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A NEW PROOF OF KELLERER’S THEOREM

Francis Hirsch1 and Bernard Roynette2

Abstract. In this paper, we present a new proof of the celebrated theorem of Kellerer, stating that
every integrable process, which increases in the convex order, has the same one-dimensional marginals
as a martingale. Our proof proceeds by approximations, and calls upon martingales constructed as
solutions of stochastic differential equations. It relies on a uniqueness result, due to Pierre, for a Fokker-
Planck equation.
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1. Introduction

1.1. First we fix the terminology.
We say that two R-valued processes are associated, if they have the same one-dimensional marginals. A

process which is associated with a martingale is called a 1-martingale.
An R-valued process (Xt, t ≥ 0) is called a peacock (see [2] for the origin of this term and many examples) if:

(i) it is integrable, that is:

∀t ≥ 0, E[|Xt|] <∞;

(ii) it increases in the convex order, meaning that, for every convex function ψ : R −→ R, the map:

t ≥ 0 −→ E[ψ(Xt)] ∈ (−∞,+∞]

is increasing.

Actually, it may be noted that, in the definition of a peacock, only the family (μt, t ≥ 0) of its one-dimensional
marginals is involved. In the following, we shall also call a peacock, a family (μt, t ≥ 0) of probability measures
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on R such that:

(i) ∀t ≥ 0,
∫

|x| μt(dx) <∞;

(ii) for every convex function ψ : R −→ R, the map:

t ≥ 0 −→
∫
ψ(x) μt(dx) ∈ (−∞,+∞]

is increasing.

Likewise, a family (μt, t ≥ 0) of probability measures on R and an R-valued process (Yt, t ≥ 0) will be said
to be associated if, for every t ≥ 0, the law of Yt is μt, i.e. if (μt, t ≥ 0) is the family of the one-dimensional
marginals of (Yt, t ≥ 0).
1.2. It is an easy consequence of Jensen’s inequality that an R-valued process (Xt, t ≥ 0) which is a 1-
martingale, is a peacock. A remarkable result due to Kellerer [3] states that, conversely, any R-valued process
(Xt, t ≥ 0) which is a peacock, is a 1-martingale. More precisely, Kellerer’s result states that any peacock
admits an associated martingale which is Markovian.

Recently, Lowther [4] stated that if (μt, t ≥ 0) is a peacock such that the map: t −→ μt is weakly continuous
(i.e. for any R-valued, bounded and continuous function f on R, the map: t −→ ∫

f(x) μt(dx) is continuous),
then (μt, t ≥ 0) is associated with a strongly Markovian martingale which moreover is “almost-continuous”
(see [4] for the definition).
1.3. In this paper, our aim is to present a new proof of the above mentioned theorem of Kellerer, which eventually
identifies peacocks and 1-martingales. Our method is inspired from the “Fokker-Planck equation method” ([2],
Sect. 6.2) and appears then as a new application of Pierre’s uniqueness theorem for a Fokker-Planck equation
([2], Thm. 6.1]).
1.4. The remainder of this paper is organised as follows:

• in Section 2, we define as usual the call function Cμ of the law μ of an integrable random variable X , by:

∀x ∈ R, Cμ(x) =
∫

(y − x)+ μ(dy) = E[(X − x)+]

and we present some properties of the correspondence: μ −→ Cμ, which are useful in the study of peacocks;
• in Section 3, we prove that a family (μt, t ≥ 0) of probability measures on R, is associated to a right-

continuous martingale, if and only if, (μt, t ≥ 0) is a peacock such that the map: t −→ μt is weakly
right-continuous on R+;

• in Section 4, by approximation from the previous result, we deduce Kellerer’s theorem in the general case.

2. Call functions and peacocks

In this section, we fix the notation and the terminology, and we gather some preliminary results.

2.1. Call functions

In the sequel, we denote by M the set of probability measures on R, equipped with the topology of weak
convergence (with respect to the space of R-valued, bounded, continuous functions on R).
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We denote by Mf the subset of M consisting of measures μ ∈ M such that
∫ |x| μ(dx) < ∞. Mf is also

equipped with the topology of weak convergence.
We define, for μ ∈ Mf , the call function Cμ by:

∀x ∈ R, Cμ(x) =
∫

(y − x)+ μ(dy).

