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DENSITY OF PATHS OF ITERATED LÉVY TRANSFORMS
OF BROWNIAN MOTION

Marc Malric1

Abstract. The Lévy transform of a Brownian motion B is the Brownian motion B(1) given by
B

(1)
t =

∫ t

0
sgn(Bs) dBs; call B(n) the Brownian motion obtained from B by iterating n times this trans-

formation. We establish that almost surely, the sequence of paths (t �→ B
(n)
t )n�0 is dense in Wiener

space, for the topology of uniform convergence on compact time intervals.
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1. Introduction

Denote by (W, W, μ) the Wiener space: W is the space of all continuous functions w on [0,∞[ with w(0) = 0;
it is endowed with the topology of uniform convergence on compact sets; W is the Borel σ-field on W, and μ is
the Wiener measure.

A Brownian motion B is a (W, W)-valued random variable defined on some sample space (Ω, A, P) and having
law L(B) = P ◦ B−1 = μ. The Lévy transform of B is the new Brownian motion B′

t =
∫ t

0
sgn Bs dBs. Denote

by T : W → W the map such that B′ = T ◦ B; this map T is the Lévy transformation; it is defined up to
μ-negligibility (if T′ is another version, T′ = T on a μ-full set) and it preserves μ (i.e., μ ◦T−1 = μ). These two
properties, being well defined modulo μ-null sets and invariance of μ, allow the definition of the iterated Lévy
transforms Tn : W → W for all n � 0; and Tn also preserves μ.

Understanding the asymptotic behavior of the dynamical system (W, W, μ,T) seems difficult; the question
whether T is ergodic is still unsolved (see [1–3]). We shall establish that T is topologically recurrent: for μ-almost
all w ∈ W, the orbit {Tkw , k � 0} is dense in W. Topological recurrence is a necessary condition for ergodicity,
but it is far from sufficient.

2. Attainability

The basic idea of our proof is expressed in the notion of attainability; the reason for this terminology will
be explained later in this section. We state it in the context of the Lévy transformation, but everything in
this section extends immediately to general dynamical systems (with a countable basis of open sets needed in
Cor. 2.4).
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Definition 2.1. A measurable set G ∈ W is said to be attainable if for every η > 0 there exist an integer n � 0
and a probability ν on (W, W) such that

(a1) ν is absolutely continuous w.r.t. μ;
(a2) ν ◦ (Tn)−1 = μ;
(a3) ν(G) > 1 − η.

Remark that (a2) is meaningful owing to (a1): if a measure ν on W is absolutely continuous w.r.t. μ, then the
image ν ◦ (Tn)−1 of ν by Tn makes sense, for it is insensitive to the choice of a version of T. Remark also that
if G is attainable, every G′ ∈ W such that G′ ⊃ G is attainable too.

Proposition 2.2. If G ∈ W is attainable, then for μ-almost every w ∈ W the orbit {Tkw , k � 0} meets G.

Proof. The orbit of a path w ∈ W meets G if and only if w ∈ ⋃k�0 T−kG; so, putting F =
⋃

k�0 T−kG,
we have to show that μ(F ) = 1. It suffices to prove μ(F ) > 1 − η for an arbitrary η > 0. Given η, by
attainability of G, we have an n and a ν verifying (a1), (a2) and (a3). The definition of F gives the inclusion
T−nF =

⋃
k�n T−kG ⊂ F ; but these two sets T−nF and F have the same μ-measure, because T preserves μ.

So their difference N = F − T−nF is μ-negligible, and also ν-negligible by (a1). Writing G ⊂ F = N ∪ T−nF
and taking ν-measures yields ν(G) � ν(T−nF ); using (a3) and (a2) now gives 1 − η < μ(F ). �

Corollary 2.3. If every compact set G ⊂ W with μ(G) > 0 is attainable, T is ergodic.

Proof. By inner regularity of μ, every non-negligible Borel set in W contains a non-negligible compact subset;
so the hypothesis entails that all non-negligible Borel sets are attainable. Let G be T-invariant with μ(G) > 0.
Then G is attainable, and Proposition 2.2 gives μ

(⋃
k�0 T−kG

)
= 1, wherefrom μ(G) = 1 by T-invariance of

G. Thus T is ergodic. �

Corollary 2.4. If every non-empty open subset of W is attainable, μ-almost all w ∈ W have a dense orbit
(i.e., T is topologically recurrent).

Proof. Apply Proposition 2.2 to all G in a countable basis of open subsets of W. �

We have not been able to prove ergodicity of the Lévy transform via Corollary 2.3; the sequel is devoted to
establishing that the Lévy transform satisfies the hypothesis of Corollary 2.4, and consequently is topologically
recurrent.

We start by equivalently rephrasing the definition of an attainable set. Instead of introducing a probability
ν on W, we shall work with a W-valued r.v. having law ν. Such a r.v. is a stochastic process, started from 0,
with continuous paths. In this language, attainability is redefined as in the following proposition, whose proof
is trivial:

Proposition 2.5. A set G ∈ W is attainable if and only if for each η > 0 there exists, on some probability
space (Ω, A, P), a process Γ such that

(A1) the law L(Γ ) is absolutely continuous w.r.t. the Wiener measure μ;
(A2) for some n � 0, the process Tn ◦ Γ is a Brownian motion;
(A3) P[Γ ∈ G] > 1 − η.

As was already the case with (a2) and (a1), remark that (A2) is meaningful owing to the absolute continuity
(A1): if L(Γ ) 	 μ, then T ◦ Γ is well defined up to negligible events and L(T ◦ Γ ) 	 μ. The former is proven
by considering another version T′ and by observing that P[T′ ◦ Γ 
= T ◦ Γ ] = P[Γ ∈ {T′ 
= T}] = 0 because
{T′ 
= T} is μ-negligible; the latter by μ-invariance of T. Inductively, all iterated Lévy transforms Tn ◦ Γ are
also a.s. well defined and have absolutely continuous laws.
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Definition 2.6. A stochastic process is tame if its law is absolutely continuous w.r.t. Wiener measure. (So a
tame process is nothing but a W-valued r.v. U such that L(U) 	 μ).

If V is tame, T ◦ V is (a.s.) well defined, and is tame too. If U and V are two tame processes such that
T ◦ V = U , we say that V is a Lévy raise of U , or that (U, V ) is a Lévy raise.

A sequence of Lévy raises is a finite sequence (U0, U1, . . . , Un) where U0 is tame and each Uk+1 is a Lévy raise
of Uk. Equivalently, (U0, U1, . . . , Un) is a sequence of Lévy raises if and only if Un is tame and Uk = Tn−kUn

for each k ∈ {0, . . . , n−1}.
Lévy raises will be more explicitly described in the next section; we first explain the meaning of attainability.

According to Proposition 2.5, a set G is attainable if there exists, on a suitable probability space, a Brownian
motion U0 (namely, U0 = Tn ◦ Γ ) and a sequence (U0, . . . , Un) of Lévy raises (namely, Uk = Tn−k ◦ Γ ) such
that one has P[Un ∈ G] > 1 − η. In plain words, G can be attained with arbitrarily high probability when one
starts from a Brownian motion and performs finitely many Lévy raises; this is where the name attainable comes
from.

To establish topological recurrence of T with Corollary 2.4, all we have to do is to attain each non-empty,
open subset of W by a sequence of Lévy raises started from some Brownian motion. We shall first describe more
precisely how some Lévy raises can be constructed.

3. Lévy raises

Notation 3.1. Denote by W
+ (resp. W

−) the subset of W consisting of all paths with values in R
+ (resp. R

−).
The mapping I : W → W

− is the current minimum, defined by (Iw)(t) = min
s∈[0,t]

w(s).

The mapping J : W → W
+ is defined by Jw = w − Iw.

The next lemma recalls well-known properties of Brownian motion, essentially due to P. Lévy.

Lemma 3.2.

(a) For μ-almost all w ∈ W, one has |w| = JTw;
(b) there exists a measurable functional F : W

+ → W such that, for μ-almost all w ∈ W, one has F|w| = Tw
and FJw = w.

Proof.
(a) It suffices to verify that if B is a Brownian motion, the processes |B| and JT ◦ B are indistinguishable.

Tanaka’s formula says that the Lévy transform B′ of B is given by B′ = T ◦B = |B| −L, where L denotes the
local time of B at the origin. For t � 0, put gt = max { s : s ∈ [0, t] and Bs = 0}. On the interval [0, t], one has

B′ = |B| − L � 0 − Lt = |Bgt | − Lgt = B′
gt

,

wherefrom B′
gt

= inf [0,t] B
′. So (I ◦ B′)t = B′

gt
= −Lt, that is, I◦B′ = −L, and JT◦B = J◦B′ = B′+L = |B|.

This proves (a);
(b) a possible choice for F is

(Fw)(t) = w(t) − lim
ε↓0

1
2ε

∫ t

0

1{w(s)<ε} ds.

The theory of Brownian local time (see for instance [3] p. 227) shows that F
(|B|) exists a.s. and F

(|B|) =
|B| − L = T ◦ B; so F|w| = Tw for a.a. w. Using (a), one has

B′ = T ◦ B = F
(|B|) = FJT ◦ B = FJ ◦ B′;

since B′ is a Brownian motion, FJw = w for a.a. w and (b) is established. �
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Corollary 3.3. Let U and V be two processes defined on the same probability space.

(a) If V is tame, |V | = J ◦ U a.s. on the event {T ◦ V = U};
(b) if both U and V are tame, {T ◦ V = U} = {|V | = J ◦ U} a.s.;
(c) (U, V ) is a Lévy raise if and only if U and V are tame and |V | = J ◦ U .

Proof.
(a) If V is tame, Lemma 3.2 (a) gives JT ◦ V = |V | a.s.; hence |V | = J ◦ U on {T ◦ V = U};
(b) if U and V are tame, Lemma 3.2 (b) entails FJ ◦ U = U a.s. and T ◦ V = F

(|V |) a.s.; therefore, on
{|V | = J ◦ U}, we have T ◦ V = F

(|V |) = FJ ◦U = U a.s. The reverse inclusion {T ◦ V = U} ⊂ {|V | = J ◦ U}
is given by (a);

(c) is a direct consequence of (b). �

A Lévy raise starts from a tame process U and produces a tame process V such that T◦V = U . Corollary 3.3 (c)
says that given U , any tame V such that |V | = J ◦ U a.s. is a Lévy raise of U . In other words, to perform a
Lévy raise, |V | must be taken equal to J ◦ U , but we are free to choose the signs of the excursions of V away
from zero, provided these choices yield a tame process V . Proposition 3.8 will show that if all but finitely many
excursion signs are chosen at random by tossing a fair coin independently of U , then (U, V ) is a Lévy raise.

To handle excursion signs, we need to consider them as random variables; there is no canonical way to do
that, so we arbitrarily choose the following definition.

Notation 3.4. For w ∈ W and q > 0, denote by Z(w) = {s � 0 : w(s) = 0} the set of zeros of w, and define
gq(w) = sup

(
Z(w) ∩ [0, q]

)
� 0 (last zero of w before q) and dq(w) = inf

(
Z(w) ∩ [q,∞[

)
� ∞ (first zero of w

after q).
Fix a dense sequence (qn) in the half-line ]0,∞[. To each w ∈ W, we can attach the sequence (ep) of disjoint,

open intervals, obtained from the sequence
(
]gq1 , dq1 [ , ]gq2 , dq2 [ , . . . , ]gqn , dqn [ , . . .

)
by deleting an interval whenever it already occurs earlier in the sequence. The ep are the excursion intervals of w.
There are μ-a.s. infinitely many of them, and they are the connected components of the open set [0,∞[ \Z(w).
The interval ep(w) will be called the p-th excursion interval of w; ep is an interval-valued measurable map,
defined on (W, W) up to μ-negligibility.

Since w does not vanish on ep(w), its sign remains constant on this interval. This sign will be denoted by
Sp(w) and called the p-th excursion sign of w, and the sequence (Sp) will be called S. So S is a measurable map
from (a μ-full subset of) W to {−1, +1}N. A path w with infinitely many excursions is fully characterized by its
absolute value |w| and its excursion signs Sw. Encoding a path by its absolute value and its excursion signs is
specially interesting for a Brownian motion B, since the random variables |B| and S ◦B are independent. This
is a consequence of excursion theory (see for instance Chap. XII of [3]), which also shows that the sequence
(Sp ◦ B)p∈N

is i.i.d. and uniform on {−1, +1}. In other words, calling π the probability on {−1, +1}N which is
the law of a fair coin-tossing, we have L

(
S ◦B, |B|) = π ⊗ L(|B|).

