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MANIFOLD INDEXED FRACTIONAL FIELDS ∗

Jacques Istas1

Abstract. (Local) self-similarity is a seminal concept, especially for Euclidean random fields. We
study in this paper the extension of these notions to manifold indexed fields. We give conditions on the
(local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to
identify the self-similar index. We describe a way of simulating Gaussian fractional fields.
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1. Introduction

This paper originated in a lecture given in June 2009 in Mons (France) during the conference “Random
differential equations and Gaussian fields”. The purpose of such a paper is both to present a synthesis of classical
results and recent results, even very recent. In addition, some open questions are mentioned. The central theme
of the paper is the manifold indexed fractional fields. In the Euclidean case, there is an enormous literature,
the most famous field being the fractional Brownian field of index 0 < H ≤ 1. But other examples exist, in
particular in the stable framework. The first question to ask on the fields is of course, after their definition,
their existence. We will see that the existence of fractional fields is related to the geometry of the manifold.
That is why this papers starts with non-probabilistic reminders. Also involved in particular the theorem of
Schönberg, the Bernstein functions and the fractional index. A major open question in this section concerns the
actual calculation of this fractional index. We then talk about the central concept of self-similarity, at least in
the Euclidean case, and then define what may happen to that concept in the manifold case. In particular, we
show that the fractional Brownian field exists for a H between 0 and half of the fractional index, and no more
between 0 and 1. In the α-stable case, this condition becomes 0 < H ≤ 1/α. The difference with the Euclidean
case is obvious. We then turn to the spectral or moving-average representations, also treated in detail in [32]. In
the manifold case, we can represent the fields in the Gaussian case, and yet it lacks sometimes explicit forms.
We then turn to the local self-similarity property, in short lass. The lass property is naturally written in the
manifold case, via the tangent bundle. We then obtain expected results, in terms of existence. Let us now turn
to the statistical estimation of parameters. This question has been much studied in the Euclidean case and
we present the classical results. The issue has been poorly studied in the manifold case even if it appears at
first glance that the same ideas can be reused. Finally there is the question of numerical simulation, at least
in the Gaussian case. Simulating a Gaussian field seems simple: it suffices to simulate a Gaussian vector. But
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even in the two-dimensional case, the vector size makes illusory direct simulation. There is not currently fast
and accurate simulation algorithm for Gaussian fields. We present here a method which is fast but rough, first
within the Euclidean case, then for manifolds.

2. A review of distance’s properties

2.1. Metric spaces, Riemannian manifolds

As usual, a metric space is a pair (E, d) where E is a set and d is a metric on E, that is, a function
d : E × E → R such that

• d(M,N) ≥ 0;
• d(M,N) = 0 if and only if M = N ;
• d(M,N) = d(N,M);
• d(M,P ) ≤ d(M,N) + d(N,P ).

In this paper, we denote by (M, g) a C∞-complete Riemannian manifold of dimension n. These strong assump-
tions of completude and C∞ are given by convenience and may be weakened in several places. The geodesic
distance d(M,N) is defined as the length of the shortest curve between M and N . When the Riemannian
manifold (M, g) is view as a metric space, it will be denoted by (M, d).

The most used Riemannian manifolds or metric spaces of this paper are the following.

• Euclidean spaces (Rn, ‖‖).
For M = (x1, . . . , xn) ∈ Rn, O = (0, . . . , 0), ‖OM‖ is the usual Euclidean norm

‖OM‖2 =
n∑
1

x2
i .

• Unit spheres (Sn, d).
The unit sphere of dimension n is defined by

S
n =

{
(x1, . . . , xn+1) ∈ R

n+1,

n+1∑
1

x2
i = 1

}
.

For M = (x1, . . . , xn+1), N = (y1, . . . , yn+1) ∈ Sn, the geodesic distance d(M,N) is defined by

cos d(M,N) =
n+1∑

1

xiyi.

• Hyperbolic spaces (Hn, d).
The hyperbolic space of dimension n is defined by

H
n =

{
(x1, . . . , xn+1) ∈ R

n+1, xn+1 > 0, x2
n+1 −

n∑
1

x2
i = 1

}
.

For M = (x1, . . . , xn+1), N = (y1, . . . , yn+1) ∈ Hn, the geodesic distance d(M,N) is defined by

coshd(M,N) = xn+1yn+1 −
n∑
1

xiyi.

• Real trees (T, d).
A metric space (T, d) is a real tree (e.g. [39]) if the following two properties hold for every M,N ∈ T.
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– There is a unique isometric map fM,N from [0, d(M,N)] into T such that fM,N(0) = M and
fM,N(d(M,N)) = N .

– If φ is a continuous one to one map from [0, 1] into T, such that φ(0) = M and φ(1) = N , we have

φ([0, 1]) = fM,N([0, d(M,N)]).

2.2. Functions of positive and negative type

Let us now recall the definitions of functions of positive or negative type . Let X be a set.

• A symmetric function (M,N) �→ φ(M,N), X × X → R+ is of positive type if, ∀n ≥ 2, ∀M1, . . . ,Mn ∈
X, ∀λ1, . . . , λn ∈ R

n∑
i,j=1

λiλjφ(Mi,Mj) ≥ 0.

• A symmetric function (M,N) �→ ψ(M,N), X ×X → R+ is of negative type2 if
– ∀M ∈ X, ψ(M,M) = 0

– ∀n ≥ 2, ∀M1, . . . ,Mn ∈ X, ∀λ1, . . . , λn ∈ R such that
n∑
i=1

λi = 0

n∑
i,j=1

λiλjψ(Mi,Mj) ≤ 0.

2.3. Bochner’s theorem

Let (x, y) �→ φ(x, y), R
n × R

n → R
+ be a continuous function of positive type such that φ(x, y) depends

only on the difference x− y. The Bochner’s theorem (e.g. [7,74]) characterizes these functions via their Fourier
transform.

Theorem 2.1. Bochner’s theorem.
Among the continuous real valued functions, the functions (x, y) �→ φ(x, y) of positive type on Rn, depending on
the difference x− y, are those functions which are the Fourier transforms of finite symmetric measures.

2.4. Schönberg’s theorem

Let ψ and φ two symmetric functions from X ×X onto R+ related by

φ(M,N) = ψ(O,M) + ψ(O,N) − ψ(M,N),

where O is a given point of X . In the probabilistic framework, φ will be the covariance function of a random
field, and ψ the variance of its increments.

Theorem 2.2. Schönberg’s theorem [7, 77].

(1) The following items are equivalent
• Function ψ is of negative type.
• ∀t ≥ 0, function exp(−tψ) is of positive type.

(2) The following items are equivalent.
• φ is of positive type.
• ψ is of negative type.

2Some authors say “functions of conditionally negative type”.
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2.5. Bernstein’s functions

Definition 2.3. Bernstein’s function.
A function x �→ F (x),R+ → R+ is a Bernstein function if there exist a, b ≥ 0 and a positive measure μ satisfying∫ +∞

0

λ

1 + λ
μ(dλ) < ∞,

such that

F (x) = a+ bx+
∫ +∞

0

(1 − e−λx)μ(dλ).

Proposition 2.4.
The following functions are Bernstein’s function

F (x) = xα, 0 < α ≤ 1,
F (x) = log(1 + x).

Proof of Proposition 2.4.

(1) Proposition 2.4 is straightforward for α = 1. For 0 < α < 1, the change of variable y = λx in the integral∫ +∞

0

1 − e−λx

λ1+α
dλ leads to

xα = Cα

∫ +∞

0

1 − e−λx

λ1+α
dλ,

where

C−1
α =
∫ +∞

0

1 − e−y

y1+α
dy.

(2) Let

μ(du) =
e−u

u
du.

Let ε > 0 and x ≥ 0 ∫ +∞

ε

(1 − e−ux)
e−u

u
du =
∫ +∞

ε

e−u

u
du−
∫ +∞

ε

e−u(x+1)

u
du.

Perform the change of variable v = u(x+ 1)∫ +∞

ε

(1 − e−ux)
e−u

u
du =
∫ ε(x+1)

ε

e−v

v
dv.

Perform the change of variable w = v/ε∫ +∞

ε

(1 − e−ux)
e−u

u
du =
∫ x+1

1

e−εw

w
dw.
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Using the dominated convergence Theorem as ε→ 0+ leads to∫ +∞

0

(1 − e−ux)μ(du) = log(1 + x). �

�

Proposition 2.5. Let F be a Bernstein function with a = 0. If ψ is of negative type, so is F (ψ).

Proof of Proposition 2.5. Let λ1, . . . , λn with
n∑
1

λi = 0. Then

n∑
i,j=1

λiλjF (ψ(Mi,Mj)) = b

n∑
i,j=1

λiλjψ(Mi,Mj) −
∫ +∞

0

n∑
i,j=1

λiλje−λψ(Mi,Mj)μ(dλ).

n∑
i,j=1

λiλjψ(Mi,Mj) is negative by assumption.
n∑

i,j=1

λiλje−λψ(Mi,Mj) is positive by Schönberg’s theorem. There-

fore,
n∑

i,j=1

λiλjF (ψ(Mi,Mj)) is negative and Proposition 2.5 is proved. �

2.6. Fractional index βE

We can now associate a fractional index βE to every metric space (E, d). This fractional index is of prime
importance through this paper. It is defined as

βE = sup{β > 0 such that dβ is of negative type}, (2.1)

with the convention βE = 0 if dβ is never of negative type.

Proposition 2.6.

• dβ is of negative type for 0 < β ≤ βE.
• dβ is never of negative type for β > βE.

Proof of Proposition 2.6. Let γ > 0 such that dγ is of negative type. Then, by Propositions 2.4 and 2.5, dαγ ,
with 0 < α ≤ 1, is of negative type. It follows that dβ is of negative type for 0 < β < βE .

Let (βp)p≥0 be an increasing sequence converging to βE (when βE < ∞). For all M1, . . . ,Mn ∈ E and

λ1, . . . , λn ∈ R such that
n∑
i=1

λi = 0

n∑
i,j=1

λiλjd
βp(Mi,Mj) ≤ 0. (2.2)

Let now perform βp → βE in (2.2)

n∑
i,j=1

λiλjd
βE (Mi,Mj) ≤ 0.

It follows that dβE is of negative type and Proposition 2.6 is proved. �
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2.7. Measure definite kernel distances

We will use in the following distances that are measure definite kernel distances. Let us therefore recall the
definition of a measure definite kernel (cf. [73]). Examples will be given later.

Definition 2.7. Measure definite kernel.
A function (M,N) �→ ψ(M,N), from E × E onto R+, is a measure definite kernel if there exists a measure

space (H, σ(H), μ), that is a set H, a σ-algebra σ(H) of sets in H, and a non-negative measure μ on σ(H), and
a map M �→ HM from E onto σ(H) such that

ψ(M,N) = μ(HMΔHN ),

where Δ denotes the symmetric difference of sets.

At this stage, the injectivity of the map M �→ HM is not required, although it is in practice since ψ will be
a distance.

Proposition 2.8. Let ψ be a measure definite kernel distance. Then ψ is of negative type.

Proof of Proposition 2.8. We first check that

ψ(M,N) =
∫

|1HM − 1HN |dμ

=
∫

(1HM − 1HN )2dμ.

Take λ1, . . . , λn with
n∑
1

λi = 0. Then

n∑
i,j=1

λiλjψ(Mi,Mj) = −2
∫ ( n∑

1

λi1HMi

)2

dμ ≤ 0. �

�

2.8. Examples

For a given metric space, the calculation of the fractional constant βE defined by (2.1) seems to be a very
difficult task. We give here most of the known results.

2.8.1. Finiteness of βE
Proposition 2.9. Assume that E contains three points M1,M2,M3 such that

d(M1,M2) > d(M1,M3),
d(M1,M2) > d(M2,M3).

In other words, there exists at least one non-isosceles triangle in E. Then βE <∞.

Proof of Proposition 2.9. Take λ1 = −1/2, λ2 = −1/2, λ3 = 1. One has
3∑

i,j=1

λiλjd
β(Mi,Mj) ∼ 1/2 dβ(M1,M2) > 0 as β → +∞. �
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2.8.2. A basic example: the metric square

Let us give a basic example, that proves that βE can take a large range of values.

Proposition 2.10. Let (M1,M2,M3,M4) be a unit metric square, i.e.

d(M1,M2) = d(M2,M3)
= d(M3,M4)
= d(M4,M1)
= 1,

d(M1,M3) = d(M2,M4)

= d,

with 0 < d ≤ 2.

Then

• 0 < d ≤ 1: βE = +∞;
• 1 < d ≤ 2: βE = 1/ log2 d.

Proof of Proposition 2.10. Take λ1, . . . , λ4 with
4∑
1

λi = 0. Let

F = 1/2
4∑

i,j=1

λiλjd
β(Mi,Mj).

Then

F = −(λ1 + λ3)2 + dβ(λ1λ3 + λ2λ4).

We can assume λ4 = 1 without loss of generality

F = −(λ1 + λ3)2 + dβ(λ1λ3 − λ1 − λ3 − 1),

∂F

∂λ1
= −2(λ1 + λ3) + dβ(λ3 − 1),

∂F

∂λ3
= −2(λ1 + λ3) + dβ(λ1 − 1).
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∂F

∂λ1
and

∂F

∂λ3
vanish for λ1 = λ3 = dβ/(dβ − 4). The eigenvalues of the matrix

(
∂2F

∂λiλj

)
i,j=1,3

are equal to

−dβ and dβ − 4. If dβ ≤ 4, the maximum of F is given by

Fmax =
2dβ

dβ − 4
(−d2β + 6dβ − 8).

The polynomial X �→ −X2 + 6X − 8 is positive for X ∈ [2, 4] and negative elsewhere.
When 0 < d ≤ 1, Fmax is always negative and βE = +∞.
When 1 < d ≤ 2, Fmax is negative for dβ ≤ 2 and positive for 2 < dβ < 4: βE = 1/ log2 d. �

2.8.3. Examples with βE = 0

For the record, let us note the following examples with βE = 0.

• Spaces (Rn, ||.||�q ) where ||x||q�q =
n∑
i=1

|xi|q with n ≥ 3, q > 2, [60, 61].

• Quaternionic hyperbolic space endowed with the geodesic distance [43, 44].