Proposition 2.1. If μ ∈ Mf , then Cμ satisfies the following properties:

(a) Cμ is a convex, nonnegative function on R;
(b) limx→+∞Cμ(x) = 0;
(c) there exists a ∈ R such that limx→−∞(Cμ(x) + x) = a.

Conversely, if a function C satisfies the above three properties, then there exists a unique μ ∈ Mf such that
C = Cμ. This measure μ is the second derivative, in the sense of distributions, of the function C.

Proof. Clearly, if μ ∈ Mf , then Cμ satisfies properties (a), (b) and (c). For example, (c) follows directly from:

∀x ∈ R, Cμ(x) + x =
∫

sup(y, x) μ(dy)

which tends to a =
∫
y μ(dy) as x→ −∞. Moreover, it is easy to see that the measure μ is the second derivative,

in the sense of distributions, of the function Cμ.
Conversely, let C be a function satisfying properties (a), (b) and (c). We define μ as the second derivative, in

the sense of distributions, of the function C. Then μ is a positive measure. Denote by C′(x) the right derivative,
at x, of the convex function C. By properties (a) and (b),

∀x ∈ R, C′(x) ≤ 0 and lim
x→+∞C′(x) = 0.

Therefore, for x ∈ R,

C′(x) = −
∫

1(x,+∞)(y) μ(dy).

By property (c), limx→−∞C′(x) = −1 and then μ ∈ M.
Besides,

C(x) = −
∫ +∞

x

C′(y) dy =
∫

(y − x)+ μ(dy)

and

C(x) + x =
∫

sup(y, x) μ(dy).

Using again property (c), we see that μ ∈ Mf and C = Cμ. �

Proposition 2.2. Let μ ∈ Mf and set E[μ] =
∫
x μ(dx). Then Cμ satisfies the following additional properties:

(i) ∀x ≤ y, 0 ≤ Cμ(x) − Cμ(y) ≤ y − x;

(ii) ∀x, Cμ(x) + x− E[μ] =
∫

(x − y)+ μ(dy);

(iii) lim
x→−∞(Cμ(x) + x) = E[μ].
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Proof. The proposition follows from the following equalities, already seen in the previous proof:

C′
μ(x) = −

∫
1(x,+∞)(y) μ(dy),

Cμ(x) + x =
∫

sup(y, x) μ(dy). �

To state the next proposition, we now recall that a subset H of M is said to be uniformly integrable if

lim
c→+∞ sup

μ∈H

∫
{|x|≥c}

|x| μ(dx) = 0.

We remark that, if H is uniformly integrable, then

H ⊂ Mf and sup
{∫

|x| μ(dx); μ ∈ H
}
<∞.

Proposition 2.3. Let I be a set and let E be a filter on I. Consider a uniformly integrable family (μi, i ∈ I)
in M, and μ ∈ M. The following properties are equivalent:

(1) lim
E
μi = μ with respect to the topology on M;

(2) μ ∈ Mf and
∀x ∈ R, lim

E
Cμi(x) = Cμ(x);

(3) μ ∈ Mf and, for every R-valued continuous function f on R such that

∃a > 0, b > 0, ∀x ∈ R, |f(x)| ≤ a+ b |x|,
one has:

lim
E

∫
f(x) μi(dx) =

∫
f(x) μ(dx).

Proof. We first assume that property (1) holds. Then∫
|x| μ(dx) ≤ sup

{∫
|x| μi(dx); i ∈ I

}
<∞,

and μ ∈ Mf . Let f be an R-valued continuous function on R such that

∃a > 0, b > 0, ∀x ∈ R, |f(x)| ≤ a+ b |x|.

We set, for n ∈ N and x ∈ R, fn(x) = max[min(f(x), n),−n]. Since fn is continuous and bounded,

lim
E

∫
fn(x) μi(dx) =

∫
fn(x) μ(dx).