When constructing a Lévy raise V of a given tame process U , the signs S ◦ V must be chosen so that V is
tame; the next two lemmas will enable us to check tameness of V from the decomposition (S◦V, |V |).

Lemma 3.5. Let E and F be two measurable spaces, and ν1 and ν2 two probabilities on E such that ν1 	 ν2.

(a) For each measurable f : E → F , the images ν1 ◦ f−1 and ν2 ◦ f−1 of ν1 and ν2 by f satisfy ν1 ◦ f−1 	
ν2 ◦ f−1;

(b) if ρ is a probability on F , then ρ ⊗ ν1 	 ρ ⊗ ν2.
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Proof.
(a) If A ⊂ F is negligible for ν2 ◦ f−1, then ν2(f−1A) = 0, whence ν1(f−1A) = 0, and A is negligible for

ν1 ◦ f−1.
(b) write ν1 = φ · ν2 for some density φ; then ρ ⊗ ν1 = (1 ⊗ φ) · (ρ ⊗ ν2). �

Lemma 3.6. Let X be a tame process, and Y a continuous process such that |Y | = |X | and that Y = X
except for the signs of finitely many excursions. Then Y is tame too.

Proof of Lemma 3.6. We will use the following notation: if H is a subset of N, put Hc = N \ H and, for each
sequence S ∈ {−1, +1}N, set SH = (Sp)p∈H and SHc

= (Sp)p∈Hc . For σ ∈ {−1, +1}H , τ ∈ {−1, +1}Hc

and
u ∈ W

+, call fH(σ, τ, u) the path w ∈ W such that SH(w) = σ, SHc
(w) = τ and |w| = u (if u has only finitely

many excursions, ignore the superfluous information; anyway, this case will be negligible).

As a continuous process started from 0, Y is a measurable map from (Ω, A) to (W, W). Let F ∈ W be
μ-negligible; to prove the lemma it suffices to show P[Y ∈ F ] = 0.

If H is a finite subset of N and B a Brownian motion, the triple (SH◦B, SHc◦B, |B|) is independent; hence

0 = P[B ∈ F ] = P
[
fH

(
SH◦B, SHc◦B, |B|) ∈ F

]
=

1
2|H|

∑
σ∈{−1,+1}H

P
[
fH

(
σ, SHc◦B, |B|) ∈ F

]
.

As a consequence, P
[
fH

(
σ, SHc◦B, |B|) ∈ F

]
= 0 for each finite subset H of N and each σ ∈ {−1, +1}H . As

X is tame, by Lemma 3.5 (a) one also has

P
[
fH

(
σ, SHc◦X, |X |) ∈ F

]
= 0. (∗)

Since Y is obtained from X by flipping the signs of finitely many excursions, there exists a r.v. H, whose
values are finite subsets of N, such that SHc◦Y = SHc◦X on the event {H = H}. So the equality

P
[H = H, SH◦ Y = σ, fH

(
σ, SHc◦X, |X |) ∈ F

]
= 0,

which stems trivially from (∗), can be rewritten as

P
[H = H, SH◦ Y = σ, fH

(
SH◦ Y, SHc◦ Y, |Y |) ∈ F

]
= 0,

that is, P[H = H, SH◦ Y = σ, Y ∈ F ] = 0. Summing first over all σ ∈ {−1, +1}H and then over all finite H
now yields P[Y ∈ F ] = 0. �

Corollary 3.7 (excursion-flipping principle). If (U, V ) is a Lévy raise, and if V ′ is a process obtained from V
by changing the signs of finitely many excursions of V , then (U, V ′) is also a Lévy raise.

Proof. Immediate from Lemma 3.6 and Corollary 3.3 (c). �

Proposition 3.8 (recipe for Lévy raises). Let U be a tame process and τ a fair coin-tossing independent of
U . If V is any continuous process such that |V | = J ◦U and Sp ◦ V = τp except for p in a (random) finite set
of indices, then V is tame and is a Lévy raise of U .

Proof. By Lemma 3.6 and Corollary 3.7, we may suppose that S ◦ V = τ holds identically.
By tameness of U , if B is a Brownian motion, L(U) 	 L(T◦B); Lemma 3.5 (a) with f = J and Lemma 3.2 (a)

gives
L
(|V |) = L(J◦U) 	 L(JT◦B) = L

(|B|).
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Using the independence of S ◦ V = τ and |V | = J ◦ U , one has by Lemma 3.5 (b)

L
(
S◦V, |V |) = π ⊗ L

(|V |)	 π ⊗ L
(|B|) = L

(
S◦B, |B|);

using Lemma 3.5 (a) again with f the map such that f
(
S◦w, |w|) = w, we obtain L(V ) 	 L(B), and V is

tame.
So both U and V are tame; as |V | = J ◦ U , Corollary 3.3 (c) asserts that V is a Lévy raise of U . �

In words, the recipe in Proposition 3.8 is: given U , put |V | = J ◦ U , and draw the signs of the excursions
of V according to a fair coin-tossing independent of U , except for a.s. finitely many excursions; those selected
excursions can be assigned signs at will by any measurable procedure.

Our goal in the sequel is to establish topological recurrence by attaining all non-empty open subsets of W

(Cor. 2.4): given an open G and a Brownian motion B, to perform finitely many Lévy raises as in Proposition 3.8
so as to end up with a process which has property G with high probability. Before getting down to work, we
end this section with a small lemma, for later use.

Lemma 3.9. Given t � 0, let U and V be two independent tame processes; call Γ the process equal to U on
[0, t] and to V − Vt + Ut on [t,∞[.

(a) The process Γ is tame too;
(b) if moreover V is a Brownian motion, then, for each n � 1, on the interval [t,∞[, the process (Tn ◦ Γ ) −

(Tn ◦ Γ )(t) is a Brownian motion independent of U .

Proof.
(a) Use Lemma 3.5: the law of (U, V ) is absolutely continuous w.r.t. μ ⊗ μ, and Γ = f(U, V ) where, for u

and v in W, f(u, v) is the concatenation of u before t with v after t; so the law of Γ is absolutely continuous
w.r.t. the image of μ ⊗ μ by f , which equals μ;

(b) if F denotes the filtration generated by Γ , define a larger filtration G by Gs = Fs if s < t and Gs = Fs∨σ(U)
if s � t. In the enriched filtration G, by independence, the process Γ is still a semimartingale, and a Brownian
motion after t; and Tn ◦ Γ can be computed as a stochastic integral

∫
H dΓ , where H =

∏n−1
i=0 sgn(Ti ◦ Γ ).

Consequently, after t, Tn ◦ Γ − (Tn ◦ Γ )(t) is a Brownian motion independent of Gt = σ(U). �

4. Partial Lévy raises

We shall now deal with what we call partial Lévy raises; they are Lévy raises performed only on some
(random) subset [T,∞[ of the time axis, nothing being done on [0, T ] (preservation of the past).

Definition 4.1. Given two processes U and V and a random time T with values in [0,∞], the triple (U, V, T )
will be called a partial Lévy raise if

• U and V are tame;
• on the event {0 < T < ∞}, the random time T is the end of an excursion of U (that is, UT = 0 but, for

some random ε > 0, Us 
= 0 for all s ∈ ]T−ε, T [ );
• for s ∈ [0, T ], Vs = Us (preservation of the past);
• for t � T , |Vt| = Ut − mins∈[T,t] Us.

By an abuse of language, we shall also say that a pair (U, V ) is a partial Lévy raise when there exists a
random time T such that (U, V, T ) is a partial Lévy raise. Notice that there is only one such T , namely,
T = inf {t : Ut 
= Vt}.

Observe that if (U, V, T ) is a partial Lévy raise, U = T ◦ V on the event {T = 0}, as a consequence of
Corollary 3.3 (b). Also, trivially, U = V on the event {T = ∞}. Remark also that P[T = t] = 0 for each
deterministic t > 0, since T is the end of some excursion of U .
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If (U i, V i)i∈I is a countable family of Lévy raises and if (Ei)i∈I is a partition of Ω into countably many
events, then, on setting U =

∑
i U i1Ei and V =

∑
i V i1Ei , we obtain a new partial Lévy raise (U, V ). This

fact stems trivially from the definition of partial Lévy raises; it will often be implicitly used in the sequel, to
construct partial Lévy raises by a procedure which depends on the value of some discrete r.v.

Notation 4.2. Let U be a process and T a random time such that T is the end of some excursion of U on
{0 < T < ∞}. Denote by U [T and J[T U the processes such that

U
[T
t =

{
UT+t if T < ∞,

Ut if T = ∞;
(J[T U)t =

{
0 if t � T,

Ut − infs∈[T,t] Us if t � T.

On the event {T < ∞}, one has (J[T U)[T = J ◦ U [T ; but on {T = ∞}, U [T = U and J[T U = 0.

Proposition 4.3 (recipe for partial Lévy raises). Let U be a tame process and T a random time which is the
end of an excursion of U on the event {0 < T < ∞}.
(a) The process U [T is tame;
(b) let V be a process such that

• V = U on [0, T ];
• on [T,∞[, one has |V | = J[T U and, if T < ∞, the signs of the excursions of V [T (except possibly finitely

many ones) are drawn according to a fair coin-tossing independent of U .

Then V is tame, and (U, V, T ) is a partial Lévy raise.

Proof.
(a) Call ft : W → W the map such that ft(w)(s) = w

(
dt(w) + s

)
, where dt(w) is the first sero of w after t,

and set f∞(w) = w. Since U [T = ft ◦U on the event {T = dt}, and since Ω =
⋃

t∈Q+∪{∞} {T = dt}, it suffices to
show that each ft ◦U is tame. This is given by Lemma 3.5, for U is tame and ft preserves the Wiener measure;

(b) it suffices to check that V is tame; (U, V, T ) will then satisfy the definition of a Lévy raise. By Lemma 3.6,
we may change the signs of finitely many excursions of V ; this allows us to suppose that the signs of all
excursions of V after T are given by some coin-tossing τ independent of U . On the event {T = dt}, one can
write V = ht(U, τ) where the functional ht is such that ht(B, τ) is a Brownian motion if B is a Brownian
motion independent of τ . Since U and τ are independent and U is tame, Lemma 3.5 says that ht(U, τ) is tame.
Tameness of V then follows by the same argument as in (a). �
Corollary 4.4. Let U be a tame process and S � ∞ a random time such that S is the end of an excursion of
U on the event {0 < S < ∞}. Let V be a process such that

• V = U on [0, S];
• on the event {S < ∞}, V [S is a partial Lévy raise of U [S, prepared according to the recipe from Proposition

4.3 (b) (with some random time T which is the end of some excursion of U [S if 0 < T < ∞, and with all
but finitely many signs drawn independently of U).

Then (U, V, S+T ) is a partial Lévy raise.

Proof. By construction, V = U on [0, S+T ], and on [S+T,∞[ the signs of the excursions of V are chosen
according to the recipe from Proposition 4.3 because they are the signs of the excursions of V [S on [T,∞[. ��

Propositions 3.8 and 4.3 will be used to construct new processes in situations where other processes are already
given. An independent coin-tossing is needed; this extra randomness may not be available in the original sample
space (Ω, A, P), which may have to be “enlarged”, that is, replaced with another (Ω̄, Ā, P̄) such that Ā contains
both an isomorphic copy of A and an independent coin-tossing. This is innocuous, because in the end, we
are only interested in existence in law of the set of processes we are dealing with. But rigorously speaking,
Proposition 4.5 and similar ones should be stated as: “on a suitable extension of the sample space, there exists
a sequence of Lévy raises etc.”.
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Recall from the end of Section 2 that an attainable set can be reached with high probability by a finite sequence
of Lévy raises started from a Brownian motion. It will be convenient to replace Lévy raises with partial Lévy
raises, and to do so with as slight a perturbation as possible. This is achieved by the next proposition.

Proposition 4.5. Suppose given a real number t > 0, a r.v. ε > 0, and a finite sequence of partial Lévy raises,
that is, a sequence (X0, X1, . . . , Xn) such that, for each i ∈ {1, . . . , n}, the pair (X i−1, X i) is a partial Lévy
raise.