2.8.4. Euclidean spaces

Theorem 2.11. Let (Rn, ‖‖) be the usual Euclidean space. Then βRn = 2 and ‖‖β is measure definite kernel
distance for 0 < β ≤ 1.

Proof of Theorem 2.11.

(1) Take λ1, . . . , λn with
n∑
1

λi = 0. Then

n∑
i,j=1

λiλj

∥∥∥∥∥MiMj‖2 = −2

∥∥∥∥∥
n∑
1

λiOMi‖2 ≤ 0.

Applying Propositions 2.4 and 2.5, this proves βRn ≥ 2. Take λ±1 = −1, λ0 = 2, M0 = O, M−1 = −M1.
Then

1∑
i,j=−1

λiλj‖MiMj‖β = 2‖OM1‖β(2β − 4).

This is clearly positive when β > 2, this proves βRn = 2.
(2) Let us recall the Chentsov’s construction [23] that proves that the Euclidean norm ‖‖ is a measure definite

kernel.
For any hyperplane h of Rn not containing the origin, let r be the distance of h to the origin of Rn and let
s ∈ Sn−1 be the unit vector orthogonal to h. The hyperplane h is parameterized by the pair (s, r). Let H be
the set of all hyperplanes that do not contain the origin. Let σ(H) be the Borel σ-field. Let μ(ds, dr) = dsdr,
where ds denotes the uniform measure on Sn−1 and dr the Lebesgue measure on R. Let HM be the set of
all hyperplanes separating the origin and the point M . Then, there exists a constant c > 0 such that

‖MN‖ = cμ(HMΔHN ).

(3) Let us recall the Takenaka’s construction [81] that proves that the fractional power of Euclidean norm ‖‖β
is a measure definite kernel for 0 < β < 1.
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A hypersphere in Rn is parameterized by a pair (x, λ), where x ∈ Rn is its center and λ ∈ R+ its radius.
Let H be the set of all hyperspheres in Rn. Let σ(H) be the Borel σ-field. μβ is the measure μβ(dx, dλ) =
λβ−n−1dxdλ. Let HM be the set of hyperspheres separating the origin and the point M . Then, there exists
a constant cβ > 0 such that

‖MN‖β = cβμβ(HMΔHN ). �
�

2.8.5. Smooth manifolds

Theorem 2.12. Let (M, d) a C∞-complete Riemannian manifold of dimension n. Then βM ≤ 2. Moreover, if
there exists a point with positive Gauss curvature, then βM < 2.

Proof of Theorem 2.12.

(1) Take λ±1 = −1, λ0 = 2. Fix a point M0 ∈ M, and let M ε
0 ≡M0. Let v ∈ B(0, δ) and let M ε±1 = expM0

(±εv).

Then, by (5.2)

lim
ε→0+

∑1
i,j=−1 λiλjd

β(M ε
i ,M

ε
j )

ε
= 2‖v‖β(2β − 4).

This is clearly positive when β > 2, this proves βM ≤ 2.
(2) Let us first recall the following result on geodesic triangles (see figure below). We restrict ourselves to the

case of manifold of dimension 2. Consider a geodesic triangle of M which sides have lengths l1, l2, l3. Let α
be the angle between the sides of lengths l1 and l2. The sides of lengths l1 and l2 intersect in M . Let K be
the Gauss curvature at M . Consider an Euclidean triangle which sides have lengths l1, l2, l3. Let β be the
angle between the sides of lengths l1 and l2. Fix M and let η = max(l1, l2, l3) goes to 0.
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Then, the geodesic triangle formula [19] leads to

β = α+
1
6

sin(α)Kl1l2 + o(η2). (2.3)

Let us now come back to our problem. Let M0 be a given point of M. Let us consider two geodesics Γ1 and
Γ2 satisfying (see figure below)
(a) M0 ∈ Γ1, M0 ∈ Γ2.
(b) The tangent vector of Γ1 at M0 is orthogonal to the tangent vector of Γ2 at M0.
(c) The Gauss curvature at M0 is equal to K > 0.
For any ε > 0 small enough, let us now choice four points M ε

1 ,M
ε
2 ,M

ε
3 ,M

ε
4 such that

(a) M ε
1 ,M

ε
4 ∈ Γ1,

(b) M ε
2 ,M

ε
3 ∈ Γ2,

(c)

d(M0,M
ε
1 ) = d(M0,M

ε
4 )

= d(M0,M
ε
2 )

= d(M0,M
ε
3 )

= ε,

and

d(M ε
1 ,M

ε
4 ) = d(M ε

2 ,M
ε
3 )

= 2ε.

We apply the geodesic triangle formula (2.3) to each of the geodesic triangles (M ε
1 ,M0,M

ε
2 ), (M ε

2 ,M0,M
ε
4 ),

(M ε
4 ,M0,M

ε
3 ) and (M ε

3 ,M0,M
ε
1 ). For the first geodesic triangle (M ε

1 ,M0,M
ε
2 ), this leads to, as ε→ 0+

d(M ε
1 ,M

ε
2 )√

2ε
= 1 − Kε2

12
+ o(ε2),

the same holds for the three other triangles. Take now λ1 = λ4 = 1 and λ2 = λ3 = −1. Then, since K > 0

lim
ε→0+

1
ε3

4∑
i,j=1

λiλjd
2(M ε

i ,M
ε
j ) > 0.

d2 is not of negative type. This proves that βM < 2. �

�
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2.8.6. Spheres

Theorem 2.13. Let (Sn, d) be the n-dimensional sphere. Then βSn = 1 and d is a measure definite kernel
distance.

Proof of Theorem 2.13. We follow [65] that proves that d is measure definite kernel distance. For any point M
on Sn, define a half-sphere by

HM = {N ∈ S
n, d(M,N) ≤ π/2}.

Let ds be the uniform measure on Sn, let ωn be the surface of the sphere, and define the measure μ by

μ(ds) =
π

ωn
ds.

The area of a sphere zone of angle α is equal to ωn/(2π) α. But angular distance and geodesic distance are
confused on an unit sphere. Then

d(M,N) = μ(HMΔHN ).

This proves that d is a measure definite kernel. By Proposition 2.8, this proves βSn ≥ 1. �

Let S1 be a great circle of Sn. Take four equidistributed points on S1. These four points are a metric square
as defined in Proposition 2.10. Since log2 2 = 1, this proves βS1 ≤ 1, and therefore βSn = 1.

nb: The same is true for compact rank one symmetric spaces (in short CROSS) [46, 51]. Let us recall the
classification of the CROSS, also known as two points homogeneous spaces [48, 84]: spheres Sd, d ≥ 1, real
projective spaces Pd(R), d ≥ 2, complex projective spaces Pd(C), d = 2k, k ≥ 2, quaternionic projective spaces
Pd(H), d = 4k, k ≥ 2 and Cayley projective plane P 16. [46] has proved that geodesic distance on CROSS are
on negative type. The fractional index of a CROSS is therefore 1.

2.8.7. Hyperbolic spaces

Theorem 2.14. Let (Hn, d) be the n-dimensional hyperbolic space. Then βHn = 1 and d is a measure definite
kernel distance.

Proof of Theorem 2.14. The geodesic distance is a measure definite kernel [72, 82]. The proof is more technical
and we omit it. By Proposition 2.8, this proves βHn ≥ 1. Applying then [44], Proposition 7.6 one proves that
βHn = 1. �
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2.8.8. Trees

Theorem 2.15. Let (T, d) be a tree. d is measure definite kernel distance and βT ≥ 1.

It has been proved by [83] that the distance on real trees is a measure definite kernel. This can be easily seen
on a figure.

By Proposition 2.8, this proves βT ≥ 1.
Computing the fractional index βT for an arbitrary tree seems a difficult task. Let us nevertheless poit out

two remarks.
One can build trees with βT > 1. Let for instance T be the basic tree with one father and two sons. The

distance between the father and a son is equal to one, the distance between the two sons is equal to two. Basic
computations prove that βT = 2.

Let us now give a family of simple trees (Tp)p≥1 such that lim
p→+∞βTp = 1. A0 is the root of the tree. A0 has

p sons A1, . . . , Ap, with

d(A0, Ai) = 1 i = 0,
d(Ai, Aj) = 2 i = j, i, j = 0.

Choose λ0 = 1 and λi = −1/p for i = 1, . . . , p. Then

p∑
i,j=0

λiλjd
β(Ai, Aj) = −2 + 2β

p− 1
p

·

−2 + 2β
p− 1
p

is positive for β ≥ 1 + log2

(
p

p− 1

)
. It follows that βTp ≤ 1 + log2

(
p

p− 1

)
.

3. Self-similarity

3.1. Euclidean case

3.1.1. Generalities

Let us start with a heuristical definition of self-similarity. A self-similar object is similar to each part of itself,
i.e. the whole has the same shape as one or more of the parts. That means that a zoom in or out, from any
point, leaves, up to a scale factor, the object invariant. Zoom in or out is related to scale invariance. Zoom in
or out from any point is related to translation. Moreover, one should expect that no direction is favored. This
property, called isotropy, is related to isometry.

Since this paper is devoted to random fields, we will restrict ourselves to graphs of functions. Let M �→
f(M), Rn → R be a function which graph would be self-similar. One should expect the following property

(1) Invariance by isometry.
For any isometry of Rn and any M ∈ Rn

f(i(M)) − f(i(O)) = f(M) − f(O). (3.1)

(2) Scale invariance.
There exists a measurable scale function c(λ) such that, for any scale factor λ > 0

f(λM) = c(λ)f(M).

Take two scale factors λ1 and λ2

f(λ1λ2M) = c(λ1λ2)f(M),
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but

f(λ1λ2M) = f(λ1(λ2M))
= c(λ1)c(λ2)f(M).

This leads to, if f is non degenerate,

c(λ1λ2) = c(λ1)c(λ2).

c is therefore a fractional power, and the scale invariance is given by

f(λM) = λHf(M). (3.2)

Setting M = O in (3.2) leads to f(O) = 0. From (3.2), one deduces, for M = O, f(M) = ‖M‖Hf(M/‖M‖). It
suffices therefore to compute f(u) for any unit vector u. Applying (3.1) with any rotation r of center O leads
to f(r(u)) = f(u). There exists therefore a constant c such that

f(M) = c‖M‖H . (3.3)

We now apply (3.1) with any translation. This leads to, for any h ∈ Rn,

‖M + h‖H − ‖h‖H = ‖M‖H .
Setting M = −h leads to a contradiction. There is indeed no self-similar graphs.

We will therefore turn to stochastic self-similarity, or statistical self-similarity as physicists say.

The conditions (3.1) and (3.2) are know rewritten in distribution. Let
(d)
= stands for equality of finite dimen-

sional distributions.

(1) Invariance by isometry.
For any isometry of Rn and any M ∈ Rn

(X(i(M)) −X(i(O)))M∈Rn

(d)
= (X(M) −X(O))M∈Rn . (3.4)

(2) For all λ ≥ 0,

(X(λM))M∈Rn

(d)
= λH (X(M))M∈Rn . (3.5)

A field satisfying both (3.4) and (3.5) is called isotropicH-self-similar fields with strong stationary increments
(in short H-sssis field) [76].

3.2. Existence results

A classification of H-sssis fields is not available yet. Nevertheless, the Gaussian and stable cases are rather
well understood.

3.2.1. Euclidean fractional Brownian fields

H-sssis Gaussian fields lead to the celebrated fractional Brownian motion [23, 62, 68, 85].

Theorem 3.1. There exists a unique, up to a multiplicative constant, H-sssis Gaussian centered field, iff 0 <
H ≤ 1. Its covariance is given by

E(X(M)X(N)) = C/2[‖OM‖2H + ‖ON‖2H − ‖MN‖2H ].

When C = 1, this field is called a standard fractional Brownian motion.
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Remark 3.2. One classically speaks of fractional Brownian field. In order to avoid ambiguity, we will speak
in this paper of Euclidean fractional Brownian fields to emphasize the fact that the set index is the Euclidean
space.

Proof of Theorem 3.1. A computational Proof of Theorem 3.1, using the moving-average or harmonizable
representations, is possible (e.g. [75]). Nevertheless this proof is non-natural, and we prefer the following proof.

Applying (3.5) with point O, one deduces EX2(O) = 0 and X(O) = 0 (a.s.). Applying (3.4) with translation
and (3.5) leads to

E(X(M) −X(N))2 = EX2(M −N)
= ‖MN‖2H

EX2((M −N)/‖MN‖).

Applying (3.5) with rotation proves that EX2((M −N)/‖MN‖) is a constant C. Therefore, the covariance is
given by

E(X(M)X(N)) = C/2[‖OM‖2H + ‖ON‖2H − ‖MN‖2H ].

We now have to check whether this covariance function is indeed of positive type. By Theorem 2.2, we have to
check that function M,N �→ ‖MN‖2H is of negative type. By Theorem 2.11, this is true iff 0 < H ≤ 1. � �

3.2.2. Stable fractional fields

We assume the reader familiar with the stable fields, referring to [76]. Let us only recall that the characteristic
function of a standard symmetric α-stable variable Z is given by

E(eiλZ ) = exp(−|λ|α),

and that a field X is a symmetric α-stable if and only if all linear combination of X are symmetric α-stable
variables. The stability index α is between 0 and 2, 2 being indeed the Gaussian case. With a slight abuse of
language, one usually speaks of stable field for symmetric α-stable field.

Unlike the Gaussian case, there is no uniqueness in the stable case. Several stable H-sssis can be built
(e.g. [76]). We focus on the existence of stable H-sssis in terms of the fractional index H and the stability index
α [67, 76].

Theorem 3.3. There exist stable H-sssis fields iff 0 < H ≤ 1/α if 0 < α < 1 and 0 < H ≤ 1 if 1 ≤ α < 2.

Proof of Theorem 3.3. We refer indeed to [76].

(1) Since the restriction of a H-sssis field to the real line is a H-sssis process, it is sufficient to prove that H
and α must satisfy 0 < H ≤ 1/α if 0 < α < 1 and 0 < H ≤ 1 if 1 ≤ α < 2 in dimension one. This is done
by [76], Proposition 7.1.10.

