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TAIL APPROXIMATIONS FOR SAMPLES FROM A FINITE POPULATION
WITH APPLICATIONS TO PERMUTATION TESTS
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Abstract. This paper derives an explicit approximation for the tail probability of a sum of sample
values taken without replacement from an unrestricted finite population. The approximation is shown
to hold under no conditions in a wide range with relative error given in terms of the standardized
absolute third moment of the population, β3N . This approximation is used to obtain a result compa-
rable to the well-known Cramér large deviation result in the independent case, but with no restrictions
on the sampled population and an error term depending only on β3N . Application to permutation tests
is investigated giving a new limit result for the tail conditional probability of the statistic given order
statistics under mild conditions. Some numerical results are given to illustrate the accuracy of the
approximation by comparing our results to saddlepoint approximations requiring strong conditions.
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1. Introduction

Let X1, X2, . . . , Xn be a simple random sample drawn without replacement from a finite population {a}N =
{a1, . . . , aN} with

∑
ak = 0 and

∑
a2

k = N , where n < N and throughout the paper
∑

without limits denotes
summation over k from 1 to N . Let

Sn =
n∑

j=1

Xj , p = n/N, q = 1 − p, ω2
N = Npq, bN = max

k
|ak|.

Under appropriate conditions, the so-called finite central limit theorem (see [7,8]) states that, as n→ ∞,

sup
x

∣∣P (Sn ≥ xωN ) − {1 − Φ(x)}∣∣ → 0,

where Φ(x) is the distribution function of a standard normal variate. The central limit theorem is useful when x
is not too large. There are two approaches for estimating the error of the normal approximation. One approach
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is to investigate the absolute error via Berry–Esseen bounds and Edgeworth expansions. This has been done
by many researchers. We only refer to Bikelis [3] and Höglund [9] for the rates in the Erdös and Rényi central
limit theorem, and Bickel and van Zwet [2], Robinson [12], Babu and Bai [1] as well as Bloznelis [4,5] for the
Edgeworth expansions.

Another approach is to investigate the relative error of P
(
Sn ≥ xωN

)
to 1−Φ(x). In this direction, Hu et al.

(HRW) [10] derived the following result: there is an absolute constant A > 0 such that

exp
{ −A(1 + x)3β3N/ωN

} ≤ P
(
Sn ≥ xωN

)
1 − Φ(x)

≤ exp
{
A(1 + x)3β3N/ωN

}
, (1.1)

for 0 ≤ x ≤ (1/A)ωN/bN , where β3N = E|X1|3 =
∑ |ak|3/N . As a direct consequence of (1.1), HRW [10] also

established the following Cramér-type large deviation result: there exists an absolute constant A > 0 such that

P
(
Sn ≥ xωN

)
1 − Φ(x)

= 1 +O(1)(1 + x)3β3N/ωN , (1.2)

for 0 ≤ x ≤ (1/A) min
{
ωN/bN , (ωN/β3N)1/3

}
.

Results (1.1) and (1.2) are useful because they provide not only the relative error but also a Berry–Esseen
rate of convergence. It is also interesting to note that the results depend only on β3N with an absolute constant
and we have no restrictions on the {a}N and p. As mentioned in Remark 1.4 of HRW [10], however, the results
(1.1) and (1.2) do not provide sufficiently precise results on the accuracy of the normal approximation in the
large deviation region.

In the present paper, an analogue of Cramér’s large deviation result in the independent case (see Chap. 8 of
Petrov (1975), for example) is obtained in Theorem 2.2, which essentially improves the results (1.1) and (1.2) in
the situation that an explicit large deviation range for x is provided and the error term is improved by reducing
the power of x. Rather than studying the accuracy of the normal approximation, we derive in Theorem 2.1
an approximation for the tail probability P

(
Sn ≥ xωN

)
with no restrictions on the population or on p, with a

relative error depending only on β3N , and giving an explicit large deviation range for x. This result is comparable
to those of Robinson [13], Robinson et al. [14] and Wang [15] which require a number of very strong restrictive
conditions. Furthermore, numerical examples show that the tail approximation of Theorem 2.1 is effectively as
accurate as the saddle-point approximations of Booth and Butler [6] and Wang [15]. This indicates that the
tail approximation of Theorem 2.1 can be used to replace the saddle-point approximations in many applications
since these require a number of very strong restrictive conditions on the sampled data.

