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LOCAL ESTIMATION OF THE HURST INDEX OF MULTIFRACTIONAL
BROWNIAN MOTION BY INCREMENT RATIO STATISTIC METHOD

Pierre Raphaël Bertrand
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Abstract. We investigate here the central limit theorem of the increment ratio statistic of a multi-
fractional Brownian motion, leading to a CLT for the time varying Hurst index. The proofs are quite
simple relying on Breuer–Major theorems and an original freezing of time strategy. A simulation study
shows the goodness of fit of this estimator.
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1. Introduction

The main goal of this paper is to provide a simple proof of the central limit theorem (CLT in all the sequel)
for the convergence of increment ratio statistic method (IRS in all the sequel) to a time varying Hurst index.

Hurst index is the main parameter of fractional Brownian motion (fBm in all the sequel), it belongs to the
interval (0, 1) and it will be denoted by H in all the following. For fBm, the Hurst index drives both path
roughness, self-similarity and long memory properties of the process. FBm was introduced by Kolmogorov [27]
as Gaussian “spirals” in Hilbert space and then popularized by Mandelbrot and Van Ness [29] for its relevance
in many applications. However, during the two last decades, new devices have allowed access to large then
huge datatsets. This put in light that fBm itself is a theoretical model and that in real life situation the Hurst
index is, at least, time varying. A natural generalization of the fBm to the case where the Hurst parameter
is no more constant, but a Hölder function of time, called multifractional Brownian motion (mBm), has been
introduced independently by Lévy−Véhel and Peltier [28] and Benassi et al. [12]. Other generalizations of fBm
remain possible, for e.g. Gaussian processes with a Hurst index depending of the scale, so-called multiscale
fBm [6], when H is piecewise constant as in the step fractional Brownian Motion see [5], or a wide range of
Gaussian or non-Gaussian processes fitted to applications, see for example [7,19] or the book of Samorodnitsky
and Taqqu [34] for a good summary about the stable non-gaussian random processes. However, in this work we
restrict ourselves to mBm.

In statistical applications, we estimate the time varying Hurst index through a CLT. Actually, CLT provides
us confidence intervals. Different statistics can be used to estimate the Hurst index. Among the popular methods,
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let us mention quadratic variations, generalized quadratic variations, see [11, 13, 15, 20, 21, 25, 26], and wavelet
analysis, see e.g. [1] or [8]. Above methods can be expensive in term of time complexity. For this reason, Surgailis
et al. [37] and Bardet and Surgailis [10] have proposed a new statistic named increment ratio which can be used
for estimating the Hurst index H and is faster than the wavelet or the quadratic variations methods, at the
price of a slightly larger variance.

CLT for the different estimators of Hurst index are presently standard in the case of fBm, but became very
technical in the case of mBm. The main novelty of our work is the simplicity of the proofs. In our point of view,
mBm is a fBm where the constant Hurst index H has been replaced by time varying Hurst index. It is well known
that the random field (H, t) �→ B(H, t) is irregular with respect to time t, actually with regularity H which
belongs to (0, 1). It is less known that this field is infinitely differentiable with respect to H , see Meyer et al. [30]
or Ayache and Taqqu [4]. Thus, for all time t∗ ∈ (0, 1), we can freeze the time varying Hurst index, and the
mBm behaves approximatively like a fBm. Eventually, CLT for mBm follows from CLT for fBm combined with
a control of “freezing error”. This new and natural technology allows us to go further and obtain for example
a CLT for the Hurst function evaluated at a finite collection of times, and also quantitative convergence speed
in the CLT but it goes beyond the scope of the present paper. Note that, up to our knowledge, the “freezing
Hust index” strategy for estimation in mBm was introduced, without further proof, in Bertrand et al. [14].

The remainder of this paper is organized as follows. In Section 2, we recall a definition of fBm and the
definition of the increment ration statistic. Next, in Section 3, we review definitions of fBm and mBm and
precise the localization procedure (or freezing). The main result is stated in Section 4 and some numerical
simulations are presented in Section 5. All the technical proofs are postponed to Section 5.

2. Recall on fBm and increment ratio statistic

In this section, we present the increment ratio statistic (IRS) method obtained by filtering centered Gaussian
processes with stationary increments. Before, we recall the definition of the processes under consideration.

2.1. Definition of fBm and Gaussian processes with stationary increments

We describe fBm through its harmonizable representation. However, it is simpler to adopt a more general
framework and then specify fBm as a particular case. Let X = (X(t), t ∈ [0, 1]) be a zero mean Gaussian process
with stationary increments admitting a spectral density, the spectral representation theorem (see Cramèr and
Leadbetter [23] or Yaglom [38]), asserts that the following representation is in force

X(t) =
∫

R

(1 − eitξ) · f1/2(ξ) dW (ξ), for all t ∈ [0, 1], (2.1)

where W (dx) is a Wiener measure with adapted real and imaginary part such that X(t) is real valued for all t,
i.e. the Wiener measure has to satisfy: dW (ξ) = dW (−ξ). The function f is Borelian even, positive and is called
spectral density of X . To insure convergence of the stochastic integral, f should satisfy the condition given by∫

R

(
1 ∧ |ξ|2) · f(ξ) dξ <∞.

Example 2.1. Fractional Brownian motion with Hurst parameter H ∈ (0, 1) and scale parameter σ > 0
corresponds to a spectral density given by

f(ξ) = C(H)σ2|ξ|−(2H+1) for all ξ ∈ R. (2.2)

where C(H) = π−1HΓ (2H) sin(πH). In this paper, we denote fBm by B(H, t) when σ = 1. Stress that this
choice is not the conventional one. But, IRS is homogeneous and does not depend on a multiplicative factor.
Thus, for the sake of simplicity, we can impose the condition σ = 1.
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2.2. Definition of the a-Generalized increments

In all the sequel, we consider the observation of the process X at discrete regularly spaced times, that is
the observation of (X(t0), . . . , X(tn)) at times tk = k/n. Secondly, we consider a filter denoted by a of length
L+ 1 and of order p ≥ 1, where p ≤ L are two integers. It corresponds to an arbitrary finite fixed real sequence
a := (a0, . . . , aL) ∈ RL+1 having p vanishing moments, i.e.,

L∑
l=0

all
i =

⎧⎪⎨⎪⎩
0 if i ∈ {0, . . . , p− 1}
L∑

l=0

all
p 	= 0 if i = p.