There exists a sequence (Y 0, . . . , Y n) of Lévy raises such that, for all s ∈ [0, t], |Y n
s − Xn

s | < ε and |Y 0
s | =

|X0
s |.
All this section is devoted to proving Proposition 4.5. The instant t > 0 is fixed in the rest of the section,

and we are only interested in what happens on the interval [0, t]. For instance, the notion of an α-double defined
below depends on t; it could be called a (t, α)-double, but it is understood that t is implied everywhere.

In the next definition, if e is an excursion of a path, with excursion interval ]a, b[, we put g(e) = a (debut of
the excursion) and d(e) = b (end of the excursion).

Definition 4.6. For u and v in W and α > 0, we say that v is an α-double of u if

(1α) on the interval [0, t], one has |v − u| < α;
(2α) for every excursion e of u such that |e(s)| > 2α for some s ∈ [0, t], there exists an excursion e′ of v whose

interval contains the set {s : s � t and |e(s)| > α} and such that |g(e′)−g(e)| < α and |d(e′)∧t − d(e)∧t| < α.

Condition (2α) is rather technical; it will be used only later, in the proof of Proposition 4.8. Remark that in
(2α) the excursion e may be positive or negative, that e′ is unique, has the same sign as e and its amplitude
must be > 2α, and that the set {s : s � t and |e(s)| > α} is not necessary connected.

If v is an α-double of u, it is also a β-double of u for all β > α; and any v′ equal to v on [0, t] is an α-double
of any u′ equal to u on [0, t]. But notice that (2α) it is not symmetric: u and v do not play similar roles; if v is
an α-double of u, u need not be an α-double of v.

Definition 4.7. Given two tame processes U and V and a r.v. α > 0, we say that V is an α-double of U if the
path V (ω) is an α(ω)-double of U(ω) for a.a. ω ∈ Ω. If this only holds for a.a. ω in some event E, we say that
V is an α-double of U on E.

Proposition 4.5 will be proven by repeatedly applying the same argument, namely, the approximation property
given by the first part of Proposition 4.8.

Proposition 4.8. Given a partial Lévy raise (U, V ) and a r.v. ε > 0, there exists a r.v. δ > 0 with the
following property: for every δ-double U ′ of U , there exists a Lévy raise (Ũ , V ′) such that |Ũ | = |U ′| on [0, t]
and that V ′ is an ε-double of V .

Moreover, if (U, V ) is a Lévy raise, one can always take Ũ = U ′: δ can be chosen so that for every δ-double
U ′ of U , there exists an ε-double V ′ of V such that (U ′, V ′) is a Lévy raise.

Proof of Proposition 4.5 (Prop. 4.8 is admitted). In the framework of Proposition 4.5, we are given a finite
sequence (X0, . . . , Xn) of partial Lévy raises and a r.v. ε > 0. First, by backward induction, construct a
sequence (ε0, . . . , εn) as follows: set εn = ε, and, after εi has been defined, define εi−1 to be a δ given by
Proposition 4.8 applied to (U, V ) = (X i−1, X i) and ε = εi.

Then, define by forward induction two sequences (Z0, . . . , Zn) and (R1, . . . , Rn) according to the following
procedure. First, (Z0, R1) is a Lévy raise (Ũ , V ′) given by Proposition 4.8 applied to (U, V ) = (X0, X1), ε = ε1,
δ = ε0 and U ′ = X0. Then, after (Zi−1, Ri) has been defined, define (Zi, Ri+1) as a Lévy raise (Ũ , V ′) produced
by Proposition 4.8 with (U, V ) = (X i, X i+1), ε = εi+1, δ = εi and U ′ = Ri; this is possible because Ri is
an εi-double of X i owing to the preceding step. Last, after (Zn−1, Rn) has been defined, put Zn = Rn. For



DENSITY OF PATHS OF ITERATED LÉVY TRANSFORMS OF BROWNIAN MOTION 407

i ∈ {1, . . . , n}, the following properties hold by construction: (Zi−1, Ri) is a Lévy raise, |Z0| = |X0| on [0, t],
|Zi| = |Ri| on [0, t], and Ri is an εi-double of X i.

For 1 � i � n, Zi and Ri are tame and have the same absolute value on [0, t]; therefore, T ◦ Zi = T ◦ Ri

on [0, t]; now T ◦ Ri = Zi−1, so T ◦ Zi = Zi−1 on [0, t]. By induction, this implies Tn−i ◦ Zn = Zi on [0, t] for
0 � i � n.

Consequently, the finite sequence (Y 0, . . . , Y n) of Lévy raises defined by Y i = Tn−i ◦ Zn satisfies Y i = Zi on
[0, t] and meets the requirement of Proposition 4.5: since Y n = Rn is an εn-double of Xn, one has |Y n−Xn| < ε
on [0, t] by (1α) in the definition of an ε-double; and since Y 0 = Z0 on [0, t], |Y 0| = |X0| on that interval. �

Notice that the preceding proof involves only the first part of Proposition 4.8 (the second part is set aside
for later use) and only condition (1α) in the definition of a double. Condition (2α) (which admittedly is rather
unpleasant) will be used when proving Proposition 4.8, which would be false if the definition of a double were
replaced by the sole uniform approximation condition (1α).

Notice also that the analogue of Proposition 4.8 with ε = 0 and δ = 0 is false: if (U, V ) is a Lévy raise and
U ′ a tame process such that U ′ = U on [0, t], it may happen that there exists no tame process V ′ whatsoever
such that V ′ = V on [0, t] and T ◦ V ′ = U ′. For a counter-example, consider the case that the whole process
(U ′

t+s − U ′
t)s�0

is a functional f of the signs of the excursions of V which terminate before t. No tame process
V ′ equal to V on [0, t] can satisfy T◦V ′ = U ′ because, if B is a Brownian motion, the event that the increments
of T ◦ B after t are f of the signs of the excursions of B before t is a negligible event.

The rest of this section is devoted to proving Proposition 4.8 (and consequently Prop. 4.5 too). One of our
tools will be the next lemma.

Lemma 4.9. Let V be a tame process. For each r > 0, there exists a r.v. α > 0 such that, calling ]g, d[ the
interval of the excursion of V straddling r, one has 2α < d − g and

∀s ∈ ]g, d[ |Vs| > (s− g) ∧ (d− s) ∧ α.

Proof of Lemma 4.9. As the property to be established is almost sure, we may suppose that V is a Brownian
motion. A well-known property of Brownian excursions (see for instance Chap. XII, Sect. 4 of [3]) asserts that
near its debut g, the excursion leaves 0 as does a 3-Bessel; in particular, this implies existence of some r.v.
α1 > 0 such that |Vs| > s − g for all s ∈ ]g, g+α1[; we may further require 2α1 < d − g. Similarly, by temporal
symmetry of Itô’s measure of excursions, |Vs| > d − s for all s ∈ ]d−α2, d[, where α2 is some r.v. such that
0 < 2α2 < d − g. Last, on the compact, non-empty interval [g+α1, d−α2], one has |V | > α3 > 0, because V is
continuous and does not vanish. It now suffices to put α = α1 ∧ α2 ∧ α3 and the lemma follows. �

Proof of Proposition 4.8. We are given a partial Lévy raise (U, V, T ) and a r.v. ε > 0. Define a process I by Is = 0
if s � T and Is = infr∈[T,s] Ur if s � T ; observe that U − I � 0 after T , and only finitely many excursions of U−I
starting in the finite interval ]T∧ t, t] can reach the value ε/4. Call �1, . . . , �p these excursions (in chronological
order; the r.v. p is set to 0 when there are no such excursions). The process I is constant during each excursion
interval ]g(�j), d(�j)[ (call I(�j) this constant value), the sequence

(
0, I(�1), . . . , I(�p)

)
is strictly decreasing, and

for α > 0 the inequalities I
(
g(�j)−α

)
> I(�j) and I

(
d(�j)+α

)
< I(�j) are strict. By definition of a partial Lévy

raise, each �j is also the absolute value of an excursion of V , to which Lemma 4.9 applies. Last, observe that
dt(V ), the first zero of V after t, is a.s. finite.

These remarks make it possible to choose some r.v. δ > 0 satisfying the following six requirements:

(1δ) 10 δ < ε;
(2δ) for all r and s in [0, dt(V )], |r − s| < 2δ ⇒ |Vr − Vs| < ε/4;
(3δ) for each j ∈ {1, . . . , p}, 4δ < I(�j−1) − I(�j) (with the convention I(�0) = 0);
(4δ) for each j ∈ {1, . . . , p}, 2δ < I

(
g(�j)−ε

)− I(�j);
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(5δ) for each j ∈ {1, . . . , p} such that d(�j) < t, 2δ < I(�j) − I
(
(d(�j)+ε) ∧ t

)
;

(6δ) for each j ∈ {1, . . . , p}, 4δ < d(�j) − g(�j) and for all s ∈ ]g(�j), d(�j)[,

Us − Is = |Vs| > s− g(�j) ∧ d(�j)− s ∧ 2δ.

(On the event {p = 0}, only (1δ) and (2δ) are demanded; the other ones are vacuously satisfied).
With such a δ, we are going to show that the conclusion of Proposition 4.8 holds. So, from now on, not only

are t, U , V , T and ε fixed, but so are also δ, which satisfies the six conditions, and U ′, a given δ-double of U .

Call e1, . . . , ek (in chronological order) the excursions of U with amplitude > 2δ which start before t ∧ T ;
call also e′1, . . . , e

′
k the excursions of U ′ which correspond to the ei by (2α). Choose (measurably) 2k excursions

f1, h1, . . . , fk, hk of |U ′|, in chronological order, so that

• ]g(fi), d(fi)[ ⊂ ]g(e′i)−δ, g(e′i)[ and ]g(hi), d(hi)[ ⊂ ]d(e′i), d(e′i)+δ[;
• the amplitudes of these 2k excursions are chronologically increasing (the amplitude of f1 is less that that of

h1, which is in turn less than that of f2, etc.) and all these 2k amplitudes are less than δ.

This is possible because U ′ is tame (definition of a δ-double), and because each Brownian excursion is immedi-
ately preceded and followed by infinitely many arbitrarily small other excursions.

Call T ′ the end of the excursion hk (put T ′ = 0 on the event {k = 0}, and observe that T ′ is finite).
Set Ũ = U ′, except for the signs of some excursions:
• f1, h1, . . . , fk, hk are made < 0;
• all other excursions before T ′ and taller than f1 (this includes e′1, . . . , e

′
k) are made > 0.

As Ũ differs from U ′ in the signs of finitely many, measurably chosen, excursions, Ũ is tame by Lemma 3.6.
Remark also that Ũ > −3δ on the interval [0, T∧ t]. Indeed, every s � T ∧ t such that |Us| > 2δ is in one of the
ei, and also, by (2α), in the corresponding excursion e′i; so Ũs > 0. And for s � T ∧ t such that |Us| � 2δ, using
(1α) one has |Ũs| = |U ′

s| < |Us| + δ < 3δ.
Observe that when T = 0, k and T ′ are null too, and Ũ is nothing but U ′; consequently, proving the first

sentence of Proposition 4.8 with this U ′ suffices to automatically entail the second sentence.
Define as follows a process V ′. First, its absolute value is |V ′| = J◦ Ũ . Then, the signs S◦V ′ of the excursions

of V ′ are drawn at random according to the uniform law π, independently of Ũ . Last, the signs of finitely many
excursions of V ′ are redefined as specified below, thus overriding the random assignment previously made.
According to Proposition 3.8, this process V ′ will be a Lévy raise of Ũ .

There are k + p excursions of V ′ whose signs will be prescribed according to some particular procedure.
The first k of them correspond to e1, . . . , ek (and to e′1, . . . , e′k) in the following manner. As a consequence of

the choice of the signs of the excursions of Ũ before T ′, for each i ∈ {1, . . . , k} the process I ◦ Ũ is constant on
some interval [ai, bi], where ai is the time when fi is extremal and where bi = inf{s > ai : Ũs = Ũai} occurs
during hi. So J ◦ Ũ and also V ′ have an excursion e′′i starting at time ai and ending at bi. This excursion of V ′

is assigned the same sign as the excursion ei of U (which is also an excursion of V , for ei occurs before T and
(U, V, T ) is a Lévy raise).