In Section 2 we present, in Theorem 2.1, a tail probability approximation and from this we derive, in
Theorem 2.2, a result analogous to that of Cramér for independent and identically distributed random variables.
The result of Theorem 2.1 may be considered a first order saddlepoint approximation, which can be applied
with no conditions. It gives a precise region for existence of a unique solution of the saddlepoint equations and a
relative error for an explicit large deviation region. Theorem 2.2 improves essentially Theorem 1 of Robinson [11]
in two aspects. First we provide an explicit range for the x and, second, the error term in Robinson [11] depends
on p, which limits essential applications of the result, whereas our results hold true with no restrictions on the
{a}N and p. Section 3 applies our main results to two-sample permutation tests, obtaining in Theorem 3.1 an
approximation for the conditional probability given the order statistics with small relative error almost surely.
Some numerical comparisons are presented in Section 4. Finally, in Section 5, we present the proofs of the main
results. Throughout A,A1, A2, . . . are absolute constants.

2. Main results

The complex moment generating function of Sn is shown in (1) of Robinson [11] to be

Qn(u+ iv) = (2πBn)−1

∫ π

−π

exp[
∑

K((u+ iv)ak(pq)−1/2 + α+ iθ)]dθ,
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for any α, where Bn =
(
N
n

)
pnqN−n, K(z) = log(p e qz + q e −pz), p, q > 0 and p+ q = 1. Noting that

K ′(t) = pq( e t − 1)
/
(p e t + q) and K ′′(t) = pq e t

/
(p e t + q)2, (2.1)

we have that K ′′(t) > 0 for any t ∈ R and K ′(t) > 0 or < 0 if t > 0 or t < 0. These facts imply that, for each
u ∈ R,

∑
K ′(uak + α) is strictly increasing in α and the equation∑

K ′(u ak + α) = 0 (2.2)

has a unique solution αN (u). Furthermore, αN (0) = 0 and |αN (u)| < C if 0 < u < C/bN .
In the following, let a(1) ≤ a(2) ≤ . . . ≤ a(N) be the ordered values of a1, . . . , aN , and Kk(u),K ′

k(u) and
K ′′

k (u) be the values of K(t),K ′(t) and K ′′(t) evaluated at t = u ak + αN (u). Throughout we take x > 0 and
u > 0. Our main result is given as follows.

Theorem 2.1.
(i) Assume that min{a(k+1) − a(k) : k = 1, . . . , N − 1} > δN > 0, we have αN (u)/u → −(a(N−n+1) +

a(N−n))/2 as u→ ∞.
(ii) The function mN (u) =

∑
akK

′
k(u) is strictly increasing, mN (u) → a(N) + . . . + a(N−n+1) as u → ∞,

and the equation

mN (u) = xωN , (2.3)

has a unique solution ux whenever 0 < x <
[
a(N) + . . .+ a(N−n+1)

]
/ωN .

(iii) For any given constant C > 0, if 0 < x < mN (C/bN)
/
ωN , then

P (Sn > xωN ) = (1 − Φ(uxσN )) Λn(x)
(
1 +O1(1 + uxσN )β3N/ωN

)
, (2.4)

where
Λn(x) =

ωN√∑
K ′′

k (ux)
exp

{∑
Kk(ux) − ux xωN + u2

xσ
2
N/2

}
,

ux is the solution of equation (2.3),

σ2
N ≡ σ2

N (ux) =
∑

a2
kK

′′
k (ux) −

(∑
akK

′′
k (ux)

)2

/
∑

K ′′
k (ux),

β3N = E|X1|3 and O1 is bounded by a constant depending only on C.
(iv) The result (2.4) holds true if 0 < x < ωN/(2ebN).

Theorem 2.1 provides an approximation for the tail probability P (Sn > xωN ) in an explicit wide large
deviation range for the x. As mentioned in Section 1, the tail approximation of Theorem 2.1 is comparable
in accuracy to the well-known saddle-point approximations developed in [6,13,15]. The numerical examples to
illustrate this statement are given in Section 4. However, unlike these results which require a number of very
strong restrictive conditions on the sampled data, our result (2.4) is established under no conditions since we
always have E|X1|3 =

∑ |ak|3/N < ∞. The error can be improved under a smoothness condition and further
terms to improve accuracy can then be obtained.

