 0 too. This is not the case for the density estimation.



756 N. RACHDI ET AL.

We study the example of the kernel estimator, i.e. when the weight function p is a function of the
form

Py)() = K(- —y)

where Kp(+ —y) = %K(%y) for some kernel K and some bandwidth b.
Consider that || - ||z = || - |2, then for all 8 € © we have

By (0) = [Ex (Ku(- — (X, 0))) — pn(0)]2

- ( /y ( /X (o (y —h(xﬂ))—ph(e))P*(dx))z dy>

Using Theorem 24.1 in [23] (p. 345) we easily obtain:

1/2

pn(0)]2
B (0) < b-.
h( )— \/g

If supgee |lpy, (8)]]2 is finite, it justifies the existence of By,(m) = supgeeo By (6).

Constants K (eﬁ’,l,) and K (Sﬁ,h)

We detail the arguments for computing the constants K (55 ) and K (5/3 hy- Since these constants are
tightness constants relative to some empirical processes (see the assumptions of Thm. 4.4), we will give
arguments with a generic empirical process W, = /p(W, — W) indexed by a generic class of functions
g.

Now, the goal is to compute some constant K (&) such that
P(||W,|lg < K(¢)) > 1 —¢ for small € > 0. (6.4)

For this, we propose to use the work of T. Klein and E. Rio [11], in particular Theorem 1.1, which deals
with right hand side deviations of the empirical process. They show that for an empirical process W,
indexed by a countable class of functions G with values in [—1, 1]

P (sup,(0) > Bsup W, (0) + 1) < ex0 (—m) | (6.5)

for all positive ¢ and some constant v. They also give left hand side deviations.

In our purpose, we don’t really work with sup,.g W,(g) but rather with sup g [W,(g)] = [|[W,|lg
corresponding to a two-sides control. Hence, according to the work of T. Klein and E. Rio [11], it exists
some function ¢g : Ry — [0, 1] decreasing to zero such that for all positive ¢

P([Wpllg = E([Wpllg) + ) < ¢g(t). (6.6)

Another point is missing before we apply this result in our context, it is the fact that the result is valid
for countable classes of functions, and so, we need to extend the Theorem 1.1 in [11]. We prove the
following proposition.
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Proposition 6.2. Let W, be an empirical process indexed by a class of functions G taking values
n [~1,1] and parameterized by a compact set C of R', | > 1. Suppose that the application

AelCr—gre€GC Ly (6.7)

18 continuous.
Then, it exists a function g decreasing to zero (given by [11]) such that for all t >0

P([Wpllg = E([[Wyllg) +1) < @g(t). (6.8)
Proof. For sake of simplicity, we prove the proposition with G = W ) where
Wiy ={y €Y = ¥(p(N), y), A € V}

(in fact we consider W, = G,) and take Y = [—M, M. Moreover, without loss of generality, we suppose
that the functions in W y) take values in [—1, 1].
We define the sets V* = {y5,...,yf } for s > 1 recursively. Y* = {—M,0, M}, assuming that the set

* ={yi,...,y; } is built and reordering the elements in increasing order, we take the middle points
g3 = L0t and obtain Y* = {§, i = 1,...,is_1 — 1}. Then we define
ys+1 —)ysu 378

reordered to have increasing elements, and it holds Card()?®) = 2° + 1.
Now, we define the classes of functions

Wiw =1y € Y = Z(p(N), v), X € Vs}
noticing that for all s > 1,
Wiz & Wi & Wi (6.9)
By this previous display and the fact that U Y? is dense in [—-M, M| and by the continuity Assump-

s>1
tion (6.7), we have

Tim W W U W(p’ =Wie)- (6.10)

§—00
s>1

The classes of functions Wfﬁ wy S > 1 are countable with values in [—1,1] and we may apply the
inequality (6.6) to the classes W(Sﬁy). We get for all t > 0 and s > 1

P (IW,lw,,, 2 E (IWllwe, ,, ) +1) < (). (6.11)

We then prove that the two members of this inequality converge when s — oco.
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Write the left member as follows

P (”WPHW(S;,,W) >E (”WPHW(&/;W)) + t)
=E{ 1
( |wp|w<sm>E(|wp|wgm)+t>

—E( 1 . (6.12)
( LN (LA zt>

The inclusions (6.9) yield

(P, ¥)

HWIJHW(S,;\}/) < ”WPHWS < ”WPHW(E,‘I/) Vs > 1,

so the sequence (||Wp||ws

% m) is increasing and bounded, thus it converges. By monotone conver-
P s>1

(P ¥)

gence, we obtain that the sequence (IE <||Wp||ws )) _, converges too provided that E([|Wpl[lw,, ,,) <
s>1 !