(2) Then one needs to exhibit examples that cover the range of permissible index H and α. This is done in [76]
Chapter 7, Section 8. Let us mention that, for 0 < α < 2 and 0 < H < 1, this is done by integrating a
random stable measure against a kernel, like an harmonizable or moving-average kernel. These kernels are
presented in the section “Representations” of this paper. Please note that the one-dimensional process given
in [76], Chapter 7 can be written in higher dimension by replacing the absolute value by a Euclidean norm.
But this construction does not apply for 1 < H < 1/α. This is done by constructing Chentsov-Takenaka
fields. These construction indeed uses the fact that ‖‖β, 0 < β ≤ 1 are measure definite kernel distances.
We will use later this construction. �

�
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3.3. General case

3.3.1. Generalities

Self-similarity is based on scale invariance. Scale transformations are well defined in the Euclidean spaces,
they are nothing else than a dilation. Unfortunately, scale invariance in a metric space or a Riemannian manifold
is not well defined. For instance, there does not exist dilation in a compact metric space.

Let us be cautious. We don’t claim that defining scale invariance is impossible. We only claim that there is
not one canonical definition. We are using here two different ideas for a substitute to scale invariance.

(1) The invariance by zooming in and out is seminal. When one speaks of zoom, one implicitly refers to a under-
lying distance d. The minimal requirement seems then to impose the invariance of the increments, suitably
normalized. In other words, we call a field X(M)M∈E H-fractional, following [51, 52], if the normalized

increments
X(M) −X(N)
dH(M,N)

are constant in distribution. See section below.

(2) A second idea concerns the framework of smooth manifolds. We then use the exponential map to get the
scale invariance from the tangent bundle onto the manifold. But this way of proceeding is of course local.
See section below.

3.3.2. Fractional Brownian fields

We are looking for Gaussian fields which increments
X(M) −X(N)
dH(M,N)

are constant in distribution. There exists

therefore a Gaussian variable Z such that

X(M) −X(N)
dH(M,N)

(d)
= Z. (3.6)

Giving the distribution of the increments is not sufficient, we impose that, for a given point O,

X(O) = 0 (a.s.). (3.7)

Such a field is called a fractional Brownian field (indexed by E). Let us mention that, when d is the Euclidean
distance, definitions (3.6) and (3.7) fits with the Euclidean fractional Brownian field as defined in Theorem 3.1.

The question of existence then arises. The following Theorem shows that the Euclidean case is atypical.

Theorem 3.4. There exists a unique, up to a multiplicative constant, H-fractional Gaussian centered field, iff
0 < H ≤ βE/2. Its covariance is given by

E(X(M)X(N)) = C/2[d2H(O,M) + d2H(O,N) − d2H(M,N)].

When C = 1, this field is called a standard fractional Brownian motion.

Proof of Theorem 3.4. Definitions (3.6) and (3.7) clearly lead to the covariance function

E(X(M)X(N)) = C/2[d2H(O,M) + d2H(O,N) − d2H(M,N)].
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We have therefore to check whether this covariance function is of positive type. By Theorem 2.2, we have to
check that function M,N �→ d(M,N)2H is of negative type. By Proposition 2.6, this is true iff 0 < H ≤ βE/2.

Constructing covariance functions is not an easy task. The previous results provide us a way to construct
several covariance functions related to Bernstein functions. �

Proposition 3.5. Let F be a Bernstein function with F (0) = 0. The following functions are covariance func-
tions

R(M,N) = F (dβE/2(O,M)) + F (dβE/2(O,N)) − F (dβE/2(M,N)),

R(M,N) = e−F (dβE/2(M,N)).

Examples of covariance functions with 0 < H ≤ βE/2 are therefore

R(M,N) = log(1 + (d2H(O,M)) + log(1 + (d2H(O,N)) − log(1 + d2H(M,N)),

R(M,N) = e−d
2H(M,N),

R(M,N) =
1

1 + d2H(M,N)
·

Proof of Proposition 3.5. Proposition 3.5 is indeed a direct consequence of Schönberg’s Theorem 2.2, and
Propositions 2.4 and 2.5 on Bernstein’s functions. �

3.3.3. Stationary fields

In a metric space, there is no notion of translation, unlike the case of a Euclidean space. The notion of
stationarity has therefore to be adapted.

A field X(M),M ∈ E is a field with stationary increments if the distribution of X(M)−X(N) is a function
of d(M,N). A field X(M),M ∈ E is stationary if it is with stationary increments and if the distribution of
X(M) does not depend on M .

One should wonder if there exists a stationary solution to (3.6). Although this question is very close to the
stationary increments case, the answer is clearly different.

• (E, d) unbounded. Let X be a stationary field satisfying (3.6) and assume the existence of a moment of
E|X(M)|α for an α > 0. One the one hand, since (|a| + |b|)α ≤ Cα(|a|α + |b|α), it follows that E|X(M) −
X(N)|α ≤ 2CαE|X(M)|α and E|X(M) − X(N)|α is bounded. On the other hand, E|X(M) − X(N)|α =
E|Z|αdαH(M,N) is clearly unbounded. There does not exist a stationary solution to (3.6) having an
(arbitrary) small moment.

• (E, d) bounded. The answer seems not to be known. Nevertheless, some remarks can be done. First, if X
is a Gaussian stationary field satisfying (3.6), then B(M) = X(M) −X(O) is a fractional Brownian field.
Therefore, index H still satisfies 0 < H ≤ βE/2. But all values between 0 and βE/2 are not necessarily
permissible. Indeed, let (E, d) = ([0, 1], |.|) and consider the Gaussian stationary solution. Its covariance
function is (t, s) �→ 1 − c|t− s|2H and is not of positive type for H > 1/2.

3.3.4. Set indexed fractional Brownian motion

Assume that distance d is a measure definite kernel as defined in Definition 2.7

d(M,N) = μ(HMΔHN ). (3.8)

By Proposition 2.8, d is of negative type and βE ≥ 1. Since d is a distance, the map M �→ HM , defined
in Definition 2.7, is injective. One can therefore define a standard fractional Brownian motion at least for
0 < H ≤ 1/2 and its covariance function is given by

E(X(M)X(N)) =
1
2
[
μ2H(HMΔHO) + μ2H(HNΔHO) − μ2H(HMΔHN )

]
.
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One can therefore consider that the field X is indexed by the set HM . Assume now that there exists a point O
such that HO = ∅. This is for instance the case for (Rn, ‖‖) but not for (Sn, d). Then, the covariance is given by

E(X(M)X(N)) =
1
2
[
μ2H(HM ) + μ2H(HN ) − μ2H(HMΔHn)

]
, (3.9)

That is the way [49, 50] define and study the set indexed fractional Brownian motion. But, assuming HO = ∅
seems to be an unnecessary condition.

3.3.5. Stable fractional fields

We are looking for stable fields which increments
X(M) −X(N)
dH(M,N)

are constant in distribution. There exists

therefore a symmetric α-stable variable Z such that

X(M) −X(N)
dH(M,N)

(d)
= Z (3.10)

E(eiλZ) = exp(−C|λ|α).

When C = 1, we say that the symmetric stable variable Z is standard. Giving the distribution of the increments
is not sufficient, we impose that, for a given point O,

X(O) = 0 (a.s.). (3.11)

Such a field X will be called an H-fractional α-stable field. Please note that, for the sake of simplicity, we omit
the word “symmetric” in the sequel. The question of existence then arises. The following theorem shows that,
once again, the Euclidean case is atypical.

Theorem 3.6. Existence of H-fractional α-stable fields.

• There is no H-fractional α-stable field when αH > βE.
• There exists H-fractional α-stable field for any H and α providing 0 < H ≤ βE/2.

• Assume moreover that distance d is measure definite kernel. Then there exists H-fractional α-stable field for
any H and α providing 1/2 ≤ H ≤ 1/α.

• For spheres and hyperbolic spaces, there exists H-fractional α-stable field iff 0 < H ≤ 1/α.

Proof of Theorem 3.6.

(1) We prove the first item by contradiction. Let λ, λ1, . . . , λn ∈ R and M1, . . . ,Mn ∈ E. On the one hand

n∑
i,j=1

λiλjE [exp(iλ(X(Mi) −X(Mj)))] = E

∣∣∣∣∣
n∑
i=1

λi exp(iλX(Mi))

∣∣∣∣∣
2

≥ 0.

On the other hand

n∑
i,j=1

λiλjE [exp(iλ(X(Mi) −X(Mj)))] =
n∑

i,j=1

λiλj exp(−|λ|αdαH(Mi,Mj)).

If αH > βE , Schönberg’s Theorem 2.2 implies that there exists λ such that exp(−|λ|αdαH(M,N)) is not of
positive type and the item is proved.
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(2) The idea is to build a Poissonian sum of independent fractional Brownian fields. Indeed, we prove that the
following formula for n ≥ 1, λ1, . . . , λn ∈ R, M1, . . . ,Mn ∈ E,

E

⎡⎣exp

⎛⎝i n∑
j=1

λjX(Mj)

⎞⎠⎤⎦ = exp

⎡⎣−
∣∣∣∣∣∣
n∑

i,j=1

λiλj(d2H(O,Mi) + d2H(O,Mj) − d2H(Mi,Mj))

∣∣∣∣∣∣
α⎤⎦ (3.12)

defines the distribution of an H-fractional 2α-stable field X(M),M ∈ E. We indeed only need to prove
that (3.12) defines the distribution of a stochastic field. We first need a preliminary lemma.
Let σ be a positive measure on [0,+∞) satisfying

∫ +∞

0

inf(1, u)σ(du) < ∞.

Let φ : Rn → C be a characteristic function such that there exist C > 0, η > 0, ∀x ∈ S1, ∀u ∈ R+

|1 − φ(uηx)| ≤ C inf(1, u). �

Lemma 3.7. Function Φ : Rn → C, defined by

Φ(x) = exp
(
−
∫ +∞

0

(1 − φ(uηx))σ(du)
)
,

is a characteristic function.

Proof of Lemma 3.7. We easily check that Φ(0) = 1. Function x �→ 1 − φ(uηx) is continuous and bounded
by C inf(1, u). By the dominated convergence Theorem, x �→ Φ(x) is a continuous function.
We now prove that x �→ Φ(x) is of positive type. By Schoenberg’s theorem, we have to check that function

x �→
∫ +∞

0

(1 − φ(uηx))σ(du) is of negative type. Take λ1, . . . , λp ∈ R with
p∑
i=1

λi = 0 and x1, . . . , xp ∈ Rn

p∑
i,j=1

λiλj

∫ +∞

0

(1 − φ(uη(xi − xj)))σ(du) = −
∫ +∞

0

p∑
i,j=1

λiλjφ(uη(xi − xj))σ(du).

Since φ is a characteristic function, it is of positive type and
p∑

i,j=1

λiλjφ(uη(xi − xj)) ≥ 0. It follows
p∑

i,j=1

λiλj∫ +∞

0

(1 − φ(u(xi − xj)))σ(du) ≤ 0. By Bochner’s theorem, x �→ Φ(x) is a characteristic function.

Let η ≤ 1/α. Let B be a fractional Brownian motion of index 0 < H ≤ βE/2. Using the previous Lemma
3.7, the following formula, for J ≥ 1, ∀M1, . . . ,MJ ∈ E, ∀λ1, . . . , λJ ∈ R

E

⎡⎣exp

⎛⎝i
J∑
j=1

λjX(Mj)

⎞⎠⎤⎦ = exp

⎡⎣− ∫ +∞

0

⎛⎝1 − E

⎛⎝exp

⎛⎝iuη
J∑
j=1

λjB(Mj)

⎞⎠⎞⎠⎞⎠σ(du)

⎤⎦
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defines the distribution of a random field X(M), M ∈ E. One then checks that ∀M,N ∈ E

E

[
exp
(

iλ
X(M) −X(N)
dH(M,N)

)]
= exp
[
−
∫ +∞

0

(
1 − E

(
exp
(

iuηλ
B(M) −B(N)
dH(M,N)

)))
σ(du)
]

= exp
[
−
∫ +∞

0

(1 − E (exp (iuηλZ))) σ(du)
]
,

where Z is a standard Gaussian variable. Let now

σ(du) = 4α
(∫ +∞

0

1 − e−v

v1+α
dv
)−1

du
u1+α

, 0 < α < 1,

and take η = 1/2. Then

E

[
exp
(

iλ
X(M) −X(N)
dH(M,N)

)]
= exp(−|λ|2α)

and the field X is H-fractional 2α-stable.

(3) Recall that distance d is a measure definite kernel if there exists a measure space (H, σ(H), μ) and a map
M �→ HM from E onto σ(H) such that

d(M,N) = μ(HMΔHN ),

where Δ denotes the symmetric difference of sets.
For β > 0, f ∈ Lβ(H, μ), define the pseudo-norm

||f ||β =
(∫

H

|f |βdμ
)1/β

.

It follows that

d(M,N) =
∫
H

|1HM − 1HN |dμ (3.13)

= ||1HM − 1HN ||ββ .

Let 1/2 ≤ H ≤ 1/α. We prove that the following formula, with n ≥ 1, λ1, . . . , λn ∈ R, M1, . . . ,Mn ∈ E,

E

⎛⎝exp

⎛⎝i n∑
j=1

λjX(Mj)

⎞⎠⎞⎠ = exp

⎛⎜⎝−
∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
j=1

λj1HMj

∣∣∣∣∣∣
∣∣∣∣∣∣
α

1/H

⎞⎟⎠ (3.14)

defines the distribution of an α-stable field X(M),M ∈ E. We follow Theorem 1 and Lemma 4 of [20]. We
have seen that function (x, y) �→ |x− y|γ , x, y ∈ R is of negative type if 0 < γ ≤ 2. It follows that function
(f, g) �→ ||f − g||1/H1/H , f, g ∈ L1/H(H, μ) is of negative type when H ≥ 1/2. Since αH ≤ 1, one can apply
Propositions 2.4 and 2.5: function (f, g) �→ ||f − g||α1/H , f, g ∈ L1/H(H, μ) is of negative type. Schoenberg’s
Theorem 2.2 implies that, for all λ ∈ R, function (f, g) �→ exp(−|λ|α||f − g||α1/H), f, g ∈ L1/H(H, μ) is of
positive type. (3.14) is therefore a characteristic function. The Kolmogorov consistency theorem then proves
that (3.14) defines the distribution of an α-stable stochastic fields.
Choosing n = 2 and λ1 = −λ2 in (3.14), and using (3.13), shows that X is H-fractional α-stable.