As a consequence of this result, we also have the following Theorem 2.2, which is comparable to the classical
Cramér large deviation result as in the independent case. This result also provides an approximation for the
tail probability P (Sn > xωN ) under no conditions and has theoretical interest. This approximation gives less
accuracy compared to the saddle-point approximation (2.4) as illustrated in Section 4, and its purpose is to give
a rate of convergence for the Central Limit Theorem rather than to provide an approximation.
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Theorem 2.2. For 0 < x < ωN/(2ebN), we have

P (Sn > xωN )
1 − Φ(x)

= exp
{
x3λN (x)

}(
1 +O2(1 + x)β3N/ωN

)
, (2.5)

where x3λN (x) =
∑
Kk(ux) − ux xωN + x2/2, ux is the solution of equation (2.3) and O2 is bounded by an

absolute positive constant.

Remark 2.3. As in [11], λN (x) may be represented as a power series of x with coefficients not depending on
p and convergent in some circle. For more details on these lines, we refer to (45) and (46) in [11].

Remark 2.4. For an asymptotic version of these results, consider a sequence of finite populations {aN1, . . . , aNN},
N = 1, 2, 3, . . . The results of Theorems 2.1 and 2.2 hold for each member of this sequence. The relative
error term in (2.4), O1(1 + uxσN )β3N/ωN can then be replaced by an order term O((1 + uxσN )β3N/ωN)
and for the results to give appropriate limit theorems we need to assume that (1 + uxσN )β3N/ωN → 0 for
0 < x < ωN/2ebN as N → ∞. In the particular example of the Wilcoxon two sample statistic considered in
Section 4, bN =

√
3(N − 1)/(N + 1), 0 < ux < C/bN , σN can be bounded above and below by D

√
pq and

d
√
pq, where d and D depend only on C, and |β3N | < 1, so the relative error is O(1/ωN ). The range of x in

this case is 0 < x < cωN . Here then, the relative error term is O((1 + x)/
√
n) so it is possible to have p→ 0 so

long as n = Np→ ∞. Further asymptotic results are given in Section 3.

3. Applications to permutation tests

Suppose that we observe the random variables X1, . . . , Xn and Xn+1, . . . , XN . Consider the model:

X1, . . . , Xn and Xn+1, . . . , XN are independent and identically distributed (iid) with
distribution functions F (x− θ1) and F (x− θ2), respectively.

We are interested in the hypothesis H : θ1 − θ2 = δ0. Write

ãk = (Yk − Ȳ )

/ [
1
N

∑
(Yi − Ȳ )2

]1/2

, k = 1, . . . , N, (3.1)

where Ȳ = 1
N

∑
Yk and

Yi =
{
Xi − δ0, i = 1, . . . , n,
Xi, i = n+ 1, . . . , N.

The typical permutation test statistic for the hypothesis H is given by

TN =
1

(Npq)1/2

n∑
i=1

ãRi ,

where (R1, . . . , RN ) is a random vector, independent of all preceding random variables, taking each permutation
of (1, . . . , N) with equal probability. Given the order statistics Y(1), . . . , Y(N), the conditional distribution of TN

has been investigated widely. For instance, Bickel and van Zwet [2] and Robinson [12] investigated Edgeworth
expansions. Robinson [13] discussed the saddle point approximation under smoothness conditions. By using
Theorems 2.1 and 2.2, this section derives explicit approximations of P ∗(TN ≥ x) in the large deviation range
assuming only the existence of a finite moment of the sampled population, where P ∗ indicates the conditional
distribution given Y(1), . . . , Y(N). Simulations in Section 4 show that the approximation of Theorem 2.1 provides
accuracy which is comparable to the saddlepoint approximation given in Booth and Butler [6] and Wang [15].
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In order to use Theorems 2.1 and 2.2, we still adopt the notation as in Section 2 except that ak = ãk, where
ãk is given by (3.1). The main result in this section is as follows.

Theorem 3.1. Under the assumption that the hypothesis H is true, if E|X1|m <∞ for some m ≥ 3, then for
j = 1, 2,

P ∗(TN > x)
ΨjN (x)

→ 1, a.s. as N → ∞, (3.2)

holds true uniformly in 0 < x ≤ O
(√
Npq/τN

)
, where τN/N1/m → ∞, Ψ1N(x) = (1 − Φ(uxσN ))Λn(x) and

Ψ2N (x) = (1 − Φ(x)) exp
{
x3λN (x)

}
are defined as in Theorems 2.1 and 2.2 respectively.