co. Thus, the sequence (HWPHW(@},,\I,) —-E (”WPHW(S;S,W)))S>1 converges, and by dominated convergence

the quantity (6.12) converges to the wanted limit

E (]J Wollw s o) —EUWallw; 4y) 2= t) =P (IWollwgu 2 E (Wpllwg.) +1) -

For the right member of (6.11), by similar arguments, it can be shown that ¢4(t) — ¢(t) = pg(t).
That concludes the proof. O

Next, since the function t — @g(t) is decreasing from R, into [0,1], it exists a unique function kg:
[0,1] — R4 such that

VE>0 kg'(t) =g(t). (6.13)
Then, we can write (6.8) as follows, for all € €]0, 1]
P([Wpllg > E([Wplig) + rg(e)) <e

or equivalently
P([Wpllg <E(IWpllg) + rg(e)) =1 —e.

Thus, one can take K (¢) equal to E(||W,||g) + rg(e) and K () satisfies (6.4), i.e.
P([[Wpllg < K(e)) > 1 —e.

But, the quantity E(||W,||g) remains not tractable. We propose to bound it.
Indeed, maximal inequalities allow to bound such quantities in terms of entropy integrals. Although
these methods are known to be not sharp, the bounds we will obtain are of interest for our purpose.
Before, let us recall some useful notations from [24] (p. 83-85).
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Let G be a class of functions and W some probability measure. We denote G : y — G(y) an envelope
Junction of the class G. The bracketing number is Nyj(e, G, L2(W)) and the entropy with bracketing is
the logarithm of the bracketing number. Last, the bracketing integral is defined as

)
71 (6, G, Lo(W)) ::/O Vios Nyy(e. 6. La(W)de.

Now we apply Corollary 19.35 of [23] (p. 288), it holds that
E([Wpllg) < ag Jy (Gllzw, G, La(W)), (6.14)
where

e ag is some universal constant

e (G is an envelop function of G and

(Gl = ([ & W(dy)>1/2.

Remark 6.3. The quantity Jjj (||Gll2,w, G, L2(W)) is computable if one has the bracketing numbers
NH(G, g, LQ(W)) (VG > O)

Finally, setting
K(e) = ag Jj) (|Gll2,q, Gp,0), L2(W)) + kg(e) (6.15)

provides the claimed constant. In particular, we should take G = W w) (W = Q) and G = P p)

W = P*) in order to compute K:. ;. and K¢, ., respectively. We give explicit computations in the
(P, %) (p,h)

two following cases.

o K sﬁ " for the Mean-contrast.
We recall that in this case

Wiy ={y = (y =N A e Y}
This class is uniformly bounded by 4 M2, we take the envelop function G = 4 M2. Then, we have
(g = M)% = (y = X2)’ < [Aa = Aol Fly),

with F(y) = |2y + 2 M|.
Following the lines of [24] we obtain the constant:

K5y = 8a1v/m M? + i (e) . (6.16)

° R(Eﬁ h) with the weight function p(y) = y.

In this case, the class of functions P(j ) is
Pin ={x € X h(x,0),0 € O} (X CR.

We assumed in the introduction that the models x — h(x,0), 8 € © are uniformly bounded by M,
thus denoting by P an envelop of P(; ), we may take P = M.
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Moreover, let us suppose that the models x — h(x,8), 8 € © belong to the Holder space H(X, o, L)
(o, L > 0) defined as
H(X,a,L) = {g : X — R continuous, ||g|lo < L}

e 1D%g(x) — D9l
u Yg(x) — D¥g(x
Jdlla = max sup |D"g(z)|+ max sup
Il i<l xeX| (@l vivi=la) zxex  |lz —x|[o~le]
where || is the largest integer smaller than a, and for v = (v, ..., v4) € N the differential operator

DY is defined as,

olvl d
DY = W, with ‘Z/| = ZZ/Z‘.
=1

We aim at computing the entropy integral Jij (|| Pll2,g, P(5.n), L2(Q)) by integrating the entropy

log Njj(€, Pinys L2(Q))-
Corollary 2.7.2 in [24] (p. 157) gives an entropy bound for the Hélder space H(X, o, 1):

d/o
log N}(e, H(X,,1), La(Q)) < K (—) Ve >0, (6.17)

€

where K depends on «, diam(X') and d.
Using (6.17) and the inequality

J[] (||PH2,Q7 P(ﬁ,h)a L2(Q)) S JH (HP||27Q? H(X’a’L)’ L2(Q)),
it holds for d < 2«
M L d/2a
iy (IPll2,: Pionys L2(Q)) < @/O (_> de.

hence
1

I d/2a
i1 (IPll2,@s Py L2(Q) < MVEK (M) 1—dj2a’

Finally, under the condition d < 2 «, we get the constant

B L d/2« 1
K(S;;,h,) =ay MVK (M) T d/%a /20 + ra(€).

