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Abstract. We introduce a family of convex (concave) functions called sup (inf) of powers, which
are used as generator functions for a special type of quasi-arithmetic means. Using these means, we
generalize the large deviation result on self-normalized statistics that was obtained in the homogeneous
case by [Q.-M. Shao, Self-normalized large deviations. Ann. Probab. 25 (1997) 285–328]. Furthermore,
in the homogenous case, we derive the Bahadur exact slope for tests using self-normalized statistics.
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1. Introduction

The use of self-normalization in statistics dates back to Student’s t-distribution

Tn :=
√
n
Xn −m

Sn

where Xn := 1
n

∑n
i=1Xi is the empirical mean and S2

n := 1
n−1

∑n
i=1

(
Xi −Xn

)2
is the empirical unbiaised

variance of a Gaussian sample X1, . . . , Xn of mean m and unknown variance. This statistic Tn is widely used
to test m = m0 against alternative and it is well known that Tn has normal limit distribution when n → ∞
(even when the variables Xi are i.i.d. non Gaussian). Shao [14] proved the associated large deviations results
for i.i.d. random variables Xi that are self-normalized by homogenous means, i.e. an asymptotic estimate for

P

(
Xn

Mp,n
≥ x

) 1
n

(1.1)

with Mp,n :=
(

1
n

∑n
i=1 |Xi|p

) 1
p , p > 1 and minimal hypotheses on the common law of Xi. There have been

several further papers on this subject by Dembo and Shao [6,7], Lai and Shao [10], Shao [15] and a book by
De La Pena et al. [5]. For related results see also Tchirina [16].

The difficulty here is, of course, that the self-normalized random variables Xi/Mp,n are far from independent
and the result is indeed quite different from the classical Cramér-Chernoff large deviations [2]; in particular, no
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exponential moment hypothesis on Xi (actually, no moment hypothesis at all) is necessary. It is worth noting
that Shao’s applications, notably to Student’s t-distribution, make only use of the case p = 2, i.e. the quadratic
mean self-normalization; besides, the results for other values of p > 1 (the so-called Hölder or power means)
present no extra arduousness.

There has however been a renewed interest in recent litterature for quasi-arithmetic means, where the power
function x �→ xp is replaced by a more general strictly monotonic and continuous generator function φ : [0,∞) →
[0,∞). More precisely, by a famous result of Kolmogorov [9] and Nagumo [12], any reasonable notion of mean
can be written as

Mφ,n := φ−1

(
1
n

n∑
i=1

φ(Xi)

)
for such a function φ. Modern applications of quasi-arithmetic means in a probabilistic framework range from
Ordered Weighted Averaging operators, introduced in decision theory by Yager [17], to statistics, because of
their links with Archimedean copulas [3,4] and covariance functions [13].

Another potential application is the following. Suppose that the i.i.d. variables Xi follow an unknown
law μ(θ, c), where c is the parameter of interest. In cases where θ is simply a scale parameter (meaning that
there exists a function ν such that the law of Xi/ν(θ) does not depend on θ), self-normalization by any power
mean yields a scale-free statistic that can be used to test for c. Large deviations type results can then be
translated in terms of Bahadur asymptotic efficiency, see Section 4. In more general cases, one can try and
find φ such that E(X)

φ−1(E(φ(X))) = f(c) and does not depend on θ. This seems to be a difficult problem, but ad hoc
examples (starting from φ, thus admittedly not very useful) can be constructed to show at least that the class
of laws μ(θ, c) for which it can be solved is not empty. Suppose that for θ > 0 and

√
3/2 < c < 1, μ(θ, c) is the

uniform law on [θ, θ + λ(θ, c)] where

λ(θ, c) =
6θ − 3c2(1 + 2θ) + c

(
3 +

√
3(1 − c) (3 + 4θ2 + c (−3 + 4θ + 4θ2))

)
4c2 − 3

·

Then for φ(x) = x+ x2 one has indeed E(X)
φ−1(E(φ(X))) = c for all θ and the statistic