(2.3)

Consequently, it is easy to prove, for any integer m, that

L∑
l1=0

L∑
l2=0

al1al2 (l1 − l2)
m =

⎧⎪⎨⎪⎩
0 if m < 2p

Cp
2p(−1)p

(
L∑

l=0

all
p

)2

if m = 2p
(2.4)

where Ck
n =

n!
k!(n− k)!

. The family of such filters is denoted by A(p, L). Then, the a-Generalized increments of

the discrete process (X(tk))0≤k≤n are defined, for all 0 ≤ k ≤ n− L− 1, as follows

ΔaX(tk) =
L∑

k=0

alX(tk+l) (2.5)

and their harmonizable representations are given by

ΔaX(tk) =
∫

R

eitkξga(−ξ/n)f1/2(ξ) dW (ξ)

where ga(·) is specified as follows

ga(u) :=
L∑

l=0

aleilu. (2.6)

Example 2.2. In the simple case where a := (a0 = 1, a1 = −1), the operator Δa corresponds to a discrete
increment of order 1, and when a := (a0 = 1, a1 = −2, a2 = 1), the operator Δa represents the second order
differences.

2.3. Definition of the increment ratio statistic

Let (ΔaX(tk))0≤k≤n−L−1 be the a-Generalized increments sequence defined by (2.5) from the discrete ob-
servation (X(tk))0≤k≤n. Then, the IRS introduced by Bardet and Surgailis [10] is given by

IRSa,n(X) =
1

n− L

n−L−1∑
k=0

ψ (ΔaX(tk), ΔaX(tk+1)) (2.7)

where ψ(·, ·) is described as follows

ψ(x, y) :=

⎧⎪⎨⎪⎩
|x+ y|
|x| + |y| if (x, y) ∈ R2\{(0, 0)}

1 if (x, y) = (0, 0).
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Figure 1. The graph of Λ0(ρ).

IRS of fractional Brownian motion

In the case of the fBm with Hurst parameter H ∈ (0, 1), i.e X(t) = BH(t), Bardet and Surgailis have
established in [10], Corollary 4.3, page 13, under some semi-parametric assumptions, the following CLT for the
statistics IRSa,n

√
n (IRSa,n(BH) − Λa(H)) D→N (0, Σ2

a(H)) with
{
H ∈ (0, 3/4) if a = (1,−1)
H ∈ (0, 1) if a = (1,−2, 1) (2.8)

where the sign D→ means convergence in distribution,

Λa(H) := Λ0 (ρa(H)) (2.9)

Λ0(r) :=
1
π

arccos(−r) +
1
π

√
1 + r

1 − r
log
(

2
1 + r

)
(2.10)

ρa(H) =

⎧⎨⎩22H−1 − 1 if a = (1,−1)
−32H + 22H+2 − 7

8 − 22H+1
if a = (1,−2, 1)

(2.11)

and the asymptotic variance Σ2
a(H) is given by

Σ2
a(H) =

∑
j∈Z

cov (ψ (ΔaBH(t0),ΔaBH(t1)) , ψ (ΔaBH(tj),ΔaBH(tj+1))) .

The graphs of Λ0(ρ), ρa(H) and Λa(H), with a = (1,−1) or a = (1,−2, 1), are given in Figures 1–3. It is easy
to prove that the function H �→ Λa(H), with a = (1,−2, 1), is a monotonic increasing function in the interval
(0,1), see Figure 3. Therefore, Ĥn = Λ−1

a (IRSa,n(BH)) provides an estimator of the Hurst parameter H with
convergence rate O (

√
n). Moreover, we refer to Stoncelis and Vaičiulis [36] for a numerical approximation of

the variance Σ2
a(H) with a = (1,−1) or a = (1,−2, 1), needed for construction of confidence intervals, see [10],

Corollary 4.3, page 13 and Appendix, page 32. Note that it is also possible to obtain an estimator of the limit
variance by using a resampling Monte Carlo method.
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Figure 2. The graphs of ρa(H) with a = (−1, 1)(left) and a = (1,−2, 1) (right).
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Figure 3. The graphs of Λa(H) with a = (−1, 1)(left) and a = (1,−2, 1) (right).
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3. Going from fBm to mBm and return by freezing

The main goal of this section is to present different representations for the fBm and the mBm enabling us to
present the time freezing strategy we will use to prove our main theorems.

FBm and its different representations

Fractional Brownian motion was introduced by Kolmogorov [27] and then made popular by Mandelbrot and
Van Ness [29]. This process has been widely used in applications to model data that exhibit self-similarity,
stationarity of increments, and long range dependence. FBm with Hurst parameter H ∈ (0, 1), denoted by
(BH(t), t ∈ [0, 1]), is a centered Gaussian process with covariance function defined for s, t ∈ [0, 1] by

E [BH(t)BH(s)] =
1
2
(
t2H + s2H − |t− s|2H

)
. (3.1)

This process is characterized by its Hurst index which drives both pathwise regularity, self-similarity and long
memory, see the overview in Bertrand et al. [14]. Before going further, let us precise notations: in all the sequel
we will denote by BH the fBm and B(H, t) the random field depending on both Hurst index and time, i.e.
throughout this paper BH(t) = B(H, t). Fractional Brownian motion, (BH(t), t ∈ [0, 1]), can be represented
through its harmonizable representation (2.1), (2.2), or its moving-average representation (see Samorodnitsky
and Taqqu [34], Chap. 14). A third representation is the wavelet series expansion introduced by Meyer et al. [30].

By expanding for every fixed (H, t) the kernel function ξ �→ (eitξ−1)
|ξ|H+1/2 in the orthonormal basis of L2(R), B ={

2−j/2
√

2πei2−jkξψ̂
(−2−jξ

)
: (j, k) ∈ Z2

}
where ψ is the Lemarié−Meyer mother wavelet and ψ̂ its Fourier

transform, and by using the isometric property of the stochastic integral (2.1,2.2), it follows that the series
defined by

B(H, t) = C(H)
∑
j∈Z

∑
k∈Z

ajk(t,H) εjk, for all t ∈ [0, 1] (3.2)

converges, for every fixed (H, t), in L2(Ω); throughout this paper Ω denotes the underlying probability
space. Note that C(H) = π−1HΓ (2H) sin(πH), (εjk)(j,k)∈Z2 corresponds to a sequence of independent stan-
dard Gaussian random variables N (0, 1), and the non-random coefficients ajk(t,H) are given by ajk(t,H) =
2−jH

{
Ψ(2jt− k,H) − Ψ(−k,H)

}
where the function Ψ is described by

Ψ(x,H) =
∫

R

(eixξ) · |ξ|−(H+1/2)ψ̂(ξ) dξ.