Proof. By the result (iv) of Theorem 2.1 and (5.11) below, we have

P ∗(Tn > x)
Ψ1N (x)

=
(
1 +O′(1 + x)β∗

3N/ωN

)
, (3.3)

for 0 < x < ωN/(2eb∗N), where b∗N = maxk |ãk| = maxk |Yk − Ȳ |/
[

1
N

∑
(Yk − Ȳ )2

]1/2

,

β∗
3N =

1
N

∑
|Yk − Ȳ |3

/[
1
N

∑
(Yk − Ȳ )2

]3/2

and O′ is bounded by an absolute positive constant. Noting that W1 = Y1 −EY1, . . . ,WN = YN −EYN are iid
random variables with E|Y1|m < ∞, under the hypothesis H and the assumption E|X1|m < ∞, for m ≥ 3, it
is readily seen from the law of large numbers that, as N → ∞,

β∗
3N → E|W1|3/(EW 2

1 )3/2 a.s. and b∗N ≥ 1
2

max
k

|Yk − Ȳ |/(EW 2
1 )1/2 a.s. (3.4)

From (3.3) and (3.4), Theorem 3.1 for j = 1 will follow if we prove, as N → ∞,

τ−1
N max

1≤k≤N
|Yk − Ȳ | → 0, a.s.

This follows from the law of large numbers, since E|Y1|m ≤ AE|X1|m <∞ implies that

τ−1
N max

1≤k≤N
|Yk − EYk| ≤ N1/m

τN

[
1
N

∑
|Yk − EYk|m

]1/m

→ 0, a.s.,

whenever τN/N1/m → ∞. Theorem 3.1 for j = 2 is similar except that we replace the result (iv) of Theorem 2.1
by Theorem 2.2 and hence the details are omitted. This also completes the proof of Theorem 3.1. �
Remark 3.2. Note that in the asymptotic case for the bound 0 < x <

√
Npq/τN to be non-trivial we require

that p does not decrease as fast as τ2
N/N .

4. Numerical comparisons

We will present two examples to illustrate the accuracy of the results of Theorems 2.1 and 2.2, comparing these
to the full saddlepoint given by Booth and Butler [6] (with no proof of the bounds) and to the approximation
of Wang [15], obtained under very strong conditions. We look at the data set used by Wang [15] in his Table 1
where N = 36 and n = 5, and we also consider the approximation for the Wilcoxon rank sum statistic for
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Table 1. Approximations to P (
∑5

j=1 dRj > y) for Wang [15] data set d1, d2, . . . , d36.
y 1.2 3.6 6.0 8.8 12.8
MC 0.3350 0.1523 0.0523 0.0110 0.0004
Wang93 0.3371 0.1513 0.0532 0.0109 0.0004
BB 0.3387 0.1523 0.0534 0.0109 0.0004
Theorem 2.1 0.3613 0.1561 0.0528 0.0104 0.0004
Theorem 2.2 0.3602 0.1503 0.0470 0.0079 0.0002
Normal 0.3589 0.1391 0.0353 0.0040 0.0001

Table 2. Approximations to P (
∑10

i=1 Ri > y) for random permutation R1, R2, . . . , R16 of 1, 2, . . . , 16.

y 115 114 113 112 111 110 109 108
Exact 0.00012 0.00025 0.00050 0.00087 0.00150 0.00237 0.00387 0.00562
BB 0.00011 0.00025 0.00049 0.00088 0.00149 0.00240 0.00370 0.00552
Theorem 2.1 0.00009 0.00021 0.00042 0.00077 0.00132 0.00214 0.00333 0.00499
Theorem 2.2 0.00002 0.00006 0.00017 0.00036 0.00068 0.00122 0.00204 0.00326
Normal 0.00048 0.00070 0.00103 0.00150 0.00214 0.00303 0.00424 0.00586

P (Sn ≥ y) where N = 16 and n = 10. In the first case, in Table 1, we look at Monte Carlo estimates based
on 1 000 000 samples (MC), then the results taken from Wang [15] Table 2, an approximation based on the full
conditional saddlepoint of Booth and Butler [6] (BB), the approximations from Theorems 2.1 and 2.2 and the
normal approximation. For the Wilcoxon, in Table 2, we give the exact probabilities in place of a Monte Carlo
approximation, and all other approximations but those of Wang [15], using a continuity correction in this lattice
case to improve the approximations.