Tn :=
Xn

Mφ,n
(1.2)

can be used to test for c.
So the natural question arises, whether Shao’s asymptotic results on (1.1) can be extended using a more

general quasi-arithmetic mean Mφ,n. In this paper, we show large deviations for statistics of type (1.2). The
main drawback and technical difficulty is that now Mφ,n is no longer homogenous (indeed the only homogeneous
quasi-arithmetic means are the power means and the geometric mean, see [8] (p. 68)). For this reason, we need
to restrict ourselves to a subclass of quasi-arithmetic means where the generator function φ enjoys some extra
properties, studied in Section 2. The main theorem on self-normalized large deviations is then stated and proved
in Section 3. In Section 4, we show how large deviations results can be used to determine Bahadur exact slope
for self-normalized statistics.

2. Infimum and supremum of powers

We shall apply Shao’s method in [14] to a more general class of self-normalized large deviations, where the
power function x �→ xp used as a generator function for the normalizing mean is replaced by a more general
convex function φ or, equivalently, x �→ x

1
p is replaced by the concave function ψ := φ−1. The first step of our

approach consists in writing ψ as an infimum of concave power functions, which can be done only in certain
cases. Alternatively, the condition can be expressed in terms of φ written as a supremum of convex power
functions.
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2.1. Characterization of admissible generator functions

In the following, ∂ω(x) denotes the superdifferential (resp. subdifferential) at x of the concave (resp. convex)
function ω; a ∨ b denotes the maximum of a and b.

Proposition 2.1. For ψ : [0,∞) → [0,∞), the following are equivalent.
(i) There exists μ : [1,∞) → (0,∞] not identically = ∞ such that for all x > 0,

ψ(x) = inf
p≥1

μ(p)x
1
p . (2.1)

(ii) The function ω : x �→ log(ψ(exp(x))) is proper closed concave on R and ∂ω(x) ⊂ [0, 1] for all x ∈ R.

Proof. Let us start by assuming (i). Then, writing α := 1
p , y := log(x) and ϑ(α) := − log(μ( 1

α )), we turn (2.1)
into

ω(y) = inf
0<α≤1

αy − ϑ(α). (2.2)

So ω is the concave conjugate of ϑ̃, the concave hull of ϑ restricted to (0, 1]; the closure of ϑ̃ has support ⊂ [0, 1]
hence the conclusion.

Conversely, suppose that (ii) holds. Let ϑ be the concave conjugate of ω, it is a proper closed concave function
with support ⊂ [0, 1] because of the hypothesis on the superdifferential of ω. Inverting the Fenchel-Legendre
transformation, we can write ω(y) = inf0≤α≤1 αy − ϑ(α), which by closedness is equivalent to (2.2), hence (i)
with μ(p) := exp(−ϑ( 1

p )). �

Remarks. (i) clearly implies that ψ itself is nondecreasing, concave and that ψ(0) = 0 but this is not enough
(take ψ(x) = x+

√
x for instance). The example μ(p) = 1 for all p ≥ 1 shows however that ψ is not necessarily

(strictly) increasing. Possible infinite values for μ mean that the infimum on p is actually taken on the support
Sμ := [1,∞)\μ−1({∞}).

When a function ψ satisfies the hypothesis of Proposition 2.1, we shall say that it is an inf(imum) of powers
with weight μ. Note that we can (and will) always assume, without loss of generality, that μ(p) = exp(−ϑ( 1

p ))
for a proper closed concave function ϑ; in particular μ is continuous on its support. We shall say in that case
that μ is a regular weight and remark that infp≥1 μ(p) > 0. If furthermore ψ is differentiable, then μ(p) can be
parametrized by the contact point s > 0, p(s) = ψ(s)

sψ′(s) and μ(p(s)) = ψ(s)s−
1

p(s) (see examples below).