In fact, this series (3.2) is also convergent in a much stronger sense. Indeed, by using the Meyer et al.’s
Lemma [30], we can prove the existence of an almost sure event Ω∗, that is such that P(Ω∗) = 1, such that for
all ω ∈ Ω∗ the series (3.2) converges uniformly for (H, t) ∈ K where K is any compact subset of (0, 1) × R.
Moreover, the field defined by (3.2) is infinitely differentiable with respect to H with derivatives bounded uni-
formly on every compact subset of (0, 1) × R by a constant C∗(ω) > 0 where C∗ is a positive random variable
with finite moments of every order. Let us refer to Ayache and Taqqu [3] for all the technical details.

In summary, the fBm (BH(t), t ∈ [0, 1]) with Hurst parameter H ∈ (0, 1) can be represented, up to a
multiplicative constant which only depends on H , through three representations, namely: moving average rep-
resentation, harmonizable representation and wavelet series representation which are equal almost surely for
each t ∈ [0, 1]. Moreover, according to Ayache and Taqqu [4] it is known that the wavelet series representation
is smooth in H . Consequently, we deduce that all representations of fBm are smooth in H .
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MBm and its different representations

MBm can be obtained by plugging a time varying Hurst index t �→ H(t) into one of the three representations
of the fBm given above, that is the moving average representation, the harmonizable one ((2.1) and (2.2)) or
the wavelet series expansion (3.2).

On the one hand, let us refer to Cohen [22] or Stoev and Taqqu [35] for the subtle question of equality in
distribution and/or almost sure of the different moving average representations and harmonizable ones. On
the other hand, we refer to the paper of Ayache and Taqqu [4] which proves the almost sure equality for each
t ∈ [0, 1] of harmonizable representation of mBm and its wavelet series expansion.

Moreover, throughout this paper we will always assume that the Hurst functionH(·) ∈ Cη ([0, 1], [Hmin, Hmax])
is defined in [0, 1] with values in an arbitrary compact interval [Hmin, Hmax] ⊂ (0, 1) and satisfies a uniform
Hölder condition of order η > Hmax, i.e., there is a constant c > 0 such that for every t1, t2 ∈ (0, 1), one has

|H(t2) −H(t1)| ≤ c|t2 − t1|η.

typically H(·) is a Lipschitz function on [0, 1]. We will also assume that Hmin = inf {H(t) : t ∈ [0, 1]} and
Hmax = sup {H(t) : t ∈ [0, 1]}. Consequently, the Hurst function H(·) satisfy the following condition

sup
t∈[0,1]

H(t) ≤ β(H(.), [0, 1]) = sup

{
β, sup

t1,t2∈[0,1]

|H(t1) −H(t2)|
|t1 − t2|β <∞

}
,

the so-called condition (C) in Ayache and Taqqu [3]. It imply that the local Hölder regularity, α(BH(·)(·), [0, 1]) =

sup
{
α, lim suph→0

|H(t+h)−H(t)|
|h|α = 0

}
, of the mBm can be prescribed via its Hurst function H(·), i.e. for any

point t ∈ [0, 1], we have almost surely

αmBm

(
BH(·)(·), t

) a.s= H(t).

With this tools, we are now in order to precise our “freezing” technology:

MBm behaves locally as a fBm

By applying Taylor expansion of order 1 around any fixed time t∗ ∈ (0, 1), we obtain the following formula

B(H(t), t)IΩ∗ = B(H∗, t)IΩ∗ +R(t)IΩ∗ , for all t ∈ (0, 1) (3.3)

where R(t) refers to the Taylor rest which satisfies

|R(t)IΩ∗ | ≤ C∗(ω)|H(t) −H∗|, for all t ∈ (0, 1) (3.4)

with C∗ > 0 a positive random variable with finite moments of every order. Noting that H∗ corresponds to the
value of the Hurst function H(·) at t∗, i.e., H∗ = H(t∗) and IΩ∗ represents the indicator function of a subset

Ω∗ defined by: IΩ∗(ω) =
{

1 if ω ∈ Ω∗
0 otherwise . Next, if we know that the Hurst function H(·) has a Hölder regularity

of order η, we obtain immediately that

|R(t)IΩ∗ | ≤M∗(ω) IΩ∗ |t− t∗|η, for all t ∈ (0, 1) (3.5)

with M∗(ω) = c× C∗ > 0 a positive random variable with finite moments of every order.



314 P.R. BERTRAND ET AL.

4. Main results

This section is dedicated to the CLT of the IRS localized version for the mBm. Let us however first give a
simple result on the CLT for the IRS of Gaussian processes with stationary increments, which, applied to the
fractional Brownian motion, gives with a simple proof the result of Bardet and Surgailis [10].

We thus consider a process X observed through the knowledge of (X(t0), . . . , X(tn)) with tk = k/n for
k = 0, . . . , n. The corresponding increment ratio statistic IRSa,n(X) is defined by (2.7), with a filter a ∈ A(p, L)
satisfying (2.3).

Theorem 4.1 (fractional Brownian motion).

(i) Let X be a zero mean Gaussian process with stationary increments. We assume that∑
j∈Z

|ra(j)|2 < +∞ (4.1)

where ra(j) := cov (ΔaX(t0),ΔaX(tj)) for j ∈ Z is supposed independent of n. Then

√
n (IRSa,n(X) − Λ0(ρa)) D→ N (0, Σ2

a(ρa)) (4.2)

where Λ0(·) is defined by (2.10), ρa represents the correlation between two successive a-Generalized incre-
ments, and the asymptotic variance Σ2

a(ρa) is given by

Σ2
a(ρa) :=

∑
j∈Z

cov (ψ (ΔaX(t0),ΔaX(t1)) , ψ (ΔaX(tj),ΔaX(tj+1)))

and is well defined and belongs to [0,+∞).
(ii) In particular, let X be a fBm, that is X = BH with Hurst parameter H ∈ (0, 1). Among filters a ∈ A(p, L),

we choose the ones for which the function H �→ ρa(H) is reversible. Moreover, for filters with order p = 1,
we assume the extra assumption H ∈ (0, 3/4). Then CLT (4.2) is in force where Λa(H) = Λ0(ρa(H)) is
a reversible function, Λ0(·) is defined by (2.10), ρa(·) is described by

ρa(H) =

∑L
l1,l2=0 al1al2 |1 + l2 − l1|2H∑L

l1,l2=0 al1al2 |l2 − l1|2H
, (4.3)

and the asymptotic variance Σ2
a(H) is given by

Σ2
a(H) :=

∑
j∈Z

cov (ψ (ΔaBH(t0),ΔaBH(t1)) , ψ (ΔaBH(tj),ΔaBH(tj+1)))

which is well defined and belongs to [0,+∞). �
(iii) Moreover, by applying the well-known delta-method, we deduce the follwoing CLT for the estimator Ĥa,n

of the Hurst index H given by

√
n
(
Ĥa,n −H

) D→N (0, σ2
a(H)) (4.4)

where Ĥa,n = Λ−1
a (IRSa,n(BH)) and σ2

a(H) = Σ2
a(H) × [(Λ−1

a )′(Λa(H))
]2

.
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Remark 4.2.