In each case the results are similar. The results of Wang [15] and of the method of Booth and Butler [6]
are remarkably close to the Monte Carlo values throughout the range. The methods of Theorem 2.1 give quite
good results throughout the range, again as might be expected since this gives a first order approximation to
the full conditional saddlepoint. The second order approximations of Booth and Butler [6] and of Wang [15]
have second order relative accuracy only under a smoothness condition, whereas no such restriction applies to
the results of Theorem 2.1. Theorem 2.2 does not give particularly good approximations. We might remark
that, although the errors in Theorems 2.1 and 2.2 are the same, the result (2.4) of Theorem 2.1 (iii) can be
extended, under a smoothness condition, to an indirect Edgeworth approximation with a smaller relative error,
as in Robinson [13], but such an improvement is not possible for the approximation from (2.5).

5. Proofs of theorems

Proof of Theorem 2.1. (i). From (3)

K ′(t) + p =
pet

pet + q
and K ′(t) − q =

−qe−t

p+ qe−t
· (5.1)

Let Δ = a(N−n+1) − a(N−n). If α/u = −(a(N−n+1) + a(N−n))/2− ε, for arbitrarily small Δ/2 > ε > 0, then for
k = 1, . . . , N − n− 1,

0 < K ′(ua(k) + α) + p = e−uΔ/2−uεO(e−uδN ),

for k = N − n+ 2, . . . , N ,

0 < −K ′(ua(k) + α) + q = e−uΔ/2+uεO(e−uδN )
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and

K ′(ua(N−n) + α) + p+K ′(ua(N−n+1) + α) − q =
p2e−uΔ/2−uε − q2e−uΔ/2+uε

(peua(N−n)+α + q)(p+ qe−ua(N−n+1)−α)
,

which is less than 0 for u large. So, noting that (N − n)p− nq = 0,

N−n∑
k=1

(K ′(ua(k) + α) + p) +
N∑

k=N−n+1

(K ′(ua(k) + α) − q) < 0,

for u large. In the same way, putting α/u = −(a(N−n+1) + a(N−n))/2 + ε, we can show that

N−n∑
k=1

(K ′(ua(k) + α) + p) +
N∑

k=N−n+1

(K ′(ua(k) + α) − q) > 0.

Since ε is chosen arbitrarily, this implies αN (u)/u→ −(a(N−n+1) + a(N−n))/2 as u→ ∞.
(ii). Since α′

N (u) = −∑
akK

′′
k (u)/

∑
K ′′

k (u) by differentiating (2.2), we have

m′
N (u) =

∑
ak

[
ak + α′

N (u)
]
K ′′

k (u)

=
∑

[ak + α′
N (u)]2K ′′

k (u) = σ2
N (u) > 0, (5.2)

for u ∈ R. So mN (u) is strictly increasing. Then, as u→ ∞, using (i) and
∑
ak = 0,

mN (u) = pq
∑

ak
eq(uak+αN (u)) − e−p(uak+αN (u))

peq(uak+αN (u)) + qe−p(uak+αN (u))

∼ pq
[∑

akI(uak + αN (u) > 0)/p−
∑

akI(uak + αN (u) < 0)/q
]

=
∑

akI(uak + αN (u) > 0)

→ a(N) + . . .+ a(N−n+1).

This, together with the fact mN (0) = 0 (recalling αN (0) = 0), yields that for 0 < xωN < a(N) + . . .+ a(N−n+1),
there is a unique solution of (2.3). This is as might be expected as a(N) + . . .+ a(N−n+1) is the maximum value
for Sn.

(iii). From (ii), for any 0 < x < mN (C/bN) /ωN , the solution ux of equation (2.3) is unique and 0 < ux ≤
C/bN . Let Hn(t;ux) = EeuxSnI(Sn ≤ t)/EeuxSn . We have

P (Sn > xωN ) = EeuxSn

∫ ∞

xωN

e−uxtdHn(t;ux)

= EeuxSn

∫ ∞

xωN

e−uxtdΦ
(
t−mN (ux)

σN

)
+ EeuxSn

∫ ∞

xωN

e−uxtd
(
Hn(t;ux) − Φ

(
t−mN (ux)

σN

))
:= EeuxSn(I1 + I2). (5.3)

Recalling 0 < ux ≤ C/bN , it follows from Theorem 3.1 of HRW (2007) that

|I2| ≤ 2 e−x uxωN sup
t

∣∣∣∣Hn(t;ux) − Φ
(
t−mN(ux)