On the other hand, for n ≥ a,

|f(x) − fn(x)| = (|f(x)| − n)+ ≤ (b |x| + a− n)+ ≤ b |x| 1{|x|≥n−a
b },

and hence

sup
i∈I

∣∣∣∣∫ f(x) μi(dx) −
∫
fn(x) μi(dx)

∣∣∣∣ ≤ b sup
i∈I

∫
{|x|≥n−a

b }
|x| μi(dx).
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By uniform integrability, we then obtain:

lim
n→∞ sup

i∈I

∣∣∣∣∫ f(x) μi(dx) −
∫
fn(x) μi(dx)

∣∣∣∣ = 0.

Finally, ∫
f(x) μ(dx) = lim

n→∞ lim
E

∫
fn(x) μi(dx)

= lim
E

lim
n→∞

∫
fn(x) μi(dx) = lim

E

∫
f(x) μi(dx),

and property (3) is satisfied.
Obviously, property (3) entails property (2).
Suppose then that property (2) holds. By equicontinuity (property (i) in Prop. 2.2),

lim
E
Cμi(x) = Cμ(x)

uniformly on compact sets of R, and hence in the sense of distributions. Consequently, since μi (resp. μ) is the
second derivative, in the sense of distributions, of the function Cμi (resp. Cμ),

lim
E
μi = μ

in the sense of distributions. As μi and μ are probability measures, this entails property (1). �

2.2. Peacocks

In this subsection, we fix a family (μt, t ≥ 0) in Mf and we define a function C(t, x) on R+ × R by:

C(t, x) = Cμt(x).

We recall (see Sect. 1.1) that the family (μt, t ≥ 0) is called a peacock, if

(i) ∀t ≥ 0,
∫

|x| μt(dx) <∞;

(ii) for every convex function ψ : R −→ R, the map:

t ≥ 0 −→
∫
ψ(x) μt(dx) ∈ (−∞,+∞]

is increasing.

The following characterization is easy to prove and is stated in [2], Exercise 1.7.

Proposition 2.4. The family (μt, t ≥ 0) is a peacock if and only if:

(1) the expectation E[μt] does not depend on t;
(2) for every x ∈ R, the function t ≥ 0 −→ C(t, x) is increasing.

The following proposition plays an important role in the sequel.

Proposition 2.5. Assume that (μt, t ≥ 0) is a peacock, and let T > 0. Then,

(1) the set {μt; 0 ≤ t ≤ T } is uniformly integrable;
(2) lim

|x|→∞
sup{C(t, x) − C(s, x); 0 ≤ s ≤ t ≤ T } = 0.
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Proof. Property (1) is stated in [2], Exercise 1.1. Actually, it suffices to remark that, if c ≥ 0,

|x| 1{|x|≥c} ≤ (2 |x| − c)+.

As the function x −→ (2 |x| − c)+ is convex,

sup
t∈[0,T ]

∫
{|x|≥c}

|x| μt(dx) ≤
∫

(2 |x| − c)+ μT (dx).

Now, by dominated convergence,
lim

c→+∞

∫
(2 |x| − c)+ μT (dx) = 0.

We have:
sup{C(t, x) − C(s, x); 0 ≤ s ≤ t ≤ T } ≤ C(T, x).

Hence, by property (b) in Proposition 2.1,
lim

x→+∞ sup{C(t, x) − C(s, x); 0 ≤ s ≤ t ≤ T } = 0.

On the other hand, since E[μt] does not depend on t,
C(t, x) − C(s, x) = [C(t, x) + x− E[μt]] − [C(s, x) + x− E[μs]].

Now, by property (ii) in Proposition 2.2,

C(t, x) + x− E[μt] =
∫

(x− y)+ μt(dy),

is therefore nonnegative and increases with respect to t. Hence
sup{C(t, x) − C(s, x); 0 ≤ s ≤ t ≤ T } ≤ C(T, x) + x− E[μT ]

and, by property (iii) in Proposition 2.2,

lim
x→−∞ sup{C(t, x) − C(s, x); 0 ≤ s ≤ t ≤ T } = 0. �

3. Right-continuous peacoks

In this section, we shall prove Kellerer’s theorem for right-continuous peacoks. We proceed by regularization,
using, for regularized peacocks, the Fokker-Planck equation method as in [2], Chapter 6. This method relies
heavily on Pierre’s uniqueness theorem for a Fokker-Planck equation ([2], Thm. 6.1).