MANIFOLD INDEXED FRACTIONAL FIELDS 241

R
ap

id
e 

N
ot

e

Special Issue

Remark 3.8. One could wonder if function (f, g) �→ ||f − g||α1/H is always of negative type for H < 1/2.
Assume that we can choose three disjoints sets A1, A2 and A3 such that μ(A1) = μ(A2) = μ(A3) = c > 0.

Put f =
3∑
1

λi1Ai . Then

||f ||α1/H = cαH
(

3∑
1

|λi|1/H
)αH

.

But one knows [60, 61] that function (x, y) �→ ||x − y||p�q , x, y ∈ Rn is never of negative type when n ≥ 3,
0 < p ≤ 2 and q > 2. Function (f, g) �→ ||f − g||α1/H is not of negative type for H < 1/2 in this example.

(4) The fourth item follows directly from the three first items of Theorem 3.6 and Theorems 2.13 and 2.14.

�

4. Representations

We give in this section representations of Gaussian and stable fields and we refer to [32] for detailed results
and proofs. We assume the reader familiar with the concept of Gaussian or stable random measure, and refer
to [76].

4.1. Euclidean case

One wishes to represent the Euclidean fractional Brownian motion as a random integral or a random series.
Even if the result is well-known, we describe here a way to get it. One starts from Lévy-Khintchine’s formula.
Indeed, since function ‖MN‖2H is of negative type, there exists a quadratic form Q and an unique positive
symmetric measure μ such that

‖OM‖2H = Q(OM) +
∫

Rn

(1 − ei〈OM,Λ〉)μ(dΛ).

When H = 1, μ = 0 and Q(OM) = ‖OM‖2. Assume now 0 < H < 1. Assume provisionally that Q = 0 and
that measure μ admits a density

μ(dΛ) = f(Λ)dΛ.

Let λ > 0. On the one hand

‖λOM‖2H = λ2H‖OM‖2H ,

on the other, using the change of variable Λ̃ = λΛ

‖λOM‖2H =
∫

Rn

(1 − ei〈OM,Λ̃〉)f(Λ̃/λ)
dΛ̃

λn
·

This leads to, for all Λ̃

f(Λ̃) =
f(Λ̃/λ)
λn+2H

· (4.1)

Let now R be an arbitrary rotation of Rn of center O. One the one hand

‖λOR(M)‖2H = ‖OM‖2H ,
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on the other, using the change of variable Λ̃ = R−1Λ

‖λOR(M)‖2H =
∫

Rn

(1 − ei〈OM,Λ̃〉)f(RΛ̃)dΛ̃.

Basic computations shows that c is finite as soon as 0 < H < 1. This leads to

f(RΛ̃) = f(Λ̃). (4.2)

By combining both (4.1) and (4.2)

f(Λ) =
2c

‖Λ‖n+2H
,

where

c =
1
2

(∫
Rn

1 − ei〈1,Λ〉

‖Λ‖n+2H

)−1

dΛ.

The covariance function of the standard Euclidean fractional Brownian motion can therefore be written as

1
2
(‖OM‖2H + ‖ON‖2H − ‖MN‖2H

)
= c

∫
Rn

(1 − ei〈OM,Λ〉)

‖Λ‖n/2+H
(1 − e−i〈ON,Λ〉)

‖Λ‖n/2+H dΛ.

In other words, the standard Euclidean fractional Brownian motion can be represented as a stochastic integral

X(M)
(d)
= c

∫
Rn

1 − ei〈OM,Λ〉

‖Λ‖n/2+H dŴ (Λ),

where Ŵ is the Fourier transform of a random Brownian measure on L2(Rn). Let I be an isometry of L2(Rn).
X then admits the representation

X(M)
(d)
= c

∫
Rn

I

(
1 − ei〈OM,Λ〉

‖Λ‖n/2+H
)

dW (Λ).

In particular, when I is the Fourier transform, this leads to the moving-average representation [66]

X(M)
(d)
= c′
∫

Rn

(
‖OM − Λ‖n/2+H − ‖Λ‖n/2+H

)
dW (Λ).

The previous representations are only equality in distribution. More precise results, including (a.s.) equality,
are given in [31].

Let now en, n ≥ 0 be an orthonormal basis of L2(Rn). Since
1 − ei〈OM,Λ〉

‖Λ‖n/2+H belongs to L2(Rn)

c
1 − ei〈OM,Λ〉

‖Λ‖n/2+H =
∑
n≥0

fn(M)en(Λ)

and X can be represented as a random series

X(M)
(d)
=
∑
n≥0

fn(M)en(Λ)εn,
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where εn is a sequence of i.i.d. standard Gaussian variables. Note that these representations in distribution are,
with suitable conditions, almost surely equality [29].

Let us mention now that the Gaussian harmonizable and moving-average representation have a stable counter-
part [76]. Indeed, the two following fields are H self-similar with stationary increments

Y (M)
(d)
=
∫

Rn

1 − ei〈OM,Λ〉

‖Λ‖n/α+H
dW 1

α(Λ),

Z(M)
(d)
=
∫

Rn

(
‖OM − Λ‖n/α+H − ‖Λ‖n/α+H

)
dW 2

α(Λ),

where W 1
α and W 2

α are random stable measures.

4.2. Spherical case

4.2.1. Mercer’s theorem

Since the sphere is compact, we will use the Mercer’s theorem [86] that we remember now.
Suppose that k is a continuous symmetric kernel on a compact set X and that the integral operator T ,

L2(X, dx) → L2(X, dx) defined by

Tf(.) =
∫
X

k(., x)f(x)dx

is positive semidefinite, i.e. ∫
X

k(x, y)f(y)f(x)dxdy ≥ 0.

Then there is an orthonormal basis (ψn) of L2(X, dx) consisting of eigenfunctions of T , with corresponding
non-negative eignevalues (λn). k has the representation

k(x, y) =
∑
n≥0

λnψn(x)ψn(y),

where the convergence is absolute and uniform.

4.2.2. Expansions

We now give the harmonizable and moving-average representations of the spherical fractional Brownian
motion [53]. We should use the Lévy-Khintchine’s formula in the spherical case (e.g. [44]), but a direct compu-
tation is possible and we do it. The Gegenbauer polynomials [40,78,80], also known as ultraspherical polynomials,
are defined via the Rodrigue’s formula

P
(λ)
� (x) =

(−1)�

2��!
Γ (λ+ 1/2)Γ (�+ 2λ)

Γ (2λ)Γ (λ+ �+ 1/2)(1 − x2)λ−1/2

d�

dx�
[(1 − x2)λ−1/2(1 − x2)].

They satisfy P (λ)
� (1) =

(
�+ 2λ
�

)
. The spherical harmonics ([40], Chap. 11, [78]) are the eigenfunctions of the

Laplacian on Sn. Let SH� = {Sm,�, m = 1, . . . , h(�)} denotes the set of all spherical harmonics of degree �, then
the dimension of SH� is

h(�) =
2�+ n− 1
�+ n− 1

(
�+ n− 1

�

)
.
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We get the direct sum decomposition

L2(Sn) =
⊕
�≥0

SH�.

The spherical addition theorem, also known as the Legendre addition theorem [78,80], is given by

1
h(�)

h(�)∑
m=1

S�,m(M)S�,m(M ′) =
P

(λ)
� (

−−→
CM

−−−→
CM ′)

P
(λ)
� (1)

,

where C is the center of the sphere and λ = n/2 − 1.
We then get the harmonizable expansion of the spherical fractional Brownian motion.

X(M)
L2,(a.s.)

=
∑
�≥0

h(�)∑
m=1

√
−x�P (λ)(1)/h(�)εm,�(S�,m(M) − S�,m(O)), (4.3)

where the (εm,�) are i.i.d. centered standard normal variables and the (x�) are given by

arccos2H(x) =
∑
�≥0

x�P
(λ)
� (x).

Let us now prove expansion (4.3). Let R be the linear operator

Rψ(M) =
∫

Sn

ψ(M ′)d2H(M,M ′)dσ(M ′).

By the spherical addition theorem, the spherical harmonics are eigenfunctions of R∫
Sn

Sm,�(M ′)d2H(M,M ′)dσ(M ′) =
∫

Sn

Sm,�(M ′) arccos2H(
−−→
CM

−−−→
CM ′)dσ(M ′)

=
∑
�≥0

x�

∫
Sn

Sm,�(M ′)P (λ)
� (

−−→
CM

−−−→
CM ′)dσ(M ′)

= x�P
(λ)
� (1)/h(�)Sm,�(M).

Since H ≤ 1/2, the eigenvalues are non-negative and R is a non-negative definite operator. R is clearly sym-
metric. By Mercer’s theorem, a symmetric non-negative definite kernel can be expanded on its eigenfunctions.
Moreover, since the kernel R is continuous, the expansion hold L2 and (a.s.). The harmonizable expansion of
X is proved.

Let now define the following kernel

K(M,P ) =
∑
�≥0

h(�)∑
m=1

√
−x�P (λ)(1)/h(�)S�,m(M)S�,m(P ).

Thanks to the spherical addition theorem, K(M,P ) depends only on the geodesic distance d(M,P ). X then
admits the moving-average representation

X(M)
L2,(a.s.)

=
∫

Sn

(K(M,P ) −K(O,P ))dW (P ),
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where W is a random Brownian measure on L2(Sn, dσ). To find a simple analytic expression of K is an open
problem.

4.3. Hyperbolic case

Most of the paper [32] is devoted to the spectral analysis of the hyperbolic case. Let us briefly mention
the particular problem of the hyperbolic fractional Brownian motion. One aims, as in the Euclidean case, to
get a harmonizable representation. One starts too from the Lévy-Khintchine’s formula [44]. For H = 1/2, the
representation is given in [32]. For 0 < H < 1/2, since d2H is of negative type, one knows that there exists a
positive measure μ such that, for all z ∈ H

n

d2H(O, z) =
∫

(1 − φλ(z))μ(dλ),

where φλ is the eigenfunction, associated to the eigenvalue λ, of the hyperbolic Laplace-Beltrami operator. The
hyperbolic fractional Brownian motion therefore admits μ as spectral measure. We refer to [32] to know whether
this measure μ admits a density or not.

5. Local self-similarity

5.1. Euclidean case

Let us recall that a field X is self-similar with index H if

(X(λx))x∈Rn

(d)
= λH (X(x))x∈Rn .

One now aims to localize this property. This has been introduced since a while by [38] and rediscovered
by [8,69]. There is now no reason, even if one usually does, to restrict to fractional power for the scale function
c. A field X is locally asymptotically self-similar (in short lass) with scaling function c at point x0 if there exists
a non-degenerate3 tangent field Z such that

lim
ε→0+

(
X(x0 + εx) −X(x0)

c(ε)

)
x∈Rn

(d)
= (Z(x))x∈Rn . (5.1)

A field X is locally asymptotically self-similar with index H if c(ε) = εH . If a field X is self-similar with index
H , then X is lass with index H at point O with itself as tangent field. If a field X , satisfying X(O) = 0 (a.s.),
is H-sssis, then X is lass with index H at every point with itself as tangent field. The property of the tangent
fields has been investigated by [41,42]. Let us only mention, that, roughly speaking, the tangent field is, almost
everywhere, self-similar with stationary increments. In particular, if the tangent field is Gaussian, then it is an
Euclidean fractional Brownian field.

5.2. Manifold case

5.2.1. Definition

We present in this section the approach of [56]. Let us recall some notations. M is our manifold. Let M0 ∈ M.
TM0M is the tangent space to M at M0. Then, there exists a neighborhood V(M0) of M0 and δ > 0, see for
example [45, 70], such that

(1) for all M ∈ V(M0), there exists a unique minimal geodesic between M and M0;
(2) the exponential map expM0

at point M0 is a diffeomorphism between the open ball B(0, δ) ⊂ TM0M
and V(M0);

3The precise definition of a non-degenerate field depend on the context.
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(3) for any v, w ∈ B(0, δ) (e.g. [70], Chap. 5),

lim
ε→0+

d(expM0
(εv), expM0

(εw))
ε

= ‖v − w‖. (5.2)

We extend the lass notion to fields indexed by a manifold which is not in general a vector space. Hence,
we first have to interpret x0 + εx as a point of the manifold Rn without the help of the addition on Rn. Note
that the tangent space to Rn at any point is identified to Rn. On the one hand, x0 is a point of Rn, which
corresponds to the point M0 for the manifold M. On the other hand, x0 + εx is the shift of M0 by the vector
εx ∈ Tx0Rn ≈ Rn. Also, since the geodesics in Rn are the segments, we have

x0 + εx = expx0
(εx).

Then, we propose to replace in (5.1) the point x0 by M0 and its translate x0 + εx by

M0 + εv
def
= expM0

(εv). (5.3)

Note that M0 + εv is well defined as soon as v ∈ B(0, δ) and ε ∈ [0, 1]. Let us fix M ∈ V(M0). Then, there exists
a unique v ∈ B(0, δ) such that expM0

(v) = M so that M0 + v = M . Moreover, M0 + εv is the only point of the
geodesic between M0 and M such that

d(M0,M0 + εM) = εd(M0,M).

The range of M0 + εv is the geodesic between M0 and M as ε varies in [0, 1]. In addition, as ε tends to zero,
M0 + εv tends to M0 in the direction given by this geodesic.

Definition 5.1. X = (X(M))M∈M is locally asymptotically self-similar (lass in short) at point M0 with index
h(M0) > 0 if

lim
ε→0+

(
X(M0 + εv) −X(M0)

εh(M0)

)
v∈B(0,δ)

(d)
= (ZM0(v))v∈B(0,δ)

where ZM0 is a non degenerate field, that is ∃u, such that

P(ZM0(u) = 0) = 1,

and
(d)
= stands for equality of finite dimensional distributions. ZM0 is called the tangent field at point M0 of X .

As one could expect, the definition of a lass random field at point M0 and the definition of its tangent field
coincide with the Euclidean definitions in the framework of Euclidean random fields.

5.2.2. Weak stationarity

We extend now the weak stationarity in the framework of manifold indexed fields.