σN

)∣∣∣∣ ≤ A e−x uxωN β3N/ωN , (5.4)
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and

Eeux Sn =
1

Gn(p)
√∑

K ′′
k (ux)

exp
{∑

Kk(ux)
}

(1 +O2/ωN)

=
ωN√∑
K ′′

k (ux)
exp

{∑
Kk(ux)

}
(1 +O3/ωN), (5.5)

where O2 and O3 are constants depending only on C, and we have used the estimate, Gn(p) =
√

2π
(
N
n

)
pnqN−n =

ω−1
N (1 +O6/ω

2
N), where |O6| ≤ 1/6, which follows from Stirling’s formula. Also,

I1 = (2π)−1/2e−x uxωN

∫ ∞

0

e−uxσN t−t2/2dt = e−uxxωN+u2
xσ2

N /2(1 − Φ(uxσN )). (5.6)

Clearly I1 ≥ e−ux xωN (1 − Φ(1)) if uxσN ≤ 1. By noting that

1
x2

∫ ∞

x

e−y2/2dy >
∫ ∞

x

1
y2

e−y2/2dy =
1
x

e−x2/2 −
∫ ∞

x

e−y2/2dy,

we have 1−Φ(x) > xΦ′(x)/(1 + x2) for x ≥ 1 and hence I1 ≥ 1
2
√

2π
e−uxxωN (uxσN )−1 if uxσN > 1. From these

facts and (5.3)–(5.6), we obtain

P (Sn > xωN ) = EeuxSne−uxxωN+u2
xσ2

N /2(1 − Φ(uxσN )) (1 + I2/I1)

= (1 − Φ(uxσN )) Λn(x)
(
1 +O1(1 + uxσN )β3N/ωN

)
,

O1 is bounded by a constant depending only on C, which completes the proof of (iii).
(iv). We first show that, for any given C > 0, if 0 < u < C/bN , then

Npq e−2C ≤ m′
N(u) = σ2

N (u) ≤ Npq e2C . (5.7)

In fact, by recalling |αN (u)| ≤ C and |uak + αN (u)| < 2C if 0 < u < C/bN , it follows from (2.1) that, for each
k and 0 < u < C/bN ,

pqe−2C ≤ K ′′
k (u) ≤ pqe2C , (5.8)

where we use pqet(pet + q)−2 = pqe−t(p+ qe−t)−2. This, together with the first equality of (5.2), yields that

m′
N (u) = σ2

N (u) ≤
∑

a2
kK

′′
k (u) ≤ Npq e2C .

Similarly it follows from
∑
ak = 0, the second equality of (5.2) and (5.8) that

m′
N (u) = σ2

N (u) ≥ pq e−2C
∑

(ak + α′
N (u))2 ≥ Npq e−2C .

This proves (5.7). From (5.7), if 0 < x < ωN/(2ebN), then

mN (1/2bN) =
∫ 1/2bN

0

σ2
N (u)du ≥ Npq/(2e bN) ≥ xωN . (5.9)

Thus (2.4) holds from (iii). �
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Proof of Theorem 2.2. It follows from Theorem 2.1 (iv) that, for 0 < x < ωN/(2ebN),

P (Sn > xωN )
1 − Φ(x)

=
ωN√∑
K

′′
k (ux)

ψ(uxσN )
ψ(x)

exp
{ ∑

Kk(ux) − uxmN (ux) + x2/2
}

×
(
1 +O′

1(1 + ux σN )β3N/ωN

)
, (5.10)

where ψ(x) = (1 − Φ(x))/Φ′(x), ux is the solution of (2.3) and O′
1 is bounded by an absolute constant. Now

the theorem follows from (5.10), if we show that, for 0 < x < ωN/(2ebN),

e−3/2x ≤ uxσN (ux) ≤ e3/2 x (5.11)

and

ωN√∑
K

′′
k (ux)

ψ(uxσN )
ψ(x)

= 1 +O4(1 + x)β3N/ωN , (5.12)

where O4 is bounded by an absolute constant.
We will complete the proof by establishing these two results. First note that 0 < ux ≤ 1/(2bN) from (5.9)

and Theorem 2.1 (ii). It follows from (5.7) with C = 1/2 that

ux ω
2
N e−1 < xωN = mN(ux) = mN (0) + uxm

′
N (u1) < ux ω

2
N e (5.13)

where 0 < u1 < ux. Thus e−1ω−1
N ≤ ux/x ≤ eω−1

N . This, together with (5.7) with C = 1/2 again, implies
(5.11).