The other p excursions of V ′ with prescribed signs correspond to the excursions �j introduced at the beginning
of this proof. For j ∈ {1, . . . , p}, the excursion �j of U − I starts at g(�j) and ends at d(�j); on this interval,
the value I(�j) of I remains constant, and less that −4δ by (3δ). Owing to (4δ), at time T ∨ g(�j)−ε, U is
above the value I(�j) + 2δ, and by (6δ), at time g(�j) + 2δ, U is again above the value I(�j) + 2δ. So Ũ ,
which is minorated by −3δ before T∧ t and δ-close to U on [T∧ t, t], also has a current minimum between
T ∨ (g(�j)−ε) and g(�j) + 2δ, and this minimal value mj is δ-close to U

(
g(�j)
)

= I(�j). Then, by (6δ) again,
on the interval [g(�j)+2δ, d(�j)−2δ], U remains above I(�j) + 2δ, and a fortiori above mj + δ; consequently
Ũ > mj on [g(�j)+2δ, d(�j)−2δ] ∩ [0, t]. Last, if d(�j) < t, at time (d(�j)+ε) ∧ t (5δ) says that I is less than
I(�j)−2δ, and a fortiori less than mj − δ; hence, at that time, I◦ Ũ < mj if d(�j) < t. All in all, this shows that
Ũ − I ◦ Ũ has an excursion which starts between g(�j)− ε and g(�j) + 2δ, ends after d(�j)− 2δ and, if d(�j) < t,
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before d(�j) + ε, and resembles �j on the interval [g(�j)+2δ, d(�j)−2δ] ∩ [0, t]. Call �′j this excursion of J ◦ Ũ .
Since |mj − I(�j)| < δ and I(�j−1) − I(�j) > 4δ by (3δ), one has mj 
= mj−1 for j � 2; as mj is the value of
I ◦ Ũ during �′j, the excursion �′j cannot be the same as the excursion �′j−1. So we may – and do – assign to the
excursion �′j of V ′ the same sign as the excursion �j of V .

According to Proposition 3.8, (Ũ , V ′) is a Lévy raise. There remains to show that V ′ is an ε-double of V .
First, to check condition (2α), we have to consider all excursions of V reaching the value ±2ε before time t. Any

such excursion occurring before T is also an excursion of U , because U = V on [0, T ] since (U, V, T ) is a partial
Lévy raise. Now, using (1δ), any excursion of U occurring before T and reaching amplitude 2ε before t is one of
the ei; as explained above, V ′ has a corresponding excursion e′′i , with the same sign as the excursion ei of U and
V , starting at a time ai which belongs to fi and ending at bi which belongs to hi. Owing to the choice of fi and
hi, one has |ai − g(e′i)| < δ and |bi − d(e′i)| < δ. As U ′ is a δ-double of U , condition (2α) gives |g(e′i) − g(ei)| < δ
and |d(e′i)∧t − d(ei)∧t| < δ; so finally |g(e′′i ) − g(ei)| < 2δ < ε and |d(e′′i )∧t − d(ei)∧t| < 2δ < ε. Next, we verify
that any time s � t belonging to ei and such that |Vs| > 2ε, also belongs to e′′i . Such an s belongs to e′i by
definition of e′i and because |Us| = |Vs| > 2ε > 2δ; now, by the choice of fi and hi, the interval ]ai, bi[ contains
]g(e′i), d(e′i)[, so s also belongs to e′′i . This establishes (2α) for the excursions of V before T .

We now prove (2α) for the excursions of V after T . Any excursion of V posterior to T and reaching the value
±2ε before t must be one of the �j used when defining δ. We have seen that the corresponding excursion �′j of
V ′ satisfies |g(�′j)−g(�j)| < ε and |d(�′j)∧t−d(�j)∧t| < ε. If an s � t belongs to this �j and is such that |Vs| > ε,
then s also belongs to the smaller interval [g(�j)+2δ, d(�j)−2δ] because (2δ) forbids s to be close to the zeros
g(�j) and d(�j) of V . As [g(�j)+2δ, d(�j)−2δ] ∩ [0, t] is included in the excursion �′j , s belongs to �′j and (2α) is
fully established.

The only point which remains to be proven is (1α), namely, |V ′ − V | < ε on [0, t]. Here again, we separately
consider the intervals [0, T∧ t] and ]T∧ t, t].

First, on [0, T∧ t], we know that Ũ > −3δ, wherefrom I ◦ Ũ > −3δ and∣∣|U ′| − |V ′|∣∣ = ∣∣|Ũ | − |J ◦ Ũ |∣∣ � |Ũ − J ◦ Ũ | = |I ◦ Ũ | < 3δ.

Using now V = U on [0, T ] and |U ′ − U | < δ on [0, t], we get
∣∣|V ′| − |V |∣∣ < 4δ.

We now consider two sub-cases. For an s ∈ [0, T∧ t] such that |Vs| � 2δ, one has s ∈ ei for some i by
definition of ei, and s ∈ e′i by (2α); a fortiori, s ∈ e′′i , for ai < g(e′i) and bi > d(e′i). Hence sgnV ′

s = sgn Vs by
definition of the signs of V ′, and |V ′

s − Vs| =
∣∣|V ′

s | − |Vs|
∣∣ < 4δ < ε by (1δ). On the opposite, if |Vs| < 2δ, then

|V ′
s − Vs| � |V ′

s | + |Vs| < (|Vs| + 4δ) + |Vs| < 2δ + 4δ + 2δ < ε.
The last case is the interval ]T∧ t, t]. There, Ũ = U ′ and |Ũ − U | < δ; so∣∣∣∣ inf

[T,s]
Ũ − inf

[T,s]
U

∣∣∣∣ < δ.

Taking into account that Ũ > −3δ before T , we have |I ◦ Ũ − I| < 4δ on [0, t], and∣∣|V ′| − |V |∣∣ = ∣∣J ◦ Ũ − (U−I)
∣∣ = ∣∣(Ũ−U) − (I◦Ũ−I)

∣∣ < 5δ on ]T∧ t, t].

As before, there are now two sub-cases. For an s ∈ ]T∧ t, t] such that |Vs| � ε/4, one has s ∈ �j for some j
by definition of �j, and more precisely s ∈ [g(�j)+2δ, d(�j)−2δ] owing to (2δ). Consequently s is also in the
excursion �′j , and sgnV ′

s = sgnVs; this implies |V ′
s − Vs| =

∣∣|V ′
s | − |Vs|

∣∣ < 5δ < ε. If, on the opposite, |Vs| < ε/4,
then |V ′

s − Vs| � |V ′
s | + |Vs| < (|Vs| + 5δ) + |Vs| < ε/4 + 5δ + ε/4 < ε by (1δ). This establishes (1α) and proves

Proposition 4.8. �

5. First properties of partial Lévy raises

As explained in Section 2, our goal is to establish topological recurrence of T via Corollary 2.4, by showing
that each non-empty open subset of W is attainable. Exploiting Proposition 4.5, this section will show how
attainability of open sets can be eased with the use of partial Lévy raises.
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For each η > 0, the definition of attainablilty involves a finite number of Lévy raises. Thanks to
Proposition 4.5, it is possible to use a random (possibly unbounded) number of partial Lévy raises in lieu
of a deterministic number of Lévy raises. This is shown by the next proposition, whose proof will use the
following notation: for ϕ ∈ W, t > 0 and ε > 0, we define the tubular neighborhood of ϕ

Gt,ε(ϕ) = {w ∈ W : ∀s ∈ [0, t] |w(s) − ϕ(s)| < ε};
remark that Gt′,ε′(ϕ) ⊂ Gt,ε(ϕ) if t′ � t and ε′ � ε, and that the sequence Gn, 1

n
(ϕ) is decreasing and forms a

base of neighborhoods of ϕ.

Proposition 5.1. Given an open set G ⊂ W, suppose that for every η > 0 there exists an infinite sequence
(U0, U1, . . .) of partial Lévy raises starting from a Brownian motion U0 and such that P

[∃n � 0 Un ∈ G
]

>
1 − η. Then G is attainable.

Proof. Given G and η, the hypothesis yields a sequence (Un)n�0 of processes; introduce the r.v. N � ∞ defined
as the smallest n such that Un ∈ G. The hypothesis says that P[N =∞] < η; hence P[N >p] < 2η for some
deterministic p < ∞ fixed in the sequel. The processes Xn = UN∧n satisfy

(Xn−1, Xn) =

{
(Un−1, Un) on the event {N � n}
(Xn−1, Xn−1) on the event {N < n},

so each pair (Xn−1, Xn) is a partial Lévy raise (with a random time T which is infinite on {N < n}). On the event
{N � p}, whose probability is > 1 − 2η, one has Xp = UN ∈ G, and hence also Gk,k−1 (Xp) ⊂ G for all k large
enough; therefore it is possible to choose some deterministic t > 0 and ε > 0 so that P[Gt,ε(Xp) ⊂ G] > 1− 3η.

Apply now Proposition 4.5 to the sequence (X0, . . . , Xp) of partial Lévy raises; this gives a sequence
(Y 0, . . . , Y p) of Lévy raises such that Y p ∈ Gt,ε(Xp) and |Y 0| = |U0| on [0, t]. Introduce a Brownian motion B
independent of Y p, and consider the finite sequence of Lévy raises (Z−1, Z0, . . . , Zp) defined by Zn = Tp−n ◦Γ
for −1 � n � p, with

Γ =

{
Y p on the interval [0, t]
B − Bt + Y p

t on the interval [t,∞[;

observe that Γ is tame (Lem. 3.9). On [0, t], one has Zn = Y n for all n ∈ {0, . . . , p}, and hence also |Z0| =
|Y 0| = |U0|; as a consequence, Z−1 = T◦U0 on [0, t]; this is a Brownian motion. On [t,∞[, Lemma 3.9 says that
Z−1 is a Brownian motion independent of Y p and a fortiori of Tp+1 ◦ Y p, which equals Z−1 on [0, t]. Finally,
Tp+1 ◦ Γ = Z−1 is a Brownian motion.

From Γ = Y p on [0, t] and Y p ∈ Gt,ε(Xp), one gets Γ ∈ Gt,ε(Xp); consequently P[Γ ∈ G] �
P[Gt,ε(Xp) ⊂ G] > 1 − 3η, and G is attainable by Proposition 2.5. �

This section ends with two lemmas, to be used only much later.

Lemma 5.2.

(a) Suppose that t > 0 and that (U, V ) is a partial Lévy raise; call ]g, d[ the interval of the excursion of V
which straddles t. There exists a random isometry Φ : R → R, with derivative sgnVt, such that Us = Φ(Vs)
for all s in [g, d];

(b) still for t > 0, suppose that (U0, . . . , Un) is a finite sequence of partial Lévy raises. Call ]gi, di[ the interval
of the excursion of U i which straddles t. There exists a random isometry Ψ : R → R such that U0

s = Ψ(Un
s )

for all s in
⋂n

i=1[gi, di].

Proof.
(a) The random time T such that (U, V, T ) is a partial Lévy raise satisfies VT = 0 if T is finite, for UT = 0

and V = U on [0, T ]. Consequently, T cannot belong to ]g, d[. If T � d, then U = V on [g, d], and the conclusion
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holds with Φ the identity map. If T � g, then Us − inf [T,s] U = |Vs| does not vanish for s ∈ ]g, d[. Therefore
inf [T,s] U remains constant for s in this interval; call c this constant. Still for s ∈ ]g, d[, one has

Us = |Vs| + c = (sgn Vs)Vs + c = (sgnVt)Vs + c.

This proves (a), with Φ(x) = (sgnVt)x + c;
(b) it suffices to call Φi the random isometry such that U i−1 = Φi(U i) on [gi, di], and to set Ψ = Φ1 ◦Φ2 ◦ . . .◦

Φn. �

Lemma 5.3. Fix t > 0 and let (U, V ) and (U ′, V ′) be two Lévy raises and ε > 0 a random variable. Suppose
that |Vt| > ε and, on the interval [0, t],

|V ′ − V | < ε and |U ′ − U | < ε.

The random isometries Φ and Φ′ such that U = Φ(V ) and U ′ = Φ′(V ′) in a (random) neighborhood of t (see
Lem. 5.2 (a)) satisfy

∀x ∈ R |Φ′(x) − Φ(x)| < 2ε.