(1) The regularity of Λa(H) enables us then to get via the well known Delta-method the CLT for the Hurst
parameter. However no closed formula for Λ−1

a (H) is available so that the limiting covariance will be no
further explicit.

(2) We stress once again that the proof of the theorem is quite simple. Note also that using recent results of
Nourdin et al. [32], Theorem 2.2 or Biermé et al. [15], Proposition 2.15, we even have that there exists a
sequence γ(n) decaying to zero such that for all h ∈ C2 and N ∼ N (0, Σ2

a(ρa))∣∣E [h (√n (IRSa,n(X) − Λ0(ρa))
)− h(N)

]∣∣ ≤ ‖h′′‖∞ γ(n).

The precise estimation of γ(n) is however out of the scope of the present paper and will be found in [24].
Using [32], Corollary 2.4 or [15], Proposition 2.15, we also have that the previous CLT may be reinforced
to a convergence in 1-Wasserstein distance or in Kolmogorov distance.

(3) The reader will have noticed that the assumption ra(j) := cov (ΔaX(t0),ΔaX(tj)) independent of n for
all j ∈ Z is a quite strong one. Indeed, for the multiscale Brownian motion, this not true. However, in a
sense, it is asymptotically true and it may then be applied to prove the convergence of the IRS to the Hurst
parameter related to the highest frequency.
Note that it is possible to build artificial processes for which the covariances of their increments do not
depend on n, but we do not know another usual process, different of the fBm, which satisfies this property.

Now, we present a local CLT with a certain rate of convergence, for the estimation of the local Hurst function
of multifractional Brownian motion, by using localized version of the IRS.

Localized version of the IRS for multifractional Brownian motion
Let us consider a multifractional Brownian motion with Hurst function H(·) denoted by X =

(B(H(t), t), t ∈ [0, 1]). Secondly, let t∗ ∈ (0, 1) be an arbitrary fixed point, then we denote by νn (γ, t∗) the
set of indices around t∗, given by

νn (γ, t∗) =
{
k ∈ {0, . . . , n− L− 1} : |tk − t∗| ≤ n−γ

}
(4.5)

=
{�nt∗ − n1−γ�, . . . , �nt∗ + n1−γ�} (4.6)

where �x� is the integer part of x and γ ∈ (0, 1) is a fixed parameter which allows to control the size of νn (γ, t∗)
which cardinal is equal to vn(γ) := �{�nt∗−n1−γ�, . . . , �nt∗+n1−γ�}. Finally, for any n large enough, we denote
by IRSγ,t∗

a,n

(
BH(·)

)
the localized version of IRS defined as follows

IRSγ,t∗
a,n

(
BH(·)

)
=

1
vn(γ)

�nt∗+n1−γ	∑
k=�nt∗−n1−γ	

ψ
(
ΔaBH(tk)(tk), ΔaBH(tk+1)(tk+1)

)
. (4.7)

where vn(γ) := �
{�nt∗ − n1−γ�, . . . , �nt∗ + n1−γ�}. With these notations, we are in order to state our main

result:

Theorem 4.3 (multifractional Brownian motion).

(i) Let X = BH(·) be a mBm and IRSγ,t∗
a,n

(
BH(·)

)
its localized IRS defined by (4.7). We assume that the Hurst

function H(·) has a Hölder regularity of order η and we suppose that γ(1 + η) > 1. Then

n(1−γ)/2
(
IRSγ,t∗

a,n

(
BH(·)

)− Λa(H∗)
) D→N (0, Σ2

a(H∗)) with
{
H∗ ∈ (0, 3/4) if p = 1
H∗ ∈ (0, 1) if p ≥ 2 (4.8)
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where Λa(·) = Λ0(ρa(·)) is a monotonic increasing function and H∗ = H(t∗) with Λ0(·) and ρa(·) described
by (2.10) and (4.3), and the asymptotic variance Σ2

a(H∗) is given by

Σ2
a(H∗) :=

∑
j∈Z

cov (ψ (ΔaBH∗(t0),ΔaBH∗(t1)) , ψ (ΔaBH∗(tj),ΔaBH∗(tj+1)))

and is well defined and belongs to [0,+∞).
(ii) Let now consider 0 < τ0 < τ1 < . . . < τm for a finite m then under the same assumption we can enhance

the previous CLT to the vector

n(1−γ)/2
(
IRSγ,τ1

a,n

(
BH(·)

)− Λa(H(τ1)), . . . , IRSγ,τm
a,n

(
BH(·)

)− Λa(H(τm))
)

with a well defined limiting covariance S.

Remark 4.4.
(1) Here again, one can use results of [32] to get explicit estimates on the speed of convergence for this CLT.
(2) It is highly interesting to upgrade the previous CLT to the trajectory level, needing then a tightness result,

for example to test if the Hurst coefficient is always greater than 1/2, or to perform other test.

5. Numerical results

In this section, for numerical estimation of the Hurst index by IRS, we have chosen a binomial filter of order 2,
i.e. a = (1,−2, 1), insuring the convergence of the estimator Ĥn = Λ−1

a (IRSa,n(BH)) for any H ∈ (0, 1). At
first, we analyze through Monte-Carlo simulations the efficiency of the Hurst parameter of fBm estimator given
by IRS. Then, we study the estimators of some Hurst functions of mBm obtained by localized version of IRS,
and we compare it with the generalized quadratic variations (GQV) estimators which are described as follows

GQVγ,t∗
a,n

(
BH(·)

)
=

1
vn(γ)

�nt∗+n1−γ	∑
k=�nt∗−n1−γ	

{ [
ΔaBH(tk)(tk)

]2
E
[
ΔaBH(tk)(tk)

]2 − 1

}
.

where vn(γ) := �
{�nt∗ − n1−γ�, . . . , �nt∗ + n1−γ�}. See e.g. Coeurjolly [21] for more details about the properties

of this estimator and simulation results.