We first recall the main result in the Fokker-Planck equation method, namely Theorem 6.2 in [2]. The next
statement is a slightly extended version of this theorem.

Theorem 3.1 (see Thm. 6.2 in [2]). Let U = (0,+∞) × R and U the closure of U (U = R+ × R). Let σ be a
continuous function on U such that σ(t, x) > 0 for every (t, x) ∈ U . Let μ ∈ Mf .

(1) The stochastic differential equation

Zt = Z0 +
∫ t

0

σ(s, Zs) dBs

(where Z0 is a random variable with law μ, independent of the Brownian motion (Bs, s ≥ 0)) admits a weak
non-exploding solution (Yt, t ≥ 0), which is unique in law;

(2) let p(t, dx) be the law of Yt. Then, (p(t, dx), t ≥ 0) is the unique family in M such that:

t −→ p(t, dx) ∈ M is continuous and p(0, dx) = μ(dx),

∂p

∂t
− 1

2
∂2

∂x2
(σ2 p) = 0 in the sense of distributions on U.

We now present our proof of Kellerer’s theorem for right-continuous peacoks.
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Theorem 3.2. Let (μt, t ≥ 0) be a family in M. Then the following properties are equivalent:

(1) there exists a right-continuous martingale associated to (μt, t ≥ 0);
(2) (μt, t ≥ 0) is a peacock and the map:

t ≥ 0 −→ μt ∈ M
is right-continuous.

Proof. We first assume that property (1) is satisfied. Then, the fact that (μt, t ≥ 0) is a peacock follows
classically from Jensen’s inequality. Let (Mt, t ≥ 0) be a right-continuous martingale associated to (μt, t ≥ 0).
Then, if f is a bounded continuous function, we obtain by dominated convergence that, for any t ≥ 0,

lim
s→t,s>t

∫
f(x) μs(dx) = lim

s→t,s>t
E[f(Ms)] = E[f(Mt)] =

∫
f(x) μt(dx).

Therefore, the map:
t ≥ 0 −→ μt ∈ M

is right-continuous, and property (2) is satisfied.
Conversely, we now assume that property (2) is satisfied. We set, as in Section 2.2, C(t, x) = Cμt(x). We

shall regularize, in space and time, p(t, dx) := μt(dx) considered as a distribution on U . Thus, let α be a
density of probability on R, of C∞ class, with compact support contained in [0, 1]. We set, for ε ∈ (0, 1) and
(t, x) ∈ R+ × R,

pε(t, x) =
1 − ε

ε

∫
α(u)

[∫
α

(
y − x

ε

)
μt+εu(dy)

]
du+ ε g(t, x)

with

g(t, x) =
1√

2 π (1 + t)
exp

(
− x2

2 (1 + t)

)
·

Lemma 3.3. The function pε is of C∞ class on R+ × R and pε(t, x) > 0 for any (t, x). Moreover,∫
pε(t, x) dx = 1 and

∫
|x| pε(t, x) dx <∞.

The proof is straightforward.
We now set:

με
t (dx) = pε(t, x) dx.

By Lemma 3.3, με
t ∈ Mf and we set:

Cε(t, x) = Cμε
t
(x).

Lemma 3.4. For any t ≥ 0, the set {με
t ; 0 < ε < 1} is uniformly integrable.

Proof. Let a =
∫
y α(y) dy. A simple computation yields:

∫
{|x|≥c}

|x| με
t (dx) ≤

∫
α(u)

[∫
{|y|≥c−1}

(|y| + a) μt+εu(dy)

]
du+

∫
{|x|≥c}

|x| g(t, x) dx

and the result follows from the uniform integrability of {μv; 0 ≤ v ≤ t+ 1} (property (1) in Prop. 2.5). �
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Lemma 3.5. One has:

Cε(t, x) = (1 − ε)
∫ ∫

α(u)α(y)C(t + εu, x+ εy) dy du+ ε

∫ +∞

x

(y − x) g(t, y) dy.