Proof. From |Vt| > ε and |V ′
t − Vt| < ε, one draws sgnV ′

t = sgn Vt. For x ∈ R, writing

Φ′(x) = (x − V ′
t ) sgnV ′

t + U ′
t and Φ(x) = (x − Vt) sgnVt + Ut

and using sgnV ′
t = sgnVt we obtain

|Φ′(x) − Φ(x)| =
∣∣ (Vt − V ′

t ) sgn Φ + U ′
t − Ut

∣∣ � |Vt − V ′
t | + |U ′

t − Ut| < 2ε. ��

6. Planing a path

Our final goal, proving attainability of G by Proposition 5.1, is not yet within reach; some intermediate steps
will be necessary. This section introduces a method which we call planing, for it eventually removes the relief
of a path by repeatedly levelling its elevations.

Proposition 6.1. Suppose given two r.v. t > 0 and ε > 0, a tame process U and a random time T valued in
[0,∞], such that T is the end of an excursion of U on the event {0 < T < ∞}.

There exist an infinite sequence (U0, U1, . . .) of partial Lévy raises and a finite r.v. N � 0 such that

• U0 = U ;
• each Un equals U on the interval [0, T ];
• sups∈[T,t] |UN

s | < ε on the event {T � t}.
This section is entirely devoted to proving Proposition 6.1.

Notice first that on the event {T � t}, the sequence defined by Un = U for all n fulfills all required properties,
since (U, U) is a partial Lévy raise and UT = 0. So it suffices to construct the Un on the event {T < t}; at the
cost of replacing P with a conditional probability, we may, and henceforth do, suppose that T < t a.s.

Construction (planing). Our Proof of Proposition 6.1 will rely on the following construction, where t, ε, U
and T are fixed and satisfy all hypotheses of Proposition 6.1, plus T < t. Fix also a series of r.v. (δn) such that
δn > 0 and

∑
n�1 δn < ε. Starting from U0 = U and from t0 = T , construct a sequence (Un)n�0 of processes

and an increasing sequence (tn)n�0 of random times in [0,∞] according to the following procedure.
Suppose Un−1 and tn−1 have already been constructed. Then

• tn is the first time after tn−1 that J[T Un−1 starts an excursion taller than ε;
• on [0, T ], Un = U ; and on [T,∞[, Un has absolute value |Un| = J[T Un−1;
• the excursion of Un starting at tn (which is taller than ε) is made negative;
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• all other excursions of Un taller than δn and started in the interval [T, tn∨ t] are made positive;
• the signs of all other excursions of Un (that is, all excursions smaller than δn and started in [T, tn∨ t],

or started after tn ∨ t) are drawn at random, according to the fair coin-tossing law π, independently of
everything already existing.

At each step of this procedure, the process Un so constructed is tame, (J [T Un)
[T

= J ◦ (Un[T ) is tame too, tn
is finite, and (Un−1, Un) is a partial Lévy raise. (These properties hold for n = 0; they carry over from n− 1 to
n owing to Prop. 4.3).

To demonstrate Proposition 6.1, it suffices to prove both following lemmas:

Lemma 6.2. For n � 1, on the interval [T, tn] one has

−δn < Un < ε + δ1 + . . . + δn−1.

Lemma 6.3. Almost surely, supn tn > t.

Proof of Proposition 6.1 (Lems. 6.2 and 6.3 are admitted). We have already seen that (Un) is a sequence of
partial Lévy raises, and the first two items in the conclusion of Proposition 6.1 are satisfied by construction. To
check the third one, take a r.v. N � 1 such that tN > t (Lem. 6.3), and observe that, by Lemma 6.2, |UN | < 2ε
on [T, tN ] and a fortiori on [T, t]. This proves Proposition 6.1, with a trifling 2ε instead of ε. �

We still have to prove Lemmas 6.2 and 6.3. Remark that they involve only the processes (Un)[T (what
happens on [0, T ] is irrelevant), and that the construction of Un on [T,∞[ and of tn necessitates only to know
Un−1 on [T,∞[ and tn−1. Consequently, at the cost of respectively replacing U , Un, tn and t with U [T , (Un)[T ,
tn − T and t − T , we may, and henceforth do, suppose that T = 0. In that case, by Proposition 3.8, each pair
(Un−1, Un) is not only a partial Lévy raise, but a Lévy raise; so Un−1 = T ◦ Un.

For the sake of further reference, we repeat below the planing algorithm, under the simplifying assumption
T = 0 now in force.

Start with U0 = U and t0 = 0. After tn−1 and Un−1 have been constructed, define tn and Un as follows.

• tn is the first time after tn−1 that J ◦ Un−1 starts an excursion taller than ε;
• Un has absolute value |Un| = J ◦ Un−1 (whence Un−1 = T ◦ Un);
• the excursion of Un started at tn (which is taller than ε) is made negative;
• all other excursions of Un taller than δn and started before tn∨ t are made positive;
• the signs of the excursions of Un smaller than δn or started after tn ∨ t are drawn at random, according to

a fair coin-tossing independent of everything already constructed.

We begin the proofs of the two lemmas. First, Lemma 6.2; it is not difficult.

Proof of Lemma 6.2. The minoration is obvious from the construction of Un, whose first negative excursion
taller than δn is the one starting at tn. The majoration will be obtained by induction. Before t1, all excursions
of |U1| = J ◦ U0 are smaller than ε, so U1 < ε. Assume (induction hypothesis) that the claim holds for some
n � 1. Call un the first hitting time of −δn by Un; this un belongs to the excursion interval of Un originating
at tn (because that excursion is taller than δn and negative, and Un > −δn before tn). On [0, un], one has
−δn � Un < ε + δ1 + . . . + δn−1, whence also J ◦Un < ε + δ1 + . . . + δn; and at time un, Un reaches its current
minimum, so J ◦ Un(un) = 0. By definition of tn+1, all excursions of J ◦ Un included in the interval [tn, tn+1]
are smaller than ε; hence J ◦Un < ε on [0, tn+1] \ [0, un]. So the majoration J ◦Un < ε + δ1 + . . . + δn on [0, un]
extends to [0, tn+1]; and observing that Un+1 � |Un+1| = J ◦ Un proves the claim for n + 1. �

The Proof of Lemma 6.3 is much less simple; it will occupy the rest of this section. It requires a new definition,
which will be used in this section only.
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Definition 6.4. For w ∈ W, α > 0 and 0 � a < k < b, we say that the interval [a, b] is an α-arch of w, with
keystone k, if w(b) = w(a) = w(k) − α and

∀t ∈ ]a, k[ ∪ ]k, b[ w(k) > w(t) > w(k) − α,

or if w(b) = w(a) = w(k) + α and

∀t ∈ ]a, k[ ∪ ]k, b[ w(k) < w(t) < w(k) + α.

In the first case, w has a local maximum at k, and the arch is up; a (resp. b) is the last time before k (resp.
the first time after k) when w reaches the value w(k) − α. A local maximum of w is always the keystone of an
α-arch for every α small enough, but need not be the keystone of an α-arch for an α given in advance.

In the other case, w has a local minimum at k; the arch is down, and [a, b] is also an α-arch (which is up) of
the opposite path −w, with the same keystone.

Clearly, the keystone of an α-arch is unique.
When we speak of an α-arch of a process, we mean a random α-arch, possibly defined with probability less

than 1; α may be random too.

Lemma 6.5. Fix w ∈ W and α > 0.

(a) Given any α-arch A of w, for each β such that 0 < β � α there exists a unique β-arch of w, included in
A, and having the same keystone;

(b) given two different α-arches of w, the keystone of any one of them cannot belong to the interior of the other
one. The oscillation of w on the interval between both keystones is at least α;

(c) any two different α-arches A1 and A2 of w such that their interiors meet (i.e., (A1)
◦ ∩ (A2)

◦ 
= ∅) have
different orientations (one of them is up, the other down).

Proof of Lemma 6.5.
(a) Suppose that A = [a, b] is up; then w(k) = maxA w and w(a) = w(b) = w(k) − α. On each interval ]a, k[

and ]k, b[, w assumes all values between w(k)−α and w(k); so the numbers

a′ = sup{ t : t � k and w(t) = w(k) − β}
b′ = inf{ t : t � k and w(t) = w(k) − β}

satisfy a < a′ < k < b′ < b and [a′, b′] is the β-arch of w with keystone k. The case when A is down is similar
(or obtained by changing w for −w);

(b) to prove the first sentence, given an α-arch [a, b] with keystone k and supposing that some k′ ∈ ]a, b[
is the keystone of an α-arch [a′, b′], we have to show that [a′, b′] = [a, b]. The oscillation of w on any interval
included in ]a, b[ is less than α; consequently,

a′ = sup{ t : t � k′ and |w(t) − w(k′)| = α} � a,

b′ = inf{ t : t � k′ and |w(t) − w(k′)| = α} � b,

and therefore [a′, b′] ⊃ [a, b]. If k′ 
= k, w(k′) is not an extremal value of w on [a, b], nor a fortiori on [a′, b′];
this contradicts k′ being the keystone of [a′, b′]. So k′ = k, and the above formulas yield a′ = a and b′ = b as
claimed.

If [a1, b1] and [a2, b2] are two different α-arches with respective keystones k1 and k2, we have k1 
= k2 (else k1

would belong to ]a2, b2[ ); so suppose without loss of generality that k1 < k2. Since k1 does not belong to ]a2, b2[
but k2 does, we have k1 < a2 < k2. This entails osc[k1,k2] w � osc[a2,k2] w = α;

(c) Let again [a1, b1] and [a2, b2] be two different α-arches with keystones k1 and k2; we may suppose k1 < k2.
If ]a1, b1[ ∩ ]a2, b2[ 
= ∅, we have a1 < k1 < a2 < b1 < k2 < b2. If the α-arch [a1, b1] is up, we must have
w(a2) > w(b1) and this implies that the α-arch [a2, b2] is down. The other case ([a1, b1] down) is similar. �



414 M. MALRIC

Lemma 6.6. Let t, δ, α and ε be r.v. such that t > 0 and 0 < δ < α � ε; let V be a tame process all
of whose negative excursions started before t have amplitude < δ, with the possible exception of at most one
negative excursion with amplitude � ε.

Every α-arch A of V included in [0, t] contains an (α−δ)-arch A′ of T ◦ V . On the event {A is up}, A′

can (and will) be chosen so as to have the same keystone as A.
If A1 and A2 are two α-arches of V included in [0, t] with keystones k1 and k2 such that k1 < k2, then the

keystones k′
1 and k′

2 of A′
1 and A′

2 also satisfy k′
1 < k′

2.

Proof of Lemma 6.6. Assume the hypotheses of the lemma, let A = [a, b] ⊂ [0, t] be an α-arch of V with
keystone k, and set β = α − δ. Put also U = T ◦ V .

We shall first consider the event E = {A is down and − δ < Vk � 0}. On this event, we have Va = Vb =
Vk + α > − δ + α = β > 0, so V must vanish somewhere on [k, b[; the last zero k′ = sup {t ∈ A : Vt = 0}
satisfies k � k′ < b. As the local time L of V is increasing, and constant on the excursions of V , Uk′ is the
minimum of U = |V | − L on [0, b] and a fortiori on A. Since

Ub − Uk′ = |Vb| − Lb − |Vk′ | + Lk′ = Vb > β

and
Ua − Uk′ = |Va| − La − |Vk′ | + Lk′ � Va > β,

U has a β-arch A′ with keystone k′, and A′ is included in A. This shows the existence of A′ on the event E.
On the complementary event Ec, we shall now show that the β-arch A′ of V with keystone k, which exists

according to Lemma 6.5 (a), is also a β-arch of U with the same keystone k. It suffices to verify that V does
not vanish on the interior (A′)◦ of the interval A′; indeed, in that case, the local time L of V is constant on A′,
and hence A′, which is a β-arch of V , is also a β-arch of U = |V | − L.

To check that, on the event Ec, V does not vanish on (A′)◦, we shall consider four cases.

Case 1. A is down and Vk > 0. As Vk is the minimum of V on A, V cannot vanish on A, nor a fortiori on A′.