Definition 5.2. The increments of the field X = (X(M))M∈M are weakly stationary if for all (M,N) ∈ M2,
the distribution of X(M) −X(N) only depends on the geodesic distance d(M,N). More precisely, there exists
a function ψ such that for all (M,N) ∈ M2 and all λ ∈ R,

E

[
eiλ(X(M)−X(N))

]
= ψ(λ, d(M,N)).
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5.2.3. Properties

Theorem 5.3. If X is lass at point M0 with index h(M0) and tangent field ZM0 , then ZM0(0) = 0 almost
surely and

∀λ ∈ (0, 1], (ZM0(λv))v∈B(0,δ)

(d)
= λh(M0)(ZM0(v))v∈B(0,δ). (5.4)

Moreover, if X has weakly stationary increments so has ZM0 .

Corollary 5.4. Let X be a lass random field at point M0 with index h(M0) and tangent field ZM0 . Assume
that X has weakly stationary increments and that for some u ∈ B(0, δ)\{0} and some γ > 0,

P(ZM0(u) = 0) = 1 and E|ZM0(u)|γ < +∞.

(1) If 0 < γ < 1, then 0 < h(M0) < 1
γ .

(2) If γ ≥ 1, then 0 < h(M0) ≤ 1.

Corollary 5.5. Assume that X has weakly stationary increments and is lass at point M0 with index h(M0)
and tangent field ZM0 .

(1) If ZM0 is a centered Gaussian random field, then
(a) h(M0) ∈ (0, 1];
(b) there exists a constant C > 0 such that the covariance function of ZM0 is given by

∀v, w ∈ B(0, δ), E(ZM0(v)ZM0(w)) =
C2

2

(
‖v‖2h(M0) + ‖w‖2h(M0) − ‖v − w‖2h(M0)

)
.

Moreover, ZM0 is an Euclidean fractional Brownian motion restricted to B(0, δ).
(2) If ZM0 is an α-stable random field, then 0 < h(M0) ≤ max

(
1, 1

α

)
.

Proof of Theorem 5.3. Since for v = 0, M0 + εv = M0, it is straightforward that ZM0(0) = 0 almost surely. Let
λ ∈ (0, 1]. Then, by definition

(ZM0(λv))v∈B(0,δ)

(d)
= lim

ε→0+

(
X(M0 + ελv) −X(M0)

εh(M0)

)
v∈B(0,δ)

(d)
= λh(M0) lim

ε→0+

(
X(M0 + ελv) −X(M0)

(λε)h(M0)

)
v∈B(0,δ)

(d)
= λh(M0)(ZM0(λv))v∈B(0,δ).

Let us now assume that X has weakly stationary increments. Let v, w ∈ B(0, δ). Then, by the lass property

ZM0(v) − ZM0(w)
(d)
= lim

ε→0+

X(M0 + εv) −X(M0 + εw)
εh(M0)

· (5.5)

Let us fix u ∈ B(0, δ) such that u = 0. We recall that M0 + εv = expM0
(v) and that M0 + εw = expM0

(w).
Then, by continuity of the distance and of the exponential map expM0

, there exists ε0 > 0 such that

∀ε ≤ ε0, d(M0 + εv,M0 + εw) < ‖u‖.

Therefore, the point

M0 +
d(M0 + εv,M0 + εw)

‖u‖ u = expM0

(
d(M0 + εv,M0 + εw)

‖u‖ u

)
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is well defined. By construction,

d

(
M0,M0 +

d(M0 + εv,M0 + εw)
‖u‖ u

)
= d(M0 + εv,M0 + εw).

Hence, by (5.5) and by the weakly stationarity of the increments of X ,

ZM0(v) − ZM0(w)
(d)
= lim

ε→0+

X
(
M0 + d(M0+εv,M0+εv)

‖u‖ u
)
−X(M0)

εh(M0)
·

Applying the lass property, we then have that

ZM0(v) − ZM0(w)
(d)
= ‖u‖−h(M0)

ZM0(u) lim
ε→0+

d(M0 + εv,M0 + εw)h(M0)

εh(M0)
·

For any v, w ∈ B(0, δ),

lim
ε→0+

d(M0 + εv,M0 + εw)
ε

= ‖v − w‖.

This leads to
ZM0(v) − ZM0(w)

(d)
= ‖u‖−h(M0)‖v − w‖h(M0)

ZM0(u)

for any v, w ∈ B(0, δ), which establishes that the increments of ZM0 are weakly stationary. �

Proof of Corollary 5.4. By the proof of Theorem 5.3,

∀v ∈ B(0, δ), ZM0(v)
(d)
= ‖v‖h(M0)‖u‖−h(M0)ZM0(u). (5.6)

Since ZM0(u) = 0 almost surely,
E|ZM0(u)|γ = 0.

Moreover, by (5.6), for every v ∈ B(0, δ)\{0}

ZM0(v) = 0 almost surely.

Furthermore, let us remark that u/2 ∈ B(0, δ) and then that ZM0(u/2) is well defined.

(1) Assume that 0 < γ < 1. Then,

|ZM0(u)|γ ≤
∣∣∣ZM0

(u
2

)∣∣∣γ +
∣∣∣ZM0(u) − ZM0

(u
2

)∣∣∣γ · (5.7)

By Theorem 5.3, ZM0 has weakly stationary increments and ZM0(0) = 0 almost surely. In particular,

ZM0(u) − ZM0

(u
2

)
(d)
= ZM0

(u
2

)
· (5.8)

Hence, since P(ZM0(u/2) = 0) = 1,

P

(
ZM0

(u
2

)
= 0, ZM0(u) = ZM0

(u
2

))
= P

(
ZM0(u) = ZM0

(u
2

))
= 1 > 0.

Therefore,

E|ZM0(u)|γ < E

∣∣∣ZM0

(u
2

)∣∣∣γ + E

∣∣∣ZM0(u) − ZM0

(u
2

)∣∣∣γ
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since the inequality (5.7) is strict on {ZM0(u) = 0, ZM0(u) = ZM0(u/2)}. Furthermore, by (5.8),

E

∣∣∣ZM0(u) − ZM0

(u
2

)∣∣∣γ = E

∣∣∣ZM0

(u
2

)∣∣∣γ ·
Therefore,

E|ZM0(u)|γ < 2E

∣∣∣ZM0

(u
2

)∣∣∣γ ·
Moreover, by Theorem 5.3, ZM0 satisfies the self-similarity property (5.4). This property applied with
λ = 1/2 leads to

E|ZM0(u)|γ < 21−γh(M0)
E|ZM0(u)|γ .

Then, since E|ZM0(u)|γ = 0, 1 < 21−γh(M0) which means that h(M0) < 1/γ.
(2) Assume now that γ ≥ 1. Furthermore, for any 0 < η < 1, E|ZM0(u)|η < +∞. The first part of this proof

implies that h(M0) < 1/η for every η ∈ (0, 1). Also, taking the asymptotics as η → 1, h(M0) ≤ 1.

�

Proof of Corollary 5.5.

(1) Assume that ZM0 is a centered Gaussian random field. By (5.4), since the Gaussian field ZM0 is non
degenerate, for every u ∈ B(0, δ),

P(ZM0(u) = 0) = 1.

Moreover, for any u ∈ B(0, δ),
EZM0(u)2 < +∞.

Then by Corollary 5.4, h(M0) ≤ 1.
Let us consider u ∈ B(0, δ)\{0} and recall (see Proof of Theorem 5.3) that

ZM0(v1) − ZM0(v2)
(d)
= ‖u‖−h(M0)‖v1 − v2‖h(M0)ZM0(u)

for every v1, v2 ∈ B(0, δ). As a consequence, for every v1, v2 ∈ B(0, δ),

Var(ZM0(v1) − ZM0(v2)) = C2‖v1 − v2‖2h(M0)

with C = ‖u‖−h(M0)√Var(ZM0(u)). Since ZM0(0) = 0 almost surely, we then have that

Cov(ZM0(v), ZM0(w)) =
1
2
[VarZM0(v) + VarZM0(w) − Var(ZM0(v) − ZM0(w))]

=
C2

2

(
‖v‖2h(M0) + ‖w‖2h(M0) − ‖v − w‖2h(M0)

)
for every v, w ∈ B(0, δ).
This covariance is the covariance of an Euclidean fractional Brownian motion restricted to B(0, δ). So that,
in this case, if ZM0 is a Gaussian random field, it is an Euclidean fractional Brownian motion restricted to
B(0, δ).

(2) Assume that ZM0 is an α-stable random field. Hence, by (5.4) and since the α-stable random field ZM0 is
non degenerate, for every u ∈ B(0, δ),

P(ZM0(u) = 0) = 1.
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Hence, for any γ < α and any u ∈ B(0, δ),

E|ZM0(u)|γ < +∞.

Assertion 2 is then a consequence of Corollary 5.4. �

�

5.2.4. Examples

We give in this section several examples, refering to [56] for the proofs.
5.2.4.1. Spherical moving-average fractional fields

Let n ∈ N\{0} and S
n = {x1, x2, . . . , xn+1 ∈ R,

n+1∑
i=1

x2
i = 1} is the n-dimensional unit sphere. The distance

d on Sn is its geodesic distance. By convention, S0 = {−1, 1}.
In this part, we introduce some fields indexed by Sn owing a moving-average representation. Let us recall the

representation for the Euclidean fractional α-stable moving-average motion (see [66, 76] or the section devoted
to representations) with index H ∈ (0, 1) and α ∈ (0, 2]

BH,α(M) =
∫

Rn

(
||MM ′||H−n/α − ||ÕM ′||H−n/α

)
dWα(M ′) (5.9)

where Õ is the origin of Rn and where Wα is a symmetric α-stable random measure on Rn with Lebesgue
measure as control measure. In the case α = 2, W2 is a random Brownian measure and BH,2 is an Euclidean
fractional Brownian motion.

In order to define spherical moving-average α-stable fields, we replace Wα by a random measure on Sn and
the Euclidean norm by the distance d on S

n. Let dx be the Lebesgue measure on R
n. Then, in (5.9), the term

||ÕM ′||H−n/α implies that the kernel M ′ �→ ||MM ′||H−n/α − ||ÕM ′||H−n/α is in Lα(Rn, dx) for any H ∈ (0, 1)
so that BH,α is well-defined. Without this correction term, the kernel will not be in Lα(Rn, dx) in view of
its behaviour as ||MM ′|| → +∞. Since the sphere is compact, we don’t need to reproduce this term in our
framework.

Let σn be the uniform measure on Sn, α ∈ (0, 2]. Let Wα be a symmetric α-stable random measure on Sn with
σn as control measure when 0 < α < 2 and let W2 be the Brownian random measure on S

n with σn as control
measure. Let us precise that

∫
Sn f(M)dWα(M) exists iff f ∈ Lα(Sn, σn). Furthermore, if f ∈ Lα(Sn, σn), then∫

Sn f(M)dWα(M) is an α-stable symmetric random variable and

∀u ∈ R, E

[
exp
(

iu
∫

Sn

f(M)dWα(M)
)]

= exp
[
−|u|α
∫

Sn

|f(M)|αdσn(M)
]
.

Let H ∈ R such that H = n/α. As soon as

XH,α(M) =
∫

Sn

d(M,M ′)H−n/αdWα(M ′), M ∈ S
n (5.10)

is well-defined, with convention 0β = +∞ for β < 0, XH,α is called spherical moving-average fractional α-stable
random field. Note that XH,2 is a Gaussian field.

Proposition 5.6. Let H ∈ R such that H = n/α. Then, the spherical moving-average fractional α-stable
random field XH,α is well-defined if and only if H > 0.

This is a difference with the Euclidean case: this difference is due to the fact that the sphere is bounded.

Proposition 5.7. Let H > 0 such that H = n/α.
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(1) Then XH,α has weakly stationary increments.
(2) (a) Assume H ∈ (0, 1). Then XH,α is lass at each point with index H. Furthermore, the tangent field

at point M0 is an Euclidean moving-average α-stable random field with index H. More precisely, for
every M0 ∈ Sn,

lim
ε→0+

(
XH,α(M0 + εv) −X(M0)

εH

)
v∈B(0,π)

(d)
= (BH,α(v))v∈B(0,π),

where BH,α is defined by (5.9).
(b) Assume H > 1. Then XH,α is lass at each point with index 1. More precisely, for every M0 ∈ Sn,

lim
ε→0+

(
XH,α(M0 + εv) −X(M0)

ε

)
v∈B(0,π)

(d)
= (ZM0,α(v))v∈B(0,π),

where for every v ∈ B(0, π),

ZM0,α(v) =
(n
α
−H
)∫

Sn

〈v,ΠM0(M ′)〉
‖ΠM0(M ′)‖ d(M0,M

′)H−1−n/αdWα(M ′),

with ΠM0 the inverse of the exponential map expM0
at point M0.

5.2.4.2. Spherical moving-average multifractional stable fields The previous examples have weakly stationary
increments on Sn, which implies that the index of the lass property at point M0 does not depend on M0.
However, for modelization purpose, it is sometime a constraining condition. We therefore introduce some multi-
fractional lass random fields: the index of the lass property will then vary. In the case of Euclidean random fields,
multifractional random fields have been defined by replacing the index H by a function h(·) in some integral
representations of fractional Euclidean fields, e.g. [2,8,9,11,63,69,79]. The most famous examples are multifrac-
tional Brownian fields, introduced either by replacing the Hurst index H by a function in the moving-average
representation of a fractional Brownian motion [69] and in its harmonizable representation [8]. Following this
approach, we define spherical moving-average multifractional α-stable and Gaussian fields.

Let us recall that α ∈ (0, 2] and consider h : Sn −→ (0,+∞) such that h(M) = n/α for every M ∈ Sn. Then,

Xh,α(M) =
∫

Sn

d(M,M ′)h(M)−n/αdWα(M ′), M ∈ S
n (5.11)

is well-defined and Xh,α is called spherical moving-average multifractional α-stable random field with multifrac-
tional function h. If α = 2, Xh,2 is a centered Gaussian random field.

Proposition 5.8. Let M0 ∈ Sn. Assume that the function h is C1 and that h(M0) < 1. Then, Xh,α is lass at
point M0 with index h(M0) and its tangent field at point M0 is an Euclidean moving-average α-stable random
field with index h(M0). More precisely,

lim
ε→0+

(
Xh,α(M0 + εv) −X(M0)

εh(M0)

)
v∈B(0,π)

(d)
=
(
Bh(M0),α(v)

)
v∈B(0,π)

,

where Bh(M0),α is defined by (5.9).