Estimation of the Hurst index of fBm

At first, by using Wood and Chan [18] algorithm, for n = 100 000 we have simulated three replications of the
fBm sequences BH = (BH(t0), . . . , BH(tn)), at regularly spaced times such that tk = k/n with k = 0, . . . , n, for
three values of the Hurst parameter H , denoted {H1, H2, H3}, and given by
(C1) H1 = 0.3 < 1/2 for short range dependent case;
(C2) H2 = 1/2 for standard Brownian motion;
(C3) H3 = 0.7 > 1/2 for long range dependent case,
see Figure 4.

Then, for each sample (Ci) with i ∈ {1, 2, 3}, we have computed the increment ratio statistic IRSa,n(BHi)
and the Hurst index given by Ĥn,i = Λ−1

a (IRSa,n(BHi)) where a = (1,−2, 1). We remark that the IRS method
provides right results given in Table 1.

These examples are plainly confirmed by Monte Carlo simulations. Indeed, for each case (Ci) with i ∈ {1, 2, 3},
we have made M = 1000 simulations of independent copies of fBm sequences B(k)

Hi
=
(
B

(k)
Hi

(t0), . . . , B
(k)
Hi

(tn)
)
,

for k = 1, . . . ,M . We find also good results illustrated by the following histograms, see Figure 5, which represent
the distribution of the estimator Ĥn,i, for i ∈ {1, 2, 3}. Thus, we have computed the estimated standard deviation

σ̂n,i =

√
1
M

∑M
k=1

∣∣∣Ĥ(k)
n,i −H

∣∣∣2 given in Table 2. We observe that the estimated standard deviation increases

with the value of the Husrt index H . This confirms entirely the informations provided by the histograms.
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Table 1. Estimated values of H .

Exact values of H 0.3 0.5 0.7
Estimated values of H 0.3009 0.4993 0.7000

Table 2. Estimated standard deviation.

Different values of H 0.3 0.5 0.7
Estimated Standard deviation 0.0027 0.0059 0.0072
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Figure 4. Simulated fBm process with H = 0.3 (left), H = 0.5 (middle) and H = 0.7 (right).

Local estimation of the Hurst function of mBm

To simulate a sample path of a mBm, we have used the Wood and Chan circulant matrix improved with
kriging interpolation method, which is faster than Cholesky–Levinson factorization algorithm. In fact, both
methods are not exact but provide good results. For, n = 10 000, we have simulated three samples of the mBm
sequences BH(·) =

(
BH(t0)(t0), . . . , BH(tn)(tn)

)
, at regularly spaced times such that tk = k/n with k = 0, . . . , n,

for three types of the Hurst function H(·), namely

(C4) linear function: H4(t) = 0.1 + 0.8t;
(C5) leriodic function H5(t) = 0.5 + 0.3 sin(πt);

(C6) logistic function: H6(t) = 0.3 +
0.3

(1 + exp(−100(t− 0.7)))
;

see Figure 6.
Then, for each sample (Ci) with i ∈ {4, 5, 6}, we have estimated the Hurst function Ĥn,i(·) by using the

localized version of IRS with γ = 1/3 and the GQV method. We note that both methods provide correct results
represented by Figure 7.
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Figure 5. Distribution of the estimated values of H in the case H = 0.3 (left), H = 0.5
(middle) and H = 0.7 (right).
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Figure 6. Simulated mBm process with H(·) linear function (left), H(·) periodic function
(middle) and H(·) logistic function (right).

These results are plainly confirmed by Monte Carlo simulations. Actually, for each case (Ci) with
i ∈ {4, 5, 6}, we have made M = 1000 simulations of independent copies of mBm sequences B

(k)
Hi(·) =(

B
(k)
Hi(t0)

(t0), . . . , B
(k)
Hi(tn)(tn)

)
, for k = 1, . . . ,M . Then we have computed the estimated mean integrate square

error (MISE) defined as

M̂ISE =
1
M

M∑
k=1

⎛⎝ 1
n

n−1∑
j=0

∣∣∣Ĥn,i(tj) −H(tj)
∣∣∣2
⎞⎠ (5.1)
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Figure 7. Estimation of the Hurst function H(·) with H(·) linear function (left), H(·) periodic
function (middle) and H(·) logistic function (right). The graphs of function H(·), Ĥ(IRS)

n (·) its
estimation by IRS, and Ĥ

(GQV )
n (·) its estimation by GQV, are represented in green, red and

blue respectively.

Table 3. M̂ISE given by IRS method and GQV method.

H(·) Linear H(·) Periodic H(·) Logistic

M̂ISE by IRS 2.6743 × 10−4 1.4743 × 10−4 5.3546 × 10−3

M̂ISE by GQV 8.9547 × 10−4 5.4743 × 10−4 8.9743 × 10−4

which is a criterion widely used in functional estimation, see Table 3.
We observe through Table 3 that both methods provide globally the same results when the function H(·)

varies slowly (see linear and periodic cases), whereas in the case where H(·) presents the abrupt variation it
appears that the GQV is a bit more precise compared to the IRS method.

Remark 5.1. Note that we have chosen the extra parameter γ equal to 1/3 as being recommended by Benassi
et al. in [13]. Moreover, this choice has been confirmed numerically as follows. First we have made some Monte
Carlo simulations with γ = 0.20, 0.21, . . . , 0.49, 0.50, and we have compared the estimated M̂ISE (defined above
by (5.1)). Then, we have remarked that our simulations suggest to select γ close to 1/3 for optimal estimation
of the Hurst function H(·).
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6. Proofs of the main results

This section contains the proof of the results of Section 3. Note that we have divided the proof of Theorem 4.1
in two parts: first we consider the general case of Gaussian processes with stationary increments and then in a
second part we investigate the application to fractional Brownian motion.