Proposition 2.2. For φ : [0,∞) → [0,∞], the following are equivalent.
(i) There exists ν : [1,∞) → [0,∞) not identically = 0 such that for all x > 0,

φ(x) = sup
p≥1

ν(p)xp. (2.3)

(ii) The function ω : x �→ log(φ(exp(x))) is proper closed convex on R and ∂ω(x) ⊂ [1,∞) for all x ∈ R

where φ(x) <∞.

The proof is very similar to that of Proposition 2.1 and is omitted (note that φ can take infinite values).
Examples. Some inf of powers with parametrization.

ψ(x) ω(x) p(s) μ(p(s))

log(1 + x) log log(1 + ex) (1+s) log(1+s)
s s

s
(1+s) log(1+s) log(1 + s)

√
1 + x− 1 log(

√
1 + ex − 1)

2(1+s−√
1+s)

s s
s

2(−1−s+
√

1+s)
(√

1 + s− 1
)

1 − e−x log
(
1 − e−ex) es−1

s (1 − e−s)s
s

es−1
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2.2. Bijectivity

Let us give the necessary and sufficient conditions under which an infimum (resp. supremum) of powers is
bijective, in which case its converse is a supremum (resp. infimum) of powers.

Proposition 2.3. Let ψ be an inf of powers with regular weight μ. Then the following are equivalent.
(i) lim

p→∞μ(p) = ∞;

(ii) ψ is unbounded;
(iii) ψ is a bijection: [0,∞) → [0,∞) and ψ−1(y) = supp≥1 μ(p)−pyp.

Proof. Suppose (i), fix any C < ∞ and pick p0 such that μ(p) ≥ C when p ≥ p0. Then choose x := 1 ∨(
C

infp>1 μ(p)

)p0
. We thus have infp≥p0 μ(p)x

1
p ≥ C and inf1<p≤p0 μ(p)x

1
p ≥ (infp>1 μ(p))x

1
p0 ≥ C so ψ(x) ≥ C.

Conversely, since μ(p) = exp(−ϑ( 1
p )) with ϑ concave, if μ does not have infinite limit at ∞ then it has to be

bounded. In that case ψ is also bounded (by the same constant).
Being concave and taking value 0 at 0, ψ unbounded implies that it is strictly increasing and surjective on

[0,∞), hence it is a bijection. Furthermore we have x ≥ ψ−1(y) ⇐⇒ y ≤ ψ(x) ⇐⇒ ∀p > 1, y ≤ μ(p)x
1
p ⇐⇒

∀p > 1, x ≥ μ(p)−pyp ⇐⇒ x ≥ supp>1 μ(p)−pyp. The converse is trivial. �

Proposition 2.4. Let φ be a sup of powers with regular weight ν. Then the following are equivalent.

(i) lim
p→∞ ν(p)

1
p = 0;

(ii) φ is finitely-valued;
(iii) φ is a bijection: [0,∞) → [0,∞) and φ−1(x) = infp≥1 ν(p)−

1
p x

1
p .

The proof is very similar to that of Proposition 2.3 and is omitted.

2.3. Operations

We shall now see that the class of functions satisfying the inf (resp. sup) of powers property is “large”, as it
is under minor conditions stable by powers, composition, and products. We give the proofs only in the inf case.

Proposition 2.5. If ψ is an inf (resp. sup) of powers, then so is ψα : x �→ ψ(x)α for 0 < α ≤ 1 (resp. for
α ≥ 1).

Proof. Take μα(p) := μ(αp)α if p > 1
α , μα(p) := ∞ else. �

Proposition 2.6. If ψ1 and ψ2 are inf (resp. sup) of powers, then so is ψ1 ◦ ψ2.