Case 2. A is down and Vk � −δ. If Va were > 0, the excursion of V straddling k would be included in the
interior of A, so its amplitude would be < oscA V = α � ε; this would contradict the hypothesis that no negative
excursion of V included in [0, t] can have its amplitude in the range [δ, ε[. So Va � 0, and A◦, and a fortiori also
(A′)◦, is included in an excursion interval of V .

Case 3. A is up and Va = Vb > −δ. We have infA′ V = Vk − β = Va + δ > 0, so V cannot vanish on A′.

Case 4. A is up and Va = Vb � −δ. By hypothesis, V has at most one negative excursion started before t with
amplitude � δ; as Va = Vb � −δ, both a and b must belong to the same excursion interval of V , and the arches
A and A′ are also included in this excursion interval.

This shows the first part of the lemma. Now, consider two α-arches A1 and A2 of V with respective keystones
k1 and k2 such that k1 < k2; and denote by A′

1 and A′
2 the corresponding (α−δ)-arches of T◦V , with keystones

k′
1 and k′

2.
On the event F = {(A1)

◦ ∩ (A2)
◦ = ∅}, each element of (A1)

◦ is anterior to each element of (A2)
◦, and in

particular k′
1 < k′

2.
On the complementary F c = {(A1)

◦ ∩ (A2)
◦ 
= ∅}, Lemma 6.5 (c) says that one of A1 and A2 is up; so we

split this event into two parts.
On {(A1)

◦ ∩ (A2)
◦ 
= ∅ and A1 is up}, A′

1 is chosen so that k′
1 = k1. Since k1 is anterior to (A2)

◦ by
Lemma 6.5 (b) and A′

2 ⊂ A2, we have k′
1 < k′

2.
Similarly, on {(A1)

◦ ∩ (A2)
◦ 
= ∅ and A2 is up}, A′

2 is chosen so that k′
2 = k2. Since k2 is posterior to (A1)

◦

by Lemma 6.5 (b) and A′
1 ⊂ A1, we also have k′

1 < k′
2. �

Proof of Lemma 6.3 (at last). We are given t, ε and (δn)n�1 such that
∑

n�1 δn < ε; the tn and Un are
constructed as described earlier. Choose α0 > 0 such that α0 +

∑
n�1 δn < ε, and set αn = α0 +δ1+ . . .+δn < ε.
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The first step of the proof consists in establishing that for n � 1, tn+1 is the keystone of an αn-arch of Un.
Before tn, Un is bounded below by −δn (Lem. 6.2). At time tn, Un is null and starts a negative excursion

hn exceeding −ε. Call vn the first time (equivalently, the first time after tn) that Un hits −ε, and suppose
tn+1 < vn. Due to the definition of tn+1, after tn+1, Un must reach the value Un

tn+1
+ ε before ever coming

back to Un
tn+1

. Since Un
tn+1

> −ε (because tn+1 < vn), this implies that after tn+1, Un reaches 0 before hitting
−ε. This prevents the excursion hn to ever reach the value −ε, a contradiction; therefore our supposition that
tn+1 < vn was false, and tn+1 � vn. At time tn+1, Un is at its current minimum because J ◦ Un = 0, so
Un

tn+1
� Un

vn
= −ε. After tn+1, Un reaches the value Un

tn+1
+ ε before coming back to Un

tn+1
. These properties

entail that tn+1 is the keystone of an ε-arch of Un (which is down), and a fortiori also of an αn-arch, since
αn < ε.

The second step is the proof that for n � 1, the αn-arch of Un with keystone tn+1 is included in ]tn, tn+2[.
Since Un

tn
= 0 and Un

tn+1
� −ε, we have Un

tn
− Un

tn+1
� ε > αn, so tn does not belong to the αn-arch of Un

with keystone tn+1.
As Un

tn+1
� −ε, tn+1 belongs to the excursion hn, and Un < 0 on ]tn, tn+1[. Hence the local time Ln of Un

is constant on this interval. But Un−1 = T ◦ Un = |Un| − Ln; so Un−1 and |Un| have the same increment on
]tn, tn+1[, and we have Un−1

tn+1
− Un−1

tn
= |Un

tn+1
| − |Un

tn
|. Observing that Un

tn+1
� −ε and Un

tn
= 0, we obtain

Un−1
tn+1

− Un−1
tn

� ε, and changing n for n + 1 yields Un
tn+2

− Un
tn+1

� ε. A fortiori, Un
tn+2

− Un
tn+1

> αn; therefore
tn+2 cannot belong to the αn-arch of Un with keystone tn+1.

We are now ready for the last step of the proof: supposing P[∀n tn � t] > 0, we shall reach a contradiction.
By conditioning, we may suppose tn � t a.s. As the sequence (tn) is strictly increasing, we have tn < t for all n.

For n � 1, call An
n+1 the αn-arch of Un with keystone tn+1 (step 1); by step 2, An

n+1 ⊂ [0, t]. We can
repeatedly apply Lemma 6.6 and obtain a chain

An
n+1 ⊃ An−1

n+1 ⊃ . . . ⊃ A0
n+1,

where Ai
n+1 is an αi-arch of U i included in Ai+1

n+1 and having the same keystone if Ai+1
n+1 is up. (To pass from

Ai
n+1 to Ai−1

n+1, apply Lemma 6.6 with V = U i, T ◦V = U i−1, α = αi, δ = δi and α− δ = αi−1. This is possible
because U i is tame and T ◦ U i = U i−1, and all negative excursions of U i started in [0, t] are smaller than δi,
except the one starting at ti, which exceeds −ε). Call ki

n+1 the keystone of Ai
n+1; for n � 1 we have kn

n+1 = tn+1

by definition of An
n+1. Since tn is anterior to An

n+1 (step 2), tn is a fortiori anterior to An−1
n+1, and for n � 2 we

have kn−1
n = tn < kn−1

n+1 . We can repeatedly apply Lemma 6.6 again, and successively obtain ki
n < ki

n+1 for all
i, until finally k0

n < k0
n+1 for n � 2.

So we have a strictly increasing sequence k0
2 < k0

3 < . . . of keystones of α0-arches of U0; all these arches
are included in [0, t], so k0

n < t. By Lemma 6.5 (b), the oscillation of U0 between k0
n and k0

n+1 is � α0;
this is incompatible with U0 being continuous (or merely having left-limits), a contradiction. Lemma 6.3 and
Proposition 6.1 are proven. �

Remark 6.7. When proving Lemma 6.3, we have been a little lax and passed in silence over questions of
measurability. In Lemma 6.6, we have not shown that A′ can be measurably chosen, nor that the keystone of
a measurable arch is measurable, etc. All this is of course true, and not difficult; but it turns out not to be
necessary. All we need is the almost sure existence of A′; the ki

n are only used to build up oscillation of U0, and
whether they are measurable or not is irrelevant.

7. A refinement of Proposition 6.1

This section will prove Proposition 7.2, which improves in Proposition 6.1 by further specifying an
approximate value for UN at time t.
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Lemma 7.1. Let a, b and t be three r.v. such that 0 < a < b and t > 0. If U is a tame process, there exist
finitely many different excursions e1, . . . , ep of |U | included in [0, t] (with p random and the ei measurably
chosen) such that, calling hi the amplitude of ei, one has

a < h1 + . . . + hp < b.

Proof. We may suppose U to be a Brownian motion. For arbitrary s > 0 and ε > 0, it is known that U a.s. has
infinitely many excursions included in ]0, s[ with amplitude less than ε; and the sum of all these amplitudes is
infinite. The lemma follows by defining e1 to be the tallest excursion of |U | in [0, t] with amplitude h1 < b, then
e2 to be the tallest among the remaining ones such that h1 + h2 < b, and so forth until the sum h1 + . . . + hp

overpasses a. �

Proposition 7.2. Let t > 0 be a r.v. and I and J two random, non-empty open intervals of the real line, such
that 0 ∈ I and J ⊂ I. Let also U be a tame process and T a random time valued in [0,∞], such that T is the
end of an excursion of U on the event {0 < T < ∞}.

There exist an infinite sequence (Un)n�0 of partial Lévy raises and a finite r.v. N � 0 such that

• U0 = U ;
• each Un equals U on the interval [0, T ];
• on the event {T � t}, UN

s ∈ I for all s ∈ [T, t] and UN
t ∈ J .

Proof. Replacing I and J with smaller intervals, we may without loss of generality suppose that, with
probability 1,

I = ]−ε, a[ and J = ]a−ε, a[ or I = ]−a, ε[ and J = ]−a,−a+ε[

for two r.v. a and ε such that 0 < ε < a.
We start by invoking Proposition 6.1, to obtain (Un)n�0 and N such that U0 = U , Un = U on [0, T ] and

sups∈[T,t] |UN
s | < ε/2 on {T � t}. We shall keep constructing new partial Lévy raises from UN on; to avoid a

cumbersome notation, it is convenient to set V 0 = UN and to work on a sequence of partial Lévy raises V n

(instead of UN+n). The construction is only needed on the event {T < t}, so, by conditioning, we may suppose
T < t a.s. Also, all partial Lévy raises produced in the sequel of the proof will be prepared according to the
recipe from Proposition 4.3 (with a T in the recipe greater than or equal to the T given in the statement
of Prop. 7.2); working with (V n)[T instead of V n, Corollary 4.4 allows us to suppose T = 0 without loss of
generality. So we may (and henceforth do) suppose that T = 0 and that |V 0| < ε/2 on the interval [0, t].

To construct V 1, we shall perform a (non partial) Lévy raise in accordance with Proposition 3.8, with all but
finitely many excursion signs randomly chosen. The absolute value is given by |V 1| = J ◦ V 0 � |V 0| + |I ◦ V 0|,
so |V 1| < ε on [0, t]. If |V 1

t | 
= 0, we choose the excursion straddling t to be positive, whence 0 � V 1
t < ε. As

ε < a, Lemma 7.1 allows us to choose some excursions e1, . . . , ep of |V 1| in the interval [0, t] such that the sum
h1 + . . . + hp of their amplitudes belongs to the random interval ]a−V 1

t −ε, a−ε[. We number the ei in reverse
chronological order: ep is the first one, e1 the last one. Put

δ = ε ∧ h1 ∧ . . . ∧ hp

and choose the signs of finitely many excursions of V 1 according to the following prescription: as already said,
the excursion straddling t is made positive; the ei are made negative; all other excursions before t and with
amplitude � δ are made positive.

Call Si the end of the excursion ei, and put Sp+1 = 0.
For 1 � i � p, we are now going to construct V i+1 from V i by a partial Lévy raise with preservation of

the past up to Si+1. So V i+1 = V i on [0, Si+1], and |V i+1| = J [Si+1V i after Si+1. Make positive the excursion
of V i+1 which straddles t as well as all excursions included in [Si+1, t] with amplitude � δ; and draw at random
the signs of all other excursions of V i+1 after Si+1. By induction, we shall verify that, for 1 � i � p + 1,
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(1i) V i = V 1 on [0, Si] (and so Si+1 is the end of an excursion of V i for i < p);
(2i) V i > −δ on [Si, t];
(3i) V i < ε + h1 + . . . + hi−1 on [0, t];
(4i) if i � p, the minimum of V i on the interval [Si+1, t] is −hi (attained during ei);
(5i) V i

t = V 1
t + h1 + . . . + hi−1.

When i = 1, (1i) and (5i) are trivial. The minoration (2i) holds for V 1 because the excursions of V 1 before t
and reaching or exceeding δ are positive, except the ei, which are all anterior to S1. The majoration (3i) is
due to V 1 � |V 1| < ε on [0, t]. Last, in [S2, t], V 1 has only one negative excursion with size � δ, namely e1,
whence (4i).

Now, assuming these five properties to be true for V i, we shall see that they also hold for V i+1. First, before
Si+1, V i+1 = V i by preservation of the past, and in turn V i = V 1 by (1i) because Si+1 < Si. As all excursions
� δ of V i+1 in the interval [Si+1, t] are made positive, (2i) holds for V i+1. The majoration (3i) for V i+1 is
verified separately on both intervals [0, Si+1] and [Si+1, t]: on the former, V i+1 = V 1 < ε by (1i), and, for
s ∈ [Si+1, t], using the hypothesis (4i), one has the majoration

V i+1
s � |V i+1

s | = V i
s − inf

r∈[Si+1,s]
V i

r � V i
s − inf

r∈[Si+1,t]
V i

r = V i
s + hi,

which transfers (3i) from V i to V i+1. To check (4i) (when i + 1 � p), we already have the minoration of V i+1

by −δ on [Si+1, t] given by (2i); and on [Si+2, Si+1], V i+1 equals V 1, whose only excursion in this interval
attaining −δ is ei+1; this shows (4i) for V i+1. Last, since the excursion straddling t is positive, using (4i) for
V i one can write

V i+1
t = |V i+1

t | = V i
t − inf

s∈[Si+1,t]
V i

s = V i
t + hi,

so V i+1 satisfies (5i) if V i does.