6.1. Covariance function of the a-Generalized increments

First, we can deduce as a corollary that the family of the a-Generalized increments (ΔaX(tk))0≤k≤n−L−1

forms a sequence of stationary identically distributed centered Gaussian random variables with variance

σ2
a = cov (ΔaX(tk),ΔaX(tk))

=
∫

R

|ga(ξ/n)|2 · f(ξ) dξ

= 2
∫

R+

|ga(ξ/n)|2 · f(ξ) dξ,

covariance given, for all 0 ≤ k1, k2 ≤ n− L− 1, by

ra(k1 − k2) = cov (ΔaX(tk1 ),ΔaX(tk2 ))

=
∫

R

ei(k1−k2)ξ/n|ga(ξ/n)|2 · f(ξ) dξ

= 2
∫

R+

cos ((k1 − k2)ξ/n) |ga(ξ/n)|2 · f(ξ) dξ,

and correlation between two successive a-Generalized increments defined by

ρa =
cov (ΔaX(tk+1),ΔaX(tk))

[cov (ΔaX(tk+1),ΔaX(tk+1))]
1/2 · [cov (ΔaX(tk),ΔaX(tk))]

1/2
=
ra(1)
σ2

a

,

where ga(·) is described by (2.6). Therefore, for a fixed 0 ≤ k ≤ n− L− 1, it is easy to remark that there exist
two independent standard Gaussian random variables Zk, Zk+1

D∼N (0, 1) such that

ΔaX(tk) = σaZk (6.1)

ΔaX(tk+1) = σa

(
ρaZk +

√
1 − ρ2

aZk+1

)
, (6.2)

where the sign D∼ means equal in distribution.

Example 6.1. In the particular case of the fBm, the correlation between two successive a-Generalized incre-
ments, denoted by ρa(H), does not depend on n. Indeed, we know that the spectral density of the fBm is defined
by (2.2), then we have

ρa,n(H) =

∫
R+

cos(ξ/n)|ga(ξ/n)|2 · ξ−(2H+1) dξ∫
R+

|ga(ξ/n)|2 · ξ−(2H+1) dξ
·

And after, we can change variable ξ/n to u. So this implies that

ρa,n =

∫
R+

cos(u)|ga(u)|2 · u−(2H+1) du∫
R+

|ga(u)|2 · u−(2H+1) du
= ρa(H),

which is independent of n.
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6.2. Proof of CLT for Gaussian processes with stationary increments

The proof uses the notion of Hermite rank and Breuer−Major theorem, see e.g. Arcones [2], Theorem 4,
page 2256, or Nourdin et al. [32], Theorem 4.1, page 2. Note that the CLT proved by Arcones is difficult and
for the proof, he uses a lot of diagram formulae and combinatorics. Recently, the proof of the result of Arcones
has been simplified by Peccati and Tudor [33] and Nourdin and Peccati [31] by using techniques of the Wiener
Chaos.

Definition 6.2 (Hermite rank). Let G be a Rd Gaussian vector and φ : Rd → R be a measurable function
such that E |φ(G)|2 < +∞. Then, the function φ is said to have Hermite rank equal to the integer q ≥ 1 with
respect to Gaussian vector G, if (a) E [(φ(G) − E (φ(G)))Pm(G)] = 0 for every polynomial Pm

(
on Rd

)
of degree

m ≤ q− 1; and (b) there exists a polynomial Pq

(
on Rd

)
of degree q such that E [(φ(G) − E (φ(G)))Pq(G)] 	= 0.

We first give the proof of Theorem 4.1 in the general framework of Gaussian processes with stationary
increments and then in a separate part the application to fractional Brownian motion.

Proof of Theorem 4.1. First, in the sequel we denote by Gk = (Gk, Gk+1) = (ΔaX(tk), ΔaX(tk+1)) the kth two
successive stationary a-Generalized increments defined by ((6.1), (6.2)). Note that the family (Gk)k=0,...,n−L−1

forms a stationary sequence. Then, according to Bardet and Surgailis [10], Appendix, page 31, we know that

E [ψ (Gk, Gk+1)] = Λ0(ρa), and E |ψ (Gk, Gk+1)|2 < +∞,

where Λ0(.) is defined by (2.10) and ρa is the correlation between Gk and Gk+1. To achieve our goal, we start
by defining a new function φ : R2 → R such that

φ(x, y) = ψ(x, y) − Λ0(ρa).

Then, φ is in fact a Hermite function with respect to Gaussian vector Gk = (Gk, Gk+1) with rank equal to 2.
Therefore, by applying Breuer−Major theorem, see e.g Arcones [2], Theorem 4, page 2256, or Nourdin et al. [32],
Theorem. 4.1, page 2, we get directly the CLT (4.2). So, the key argument of our proof is to determine the
Hermite rank of φ. We include here the proof of the fact that the Hermite rank is 2 as the proof does not seem
to appear elsewhere. Let P0(x, y) = c0, P1(x, y) = c11x+ c12y+ c10 and P2(x, y) = x2 be three polynomials (on
R2) with degree respectively 0, 1 and 2. First, it is easy to see that E [φ(Gk)P0(Gk)] = 0. Now, we must to show
that E [φ(Gk)P1(Gk)] = 0. We have

E [φ(Gk)P1(Gk)] = c11E [φ(Gk)Gk] + c12E [φ(Gk)Gk+1] + c10 E [φ(Gk)]︸ ︷︷ ︸
=0

.

Then,

E [φ(Gk)P1(Gk)] = c11E [ψ(Gk, Gk+1)Gk] − c11Λ0(ρa) E[Gk]︸ ︷︷ ︸
=0

+c12E [ψ(Gk, Gk+1)Gk+1] − c12Λ0(ρa) E[Gk+1]︸ ︷︷ ︸
=0

,

because Gk and Gk+1 are centered random variables. And, due to the fact that Gk and Gk+1 have a symmetric
role, we can write without any restrictions that

E [φ(Gk)P1(Gk)] = (c11 + c12)E [ψ(Gk, Gk+1)Gk] .

By using definition of Gk = (Gk, Gk+1) = (ΔaX(tk), ΔaX(tk+1)) given by ((6.1), (6.2)), we get

(c11 + c12)−1E [φ(Gk)P1(Gk)] = σaE

[
ψ
(
σaZk, σa

(
ρaZk +

√
1 − ρ2

aZk+1

))
Zk

]
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where Zk and Zk+1 are two independent standard Gaussian random variables Zk, Zk+1
D∼N (0, 1), and σa = ra(0)

is the variance of the a-Generalized increments sequence (ΔaX(tk))0≤k≤n−L−1.
Thus, by using scale invariant property of ψ(·, ·) specified by: ψ(CX,CY ) = ψ(X,Y ), we obtain

(c11 + c12)−1E [φ(Gk)P1(Gk)] = σaE

[
ψ
(
Zk,
(
ρaZk +

√
1 − ρ2

aZk+1

))
Zk

]
.

Next, we have

(c11 + c12)−1E [φ(Gk)P1(Gk)] =
σa

2π

∫
R2
ψ
(
z1, ρaz1 +

√
1 − ρ2

az2

)
z1 exp

(
−z

2
1 + z2

2

2

)
dz1dz2.

By applying the change of variables (z1, z2) = −(x1, x2), we deduce directly that

E [φ(Gk)P1(Gk)] = 0.