Proof. Using Proposition 2.5,

ψ1(ψ2(x)) = inf
p1>1

μ1(p1)ψ2(x)
1

p1

= inf
p2>p1>1

μ1(p1)μ2

(
p2

p1

) 1
p1

x
1

p2

= inf
p2>1

inf
p1∈(1,p2)

μ(p1)μ2

(
p2

p1

) 1
p1

︸ ︷︷ ︸
=:μ(p2)

x
1

p2 . �

Proposition 2.7. If ψ1 and ψ2 are inf of powers with p1 ≤ 1
α1

⇒ μ1(p1) = ∞ and p2 ≤ 1
α2

⇒ μ2(p2) = ∞ for
some α1 + α2 ≤ 1, then ψ1ψ2 is also an inf of powers. If φ1 and φ2 are sup of powers (no extra condition),
then so is φ1φ2.
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Proof. We can write

ψ1(x)ψ2(x) = inf
p1>

1
α1

inf
p2>

1
α2

μ1(p1)μ2(p2)x
1

p1
+ 1

p2

= inf
p>1

inf
1

p1
+ 1

p2
= 1

p

μ1(p1)μ2(p2)︸ ︷︷ ︸
=:μ(p)

x
1
p . �

3. Self-normalized large deviations

Let ψ be a bijective inf of powers with weight μ (cf. Prop. 2.3) and let φ := ψ−1 extended to R by even
symmetry (φ(x) := φ(|x|)). Let (Xi)i≥1 be a sequence of independent random variables having the same law as
an arbitrary X �≡ 0. Their empirical mean

Xn :=
1
n

n∑
i=1

Xi

will be normalized by the quasi-arithmetic mean

Mφ,n := ψ

(
1
n

n∑
i=1

φ(Xi)

)
.

Theorem 3.1. Suppose that there exist 1 < π0 < π1 <∞ such that μ(p) <∞ only if p ∈ Sμ := [π0, π1]. Then

for any x >
{ 0∨EX

ψ(Eφ(X)) if E|X | <∞
0 if E|X | = ∞,

lim
n→∞ P

(
Xn

Mφ,n
≥ x

) 1
n

= sup
c>0,p∈Sμ

inf
t≥0

E exp
(
t

(
cX − x

μ(p)
p

(
φ(X) + (p− 1)c

p
p−1

)))
.

Proof. For short we shall always write q := p
p−1 , whenever p > 1 is considered. We repeatedly use the fact that

x �→ xp

p and y �→ yq

q are convex conjugate functions and that for any x, y ≥ 0 we have xy = infb>0
(b−1x)p

p + (by)q

q .
Since ψ is an inf of powers, we obtain for x ≥ 0

P

(
Xn

Mφ,n
≥ x

)
= P

⎛
⎝ n∑
i=1

Xi ≥ inf
p∈Sμ

xμ(p)n
1
q

(
n∑
i=1

φ(Xi)

) 1
p

⎞
⎠

= P

(
n∑
i=1

Xi ≥ inf
b>0,p∈Sμ

xμ(p)

(
b−p

p

n∑
i=1

φ(Xi) + n
bq

q

))

= P

(
sup

b>0,p∈Sμ

n∑
i=1

(
Xi − xμ(p)

(
b−p

p
φ(Xi) +

bq

q

))
≥ 0

)

= P

(
sup

c>0,p∈Sμ

n∑
i=1

(
cXi − x

μ(p)
p

(φ(Xi) + (p− 1)cq)
)

≥ 0

)
. (3.1)

Then we can finish along the general lines of [14], with a significant complication due to the non-homogeneity
of φ. We prove the lower bound in Section 3.1 and the upper bound in Section 3.2. �
Remark. The hypothesis on the support of μ excludes some interesting examples. It could be replaced by a
decay hypothesis on the tail distribution of X ; this aspect will be studied in a subsequent paper.
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3.1. Lower bound

Suppose first E|X | <∞. Since we look for one-sided large deviations in (3.1) we need to have

E

(
cX − x

μ(p)
p

(φ(X) + (p− 1)cq)
)
< 0. (3.2)