Observing now that Sp+1 = 0, the minoration (2i) yields V p+1 > −δ on [0, t]; and using the inequalities

a − V 1
t − ε < h1 + . . . + hp < a − ε

from the definition of the excursions ei, (3i) entails V p+1 < a on [0, t] and (5i) gives a−ε < V p+1
t < a+V 1

t −ε < a.
So if I = ]−ε, a[ and J = ]a−ε, a[, we have obtained V p+1 ∈ I on [0, t] and V p+1

t ∈ J . To also have these
properties on the event

E =
{

I = ]−a, ε[ and J = ]−a,−a + ε[
}
,

it suffices to perform a further modification concerning the choice of the signs of V p+1, which overrides the
preceding prescription: on the event E, all excursions of V p+1 started in [0, t] and having amplitude � ε∧ (a−ε)
are made negative (this is licit because the Lévy raise (V p, V p+1) is not partial since Sp+1 = 0). As the absolute
value |V p+1| is not changed by this new choice, one still has |V p+1| < a on [0, t]; the majoration V p+1 < ε is
obvious, and the estimate −a < V p+1

t < −a + ε holds because the sign of V p+1
t has been flipped to negative.

To achieve the proof of Proposition 7.2, it now suffices to define V n for n > p + 1, by setting for instance
V n = V p+1 for these n. �

8. Final steps

Proposition 8.1. Let G be a non-empty open subset of W. For each η > 0, there exists (on a suitable sample
space) an infinite sequence (Un)n�0 of partial Lévy raises such that U0 is a Brownian motion and

P
[
Un ∈ G for some n � 0

]
> 1 − η.
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This proposition is the only missing piece in our proof:

Theorem 8.2. The Lévy transformation is topologically recurrent: for almost all w ∈ W, the orbit
{Tnw , n � 0} is dense in W.

Proof. Juxtapose Corollary 2.4, Propositions 5.1 and 8.1. �

The rest of this section is the proof of Proposition 8.1.
For w ∈ W and Λ ⊂ R

+, set ‖w‖Λ = supt∈Λ |w(t)|.
For ϕ ∈ W, t > 0 and ε > 0, recall that Gt,ε(ϕ) denotes the tubular neighborhood {w ∈ W : ‖w−ϕ‖[0,t] < ε}.

These sets form a base for the topology of W, hence the non-empty open set G contains such a tubular
neighborhood Gt,ε(ϕ), and it suffices to prove Proposition 8.1 when G = Gt,ε(ϕ).

From now on, ϕ, t, ε and η are fixed. By uniform continuity on [0, t], there exists a number p � 1 such that

sup
r,s∈[0,t]
|r−s|� t

p

|ϕ(r) − ϕ(s)| < ε (1p)

and that, if B is a Brownian motion,

P

⎡
⎢⎢⎣ sup

r,s∈[0,t]
|r−s|� t

p

|Br − Bs| < ε

⎤
⎥⎥⎦ > 1 − η. (2p)

Such a p is fixed in the sequel. We also suppose that η � 1/2. This is of course quite harmless, but useful for it
entails a further property of p:

Lemma 8.3. Suppose η � 1/2. For any interval Λ ⊂ R
+ with length t/p, if B is a Brownian motion one has

P

[
sup

r,s∈Λ
|Br − Bs| < ε

]
> 1 − 2η

p
·

Proof of Lemma 8.3. The probability of the event ΩΛ =
{
supr,s∈Λ |Br − Bs| < ε

}
depends only on the length

of Λ, and, if Λq =
[ (q−1)t

p , qt
p

]
, the events ΩΛ1

, ΩΛ2
, . . . are independent. Clearly, the event

Ω′ =

⎧⎪⎪⎨
⎪⎪⎩ sup

r,s∈[0,t]

|r−s|� t
p

|Br − Bs| < ε

⎫⎪⎪⎬
⎪⎪⎭

is included in
⋂p

q=1 ΩΛq
; and (2p) says that P[Ω′] > 1 − η. Hence

1 − η < P[Ω′] � P

[
p⋂

q=1

ΩΛq

]
=

p∏
q=1

P[ΩΛq
] = P[ΩΛ1

]p,

wherefrom P[ΩΛ1
] > (1 − η)

1
p . To conclude, it suffices to check that

∀x ∈
[
0,

1
2

]
(1 − x)

1
p � 1 − 2x

p
·

By concavity of x �→ (1 − x)
1
p , it suffices to verify this inequality when x = 0 (this case is trivial) and when

x = 1/2. In that case,

(1 − x)
1
p = (1/2)

1
p > (1/e)

1
p > 1 − 1

p
= 1 − 2x

p
· �
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Our strategy for establishing Proposition 8.1 will consist in working sucessively on the time-intervals[
qt
p , (q+1)t

p

]
. More precisely, we shall prove:

Claim 8.4. For each q ∈ {1, . . . , p}, there exists an infinite sequence of partial Lévy raises (Un)n�0 (depending
on q) such that U0 is a Brownian motion and that the event

Eq =
{

for some n, ‖Un − ϕ‖[0, q
p t] < 3ε and

∣∣∣∣Un
q
p t − ϕ

(
q

p
t

)∣∣∣∣ < ε

}

satisfies P[Eq] > 1 − 4 q
p η.

Taking q = p and ignoring the second requirement in Ep, the claim immediately implies Proposition 8.1 (with
G = Gt,3ε(ϕ) and with 4η instead of η).

Claim 8.4 will be proved by induction on q; so we start with q = 1. As ϕ(0) = 0, one has ‖ϕ‖[0, t
p ] < ε due

to (1p). Proposition 7.2 with U0 a Brownian motion, T = 0, I= ]−2ε, 2ε[ and J = ]ϕ( t
p )−ε, ϕ( t

p )+ε[, yields a
sequence (Un)n�0 of partial Lévy raises such that, for some random N , ‖UN‖[0, t

p ] < 2ε and |UN
t
p
− ϕ( t

p )| < ε.

It suffices to write ‖UN−ϕ‖[0, t
p ] � ‖UN‖[0, t

p ] + ‖ϕ‖[0, t
p ] < 2ε+ ε to obtain the lemma for q = 1 (with P[E1] = 1

instead of P[E1] > 1 − 4η/p).

Supposing now the claim to be true for some q such that 1 � q < p, we are going to prove it for the next
value q + 1. So q is fixed; we are given a sequence (Un)n�0 of partial Lévy raises and a r.v. N such that U0 is
a Brownian motion and the event

Eq =
{
‖UN − ϕ‖[0, qt

p ] < 3ε and
∣∣UN

qt/p − ϕ(qt/p)
∣∣ < ε

}

has probability > 1 − 4 q
p η; our goal is to construct a similar sequence (V n)n�0 with q + 1 instead of q.

The instants qt/p and (q + 1)t/p will play an important role in the proof; for typographical simplicity, we
put

t′ =
qt

p
and t′′ =

(q + 1)t
p

·

The first step is to modify the sequence (Un) by putting Un = UN for all n � N . We still have a sequence
of partial Lévy raises, and neither U0 nor Eq has changed; so from now on we suppose that Un = UN∧n. We
can now pick a (deterministic) m so that P[N � m] > 1 − η/p. The event E′

q = Eq ∩ {N � m} has probability
P[E′

q] > P[Eq] − η/p, and on E′
q we have Um = UN , whence

‖Um − ϕ‖[0,t′] < 3ε and
∣∣Um

t′ − ϕ(t′)
∣∣ < ε.

As both these inequalities are strict, there exists a r.v. ε′ > 0 such that

on E′
q, ‖Um − ϕ‖[0,t′] < 3ε − ε′ and

∣∣Um
t′ − ϕ(t′)

∣∣ < ε − ε′. (∗)

Proposition 4.5 applied to t′, ε′ and (U0, U1, . . . , Um) yields a sequence (X0, X1, . . . , Xm) of (non partial) Lévy
raises such that, on [0, t′], |X0| = |U0| and |Xm− Um| < ε′. With an error at most ε′, we can replace Um with
Xm in (∗), so

on E′
q, ‖Xm − ϕ‖[0,t′] < 3ε and

∣∣Xm
t′ − ϕ(t′)

∣∣ < ε. (1η)

Putting X−1 = T ◦ X0, the sequence (X−1, X0, . . . , Xm) is also a sequence of Lévy raises; and on the interval
[0, t′] the process X−1 equals the Brownian motion T ◦ U0 because |X0| = |U0| on this interval.
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The next step is to take some Brownian motion Bm independent from Xm, and to modify Xm after time t′

by setting
Y m = Xm on [0, t′]; Y m = Xm

t′ + Bm − Bm
t′ on [t′,∞[;

Y m also satisfies (1η). Then define a sequence (Y −1, Y 0, . . . , Y m) of Lévy raises by Y n = Tm−n ◦ Y m and
observe that Y n = Xn on [0, t′]. Since X−1 was a Brownian motion on [0, t′], Lemma 3.9 (b) says that Y −1 is
obtained by concatenating two independent Brownian motions; so Y −1 is a Brownian motion. As for Y m, its
increments after t′ are Brownian; consequently, since t′′ − t′ = t/p, Lemma 8.3 says that

sup
r,s∈[t′,t′′]

|Y m
r − Y m

s | < ε with probability > 1 − 2η

p
· (2η)

Extend the sequence (Y −1, Y 0, . . . , Y m) of Lévy raises indefinitely to the left by putting Y −n = Tn ◦ Y 0 =
Tn−1 ◦ Y −1 for all n > 1. These processes Y −n are the iterated Lévy transforms of the Brownian motion Y −1.
It is shown in [2] that the set of all zeros of all these Brownian motions is a.s. dense in R

+; so the r.v.

inf
{

n � 1 : Y −n has a zero in the interval [t′, t′′]
}

is a.s. finite, and there exists a deterministic k > 1 such that, with probability > 1 − η/p,

Y −n
s = 0 for some s ∈ [t′, t′′] and some n ∈ {1, . . . , k−1}. (3η)

The finite sequence of Lévy raises

(Y −k, Y −k+1, . . . , Y −1, Y 0, . . . , Y m)

starts with the Brownian motion Y −k = Tk−1Y −1 and has property (1η) (with Y m instead of Xm) with
probability > P[Eq]−η/p, property (2η) with probability > 1−2η/p and property (3η) with property > 1−η/p.
All in all, the event Eq+1 that these three properties hold simultaneously has probability

P[Eq+1] > P[Eq] − η

p
− 2η

p
− η

p
>

(
1 − 4qη

p

)
− 4η

p
= 1 − 4(q+1)η

p
;

this is exactly the estimate required in the induction argument. So Claim 8.4 will be proven if we exhibit a
sequence (V n)n�0 of partial Lévy raises started from V 0 = Y −k and a r.v. N � 0 such that, on the event
Eq+1, one a.s. has

‖V N − ϕ‖[0,t′′] < 3ε and
∣∣V N

t′′ − ϕ(t′′)
∣∣ < ε. (∗∗)

The sequence (V n) will be obtained by modifying the Y i; since we are only interested in the behavior of
the V n on Eq+1, we may for instance put V n = Y −k for all n on Ec

q+1, and concentrate on the event Eq+1.
Technically it is convenient to do this by replacing the probability P with the conditional probability P[ |Eq+1].
Of course, this also modifies the laws of the processes, but this change is harmless, because we no longer require
V 0 to be a Brownian motion, we simply demand that V 0 = Y −k.