The condition d < 2« above, means that the dimension of the random input X (equal to d) is limited
by the “smoothness” of the models x — h(x,8), 8 € @. The smoother the models are (i.e. « large), the
larger the dimension d can be.

Remark 6.4. To compute the constants K (EFJ') and K (Eﬁ h) is difficult but we have adopted a nonasymp-
totic point of view, so that these computations are necessary in order to get numerical values of the risk
bounds.

B. PrROOFS

To prove the risk bound of Theorem (4.4), we need the following lemmas.
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Preliminary lemmas

Lemma 6.5. Consider the random functions
m - 1 -
y—P(p;'(0),y), 0€O with p;'(0)= EZP (X;,0))
Jj=1

We have (a.s.)
sup |G, (¥ (o' (0)))] < Y 1Gnllwis 0

6co
where W) is defined in (4.1).
Proof. Conditionally to X; = X1, ..., X, = X;», we have trivially
1 m
= — ,0)),0c€0, C m €
m Ez: (x;,60 Z p(A j)1<j< ym

Hence it yields that

sup |G, (¥ (p'(0)))] < HGnHW(’g,W)

6co

with Wik ;) ={y € Y w(L Z;ﬂ:l P(Aj), ¥), (Aj)i<j<m € Y™} By Assumption 4.2 we obtain that

Zlelp\G n (T (PR (0)))] < 7 IGnllwg ) »

for some universal constant v > 0.
Finally, the right member does not depend on x1,...,X,,, and the result follows. O

Lemma 6.6. Consider the P*-empirical process KX, and let || - ||z =|-| or | - |l and define

[ 1 if ply) is constant, Vy e Y,
CTlLE@MYT else '

We have
sup [|[KZ, p((- 0)ll 7 < cl[KZ, 1P n
0co
where Py is defined in (4.2).
Proof. Let us notice that the quantity
x = 1 & .
K3, (A 0) = == ~ Exp(h(X,0))]

vm
Jj=1

can be (up to a factor) either a sum of independent random real variables or a sum of independent
random functions.
-If p(y) € R for all y € ¥ (we have a sum of random variables).
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Taking || - [|# = | - | the absolute value yields

Sup K3, p(A(- 0))l| 7 = Sup % ; [p(h(X;,0)) — Exp(h(X, 9))]

= K5l PG m

Remark 6.7. In this case, p(y)(A) = p(y) for all y and X in Y.

—If, for all y € Y, p(y) is a real valued function defined on Y.
We take || - || = || - |-, » > 1, the L, norm. By integration properties and the fact that z — 2" is
increasing on R™ we have

sup K5, (A, 6), = sup || <= 3 [(1(X;.6)) ~ Ex(h(X. 6))

m 1/r
S B(h(X;. 0))(\) — Ex(h(X. 8))(\)] ( /y dA)

1
= sup sup | —
6cO ey | VI T
@MY s | =S [A(A(X;,0)(\) — Exalh(X, 8)) (V)]

Finally, notice that

s =S [F(h(X,,0)) (1) — Exh(X, 0))(w)]| = 1K e,

(0,y)coxy | VI j=1

and the result follows. O

Remark 6.8. In the case where the weight function is a kernel Kp(- — -), the quantity

m

x ~ 1
K3A(h(0)) = —= > [Ky(- = h(X;,0)) — ExK(- — h(X,0))]
Vim
is treated as a sum of independent random functions in the recent work of Goldenshluger and Lepski [7].
Here we have made the restrictive assumption that Y C [—M, M]. A valuable challenge would be to

extend our results to the unbounded case using [7].
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Proof of Theorem (4.4)
Proof. We denote by

- M(h,0) = Rw(h 0) = EY!P(Ph(B),Y)

ZW pn(0

~ My (h,8) = Eyu'/(ph 6),Y)
M, 1 (h, 0) ng Py
- G (py'(0)) = \/ﬁ (M (h, 0) — My, (R, 6))