Observe that, by Young’s inequality, with β(p) := μ(p)1−p

p

(
0∨EX
x

)p
we have for all values of c > 0 and p ∈ Sμ

c
0 ∨ EX

x
− μ(p)

cq

q
− β(p) ≤ 0 (3.3)

while the hypothesis on x combined to (2.1) implies x > 0∨EX

μ(p)(Eφ(X))
1
p
, hence

β(p) − μ(p)
p

Eφ(X) < 0. (3.4)

Adding up (3.3) and (3.4) yields precisely (3.2) and we obtain

lim inf
n→∞ P

(
Xn

Mφ,n
≥ x

) 1
n

≥ inf
t≥0

E exp
(
t

(
cX − x

μ(p)
p

(φ(X) + (p− 1)cq)
))

. (3.5)

If E|X | = ∞ and x > 0 then the right-hand side of (3.5) is zero, so the inequality is trivial.

Remark. So far we used no assumption on φ, except that it takes non-negative values on the range of X .
When φ = ψ−1, this function is convex and Jensen’s inequality implies that the lower bound on x is ≤ 1.

3.2. Upper bound

Now we use the fact that φ := ψ−1. Let K > 3 be fixed and let [π0
′, π1

′] := S′
μ :=

{
p ∈ Sμ : μ(p)

p ≤ C
}

,
where C is determined by the following (proof in Appendix 4.2):

Lemma 3.1. There exists C <∞ such that inft≥0 E exp (t(KX − xCφ(X))) ≤ 1
K .

We deduce from (3.1) that P

(
Xn

Mφ,n
≥ x

)
≤ I1 + I2 + I3, with

I1 := P

(
sup

c>K,p∈Sμ

n∑
i=1

(
cXi − x

μ(p)
p

(φ(Xi) + (p− 1)cq)
)

≥ 0

)

I2 := P

(
sup

0<c≤K,p∈S′
μ

n∑
i=1

(
cXi − x

μ(p)
p

(φ(Xi) + (p− 1)cq)
)

≥ 0

)

I3 := P

(
sup

0<c≤K,p∈Sμ\S′
μ

n∑
i=1

(
cXi − x

μ(p)
p

(φ(Xi) + (p− 1)cq)
)

≥ 0

)
.
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We start with I1. Let K ′(p) := xKq−1μ(p)
2q : the restriction c > K implies that K ′(p) < xμ(p)

2p (p− 1)cq−1, so

sup
c>K,p∈Sμ

n∑
i=1

(
cXi − x

μ(p)
p

(φ(Xi) + (p− 1)cq)
)

≥ 0

⇒ sup
c>K,p∈Sμ

n∑
i=1

(
|Xi|1|Xi|>K′(p) +K ′(p) − x

μ(p)
p

(
φ(Xi)
c

+ (p− 1)cq−1

))
≥ 0

⇒ sup
p∈Sμ

n∑
i=1

|Xi|1|Xi|>K′(p) − x
μ(p)
p

inf
c>K

n∑
i=1

(
φ(Xi)
c

+
1
2
(p− 1)cq−1

)
≥ 0

⇒ sup
p∈Sμ

n∑
i=1

|Xi|1|Xi|>K′(p) − xμ(p) inf
b>K

1
p

(
1
p

(
(
∑n

i=1 φ(Xi))
1
p

b

)p
+

1
q

((n
2

) 1
q

b

)q)
≥ 0

by Young’s inequality,

⇒ sup
p∈Sμ

n∑
i=1

|Xi|1|Xi|>K′(p) − xμ(p)

(
n∑
i=1

φ(Xi)

) 1
p(n

2

) 1
q ≥ 0

by Proposition 2.3,

⇒ sup
p∈Sμ

n∑
i=1

|Xi|1|Xi|>K′(p) − x

(
n∑
i=1

|Xi|p
) 1

p(n
2

) 1
q ≥ 0

and using Hölder’s inequality,

⇒ sup
p∈Sμ

n∑
i=1

1|Xi|>K′(p) − n

2
xq ≥ 0.