To ease the notations, we rename as (Z0, . . . , Z�) the sequence of Lévy raises (Y −k, . . . , Y m); since from here
on we are working with a probability giving Eq+1 full measure, the following three properties now hold almost
surely:

‖Z� − ϕ‖[0,t′] < 3ε; (1Z)

sup
s∈[t′,t′′]

|Z�
s − ϕ(t′)| < 2ε; (2Z)

ZK
S = 0 for some (random) K ∈ {1, . . . , �} and S ∈ [t′, t′′]. (3Z)

The first one comes from (1η), the second one from (1η) and (2η), and the third one from (3η). In (3Z), we
choose K to be maximal: for n ∈ {K+1, . . . , �}, Zn does not vanish on [t′, t′′].
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The inequalities in (1Z) and (2Z) are strict; and Zn
t′ 
= 0 by tameness for each n ∈ {0, . . . , �}. So there exists

a r.v. ε� such that 0 < ε� � ε/3 and
‖Z� − ϕ‖[0,t′] < 3ε − ε�; (1ε)

sup
s∈[t′,t′′]

|Z�
s − ϕ(t′)| < 2ε − 3ε�; (2ε)

∀n ∈ {0, . . . , �} |Zn
t′ | > ε�. (3ε)

In Section 4 (partial Lévy raises), α-doubles of a tame process were defined and used; a fixed time t was
implied. We shall deal with α-doubles anew in the sequel, but from now on the fixed time understood in the
definition of doubles is t′ = qt/p.

Applying the second part of Proposition 4.8 to the Lévy raise (Z�−1, Z�), we can choose a r.v. ε�−1 > 0 with
the property that, for every ε�−1-double U of Z�−1, there exists an ε�-double V of Z� such that (U, V ) is a Lévy
raise. Applying it again to (Z�−2, Z�−1), then to (Z�−3, Z�−2), and so forth all the way down to (Z0, Z1), there
exists a finite sequence (ε0, . . . , ε�) of strictly positive r.v. such that if U is any εn-double of Zn, there exists a
εn+1-double V of Zn+1 making (U, V ) a Lévy raise. Moreover, since at each step εn can be chosen arbitrarily
small, we may (and do) further require

for 0 � n < � εn � εn+1; (4ε)

2 (ε1 + . . . + ε�−1) < ε�. (5ε)

By Lemma 5.2 (b), for 0 � i � j � � there exists a random isometry Φj→i : R → R such that Φj→i(Zj) = Zi

in a (random) neighborhood of t′; one has Φj→i ◦ Φk→j = Φk→i. Put an = Φ�→n
(
ϕ(t′)
)

and bn = Φ�→n
(
ϕ(t′′)

)
and define some open intervals

In = ]an−αn, an+αn[, with αn = 2ε − 2 (εn+1 + . . . + ε�)

and Jn = ]bn−βn, bn+βn[, with βn = ε − 2 (εn+1 + . . . + ε�);

observe that αn > βn > 0 by (5ε) and because 3 ε� � ε; so In and Jn are not empty. Observe also that In ⊃ Jn

because, owing to (1p),

| bn − an| =
∣∣Φ�→n

(
ϕ(t′′)

)− Φ�→n
(
ϕ(t′)
)∣∣ = |ϕ(t′′) − ϕ(t′)| < ε = αn − βn.

Notation 8.5. If Q is any process, we write Q[a,b] for the process (Qs)a�s�b, and if I is some interval, Q[a,b] ⊂ I
means that Qs ∈ I for all s ∈ [a, b].

To terminate the proof of Claim 8.4 (and hence also of the theorem), it suffices to demonstrate the following
claim, where K is the maximal random index satisfying (3Z) and where the fixed time understood in the
definition of a double is t′.

Claim 8.6. There exists an infinite sequence (V i)i�0 of partial Lévy raises and a finite sequence
(M0, M1, . . . , M�) of integer-valued r.v. such that M0 < M1 < . . . < M� and, for each n ∈ {0, . . . , �},

(a) V Mn is an εn-double of Zn;

(b) on the event {n < K} one has Mn = n and V n = Zn;

(c) on the event {n � K} one has V Mn

[t′,t′′] ⊂ In and V Mn

t′′ ∈ Jn .
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Proof that Claim 8.6 ⇒ Claim 8.4. We have V 0 = Z0 by Claim 8.6 (b) owing to K > 0; so it suffices to check
that (∗∗) holds. Taking N = M�, one has ‖V N − Z�‖[0,t′] < ε� by (a); so (1ε) implies that

‖V N − ϕ‖[0,t′] < ε� + (3ε − ε�) = ε.

On remarking that a� = ϕ(t′), b� = ϕ(t′′), α� = 2 ε and β� = ε, Claim 8.6 (c) gives

‖V N − ϕ(t′)‖[t′,t′′] < 2 ε and
∣∣V N

t′′ − ϕ(t′′)
∣∣ < ε;

together with ‖ϕ − ϕ(t′)‖[t′,t′′] < ε, which is a consequence of (1p), the 2 ε-estimate yields ‖V N − ϕ‖[t′,t′′] < 3 ε,
and (∗∗) is proven. �

It remains to establish Claim 8.6; the a.s. finite sequence (V 0, . . . , V Mn) will be constructed by induction on n.
By (b), we must start with M0 = 0 and V 0 = Z0. For some n < � assume that M0, . . . , Mn and V 0, . . . , V Mn

have already been defined and satisfy (a), (b) and (c); we must construct Mn+1 > Mn and V Mn+1, . . . , V Mn+1

so that (V Mn , V Mn+1, . . . , V Mn+1) is a sequence of partial Lévy raises (with random length) and so that (a),
(b) and (c) hold for n + 1 too.

Writing for simplicity L = Mn+1 − Mn and

(R0, . . . , RL) = (V Mn , V Mn+1, . . . , V Mn+1),

it suffices to prove the next claim, where n < � is fixed.

Claim 8.7. Let R0 be a process such that

(a’) R0 is an εn-double of Zn;
(b’) R0 = Zn on {n < K};
(c’) R0

[t′,t′′] ⊂ In and R0
t′′ ∈ Jn on {n � K}.

There exists a sequence (Ri)i�0 of partial Lévy raises, started from this R0, and an integer-valued r.v. L such
that

(a”) RL is an εn+1-double of Zn+1;
(b”) L = 1 and R1 = Zn+1 on {n+1 < K};
(c”) RL

[t′,t′′] ⊂ In+1 and RL
t′′ ∈ Jn+1 on {n+1 � K}.

Proof of Claim 8.7. Three cases will be distinguished.
(1) On the event {n + 1 < K}, L = 1 and Ri = Zn+1 for all i � 1 meet the requirements (a”) and (b”); (c”)

is not relevant;
(2) on the event {n + 1 = K}, R0 = Zn by (b’). Set R1 = Zn+1 = ZK . By definition of K (see (3Z)), there

exists s ∈ [t′, t′′] such that R1
s = 0. By maximality of K, for n + 1 < i � �, Zi does not vanish on [t′, t′′]; hence,

according to Lemma 5.2 (b), R1
s = Φ�→n+1(Z�

s) for all s ∈ [t′, t′′]. As Φ�→n+1 is an isometry, using (2ε) and (5ε)
one can write for s ∈ [t′, t′′]

|R1
s − an+1| =

∣∣Φ�→n+1(Zn+1
s ) − Φ�→n+1

(
ϕ(t′)
)∣∣

= |Zn+1
s − ϕ(t′)| < 2 ε − 3 ε� < α0 < αn+1;

this shows that R1
[t′,t′′] ⊂ In+1. Call T the first zero of R1 on [t′, t′′]; since 0 = R1

T is one of the values of R1 on
[t′, t′′], it belongs to In+1. We may apply Proposition 7.2 to t′′, In+1, Jn+1, R1 and T , and we obtain a sequence
(R1, R2, . . .) of partial Lévy raises such that each Ri equals R1 on [0, T ], and such that for some L � 1 one has
RL

[T,t′′] ⊂ In+1 and RL
t′′ ∈ Jn+1. (a”) is satisfied because RL = R1 = Zn+1 on [0, t′], and (c”) is satisfied too

because RL
[t′,T ] = R1

[t′,T ] ⊂ In+1;
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(3) on the event {n + 1 > K}, one has n � K, so by (c’) R0
[t′,t′′] ⊂ In and R0

t′′ ∈ Jn. According to (a’), R0 is
an εn-double of Zn; by definition of εn (and by the second part of Prop. 4.8), there exists R1, an εn+1-double
of Zn+1, such that (R0, R1) is a Lévy raise.
Call T the first zero of R1 on [t′,∞[, and Φ′ the random isometry given by Lemma 5.2 (a), such that Φ′(R1) = R0

on [t′, T ]. By (3ε) and (4ε), |Zn
t′ | > ε� � εn+1; by (4ε), εn � εn+1. We may apply Lemma 5.3 to t′, (Zn, Zn+1),

(R0, R1) and εn+1 (in lieu of t, (U, V ), (U ′, V ′) and ε in the notation of the lemma); we obtain

∀x |Φ′(x) − Φn+1→n(x)| � 2 εn+1.

Thus, for all s ∈ [t′, T∧ t′′],

|R1
s − an+1| = |Φ′(R1

s) − Φ′(an+1)| = |R0
s − Φ′(an+1)|

� |R0
s − Φn+1→n(an+1)| + |Φn+1→n(an+1) − Φ′(an+1)|

< |R0
s − an| + 2 εn+1.

As |R0
s − an| < αn by hypothesis (c’), we obtain

|R1
s − an+1| < αn + 2 εn+1 = αn+1,

that is,
R1

[t′,T∧ t′′] ⊂ In+1. (∗∗∗)
To end the proof, there are now two sub-cases. On the event {T � t′′}, we will take L = 1. Condition (a”)

is satisfied because R1 was defined as an εn+1-double of Zn+1; we now check (c”). Inclusion (∗∗∗) implies
R1

[t′,t′′] ⊂ In+1, and it only remains to show that R1
t′′ ∈ Jn+1. This is ensured by a computation quite similar to

the preceding one:

|R1
t′′ − bn+1| = |Φ′(R1

t′′ ) − Φ′(bn+1)| = |R0
t′′ − Φ′(bn+1)|

� |R0
t′′ − Φn+1→n(bn+1)| + |Φn+1→n(bn+1) − Φ′(bn+1)|

< |R0
t′′ − bn| + 2 εn+1,

and since (c’) gives |R0
t′′ − bn| < βn, we have |R1

t′′ − bn+1| < βn + 2 εn+1 = βn+1, wherefrom R1
t′′ ∈ Jn+1.

The last sub-case is when T < t′′. In that case, 0 = R1
T ∈ R1

[t′,T∧ t′′] ⊂ In+1; so we may apply Proposition 7.2
to t′′, In+1, Jn+1, R1 and T . We get a sequence (R1, R2, . . .) of partial Lévy raises and a r.v. L � 1 such that
RL = R1 on [0, T ], RL

[T,t′′] ⊂ In+1 and RL
t′′ ∈ Jn+1. From RL = R1 on [t′, T ] and from (∗∗∗), one deduces

RL
[t′,T ] ⊂ In+1, so RL

[t′,t′′] ⊂ In+1 and (c”) holds. Finally, (a”) stems from RN = R1 on [0, t′] and from the
definition of R1 as an εn+1-double of Zn+1.

This terminates the proof of Claim 8.7, and also of Theorem 8.2. �

9. Concluding remark

How far is Theorem 8.2 from ergodicity? Can Theorem 8.2 be used in some future proof of ergodicity? Only
time will tell; but here is an immediate consequence of topological recurrence.

Call I the σ-field of measurable, T-invariant subsets of W. Ergodicity amounts to saying that μ[ G | I ] = μ(G)
for all open sets G ⊂ W; Theorem 8.2 only gives:

Corollary 9.1. If G is a non-empty open subset of W, the conditional probability μ[ G | I ] is a.e. strictly
positive.
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Proof. The I-measurable set E =
{
μ[ G | I ] = 0

}
satisfies

μ(E ∩ G) =
∫

E

1G dμ =
∫

E

μ[ G | I ] dμ = 0;

hence, by T-invariance of E and by μ-invariance of T,

μ(E ∩ T−nG) = μ(T−nE ∩ T−nG) = μ
(
T−n(E ∩ G)

)
= μ(E ∩ G) = 0.

Now, the theorem says that μ
(⋃

n�0 T−nG
)

= 1; consequently,

μ(E) = μ

(
E ∩ ⋃

n�0

T−nG

)
= μ

( ⋃
n�0

(E ∩ T−nG)

)
= 0. �
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Michel Émery for his great help with the redaction.

References
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