1 m
where p;'(0) = . Z p(h(X;,0)) and we recall that

6 = Argmin M, ,,(h,0) and 6* = Argmin M(h,6). (6.18)
6co 60co
We have,
Ry (h, 6)
= M(h,6) — My, (h,8) + My, (h,0) — My, 1, (h, 8) + M, (R, 6)
= — (Mu(h.8) ~ M(1.0)) - inGngp (o @)} + My (1, 8) — My (h,6%) +Mi (1, 6°)
<0(6.18)
n n 1 n * * *
< — (M (,8) — M(h,0)) — =GP (6(8)) + My (1, 6%) = My (1, 0") + My (b, 6°)
) n 1 m 1 * *
< = (Mn(1,8) = M(1,8)) ~ —=Gu¥ (o] (8)) + =Gl (o (%)) + Mo (1, 6°)
) n 1 m(* m
< — (Mo (0,0) = M(n,8)) + G (7 (o0 — @ (07(9)))
4 My (h, 6%) — M(h,8") + M(h, 0%

2
< inf (Ry(h,0)) + —= sup |Gy, ( (p}"(6)))| + 2 sup | M, (h, 0) — M(h, 6)|
6co n gco 0co

since M (h,0") = Ry(h,0") = infgco (Ry(h,0)).
Now, we want to bound the second and third terms in the right member of the last inequality.
Second term. The Lemma 6.5 provides that (a.s.)

sup |G, (¥ (o5 (0)))] < Y1Gnllwg vy
6co

where Wi oy = {¥(p()), -), A € V}. Thus the second term is bounded by 27%\|Gn||w(5m.
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Third term. We have

| My (h, 0) — M(h, 0) = [Ey (¥ (p}'(6),Y) — ¥ (pn(8),Y))|
< Ey [ (py'(0),Y) — ¥ (pn(0),Y)]-

By Assumption 4.3, we obtain
|M(h, ) — M(h,0)| < Aw |pi'(0) — pr(0) |7,

for some positive constant Ay.
Moreover, the inequality (3.3) yields

107 0) ~ pr(®)]1 < %Z h(X;,0)) ~Exp(h(X.6)))|| +Bi().
7=1 F

Equivalently, by considering the empirical process K¥, = \/m(P¥, — P*), we obtain
m 1 X = m
o5 (8) — pn(0)] 7 < T K3, p(h(:, 0))ll 7 + Bj'(6)

Taking the supremum over @ and combining the Lemma (6.6) and the Assumption 3.4 gives

up 17 8) = p1(6)] < —= (e[l 0, + Vi Ba(m).

Hence, in (6.19) we obtain

Ay
sup | M, (h,8) — M(h, 0
Begl (h,0) — M(h,0)| < NG

Finally, the following bound holds for the procedure risk

(c|IK35, 1P, + VM Bu(m)) .

Ay
\/—HG ||W(,,q/)+2\/—

Now, let us notice that for any 3 events Ey, Fy, F3 we have:

Ru(h,0) < inf (Ry (h.6)) + (1K1 0, + v/ Ba(m) .

We consider the following events

-~ . 2’}/ Aq/
b = {Ru‘z(h,@) < égf@ (Rw(h,0)) + % 1Grllwe +2——= \/_ (

E;= { int (Ry(h,0)) + \FIIG nllWg.o) < fof (R (h,0)) + T%Rfm}

IKX 1oy, 0, + /7 Ba(m ))}

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)
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and
Alp x Aq/ e
By = {2 T (I sy + V0 B(m) <2 7 (€K + meh<m>)} ,

where K (Eﬁy) and K (557 p) are such that

]P)Yl...n (HGTL”W(;,,\I/) S R(E'E7W)) 2 1 — £

and )
P, (1K Py < Kooy ) 21— 2

respectively (for all € > 0). B
Using the inequality (6.23) with the fact that P(Es) = Py, , ([Gnllwg, ., < K(Eﬁ,g,)) and P(F3) =
]P)Xl...m(HKzl”'P(ﬁ,h) < R(Eﬁ,h))a we obtain

o) : 27 [ € A‘I’ [ €
BB < Py oo (Ro08) < o (R 0)) 22 K42 22 (eG4 vim Bulm) ) + 2.

-~ . 2’}/ — Alp
Prtxs, o (Ro(1,8) < Juf (Ru(h,6)) 4 2L RSy 42 2% (

Equivalently, we have with probability at least 1 — 2¢

K& + \/%Bh(m))> >1-2e.

R (h.0) < inf (Ry(h.0 K(EW)1 " (K B
o(.0) < fnt (R (h,0)) + =52 (14| 2 (K5, + B)

where B
Ko =27 KGw),
K&
=5 (p;h)
K, =Apc———
(B;h) v
VK G
and A
B =vm f(f By (m)
TR Gw)
That concludes the proof. O
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