Finally we obtain that

I1 ≤ P

(
sup
p∈Sμ

n∑
i=1

(
1|Xi|>K′(p) − xq

2

)
≥ 0

)

≤ P

(
n∑
i=1

(
1|Xi|>infp∈Sμ K

′(p) − τ
)
≥ 0

)

with τ := min(x
π0

π0−1

2 , 1) > 0. Applying the Chernoff bound on binomial random variables, we deduce that

lim sup
n→∞

I
1
n
1 ≤

(
e

τ
P

(
|X | > inf

p∈Sμ

K ′(p)
))τ

.

Since infp∈Sμ μ(p) > 0, when K → ∞ the quantity infp∈Sμ K
′(p) → ∞ and therefore lim sup

n→∞
I

1
n
1 → 0.
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Let us now bound I2. We discretize c ∈ [0,K] and p ∈ S′
μ with a step Δ to be chosen later (Lem. 3.2). Let Tl

denote the interval [π0
′ + lΔ, π0

′ + (l + 1)Δ] and let pl realize infp∈Tl

μ(p)
p .

I2 ≤
K
Δ∑
j=1

π1
′−π0

′
Δ −1∑
l=0

P

(
n∑
i=1

(
jΔXi − x

μ(pl)
pl

(
Φ(Xi) + inf

p∈Tl

(p− 1)((j − 1)Δ)q
))

≥ 0

)

≤
K
Δ∑
j=1

π1
′−π0

′
Δ −1∑
l=0

inf
t≥0

(
E exp

(
t

(
jΔX − x

μ(pl)
pl

(
Φ(X) + inf

p∈Tl

(p− 1)((j − 1)Δ)q
))))n

.

By our choice of C in Lemma 3.1, for any 0 ≤ l < π1
′−π0

′
Δ we have μ(pl)

pl
≤ C. Let Yj,l be standard Gaussian

independent random variables, δ > 0 and

ξj,l := δYj,l + jΔX − x
μ(pl)
pl

(
Φ(X) + (pl − 1)(jΔ)

pl
pl−1

)
.

Lemma 3.2. There exists Δ > 0 such that for all j, l, the infimum over t ≥ 0 of exp(tξj,l) is reached for

tj,l ∈
[
0, 1

ΔK
π0

π0−1+1

]
.

Let us now define D(j, l) := (pl − 1)(jΔ)
pl

pl−1 − infp∈Tl
(p− 1)((j − 1)Δ)q.

Lemma 3.3. There exists a constant C′ < ∞ (depending only on π0 and π1) such that maxj,lD(j, l) ≤
C′K

π0
π0−1 log(K)Δ.

Using Lemma 3.2,

I2 ≤
K
Δ∑
j=1

π1−π0
Δ −1∑
l=0

exp
(
nxtj,l

μ(pl)
pl

D(j, l)
)

(E exp (tj,lξj,l))
n

≤ K(π1 − π0)
Δ2

exp
(
n

xC

ΔK
π0

π0−1 +1
max
j,l

D(j, l)
)

× sup
c>0,p∈S′

μ

inf
t≥0

(
e

(tδ)2

2 E exp
(
t

(
cX − x

μ(p)
p

(Φ(X) + (p− 1)cq)
)))n

and from Lemma 3.3 we deduce that

lim sup
n→∞

I
1
n
2 ≤ exp

(
xC′′ log(K)

K

)
sup

c>0,p∈S′
μ

inf
t≥0

e
(tδ)2

2 E exp
(
t

(
cX − x

μ(p)
p

(Φ(X) + (p− 1)cq)
))

.

The bound on I3 is simpler: since p ∈ Sμ\S′
μ,

I3 ≤ P

(
n∑
i=1

KXi − xCφ(X1)

)
≤ inf

t≥0
(E exp (t(KX − xCφ(X))))n ≤

(
1
K

)n

by Lemma 3.1, hence lim supn→∞ I
1
n
3 → 0 when K → ∞.
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Putting all together, the upper bound follows by letting K → ∞: for any δ > 0 we have

lim sup
n→∞

P

(
Xn

Mφ,n
≥ x

) 1
n

≤ sup
c>0,p∈Sμ

inf
t≥0

e
(tδ)2

2 E exp
(
t

(
cX − x

μ(p)
p

(Φ(X) + (p− 1)cq)
))

.