The function Cε is of C∞ class on R+ × R. Moreover, for any (t, x) ∈ R+ × R,

∂Cε

∂t
(t, x) > 0 and

∂2Cε

∂x2
(t, x) = pε(t, x).

Proof. The above expression of Cε follows directly from the definitions. We deduce therefrom that Cε is of C∞

class on R+ × R. Now, by property (2) in Proposition 2.4,

∂Cε

∂t
(t, x) ≥ ε

∂

∂t

[∫ +∞

x

(y − x) g(t, y) dy
]

=
ε

2
g(t, x) > 0.

Finally, the equality:
∂2Cε

∂x2
(t, x) = pε(t, x)

holds, since, by Proposition 2.1, it holds in the sense of distributions, and both sides are continuous. �

Lemma 3.6. For 0 ≤ s ≤ t,

lim
|x|→∞

sup{Cε(t, x) − Cε(s, x); 0 < ε < 1} = 0.

Proof. By Lemma 3.5,
sup{Cε(t, x) − Cε(s, x); 0 < ε < 1} ≤ A(x) +B(x)

with
A(x) = sup{C(w, y) − C(v, y); 0 ≤ v ≤ w ≤ t+ 1, x ≤ y ≤ x+ 1}

and

B(x) =
1
2

∫ t

s

g(u, x) du.

By property (2) in Proposition 2.5, lim|x|→∞A(x) = 0, and, obviously, lim|x|→∞B(x) = 0. �

Lemma 3.7. For t ≥ 0,
lim
ε→0

με
t = μt in M.

Proof. By property (i) in Proposition 2.2, property (1) in Proposition 2.5 and by Proposition 2.3,

lim
s→t,s>t

C(s, x) = C(t, x) uniformly on compact sets.

Then, the expression of Cε in Lemma 3.5 yields:

lim
s→t,s>t

Cε(s, x) = Cε(t, x).

It then suffices to apply again Proposition 2.3, taking into account Lemma 3.4.
Note that we might also have proven this lemma directly from the definition of με

t . �
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Lemma 3.8. We set, for (t, x) ∈ R+ × R,

σε(t, x) =

(
2

∂Cε

∂t (t, x)
pε(t, x)

)1/2

·

Then, σε is continuous and strictly positive on R+ × R. Moreover, for (t, x) ∈ R+ × R,

∂pε

∂t
(t, x) =

1
2
∂2

∂x2

(
σ2

ε(t, x) pε(t, x)
)
,

which is the Fokker-Planck equation for pε.

Proof. This is a direct consequence of Lemmas 3.3 and 3.5. In particular, the Fokker-Planck equation can be
written:

∂

∂t

∂2Cε

∂x2
=

∂2

∂x2

∂Cε

∂t
· �

By Theorem 3.1, there exists a process (M ε
t , t ≥ 0) which is a weak solution of the stochastic differential

equation

Zt = Z0 +
∫ t

0

σε(s, Zs) dBs

with Z0 a random variable with law με
0, independent of the Brownian motion (Bs, s ≥ 0), and this process

(M ε
t , t ≥ 0) is associated to (με

t , t ≥ 0). For every n ∈ N and τn = (t1, . . . , tn) ∈ Rn
+, we denote by μ(ε,n)

τn the
law of (M ε

t1 , . . . ,M
ε
tn

), a probability on Rn.

Lemma 3.9. For every n ∈ N and τn ∈ Rn
+, the set of probability measures: {μ(ε,n)

τn ; 0 < ε < 1}, is tight.