6. Estimation

6.1. Introduction

There is a huge litterature, theoretical or applied, devoted to the estimation of the fractional index of random
processes and fields. One bibliographical study has been done in 2001 [24], and since, numerous papers have
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been published. We don’t claim that the following bibliography of this hot topics is exhaustive. Generalized
quadratic variations have been introduced and studied in [57, 58]. Several papers extend, and refine their uses
[5,14–17,25,27,71]. Cramer–Rao bound and minimax rates for estimation of fractional index are studied in [28,
35, 64]. The estimation of multifractional functions began with [9, 11] and continues with, e.g., [3, 4, 6, 26].
Study of anisotropic Gaussian fields has been done by [18,33,55]. Extension to non-Gaussian fields are studied
in [12, 13, 63]. Extension to the sphere has been done by [54]. To sum up, the Gaussian and Euclidean case is
well understood. The Gaussian and manifold cases have not been really studied, except the sphere’s case [54].
The non-Gaussian case is not well understood.

The aim of this section is only to give the basic ideas in dimension one and in the unifractional case. The
same ideas are indeed used in the other cases and we refer to the bibliography for further developments.

6.2. An universal estimator of the local self-similarity index

As presented in the section 5, the local self-similarity is a seminal concept. Estimating the lass index is
therefore a very natural question. Following [30], we present here an estimator of the lass index. This estimator
is rather universal, but unfortunatly has a very poor rate of convergence. Let us be more precise.

Let X(t) be a stochastic process defined on [a, b] ⊂ R. Let t0 ∈ (a, b). For an index H , define the normalized
increments of X

Z(t, t′) =
X(t) −X(t′)

|t− t′|H , t = t′.

The definition of the lass index is given by the following assumption. Assume that there exists a random
variable Y such that

lim
t,t′→t0

Z(t, t′)
(d)
= Y,

and that the family log2 |Z(t, t′)| is uniformly integrable in a neighbourhood of t0.
For εN > 2−N , define VN

VN =
{
k ∈ Z s.t.

∣∣∣∣ k2N − t0

∣∣∣∣ ≤ εN

}
.

Let vN be the cardinal of the set VN
vN = #VN .

Define the log-variation of the process in the neighborhood VN of t0

WN =
−1
NvN

∑
k∈VN

log2 |Δk,NX |, (6.1)

Δk,NX = X

(
k + 1
2N

)
−X

(
k

2N

)
,

log2(x) = log(x)/ log(2).

Theorem 6.1. Assume that εN → 0 as N → +∞, with εN > 2−N . Then one has

lim
N→+∞

WN
(a.s.)
= H.
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Comments on Theorem 6.1.
We have to point out that, in Theorem 6.1, we don’t need the assumption vN → +∞. This is because the

proofs don’t rely on ergodic arguments. Indeed, this result is due to the behaviour of log |X(t)|. Let us give an
example. Let BH(t) be a fractional Brownian Motion of index 0 < H < 1. Clearly, the variance of log |BH(t)|
does not depend on t. It follows that

lim
t→0

log |BH(t)|
log |t|

L2

= H.

Proofs of Theorem 6.1. Let

VN =
1
vN

∑
k∈VN

log2 |2NHΔk,NX |.

One has

EVN =
1
vN

∑
k∈VN

E log2 |2NHΔk,NX |.

The sequence log2 |Z(t, t′)| is uniformly integrable, therefore the sequence log |Z(t, t′)| is uniformly integrable
too. It follows that

lim
N→+∞

E log2 |2NHΔk,NX | = E log2 |Y |,

and

lim
N→+∞

EVN = E log2 |Y |.

The variance of VN is given by

varVN =
1
v2
N

∑
k,k′∈VN

E
[{

log2 |2NHΔk,NX | − E log2 |2NHΔk,NX |}
×{log2 |2NHΔk′,NX | − E log2 |2NHΔk′,NX |}] .

By Cauchy–Schwarz inequality

varVN ≤ 1
v2
N

{ ∑
k∈VN

√
var log2 |2NHΔk,NX |

}2

.

Uniform integrability of log2
2 |2NHΔk,NX | yields

lim
N→+∞

var log2 |2NHΔk,NX | = var log2 |Y |.

The sequence var VN is therefore bounded

sup
N≥1

var VN <∞. (6.2)
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Borel–Cantelli’s lemma then implies

lim
N→+∞

VN
N

(a.s.)
= 0.

Basic computations leads to

VN
N

= H −WN , (6.3)

and Theorem 6.1 is proved. �

Let us now consider the rates of convergence.
Let X be a process satisfying conditions of Theorem 6.1. Let c > 0, c = 1. Process cX satisfies of course

conditions of Theorem 6.1. Denote by WN (X) (resp. WN (cX)) the log-variations of X (resp. cX) defined in (6.1)
associated with the discretization step 2−N .

It follows from (6.2) and (6.3) that

sup
N≥1

EV 2
N <∞,

and

E(WN (X) −H)2 ≤ supN≥1 EV 2
N

N2
·

Suppose that there exists a process X for which the rate of convergence is better, hence

lim
N→+∞

N2E(WN (X) −H)2 = 0.

By Cauchy–Schwarz

lim
N→+∞

NE|WN (X) −H | = 0.

Basic computations lead to

WN (cX) = WN (X) − log2 c

N
,

so that

E(WN (cX) −H)2 =
log2

2 c

N2
− 2 log2 c

N
E(WN (X) −H) + E(WN (X) −H)2,

and

lim
N→+∞

N2E(WN (cX) −H)2 = log2
2 c.

The mean squared error is only the square of the logarithm of the mesh 2−N of the grid.
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6.3. Long range dependance and increments of the fBm

Let ZN , N ≥ 0 be a stationary second-order process. Sequence Z is said to exhibit a long-range dependence
(e.g. [75]) if the series

∑
cov(Z0, ZN ) diverges and a short range dependence if this series converges. Let

X(t), t ∈ R be an Euclidean fractional Brownian motion. Let

ΔpX = N2H

(
X

(
p+ 1
N

)
−X
( p
N

))
be the normalized first order increment of X with mesh 1/N . Does these increments exhibits a long range
dependence? When H = 1/2, the answer is clearly negative and we only consider the case H = 1/2. A Taylor
expansion of order 2 shows that the series

∑
cov (Δ0X,ΔpX) is convergent for H < 1/2 and divergent for

H > 1/2. One usually says that the increments of the fractional Brownian motion are persistent when H > 1/2.
Let now consider the normalized second order increments

ΓpX = N2H

(
X

(
p+ 1
N

)
− 2X
( p
N

)
+X

(
p− 1
N

))
·

A Taylor expansion of order 3 shows that the series
∑

cov (Γ0X,ΓpX) is convergent. There is no long range
dependence for the second order increments. This raises deep questions in terms of modeling long range phe-
nomena, but that is another story! We will see in the next section that the square of the first order increments
exhibit long range dependance if H > 3/4 and short range dependance for H < 3/4. But the square of the
second order increments exhibits always a short range dependence. This property will be intensively used in the
sequel.

6.4. Generalized quadratic variations

6.4.1. Quadratic variations

Let X be a centered stationary normalized Gaussian process on [0, 1] with the covariance function r(t) =
EX(0)X(t). Let us assume the expansion

r(t) = 1 − |t|2HL(t), (6.4)

where L(t) is a slowly varying function in zero, that is, a function L such that, for all a > 0,

lim
x→+∞ f(ax)/f(x) = 1.

Quadratic variations on [0, 1] of process X at scale 1/N are defined by

VN =
N−1∑
k=0

(
X

(
k + 1
N

)
−X

(
k

N

))2

·

A classical result (e.g. [47]) ensures that

lim
N→+∞

N2H−1VN
(a.s.)
= 1.

The quadratic variations can therefore be used to identify parameter H

ĤN =
1
2

+
1
2

log2

VN/2

VN
·
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When considering the limiting distribution of the quadratic variations, Guyon and Leon [47] found two cases

(1) 0 < H < 3/4. The variable
√
N
(
N2H−1Vn − 1

)
converges in distribution, as N → +∞, to a Gaussian

variable;
(2) 3/4 < H < 1. The variable N2−2H

(
N2H−1Vn − 1

)
converges in distribution, as N → +∞, to a non-

Gaussian variable.

Therefore, the rate of convergence of estimator of H based on quadratic variations dramatically decreases when
3/4 < H < 1.

6.4.2. Extension of quadratic variations

Although non-differentiable processes are considered, [57, 58] introduce generalized quadratic variations as-
sociated with discrete second order derivative. Let ak, k = 0, . . . ,K be a discrete sequence of reals satisfying

K∑
k=0

ak = 0,

K∑
k=0

kak = 0,

K∑
k=0

k2ak = 0.

Sequence (ak) acts like a discrete second order derivative. For instance, sequence −1, 1 does not fulfill these
conditions, but sequence 1,−2, 1 does. Generalized quadratic variations of process X on [0, 1] at scale 1/N
associated with sequence (ak) are defined by

VN =
N−K∑
p=0

(ΔpX)2,

where

ΔpX =
K∑
k=0

akX

(
k + p

N

)
·

We give the case corresponding to Filtered White Noises [10]:

A.6.2.
Filtered White Noises.

Let g(t, λ) be the following harmonizable fractional-integral type kernel

g(t, λ) =
a(t)

|λ| 12 +H
+ ε(t, λ), (6.5)

with a(t) ∈ C2, ε(t, λ) ∈ C2,2 satisfying, for i, j = 0, 1, 2∣∣∣∣ ∂i+j∂ti∂λj
ε(t, λ)
∣∣∣∣ ≤ C

|λ| 12+η+j
,

with η > H . C denotes a generic constant that can change from an occurrence to another.



MANIFOLD INDEXED FRACTIONAL FIELDS 257

R
ap

id
e 

N
ot

e

Special Issue

Let W be a standard Brownian measure. Define process X by

X(t) =
∫

R

g(t, λ)(eitλ − 1)dW (λ).

Process X is called a Filtered White Noise. When a(t) = 1 and ε(t, λ) = 0, the resulting process is a fractional
Brownian motion. By construction, the value of a Filtered White Noise at 0 is equal to zero. This restriction
does not matter: the identification results we present below are still valid if we add an arbitrary random variable
to a Filtered White Noise. The function ε is clearly a remainder term, and conditions on this function are given
to ensure that ε really is a remainder term. Even if it is difficult to explain without a deep inspection of the
proof, the condition a ∈ C2 implies a decrease of the increments of orders 1 and 2 of the process.

We should wonder whether the Gaussian stationary processes considered for instance by [57–59], and that
satisfy more or less a condition like (6.4), can be viewed as Filtered White Noise. Such is the case, via a minor
modification of the process. Let f(λ) be the spectral density of a Gaussian centered stationary process Y . By
Bochner’s theorem, this spectral density is a positive function. Process Y can then be represented through a
stochastic integral with respect to a Brownian measure W

Y (t) =
∫

R

√
f(λ)eitλdW (λ).

Process X(t) = Y (t) − Y (0) is then represented as follows

X(t) =
∫

R

√
f(λ)(eitλ − 1)dW (λ)·

The estimator of parameter H derived from the generalized quadratic variations is then as follows

ĤN =
1
2

+
1
2

log2

VN/2

VN
· (6.6)

Theorem 6.3. Let X be a process satisfying A.6.2.

(1) Strong consistency.

lim
N→+∞

ĤN
(a.s.)
= H.

(2) Asymptotic normality.
As N → +∞,

√
N(ĤN −H) converges in distribution to a centered Gaussian variable.

Remark 6.4. Non-centered processes.
Let X be a process satisfying A.6.2. Let m(t) be C2. Then Theorem 6.3 holds for process Y (t) = X(t)+m(t).

To prove this remark, it is sufficient to notice that

VN =
N−K∑
p=0

(ΔpY )2 +
N−K∑
p=0

(Δpm)2 + 2
N−K∑
p=0

(ΔpY Δpm) ,

where VN are the variations associated with process Y .
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Proof of Theorem 6.3. The study of the VN requires estimates of their expectations and variances. Note that

EVN =
N−K∑
p=0

E

(
K∑
k=0

akX

(
k + p

N

))2

=
N−K∑
p=0

∫
R

K∑
k=0

∣∣∣∣akg(k + p

N
, λ

)
e

(
λ
k + p

N

)∣∣∣∣2 dλ, (6.7)

where function e stands for e(λ) = eiλ − 1.
Using the expansion for g(t, λ), we can express EVN as a sum of terms, each of them being of the following

form (p = 0, . . . , N −K)

I(S, S′)p,p′ =
∫

R

K∑
k,k′=0

akak′S

(
k + p

N
,Nu

)
S′
(
k′ + p′

N
,Nu

)
× e((k + p)u)e((k′ + p′)u))Ndu. (6.8)

A change of variables u = Nλ has been performed and each S, S′ stands for one of the functions at the right

hand-side of (6.5), so that either S(t, λ) =
a(t)

|λ|H+1/2
or S(t, λ) is bounded by such a term, and the same holds

for S′.
The following condition is implied by A.6.2 if S stands for one of the functions at the right hand-side of (6.5).
S(t, λ) ∈ C2,2([0, 1] × R

∗) and ∣∣∣∣ ∂i+j∂it∂jλ
S(t, λ)
∣∣∣∣ ≤ C

|λ| 12+δ+j
, (6.9)

for i = 0 to 2 and j = 0 to 2 with 0 < δ < 1, and the same holds for S′.
Since X is a Gaussian process, the variance of VN is given by

var(VN ) = 2
N−K∑
p,p′=0

⎛⎝∫
R

K∑
k,k′=0

akak′g

(
k + p

N
, λ

)
g

(
k′ + p′

N
,λ

)

× e

(
λ
k + p

N

)
e

(
λ
k′ + p′

N

)
dλ
)2

which is a sum of terms of the form I(S, S′)p,p′ . The estimation of the expectation and variance of VN first
requires the estimation of the I(S, S′)p,p′ . We therefore state the following result on the I(S, S′)p,p′ now. ��

Lemma 6.5. The following bound holds for N large enough.

|I(S, S′)p,p′ | ≤ C

N δ+δ′(1 + (p− p′)2)
·

Proof of Lemma 6.5. We use a Taylor expansion of S of order 2 for 0 ≤ k ≤ K

S

(
k + p

N
,Nu

)
=

2∑
j=0

∂j

∂tj
S
( p
N
,Nu
) kj

N jj!
+

k2

2N2

∂2

∂t2
S

(
κ+ p

N
,Nu

)
,
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where 0 ≤ κ ≤ K. The same holds for S′. We then obtain the following expansion for I(S, S′)p,p′

I(S, S′)p,p′ =
2∑
j=0

N−j ∑
j1+j2=j

1
j1!j2!