Combining this with the following completes the proof of Theorem 2.1.

Lemma 3.4 (straightforward adaptation from [14], Lem. 2.1). For any random variable X we have

lim
δ↘0

sup
b≥0

inf
t≥0

e
(tδ)2

2 E exp
(
t

(
cX − x

μ(p)
p

(Φ(X) + (p− 1)cq)
))

=

sup
b≥0

inf
t≥0

E exp
(
t

(
cX − x

μ(p)
p

(Φ(X) + (p− 1)cq)
))

for x > 0∨EX
ψ(Eφ(X)) . Moreover, the convergence is uniform in x ∈ [α, 1] for any 0∨EX

ψ(Eφ(X)) < α < 1.

4. An application to Bahadur exact slope

4.1. Bahadur results

Let us recall here some basic facts about Bahadur exact slopes of test statistics. For a reference, see [1,11].
Consider a sample X1, . . . , Xn having common law μθ depending on a parameter θ ∈ Θ. To test (H0) : θ ∈ Θ0

against the alternative (H1) : θ ∈ Θ1 := Θ\Θ0, we use a test statistic Sn, large values of Sn rejecting the null
hypothesis. The p-value of this test is by definition Hn(Sn), where

Hn(t) := sup
θ∈Θ0

Pθ(Sn ≥ t).

The Bahadur exact slope c(θ) of Sn is then given by the following relation

c(θ) = −2 lim inf
n→∞

1
n

log (Hn(Sn)). (4.1)

Quantitatively, for θ ∈ Θ1, the larger c(θ) is, the faster Sn rejects H0.
A theorem of Bahadur (Thm. 7.2. in [1]) gives the following characterization of c(θ): suppose that limn n

−1/2

Sn =: b(θ) for any θ ∈ Θ1, and that limn n
−1 log

(
Hn(n1/2t)

)
=: −F (t) under any θ ∈ Θ0. If F is continuous

on an interval I containing b(Θ1), then c(θ) is given by:

c(θ) = 2F (b(θ)). (4.2)

4.2. The homogeneous case

For the sake of simplicity, we assume now that we are in the homogeneous case, i.e. Mφ,n = Mp,n :=(
1
n

∑n
i=1 |Xi|p

) 1
p , with p > 1. Proofs can be adapted to the general case, adding suitable assumptions on φ.

We want to test whether the sample X1, . . . , Xn has exponential distribution E(β), where β > 0 is unknown
(null hypothesis H0), against the alternative that it has gamma distribution γ(θ, β) for some θ > 1 and β > 0
(alternative hypothesis H1). To achieve this we use the statistic

Tn =
Xn

Mp,n
·

Under H0, Tn is scale-free, therefore we can assume β = 1.
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From Theorem 1.1 of Shao [14],

lim
n→∞

1
n

logP (Tn ≥ x) = −I(x)
where

I(x) = − log
(

sup
c>0

inf
t≥0

E exp
(
t

(
cX − x

(
Xp

p
+
cq

q

))))
(4.3)

for any x > EX
(EXp)1/p = Γ(p+ 1)−

1
p . In order to apply Bahadur results, it remains to study the continuity of I

on its domain. This is the object of the following lemma:

Lemma 4.1. The rate function I is continuous on
(
Γ(p+ 1)−

1
p , 1
)
.

Proof of Lemma 4.1. Set for any (t, c, x) ∈ [0,∞) × (0,∞) × (T0,+∞)

H(t, c, x) = E exp
(
t

(
cX − x

(
Xp

p
+
cq

q

)))
·

Denote by

Φ(u) = cu− x

(
up

p
+
cq

q

)
·

The function Φ is convex on R
+ and reached its maximum at u0 = ( cx )1/p. Moreover Φ(u0) > 0 if and only if

x < 1. Since X has full support on R
+,

P

(
cX − x

(
Xp

p
+
cq

q

)
> 0
)
> 0.