We next prove (5.12). Write αN ≡ αN (u). Recalling
∑

(ak +α′
N )K ′′

k (u) = 0, we have
∑

(ak +α′
N )2K ′′′

k (u)+∑
α′′

NK
′′
k (u) = 0. So α′′

N = −∑
(ak + α′

N )2K ′′′
k (u)

/ ∑
K ′′

k (u). This, together with α′
N (u) = −∑

akK
′′
k (u)/∑

K ′′
k (u) and (5.2), yields that

m′′
N (u) =

∑
ak α

′′
N K ′′

k (u) +
∑

ak (ak + α′
N )2K ′′′

k (u)

=
∑

(ak + α′
N )3K ′′′

k (u). (5.14)

If 0 < u ≤ C/bN , by recalling |u ak+αN (u)| ≤ 2C, noting thatK ′′′
k (u) = K ′′

k (u)(q−peu ak+αN (u))/(peu ak+αN (u)+
q) and using (5.8), it is readily seen that |K ′′′

k (u)| ≤ pqe2C . On the other hand, |α′
N (u)| ≤ e4C

∑ |ak|/N by
(5.8) whenever 0 < u ≤ C/bN . Taking these facts into (5.14), we obtain that

|m′′
N(u)| < A1pq

[∑
|ak|3 +

1
N2

(∑
|ak|

)3
]
≤ A2ω

2
Nβ3N , (5.15)

for 0 < u ≤ 1/(2bN). Using (5.15), Taylor’s expansion and the facts that mN (0) = 0, m′
N (0) = ω2

N and
ux/x ≤ e/ωN , we have

|x− uxωN | =
1
ωN

∣∣mN (ux) −mN (0) − uxm
′
N (0)

∣∣
≤ u2

x

ωN
|m′′

N (u2)| ≤ A3 x
2β3N/ωN , (5.16)

where 0 ≤ u2 ≤ ux ≤ 1/(2bN). Similarly,

ux

∣∣σN (ux) − ωN

∣∣ ≤ ux |σ2
N (ux) − ω2

N |/ωN ≤ euxx|m′
N (ux) −m′

N (0)|/ω2
N

≤ euxx|m′′
N (u3)|/ω2

N ≤ A3 x
2β3N/ωN , (5.17)
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where 0 ≤ u3 ≤ ux ≤ 1/(2bN). From (5.16) and (5.17), we obtain∣∣x− uxσN (ux)
∣∣ ≤ ∣∣x− ux ωN

∣∣ + ux

∣∣σN (ux) − ωN

∣∣ ≤ A4 x
2β3N/ωN .

This, together with (5.11), yields that∣∣∣ψ(uxσN )
ψ(x)

− 1
∣∣∣ =

|uxσN (ux) − x||ψ′(θ)|
ψ(x)

≤ A5(1 + x)β3N/ωN , (5.18)

where x ≤ θ ≤ uxσN (x) and we have used the following estimates:

ψ(t) ≥ min{(2t)−1, 1 − Φ(1)} and |ψ′(t)| = |tψ(t) − 1| ≤ t−2 for t > 0.

From (5.18), the result (5.12) will follow if we prove∣∣∣∣∣∣ ωN√∑
K

′′
k (ux)

− 1

∣∣∣∣∣∣ ≤ Ax/ωN . (5.19)

In fact, by noting that for any 0 < u <∞
d

∑
K ′′

k (u)
du

=
∑

(ak + α′
N (u))K ′′′

k (u),

it follows from Taylor’s expansion that∑
K ′′

k (ux) = N K ′′(0) + uxR,

where |R| ≤ Apq
∑ |ak|. Therefore, by recalling ux ≤ ex/ωN and K ′′(0) = pq, for 0 < x < ωN/(2ebN),∣∣∣∑K ′′

k (ux) − ω2
N

∣∣∣ ≤ Aux pq
∑

|ak| ≤ Axpq
√
N

∑
a2

k/ωN ≤ AxωN .

This, together with (5.8), implies that, for 0 < x < ωN/(2ebN),∣∣∣∣∣∣ ωN√∑
K

′′
k (ux)

− 1

∣∣∣∣∣∣ ≤ |∑K ′′
k (ux) − ω2

N |∑
K

′′
k (ux)

≤ Ax/ωN ,

which yields (5.19). Proof of Theorem 2.2 is now complete. �
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