In the similar way, it is easy to prove that E [φ(Gk)P2(Gk)] 	= 0. So, by using Definition 6.2, we can say that φ
is a Hermite function with rank equal to 2. Therefore, Theorem 4.1 becomes an application of Breuer−Major
theorem described in [2], Theorem 4, page 2256, or [32], Theorem 4.1, page 2, and which gives directly the proof
of CLT (4.2). �

Proof of CLT for FBm. Next, we present the correlation function properties of the a-Generalized increments
sequence of a fBm.

Property 6.3 (correlation function of the a-Generalized increments). Let (BH(t), t ∈ [0, 1]) be a fBm with
Hurst parameter H ∈ (0, 1) and let (ΔaBH(tk))0≤k≤n−L−1 its a-Generalized increments sequence defined
by (2.5), with a ∈ A(p, L) a filter given by (2.3). Then, for all j ∈ Z, we have

ra,n(j) = − 1
2n2H

× Ca(j)

where ra,n(j) := cov (ΔaBH(t0),ΔaBH(tj)) and Ca(j) is given by

Ca(j) :=
L∑

l1,l2=0

al1al2 |j + l2 − l1|2H

∼
j→+∞

(
2H
2p

)
· Cp

2p(−1)p

(
L∑

l=0

all
p

)2

× j2H−2p with
(

2H
2p

)
=
∏2p−1

k=0 (2H − k)
(2p)!

·

And the correlation between two successive a-Generalized increments, is specified by

ρa(H) =

∑L
l1,l2=0 al1al2 |1 + l2 − l1|2H∑L

l1,l2=0 al1al2 |l2 − l1|2H
· �

Proof of Property 6.3. To compute the covariance function of the a-Generalized increments sequence, we start
by using the initial formula of the covariance function of a fBm defined by (3.1). Then, we obtain

ra,n(j) := cov (ΔaBH(t0),ΔaBH(tj))

=
L∑

l1,l2=0

al1al2E [BH(tl1)BH(tj+l2 )]

=
1
2

L∑
l1,l2=0

al1al2t
2H
l1︸ ︷︷ ︸

=0

+
1
2

L∑
l1,l2=0

al1al2t
2H
j+l2︸ ︷︷ ︸

=0

−1
2

L∑
l1,l2=0

al1al2 |tj+l2 − tl1 |2H

= − 1
2n2H

× Ca(j)
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where Ca(j) =
∑L

l1,l2=0 al1al2 |j + l2 − l1|2H . Now, we give an equivalent of Ca(j) when j → +∞. Note that a
similar asymptotic computation of ra,n(j) has been developed in [26] or [20], Lemma 6.4, page 202. To do this,
we use the Taylor expansion as follows

Ca(j) = j2H ×
L∑

l1,l2=0

al1al2

(
1 +

l1 − l2
j

)2H

, for all j ≥ L

= j2H ×

⎡⎢⎢⎢⎢⎣
L∑

l1,l2=0

al1al2 · 1︸ ︷︷ ︸
=0

+
+∞∑
k=1

(
2H
k

)
j−k

L∑
l1,l2=0

al1al2(l1 − l2)k

⎤⎥⎥⎥⎥⎦ , for all j ≥ L.

Next, by using (2.4), we know that when we sum over k, every term in the expansion gives a zero contribution
for any integer k < 2p. So this implies that

Ca(j) =
(

2H
2p

)
· Cp

2p(−1)p

(
L∑

l=0

all
p

)2

× j2H−2p + o
j→+∞

(
j2H−2p

)
, for all j ≥ L

∼
j→+∞

(
2H
2p

)
· Cp

2p(−1)p

(
L∑

l=0

all
p

)2

× j2H−2p.

This finishes the proof of Property 6.3. �

And after, we note that the function ψ(·, ·) satisfies the scale invariant property of ψ(·, ·) specified by:
ψ(CX,CY ) = ψ(X,Y ). So, this allows us to rewrite IRSa,n(BH) as follows

IRSa,n(BH) =
1

n− L

n−L−1∑
k=0

ψ
(
ΔaB

std
H (tk), ΔaB

std
H (tk+1)

)
where ΔaB

std
H represents the standardized version of ΔaBH described, for all 0 ≤ k ≤ n− L− 1, as

ΔaB
std
H (tk) =

ΔaBH(tk)√
Var [ΔaBH(tk)]

·

Note that we use the standardized version of ΔaBH because its covariance function, specified below, is inde-
pendent of n

ra(j) := cov
(
ΔaBstd

H (t0),ΔaBstd
H (tj)

)
=

ra,n(j)
ra,n(0)

=
Ca(j)
Ca(0)

·

Moreover, its asymptotic behavior is given by

ra(j) ∼
j→+∞

1
Ca(0)

·
(

2H
2p

)
· Cp

2p(−1)p

(
L∑

l=0

all
p

)2

× j2H−2p,
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which. So, according to Theorem 4.1, the key argument is to prove that∑
j∈Z

|ra(j)|2 < +∞.

Thus, by using a Riemman sum argument, we can deduce immediately that this condition is verified if and only
if 4H − 4p < −1, i.e. H < p − 1/4, and this implies that H ∈ (0, 3/4) if p = 1 and that H ∈ (0, 1) if p ≥ 2.
Therefore, the assumption (4.1) of Theorem 4.1 is satisfied and so we obtain a simple intuitive proof of the
CLT (4.2) applied to the IRS of fBm. This finishes the proof of Theorem 4.1.

6.3. Proof of CLT for mBm

The proof of Theorem 4.3 relies on a localization argument given in the following Lemma, where we prove
that the localized version of IRS for mBm converges in L2(Ω) to the IRS of fBm with a certain rate.

Lemma 6.4. First, we consider t∗ ∈ (0, 1) be an arbitrary fixed point, γ ∈ (0, 1) a fixed parameter which allows
to control the size of the indices set around t∗.