From Lemmas 1 and 3 of [2], we know that for any (c, x), inft≥0H(t, c, x) is reached at some unique and finite
t = t(c, x) > 0. The function t(c, x) is given by the equation

∂

∂t
H(t, c, x) = 0

more precisely, ∂
∂tH being C1 on its domain, by the Implicit Function theorem t is C1 at each point (c, x). Thus

the same can be said of
H(c, x) = inf

t≥0
H(t, c, x) = H(t(c, x), c, x).

Since H → 0 when c → ∞, we also know that supc>0H is reached, therefore supc>0H(c, x) is reached for

some c = c(x) and this function is continuous on
(
Γ(p+ 1)−

1
p , 1
)
. So is I(x) = − log (H(c(x), x)). �

Suppose that we want to test H0 against the alternative that the sample has Γ(θ, β) distribution for θ > 1
and β > 0. Under the alternative,

Tn → T (θ, β) = θ

(
Γ(θ)

Γ(θ + p)

)1/p

·

For θ > 1, T (θ, β) > Γ(p+ 1)−
1
p and the Bahadur exact slope is therefore

c(θ) = − log

(
sup
c>0

inf
t≥0

E exp

(
t

(
cX − θ

(
Γ(θ)

Γ(θ + p)

)1/p (
Xp

p
+
cq

q

))))
·
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Appendix A. Technical lemmata

Proof of Lemma 3.1. Take any p > 1 such that μ(p) < ∞. Then φ(z) ≥ μ(p)−pzp and in particular Kz −
xφ(z) → −∞ when z → ∞, so E exp(KX − xφ(X)) <∞. Observe also that for any z > 0, Kz−xCφ(z) → −∞
when C → ∞. By Lebesgue’s dominated convergence theorem, it follows that E exp(KX − xCφ(X)) → 0 when
C → ∞. �

Proof of Lemma 3.2. It is easily checked that ξj,k satisfies the same conditions as ξj in [14], in particular, thanks
to the hypothesis on x, −∞ ≤ Eξj,l < 0. Therefore we know that there exists tj,l ≥ 0 such that

1 ≥ inf
t≥0

E exp (tξj,l) = E exp (tj,lξj,l)

≥ E exp
(
tj

(
δYj,l − x

μ(pl)
pl

(
Φ(Xj,l) + (pl − 1)(jΔ)

pl
pl−1

)))

choosing B large enough so P(X ≥ B) ≥ 1
e ,

≥ exp
(

(tj,lδ)2

2
− 1 − tj,lxC

(
φ(B) + (π1 − 1)K

π0
π0−1

))
=: exp(R(tj,l)).

It follows that tj,l has to be smaller than t+, the largest root of R, so the lemma is proved with Δ := 1

t+K
π0

π0−1 +1
·

�

Proof of Lemma 3.3. We have

D(j, l) = (pl − 1)(jΔ)
pl

pl−1 − (pl − 1)((j − 1)Δ)
pl

pl−1︸ ︷︷ ︸
D1

+ (pl − 1)((j − 1)Δ)
pl

pl−1 − inf
p∈Tl

(p− 1)((j − 1)Δ)q︸ ︷︷ ︸
D2

with
D1 ≤ (pl − 1) sup

c∈[jΔ,(j−1)Δ]

∂

∂c
c

pl
pl−1 Δ ≤ π1K

1
π0−1 Δ

and

D2 ≤ sup
p∈Tl

∣∣∣∣ ∂∂p (p− 1)((j − 1)Δ)q
∣∣∣∣Δ ≤ K

π0
π0−1 log(K)

(
1 +

1
(π0 − 1)2

)
Δ. �
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