∫
R

⎡⎣ K∑
k,k′=0

akak′k
j1k′j2e((k + p)u)e((k′ + p′)u)

⎤⎦
× ∂j1

∂tj1
S
( p
N
,Nu
) ∂j2
∂tj2

S′
(
p′

N
,Nu

)
Ndu (6.10)

+
4∑
j=2

N−j ∑
j1+j2=j

1
j1!j2!

∫
R

K∑
k,k′=0

akak′k
j1k′j2e((k + p)u)e((k′ + p′)u)

× ∂j1

∂tj1
S

(
ε(j1)κ+ p

N
,Nu

)
∂j2

∂tj2
S′
(
ε(j2)κ′ + p′

N
,Nu

)
Ndu, (6.11)

where ε(j) = 1 if j = 2, 0 otherwise.
Let us first consider the case p = p′. We have to bound |I(S, S′)p,p| by C N−δ−δ′ .
We clearly have

K∑
k,k′=0

akak′k
j1k′j2e((k + p)u)e((k′ + p)u) =

K∑
k,k′=0

akak′k
j1k′j2eiu(k−k′).

Each integral of (6.10) is bounded by a term involving

∫
R

∣∣∣∣∣∣
K∑

k,k′=0

akak′k
j1k′j2eiu(k−k′)

∣∣∣∣∣∣ du
|u|δ+δ′+1

· (6.12)

The function
K∑

k,k′=0

akak′k
j1k′j2eiu(k−k′) and its derivatives up to order 2 vanish at u = 0 hence∑K

k,k′=0 akak′k
j1 k′j2eiu(k−k′) = o(|u|2(n+1)) when |u| → 0. Then

∫ 1

0+

∣∣∣∣∣∣
K∑

k,k′=0

akak′k
j1k′j2eiu(k−k′)

∣∣∣∣∣∣ du
|u|δ+δ′+1

< +∞,

since δ + δ′ < 2. Moreover, since δ + δ′ > 0 the integral (6.12) is convergent at infinity and therefore each term
of line (6.10) is an O(N−j−δ−δ′ ). It remains to bound (6.11). Each integral of (6.11) is bounded by

CN−δ−δ′
∣∣∣∣∣∣

K∑
k,k′=0

akak′k
j1k′j2

∣∣∣∣∣∣
∫

R

|e((k + p)u)e((k′ + p)u)| du
|u|δ+δ′+1

·

As |u| → ∞, e((k + p)u) ≤ O(1) hence∫ +∞

1

|e((k + p)u)e((k′ + p′)u)| du
|u|δ+δ′+1

≤ O(1),

and as |u| → 0, e((k + p)u) = O((k + p)u hence∫ 1

0+
|e((k + p)u)e((k′ + p′)u)| du

|u|δ+δ′+1
≤ o(pp′).
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Since p < N , (6.11) is bounded by O(N−δ−δ′). Lemma 6.5 is proved for p = p′.
It remains to prove Lemma 6.5 when p = p′. Expression (6.10) leads to the integral factor∫

R

eiu(p−p′)

⎡⎣ K∑
k,k′=0

akak′k
j1k′j2eiu(k−k′)

⎤⎦ ∂j1
∂tj1

S
( p
N
,Nu
) ∂j2
∂tj2

S′
(
p′

N
,Nu

)
Ndu.

We integrate by parts twice and this gives

∫
R

eiu(p−p′)

(p− p′)2
∂2

∂u2

⎡⎣⎛⎝ K∑
k,k′=0

akak′k
j1k′j2eiu(k−k′)

⎞⎠ ∂j1

∂tj1
S
( p
N
,Nu
) ∂j2
∂tj2

S′
(
p′

N
,Nu

)]
Ndu.

To prove that the previous integral converges, and that all terms coming from integrated terms in the
integration by parts vanish, we only have to prove the absolute convergence of the terms given by the second
derivative with respect to u of

ψ(u, j1, j2)
∂j1

∂tj1
S
( p
N
,Nu
) ∂j2
∂tj2

S′
(
p′

N
,Nu

)
, (6.13)

where ψ(u, j1, j2) =
K∑

k,k′=0

akak′k
j1k′j2eiu(k−k′). Clearly, as |u| goes to ∞,

∣∣∣∣ ∂i∂uiψ(u, j1, j2)
∣∣∣∣ = O(1) for i = 0, 1, 2.

This implies the convergence of (6.13) as |u| → ∞. To have convergence when |u| → 0 let us remark that∣∣∣∣ ∂i∂uiψ(u, j1, j2)
∣∣∣∣ = o(|u|3−i), when |u| → 0. Then∣∣∣∣∣∂i1ψ(u, j1, j2)
∂ui1

∂i2+j1

∂tj1∂ui2
S

(
p

N
,Nu

)
∂i3+j2

∂tj2∂ui3
S′
(
p′

N
,Nu

)∣∣∣∣∣ ≤ C|u|3−(i1+i2+i3)−(δ+δ′+1)

N δ+δ′+1+i2+i3
,

for i1 + i2 + i3 = 2. Hence each term of the first line (cf. (6.10)) of the expansion of I(S, S′)p,p′ is of order
1

N δ+δ′+j(p− p′)2
. We use a similar upper bound O(N−δ−δ′−2) for the second line (cf. (6.11)) of the expansion

of I(S, S′)p,p′ . Since p, p′ < N , we have proved Lemma 6.5 for p = p′. �

A second technical lemma relates the asymptotic behavior of I(S, S)p,p′ when S(t, λ) =
a(t)

|λ|H+ 1
2

to the function

Fγ(x) =
∫

R

K∑
k,k′=0

akak′
ei(x+k−k′)u

|u|γ+1
du.

Lemma 6.6.

I(S, S)p,p′ = N−δ−δ′a(pΔ)a(p′Δ)F2H(p− p′) +O

(
1

N δ+δ′+1(1 + (p− p′)2)

)
·

Proof of Lemma 6.6. To begin with, we use the same Taylor expansion of a at order 2 to get the expansions (6.10)
and (6.11)

Ip,p′ =
∫

R

⎡⎣ K∑
k,k′=0

akak′e((k + p)u)e((k′ + p′)u)

⎤⎦ a(pΔ)a(p′Δ)
N δ+δ′ |u|δ+δ′+1

du

+O

(
1

N δ+δ′+1(1 + (p− p′)2)

)
·
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Using
K∑

k,k′=0

akak′e((k + p)u)e((k′ + p′)u) =

⎛⎝ K∑
k,k′=0

akak′ei(k−k′)u

⎞⎠ ei(p−p′)u,

and Lemma 6.6 follows. �

Now we describe the asymptotic behavior of the expectation and variance of the VN as N goes to infinity.

Proposition 6.7. As N → ∞ the following convergences hold

N2H−1
EVN → F2H(0)

∫ 1

0

a2(t)dt, (6.14)

N4H−1var(VN ) → 2
∞∑

q=−∞
F 2

2H(q)
∫ 1

0

a4(t)dt. (6.15)

Proof of Proposition 6.7. Let us recall that (6.7) expresses EVN as a sum of terms that can be written as
I(S, S′)p,p′ . Using expansion (6.5), each integral

∫
R

K∑
k,k′=0

akak′g

(
k + p

N
, λ

)
g

(
k′ + p

N
, λ

)
e

(
λ
k + p

N

)
e

(
λ
k′ + p

N
λ

)
dλ,

can be written

I = Ip,p

(
a(t)

|λ|H+1/2
,

a(t)
|λ|H+1/2

)
+ 2Ip,p(

a(t)
|λ|H+1/2

, ε(t, λ)) + Ip,p(ε(t, λ), ε(t, λ)), (6.16)

where a change of variables u =
λ

N
has been performed.

Clearly, Ip,p

(
a(t)

|λ|H+1/2
,

a(t)
|λ|H+1/2

)
is the preponderant term as N → ∞. Applying Lemma 6.6 to this term

and Lemma 6.5 to the others, we get

EVN =
N−K∑
p=0

[
N−2Ha2

( p
N

)
F2H(0) +O

(
N−2H−1

)]
. (6.17)

By standard results on Riemann’s sums

1
N

N−K∑
p=0

a2
( p
N

)
=
∫ 1

0

a2(t)dt+O

(
1
N

)
·

And the first part of Proposition 6.7 follows. �
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Let us now prove the asymptotic behavior of the variance of the VN , which is quite similar to the previous
proof. Expansion (6.5), Lemmas 6.5 and 6.6 imply

var(VN ) = 2
N−K∑
p,p′=0

{
N−2Ha

( p
N

)
a

(
p′

N

)
F2H(p− p′)

+O

(
1

N2H+1

)
(1 + (p− p′)2)

}2

.

We focus on the main term 2N−4H
N−K∑
p,p′=0

a2
( p
N

)
a2

(
p′

N

)
F 2

2H(p− p′). Set q = p− p′ and q′ = p+ p′. The sum

is then splitted for |q| < Q and |q| ≥ Q, where Q is prescribed later. The second part is then

N−4H

2(N−K)∑
q′=0

∑
|q|≥Q

a2

(
q + q′

2N

)
a2

(
q − q′

2N

)
F 2

2H(q).

Since |F2H(q)| ≤ C

1 + q2
, this sum can be bounded by O

⎛⎝N−4H

2(N−K)∑
q′=0

∑
|q|≥Q

1
(1 + q2)2

⎞⎠. Fix Q large enough,

this sum is then less than O
(

1
N4H−1Q3

)
. Consider now the second part

T = N−4H

2(N−K)∑
q′=0

∑
|q|≤Q

a2

(
q + q′

2N

)
a2

(
q − q′

2N

)
F 2

2H(q).

Permuting the sums and using standard results on Riemann’s sums,

T =
1

N4H−1

∑
|q|≤Q

F 2
2H(q)
(∫ 1

0

a2
(
s+

q

2N

)
a2
(
s− q

2N

)
ds+O

(
1
N

))
·

By a Taylor’s expansion of a, we get

T =
1

N4H−1

∑
|q|≤Q

F 2
2H(q)
(∫ 1

0

a4(s)ds+O
( q
N

))
·
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Since |F2H(q)| ≤ C

1 + q2
, T is asymptotically equivalent to

1
N4−1

∫ 1

0

a4(s)ds
q=+∞∑
q=−∞

F 2
2H(q). Hence

var(VN ) =
2

N4H−1

∫ 1

0

a4(s)ds
q=+∞∑
q=−∞

F 2
2H(q) +O

(
1

N3H+η−1

)
,

and Proposition 6.7 is proved. �

We can now prove the almost sure convergence and central limit theorem for generalized quadratic variations.

Proposition 6.8. The following limit holds

lim
N→∞

VN
EVN

= 1 a.s., (6.18)

and
VN − EVN√

var(VN )
converges to a centered Gaussian variable (6.19)

as N → ∞.

Proof of Proposition 6.8. The generalized quadratic variation VN can be written

VN =
N−K∑
p=0

(
K∑
k=0

akX

(
k + p

N

))2

= Tr(tY Y ).

where Y is the RN−K+1 valued random vector defined by Yp,N =
K∑
k=0

akX

(
k + p

N

)
. Since M = E(Y tY ) is a

(N −K + 1) × (N −K + 1) symmetric matrix, we can find a diagonal matrix Diag(λp,N ) with non negative
eigenvalues λp,N of M on the diagonal, and an orthogonal (N −K + 1) × (N −K + 1) matrix O such that

Diag(λp,N ) =t OMO.

Let ξ be a random vector defined by

ξ = Diag

(
1√
λp,N

)
OY.

Then the ξp (p = 0, . . . , N −K) are identically independent centered Gaussian variables with variance 1, and

VN = Tr(tY Y )

=
N−K∑
p=0

λp,Nξ
2
p. (6.20)

Hence

var(VN ) = var(ξ20)
N−K∑
p=0

λ2
p,N .



264 J. ISTAS

R
apide N

ot

Sp
ec

ia
l I

ss
ue

Then

E(VN − EVN )4 = E(ξ20 − 1)4
N−K∑
p=0

λ4
p,N +

N−K∑
p,p′=0

E(ξ20 − 1)2λ2
p,Nλ

2
p′,N

≤ C

(
N−K∑
p=0

λ2
p,N

)2

= Cvar2VN .

Using Proposition 6.7 and Borel-Cantelli’s lemma, the almost sure convergence is proved. �

Let us now prove the second part of Proposition 6.8, which describes the rate of convergence in (6.18). The
following central limit theorem is used

Lemma 6.9. Consider the sequence of variable SN defined by

SN =
N−K∑
p=0

λp,N (ξ2p − 1),

where the ξp are i.i.d. centered normalized Gaussian variables and the λp,N are positive. If maxp=0,...,N−K λp,N =
o(
√

var(SN )), then SN/
√

var(SN ) converges in distribution to a centered normalized Gaussian variable.

Lemma 6.9 is easily proved using a Taylor expansion of the characteristic function of SN .
Consequently we only have to prove that max

p=0,...,N−K
λp,N = o(

√
var(VN )). In order to bound the largest

eigenvalue of the correlation matrix, a classical linear algebra lemma is used, that claims that the largest
eigenvalue of a matrix C is bounded by max

i

∑
j

|Ci,j |. Applying this Lemma to matrix M = (mp,p′) leads to

consider

mp,p′ = E(Yp,NYp′,N)

= E

N−K∑
k,k′=0

akak′X

(
k + p

N

)
X

(
k′ + p′

N

)
·

By Lemma 6.5

N−K∑
p′=0

∣∣∣∣∣E
K∑

k,k′=0

akak′X

(
k + p

N

)
X

(
k′ + p′

N

) ∣∣∣∣∣ ≤
N−K∑
p′=0

C

N2H(1 + (p− p′)2)

≤ C

N2H
·

Hence

max
p=0,...,N−K

N−K∑
p′=0

∣∣∣∣∣E
K∑

k,k′=0

akak′X

(
k + p

N

)
X

(
k′ + p′

N

) ∣∣∣∣∣ = o
(√

var(VN )
)
.

and Lemma 6.9 is applied to get the convergence in distribution of
VN − EVN√

var(VN )
in Proposition 6.8. With the

same arguments, the asymptotic normality of a linear combination of VN and VN/2 with positive weights. The
same can be of course done with negative weights.
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Denote by Pn (resp. Ψn) the distribution (resp. the Laplace transform) of the couple (VN , VN/2). We know that
Ψn(x, y) converges to some Ψ(x, y) when xy ≥ 0, where Ψ is the Laplace transform of a Gaussian distribution
Φ. Assume that Pn converges to a distribution P . The Laplace transform of P is equal to Ψ(x, y) when xy ≥ 0.
The Laplace transform is defined on a convex set, so this set is the whole plan. It is analytic in its support, so
it is equal to Ψ on the whole plan. The unique possible limiting distribution is Ψ . But the sequence is tight,
because its marginals are tight, so it converges to the Gaussian distribution Ψ .