Proof. Let n ∈ N and τn = (t1, . . . , tn) ∈ Rn
+. For x = (x1, . . . , xn) ∈ Rn, we set |x| := sup1≤j≤n |xj |. Then, for

c > 0,

μ(ε,n)
τn

(|x| ≥ c) = P

(
sup

1≤j≤n
|M ε

tj
| ≥ c

)
≤ 1
c

E

[
sup

1≤j≤n
|M ε

tj
|
]

≤ 1
c

n∑
j=1

E

[
|M ε

tj
|
]

=
1
c

n∑
j=1

∫
|x| με

tj
(dx).

Now, by Lemma 3.4, for 1 ≤ j ≤ n,

sup
0<ε<1

∫
|x| με

tj
(dx) <∞.

Thus,
lim

c→+∞ sup
0<ε<1

μ(ε,n)
τn

(|x| ≥ c) = 0,

which yields the tightness of {μ(ε,n)
τn ; 0 < ε < 1}. �

As a consequence of the previous lemma, and with the help of the diagonal procedure, there exists a sequence
(εp, p ≥ 0) tending to 0 such that, for every n ∈ N and every τn ∈ Qn

+, the sequence of probabilities on Rn:
(μ(εp,n)

τn , p ≥ 0), weakly converges to a probability which we denote by μ(n)
τn . We remark that, by Lemma 3.7,

for any t ∈ Q+, μ(1)
t = μt. There exists a process (Mt, t ∈ Q+) such that, for every n ∈ N and every

τn = (t1, . . . , tn) ∈ Qn
+, the law of (Mt1 , . . . ,Mtn) is μ(n)

τn .
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Lemma 3.10. The process (Mt, t ∈ Q+) is a martingale.

Proof. Let φ be a C2-function on R such that φ(x) = 1 for |x| ≤ 1, φ(x) = 0 for |x| ≥ 2, and 0 ≤ φ(x) ≤ 1 for all
x ∈ R. We set, for k > 0, φk(x) = xφ(k−1 x). Fix now n ∈ N and n continuous bounded functions (g1, . . . , gn)
on R, and finally 0 ≤ s1 ≤ . . . ≤ sn ≤ s ≤ t elements of Q+. We set:

Θ(p, k) = E[g1(M εp
s1

)g2(M εp
s2

) . . . gn(M εp
sn

)φk(M εp

t )] − E[g1(M εp
s1

)g2(M εp
s2

) . . . gn(M εp
sn

)φk(M εp
s )].

From the definitions, we obtain:

lim
p→∞Θ(p, k) = E[g1(Ms1)g2(Ms2) . . . gn(Msn)φk(Mt)] − E[g1(Ms1)g2(Ms2) . . . gn(Msn)φk(Ms)]

and, by dominated convergence,

lim
k→∞

lim
p→∞Θ(p, k) = E[g1(Ms1)g2(Ms2) . . . gn(Msn)Mt] − E[g1(Ms1)g2(Ms2) . . . gn(Msn)Ms].

On the other hand, set:

m =
n∏

j=1

sup
x∈R

|gj(x)|.

Then, since the support of φk is compact, Itô’s formula yields:

|Θ(p, k)| ≤ m

2

∫ t

s

E

[
|φ′′k(M εp

u )|σ2
εp

(u,M εp
u )
]

du

= m

∫ ∫ t

s

|φ′′k(x)| ∂Cεp

∂u
(u, x) du dx.

Besides, ∫
|φ′′k(x)| dx =

∫
|xφ′′(x) + 2φ′(x)| dx

and φ′′k(x) = 0 for |x| 
∈ [k, 2k]. Therefore, there exists a constant m̃ such that:

|Θ(p, k)| ≤ m̃ sup{Cεp(t, y) − Cεp(s, y); k ≤ |y| ≤ 2k}. (3.1)

Thus, by Lemma 3.6,
lim

k→∞
Θ(p, k) = 0 uniformly with respect to p.