Let BH(·) = (BH(t)(t), t ∈ [0, 1]) be a mBm with Hurst function H(·) ∈ Cη ([0, 1], [Hmin, Hman]) and BH∗ =
(BH∗(t), t ∈ [0, 1]) the fBm with Hurst index H∗ = H(t∗) constructed by using the same sequence (εjk)(j,k)∈Z2

of i.i.d standard Gaussian random variables which have used for the definition of the mBm given by (3.2).
Moreover, we consider IRSγ,t∗

a,n

(
BH(·)

)
the localized version of IRS for mBm defined by (4.7), and IRSa,n (BH∗)

a modified version of the IRS for fBm described as follows

IRSa,n (BH∗) =
1

vn(γ)

�nt∗+n1−γ	∑
k=�nt∗−n1−γ	

ψ (ΔaBH∗(tk), ΔaBH∗(tk+1)) .

where vn(γ) := �
{�nt∗ − n1−γ�, . . . , �nt∗ + n1−γ�}. Then

E

∣∣∣IRSγ,t∗
a,n

(
BH(·)

)− IRSa,n (BH∗)
∣∣∣2 = O

n→+∞
(
n−γη

)
. (6.3)

Proof of Lemma 6.4. For n large enough, we have

|ΔIRSγ,η
n |2 :=

∣∣∣IRSγ,t∗
a,n

(
BH(·)

)− IRSa,n (BH∗)
∣∣∣2

=
1

vn(γ)2

×
∣∣∣∣∣∣

�nt∗+n1−γ	∑
k=�nt∗−n1−γ	

ψ
(
ΔaBH(tk)(tk), ΔaBH(tk+1)(tk+1)

)− ψ (ΔaBH∗(tk), ΔaBH∗(tk+1))

∣∣∣∣∣∣
2

.

Then, by using Cauchy–Schwarz inequality, we get

|ΔIRSγ,η
n |2 ≤

�nt∗+n1−γ	∑
k=�nt∗−n1−γ	

∣∣ψ (ΔaBH(tk)(tk), ΔaBH(tk+1)(tk+1)
)− ψ (ΔaBH∗(tk), ΔaBH∗(tk+1))

∣∣2 .
This implies that,

E |ΔIRSγ,η
n |2 ≤

�nt∗+n1−γ	∑
k=�nt∗−n1−γ	

E
∣∣ψ (ΔaBH(tk)(tk), ΔaBH(tk+1)(tk+1)

)− ψ (ΔaBH∗(tk), ΔaBH∗(tk+1))
∣∣2 .
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Now, we recall that Ω∗ represents the event with probability 1 introduced in Section 2.3. Then, according to
Bružaitė and Vaičiulis [17], Lemma 6.4, formula 3.3, page 262, and our Taylor expansion (3.3), we deduce that

E

{∣∣ψ (ΔaBH(tk)(tk), ΔaBH(tk+1)(tk+1)
)− ψ (ΔaBH∗(tk), ΔaBH∗(tk+1))

∣∣2 IΩ∗
}

≤ C (ρa(H∗)) · E {(|ΔaR(tk)| + |ΔaR(tk+1)|) IΩ∗} .

where the constant C (ρa(H∗)) > 0 depend only on ρa(H∗) and (ΔaR(tk)) corresponds to a-Generalized incre-
ments at tk of the rest (R(t), t ∈ [0, 1]) defined by (3.4). Next, by using (3.5), we deduce that there exists a
constant κ > 0 such as

E
∣∣ψ (ΔaBH(tk)(tk), ΔaBH(tk+1)(tk+1)

)− ψ (ΔaBH∗(tk), ΔaBH∗(tk+1))
∣∣2 IΩ∗ ≤ κn−γη.

Therefore, we obtain

E

{
|ΔIRSγ,η

n |2 IΩ∗
}
≤ κn−γη,

and recall that Ω∗ has probability one. This finishes the proof of Lemma 6.4. �

Proof of Theorem 4.3. First, according to our Lemma 6.4, we have

E

∣∣∣IRSγ,t∗
a,n

(
BH(·)

)− IRSa,n (BH∗)
∣∣∣2 = O

n→+∞
(
n−γη

)
.

Next, it is easy to see that

E

∣∣∣n(1−γ)/2
(
IRSγ,t∗

a,n

(
BH(·)

)− Λa(H∗)
)
− n(1−γ)/2 (IRSa,n (BH∗) − Λa(H∗))

∣∣∣2 = O
n→+∞

(
n1−γ(1+η)

)
.

After, by applying Theorem 4.1, we deduce that

n(1−γ)/2 (IRSa,n (BH∗) − Λa(H∗)) D→N (0, Σ2
a) with

{
H∗ ∈ (0, 3/4) if p = 1
H∗ ∈ (0, 1) if p ≥ 2.

Therefore, CLT (4.8) is satisfied if and only if γ(1 + η) > 1.
Let us now sketch how to extend it to the multidimensional case: first we may operate a multidimensional

freezing of time in the sense that there exists an almost sure event Ω∗ such that

∀i ∈ {0, . . . ,m}, B(H(t), t)IΩ∗ = B(H(τi), t)1Ω∗ +Ri(t)IΩ∗ , for all t ∈ [0, 1]

where
∀i ∈ {0, . . . ,m}, sup

s∈[0,1]

∣∣Ri(s)IΩ∗
∣∣ ≤ Ci(ω)|H(t) −H(τi)|, for all t ∈ [0, 1]

and the process B(H(τi), ·) are defined using wavelet expansion so that the correlations between them are well
described. We may then consider fractional Brownian motions rather than mBm. Secondly we use Cramer−Wold
device (see e.g. Thm. 7.7 in Billingsley [16]): it is sufficient to get the CLT for every real numbers b1, . . . , bm for

n(1−γ)/2
m∑

i=1

bi
(
IRSγ,τi

a,n (BH(τi)) − Λa(H(τi))
)

which is obtained exactly as before. �
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Additional note: This work was mostly done independently of the paper of Bardet and Surgailis [9], which
has been posted on the web while we were finishing to write this one. Compared to their results, we have firstly
provide another CLT for the IRS of fBm, under simple general assumptions. Then, we have produced a CLT and
a multidimensional CLT for the local estimation of the Hurst function of mBm by using an innovate freezing
time strategy. Moreover, the main advantages of our work, is that all proofs are quite simple and use some
natural arguments.

Acknowledgements. We are grateful to the editors and the two referees for their helpful comments and their very attentive
work leading to a real improvement of the paper as well as corrections of small mistakes.

References

[1] P. Abry, P. Flandrin, M.S. Taqqu and D. Veitch, Self-similarity and long-range dependence through the wavelet lens, in Theory
and applications of long-range dependenc. Birkhauser, Boston (2003).

[2] M.A. Arcones, Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22 (1994)
2242–2274.

[3] A. Ayache and M.S. Taqqu, Rate optimality of wavelet series approximations of fractional Brownian motions. J. Fourier Anal.
Appl. 9 (2003) 451–471.

[4] A. Ayache and M.S. Taqqu, Multifractional process with random exponent. Publ. Math. 49 (2005) 459–486.
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