The previous results are then applied to the estimator of H . Its convergence (a.s.) to H is a consequence
of the logarithmic behavior of EVN and of (6.18). To estimate the rate of convergence of ĤN to H , we obtain
a central limit theorem for

√
N(ĤN − EĤN ), which is a function of the couple (VN , VN/2). We deduce this

asymptotic normality from the remark above and Theorem 3.311 of [34]. The proof is completed by showing
that the bias term |EĤN −H | is of order O(N−η) which is preponderant since η ≥ 1/2.

6.4.3. Optimality of the sequence a

The asymptotical variance of estimator (6.6) is known [58]. The best sequence ak, k = 0, . . . ,K, i.e. the
sequence that minimizes this asymptotical variance, is unknown at the moment. [24, 25] has computed this
asymptotical variance for a lot of discrete sequences ak, k = 0, . . . ,K. The best results are obtained for the
following sequences

(1) 0 < H < 3/4.

a0 = 1,
a1 = −1.

(2) 3/4 ≤ H < 1.

a0 ∼ 0.4829629,
a1 ∼ −0.8365163,
a2 = 0.22414386,
a3 ∼ 0.12940952.

Notice that the two sequences are the discrete sequences associated with the Haar basis and the so-called
Daubechies-4 wavelet basis [36].

6.4.4. Filtered White Noises of arbitrary fractional index

For the sake of simplicity, the Filtered White Noises have been introduced with a fractional index 0 < H < 1.
Indeed there is no reason for this restriction. We will now introduce Filtered White Noises of arbitrary fractional
index H > 0. Let

en(λ) = eiλ −
n∑
k=0

(iλ)k

k!
,

and

g(t, λ) =
a(t)

|λ| 12 +H
+ ε(t, λ).

Integer n is chosen such that function g(t, λ)en(λ) is square integrable for each t. The case n = 0 correspond to
the previous case 0 < H < 1. Assumption 6.2 has to be generalized.
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A.6.10.

• n+ 1 > β > α > n and ε(t, λ) ∈ C2(n+1),2([0, 1] × R) is a function such that,∣∣∣∣ ∂i+j∂ti∂λj
ε(t, λ)
∣∣∣∣ ≤ C

|λ| 12+η+j
,

for i = 0 to 2(n+ 1) and j = 0 to 2 with η > 1/2 + α.
• a ∈ C2n+2([0, 1]).

Now let ak, k = 0, . . . ,K be a discrete sequence of real satisfying, with J ≥ 4n+ 2

K∑
k=0

ak = 0,

K∑
k=0

kjak = 0, 1 ≤ j ≤ J,

K∑
k=0

kJ+1ak = 0.

Generalized quadratic variations of process X on [0, 1] at scale 1/N associated with sequence (ak) are still
defined by

VN =
N−K∑
p=0

(ΔpX)2,

where

ΔpX =
K∑
k=0

akX

(
k + p

N

)
·

The estimator of parameter H derived from the generalized quadratic variations is still as follows

ĤN =
1
2

+
1
2

log2

VN/2
VN

·

Theorem 6.11. Let X be a process satisfying A.6.10.

(1) Strong consistency.

lim
N→+∞

ĤN
(a.s.)
= H.

(2) Asymptotic normality.
As N → +∞,

√
N(ĤN −H) converges in distribution to a centered Gaussian variable.

The proof of Theorem 6.11 is identical to the Proof of Theorem 6.3 and is therefore omitted.
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7. Simulation

7.1. Cholevsky’s method

Most of the algorithms use the simulations of i.i.d. Gaussian r.v.’s. Let us therefore recall how to simulate
Gaussian r.v.’s from uniform r.v.’s Let X and Y be two independent uniform variables on [0, 1]. Then,

(X,Y ) =
(√

−2 logU1 cos(2πU2),
√
−2 logU1 sin(2πU2)

)
is a standard Gaussian centered vector.

Let X be a centered Gaussian field with covariance function R(M,M ′),M,M ′ ∈ M. Let Mp, p = 0, . . . , N
be a discretization grid of M. The vector X(Mp), p = 0, . . . , N is a centered Gaussian vector with covariance
matrix Σ

Σp,p′ = R(Mp,Mp′) p, p′ = 0, . . . , N.

The matrix Σ can be decomposed into Σ = LtL, where L is a lower triangular matrix. Let Zp, p = 0, . . . , N be
standard centered Gaussian r.v. and put Z =t (Z0, . . . , ZN). We can then easily check that LZ is a centered
Gaussian vector with covariance matrix Σ. This method therefore allows to give an error-free simulation of the
X(Mp), p = 0, . . . , N. This method has a complexity of order O(N3). Where N is rather small, the Cholevski
method can be used. Unfortunatly, when N becomes large, this method is no more usable. Especially, this is
the case when one wants to simulate a Gaussian field.

7.2. Euclidean case: fieldsim method

7.2.1. Random midpoint displacement and refinements

7.2.1.1. Random midpoint displacement
Brownian motion has independent, stationary and Gaussian increments. It is therefore straightforward to

simulate a Brownian motion over a given discrete uniform grid. This simulation is based on standard results
in Gaussian regression. Here is a brief summary. We will indicate here how to simulate a sample path of a

Brownian motion at point
k

2j
by induction. We set B(0) = 0. B(1) is chosen from a centered standard Gaussian

variable. Next, B(1/2) is selected from a Gaussian variable with mean (B(0) + B(1))/2 and variance 1/2.
At the jth stage, the value B(k/2j) (k odd) is simulated from an independant Gaussian variable with mean
(B((k − 1)/2j) −B(k/2j))/2 and variance 2−j.

The random midpoint displacement cannot be generalized to the fractional case: if we take B(k/2j) from a
Gaussian variable with mean (B((k − 1)/2j) − B(k/2j))/2 and variance 2−jH , the resulting function fails to
have stationary increments.
7.2.1.2. Refinements: the R-procedure fieldsim, available via [21]

Accurate simulation step. We first present the accurate simulation part of the procedure. Given a (regular)
space discretization {M i, i ∈ I} of size nI , the problem consists in giving a sample of a centered Gaussian vector
of size nI : (X(M i))i∈I of covariance matrix R given by Ri,j = R(M i,M j), i, j ∈ I. We use the Cholevski
method.

Refined simulation step. We need to introduce some additional notations. LetXXI (M), denote the orthogonal
projection ofX(M) on the closed linear subspace XI = sp{X(M i), i ∈ I}, i.e. the linear predictor ofX(M) given
X(M i), i ∈ I. The partial innovation X(M)−XXI (M) is denoted by εXI (M). Since εXI (M) is uncorrelated with
any variables of the space XI , we can obtain “accurate” simulation of X(M) by XXI (M) +

√
Var(εXI (M))U

where U is a centered and reduced Gaussian variable independent of X(M i), i ∈ I. Notice that the coefficients
weights, the variables X(M i), i ∈ I in XXI (M) and the variance of the partial innovation may be determined
from the second order structure of the sequence X(M i), i ∈ I, X(M) (see [37] for details). The drawback of this
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midpoint  H=0.1 fieldsim H=0.1

midpoint  H=0.5 fieldsim H=0.5

midpoint  H=0.9 fieldsim H=0.9

Figure 1. Fractional Brownian fields with indexes 0.1, 0.5, 0.9.

approach is when the simulated sequence size increases, we have to stock more and more quantities (filters of
several partial innovation and associated variances) and to do more and more calculus. Even if that can be done
in the d = 1 case, it becomes numerically unfeasible when d ≥ 2. A natural approach to overcome this problem,
is to replace in the previous procedure the indexes set I by a set of indexes of neighbors of M . We denote by
NM this set. Notice that XXNM

(M) is the best linear combination of variables of XNM approximating X(M)
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Multifractional Brownian Field H(t)=0.5

Multifractional Brownian Field H(t)=0.7+0.2*sin(6.π.t)

Multifractional Brownian Field H(t)=0.5+0.4t

Figure 2. Multifractional Brownian fields, cf. [8, 69] (on the right) for functions H(t) = 0.5,
H(t) = 0.5 + 0.4t1 and H(t) = 0.7 + 0.2 sin(2πt1) (on the left).

in the sense that the variance of X(M) −XXNM
(M) is minimum. If we have to use only some variables of the

set XNM in order to obtain simulation of X(M), the best way is to use XXNM
(M)+
√

Var(εXNM
(M))U. Let us

remark that such a simulated process does not admit anymore R(·, ·) as a covariance function, but a covariance
function that is a good approximation of R(·, ·).
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Figure 3. Cloud simulation: fractional Brownian fields with index 0.5.

7.2.2. Examples

Two representations have been used: the fields can be represented by a random surface, or by a random
coloured texture. Especially, a blue to white choice leads to cloud simulator.

7.3. The procedure fieldsim adapted to manifolds

The previous procedure can be adapted to the case of fields indexed by a manifold, see [22]. The main problem
stands in the discretization grid choice. There is, in the case of the sphere for instance, no equidistributed grid
and it is difficult to define a concept of finer grid such as in the case of field indexed by [0, 1]2. Moreover, the
choice of a discretization grid can be related to the software that one wishes to use to represent the manifold.

We develop a procedure for which the user enters a grid of his/her choice for each step (accurate and refined)
and a distance to be used in order to determine the neighbors. Thus one can use our procedure for any manifold
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Figure 4. Cloud simulation: fractional Brownian fields with index 0.7.

M once a covariance function, a grid and a distance are given. We give here two examples of manifolds: the
sphere and the hyperbolöıd.

Let us precise how we use it for these two manifolds. We refer to [22] for detailed results. We denote by Sg
the set of the point of M at which we want to generate the process (the visualization grid). This set choice can
be induced for instance by the software that one wishes to use to represent the manifold. Let us recall that we
want to generate a sample of field indexed by the manifold M (discretized at Sg) and with covariance function
R(·, ·). We need also to specify the concept of neighbors. A natural choice is to use the geodesic distance between
two points. So the closest neighbors of some point M are the points closest to M according to this distance. In
general, the cardinal of Sg is too large to use only the accurate simulation step. Moreover in contrast to the grid
chosen in the case of field indexed by [0, 1]2, one is not able in general to use any more a concept of finer grid.
Indeed, for our sphere visualization grid for instance, using overlapping sub-grids (an atlas of 6 maps), each
sub-grid have some parts of the sphere with very few points and there are some others with points accumulation
(in particular on the six poles). That is why in this case, we propose to first simulate the process at uniform
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Figure 5. On the left, spheres indexed fractional fields with covariance function R1 and Hölder
index H = 0.45 (top), H = 0.3 (middle) and H = 0.15 (bottom). On the right, sphere indexed
fractional fields of Hölder indexH = 0.45 with covariance functionR2 (top), R3 (middle) andR4

(bottom). All simulations are done with Ne = 100,Nr = 1000, Ng = 100 and nbNeighbor = 15.

Figure 6. Sphere indexed fractional fields with covariance function R5 and Hölder index
H = 0.2 (top left), H = 0.45 (top right), H = 0.5 (bottom left) and H = 0.8 (bottom right).
All simulations are done with Ne = 100, Nr = 1000, Ng = 100 and nbNeighbor = 15.
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Figure 7. On the left, hyperboloid indexed fractional fields with covariance function R1 and
index H = 0.45 (top), H = 0.3 (middle) and H = 0.15 (bottom). On the right, hyperboloid in-
dexed fractional fields of index H = 0.45 with covariance function R2 (top), R3 (middle) and R4

(bottom). All simulations are done with Ne = 100,Nr = 1000, Ng = 150 and nbNeighbor = 15.

random points and next to simulate the process at the Sg points. Let Su the uniform random points set. We
propose to run the procedure fieldsim with the set {Su,Sg}. This set {Su,Sg} is cut out into the set {Se,Sr}.
Ne, Nr, Ng are the cardinal of Se,Sr,Sg. (X(M))M∈Sg is simulated using nbNeighbor neighbors.

In the next figures, field with the following convariance function has been simulated, both in spherical and
hyperbolic case.

R1(M,M ′) = 1/2
{
d2H(O,M) + d2H(O,M ′) − d2H(M,M ′)

}
,

R2(M,M ′) = exp
(−d2H(M,M ′)

)
,

R3(M,M ′) = ln
(
1 + d2H(O,M)

)
+ ln
(
1 + d2H(O,M ′)

)− ln
(
1 + d2H(M,M ′)

)
,

R4(M,M ′) =
1

1 + d2H(M,M ′)
·

Finally we can restrict the Euclidean fractional Brownian fields indexed by the sphere. We obtain the following
covariance function:

R5(M,M ′) = 1 − 22H−1

(
sin
(
d(M,M ′)

2

))2H

,

where H ∈ (0, 1).

Acknowledgements. I am grateful to an anonymous referee for valuable comments.
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[37] S. Dégerine and S. Lambert-Lacroix, Partial autocorrelation function of a nonstationary time series. J. Multiv. Anal. (2003)
46–59.



MANIFOLD INDEXED FRACTIONAL FIELDS 275

R
ap

id
e 

N
ot

e

Special Issue

[38] R.L. Dobrushin, Automodel generalized random fields and their renorm group, in Multicomponent Random Systems, edited
by R.L. Dobrushin and Ya. G. Sinai. Dekker, New York (1980) 153–198.

[39] A. Dress, V. Moulton and W. Terhalle, T -theory: An overview, Eur. J. Comb. 17 (1996) 161–175.
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