Consequently,

0 = lim
p→∞ lim

k→∞
Θ(p, k) = lim

k→∞
lim

p→∞Θ(p, k)

= E[g1(Ms1)g2(Ms2) . . . gn(Msn)Mt] − E[g1(Ms1)g2(Ms2) . . . gn(Msn)Ms],

which yields the desired result. �

By the classical theory of martingales (see, for example, [1]), almost surely, for every t ≥ 0,

M̃t = lim
s→t,s∈Q,s>t

Ms

is well defined, and (M̃t, t ≥ 0) is a right-continuous martingale which, obviously, is associated
to (μt, t ≥ 0). �
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Remark. By considering only the parameter k, the proof of Lemma 3.10 also shows that, for every ε ∈ (0, 1),
the process (M ε

t , t ≥ 0) is a (continuous) martingale.
In the following lemma, which will be useful in the next section, we state a property which is satisfied by the

martingale (M̃t, t ≥ 0) constructed in the proof of Theorem 3.2.

Lemma 3.11. Let g1, . . . , gn, φk and m̃ be as in the proof of Lemma 3.10. Then, for 0 ≤ s1 ≤ . . . ≤ sn ≤ s ≤ t
elements of R+,∣∣∣E[g1(M̃s1) . . . gn(M̃sn)φk(M̃t)] − E[g1(M̃s1) . . . gn(M̃sn)φk(M̃s)]

∣∣∣ ≤ m̃ sup{C(t, y) − C(s, y); k ≤ |y| ≤ 2k}.

Proof. We first suppose that 0 ≤ s1 ≤ . . . ≤ sn ≤ s ≤ t are elements of Q+, and we keep the notation in the
proof of Lemma 3.10. By Lemma 3.7, Lemma 3.4 and Proposition 2.3, for any t ≥ 0,

lim
p→∞Cεp(t, x) = C(t, x) uniformly on compact sets.

Therefore, letting p tend to ∞ in inequality (3.1), we get:

|E[g1(Ms1) . . . gn(Msn)φk(Mt)] − E[g1(Ms1) . . . gn(Msn)φk(Ms)]| ≤ m̃ sup{C(t, y) − C(s, y); k ≤ |y| ≤ 2k}.
Suppose now that 0 ≤ s1 ≤ . . . ≤ sn ≤ s ≤ t are elements of R+. Using again Proposition 2.3 (and property (1)
in Prop. 2.5), we obtain the desired result by approximation, from the above inequality. �

4. Kellerer’s theorem: the general case

We now obtain, by approximation, a proof of Kellerer’s theorem in the general case.

Theorem 4.1. Let (μt, t ≥ 0) be a family in M. Then the following properties are equivalent:

(1) There exists a martingale associated to (μt, t ≥ 0);
(2) (μt, t ≥ 0) is a peacock.

Proof. We consider a peacock (μt, t ≥ 0) and we set C(t, x) = Cμt(x).

Lemma 4.2. There exists a countable set D ⊂ R+ such that the map:

t −→ μt ∈ M
is continuous at any s 
∈ D.

Proof. By property (2) in Proposition 2.4, there exists a countable set D ⊂ R+ such that, for every x ∈ Q, the
map:

t −→ C(t, x)

is continuous at any s 
∈ D. By equicontinuity (property (i) in Prop. 2.2), this continuity property
holds for every x ∈ R. It suffices then to apply Proposition 2.3, taking into account property (1)
in Proposition 2.5. �

We may write D = {dn; n ∈ N}. For p ∈ N, we denote by (k(p)
n , n ≥ 0) the increasing rearrangement of the set:

{k 2−p; k ∈ N} ∪ {dj ; 0 ≤ j ≤ p}.
We define (μ(p)

t , t ≥ 0) by:

μ
(p)
t =

k
(p)
n+1 − t

k
(p)
n+1 − k

(p)
n

μ
k
(p)
n

+
t− k

(p)
n

k
(p)
n+1 − k

(p)
n

μ
k
(p)
n+1

if t ∈
[
k

(p)
n , k

(p)
n+1

]
.

We also set: Cp(t, x) = C
μ

(p)
t

(x).
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Lemma 4.3. The following properties hold:

(i) (μ(p)
t , t ≥ 0) is a peacock and the map: t −→ μ

(p)
t ∈ M is continuous;

(ii) for any t ≥ 0, the set {μ(p)
t ; p ∈ N} is uniformly integrable;

(iii) for t ≥ 0; limp→∞ μ
(p)
t = μt in M;

(iv) for 0 ≤ s ≤ t,
lim

|x|→∞
sup{Cp(t, x) − Cp(s, x); p ≥ 0} = 0.

Proof. Properties (i) and (iii) are clear by construction. Property (ii) (resp. property (iv)) follows directly from
property (1) (resp. property (2)) in Proposition 2.5. �

By Theorem 3.2, there exists, for each p, a right-continuous martingale (M (p)
t , t ≥ 0) which is associated to

(μ(p)
t , t ≥ 0) and satisfies the property stated in Lemma 3.11. For any n ∈ N and τn = (t1, . . . , tn) ∈ Rn

+, we
denote by μ(p,n)

τn the law of (M (p)
t1 , . . . ,M

(p)
tn

), a probability measure on Rn. The proof of the following lemma is
quite similar to that of Lemma 3.9, hence we omit this proof.

Lemma 4.4. For every n ∈ N and τn ∈ Rn
+, the set of probability measures {μ(p,n)

τn ; p ≥ 0}, is tight.
Let now U be an ultrafilter on N, which refines Fréchet’s filter. As a consequence of the previous lemma,

for every n ∈ N and every τn ∈ Rn
+, lim

U
μ(p,n)

τn
exists in M and we denote this limit by μ

(∞,n)
τn . By property

(iii) in Lemma 4.3, μ(∞,1)
t = μt. There exists a process (Mt, t ≥ 0) such that, for every n ∈ N and every

τn = (t1, . . . , tn) ∈ Rn
+, the law of (Mt1 , . . . ,Mtn) is μ(∞,n)

τn . In particular, this process (Mt, t ≥ 0) is associated
to (μt, t ≥ 0).

Lemma 4.5. The process (Mt, t ≥ 0) is a martingale.

Proof. The proof is similar to that of Lemma 3.10, but we give the details for the sake of completeness.
Let φ be a C2-function on R such that φ(x) = 1 for |x| ≤ 1, φ(x) = 0 for |x| ≥ 2, and 0 ≤ φ(x) ≤ 1 for all

x ∈ R. We set, for k > 0, φk(x) = xφ(k−1 x). Fix now n ∈ N and n continuous bounded functions (g1, . . . , gn)
on R, and finally 0 ≤ s1 ≤ . . . ≤ sn ≤ s ≤ t elements of R+. We set:

Λ(p, k) = E[g1(M (p)
s1

)g2(M (p)
s2

) . . . gn(M (p)
sn

)φk(M (p)
t )] − E[g1(M (p)

s1
)g2(M (p)

s2
) . . . gn(M (p)

sn
)φk(M (p)

s )].

From the definitions, we obtain, for every k,
lim
U
Λ(p, k) = E[g1(Ms1)g2(Ms2) . . . gn(Msn)φk(Mt)] − E[g1(Ms1)g2(Ms2) . . . gn(Msn)φk(Ms)]

and, by dominated convergence,
lim

k→∞
lim
U
Λ(p, k) = E[g1(Ms1)g2(Ms2) . . . gn(Msn)Mt] − E[g1(Ms1)g2(Ms2) . . . gn(Msn)Ms].

On the other hand, since (M (p)
t , t ≥ 0) satisfies the property stated in Lemma 3.11, there exists a constant m̃

such that: |Λ(p, k)| ≤ m̃ sup{Cp(t, y) − Cp(s, y); k ≤ |y| ≤ 2k}.
Thus, by property (iv) in Lemma 4.3,

lim
k→∞

Λ(p, k) = 0 uniformly with respect to p.

Consequently,
0 = lim

U
lim

k→∞
Λ(p, k) = lim

k→∞
lim
U
Λ(p, k)

= E[g1(Ms1)g2(Ms2) . . . gn(Msn)Mt] − E[g1(Ms1)g2(Ms2) . . . gn(Msn)Ms],

which yields the desired result. �
This lemma completes the proof of Theorem 4.1. �
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