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SHRINKAGE STRATEGIES IN SOME MULTIPLE MULTI-FACTOR
DYNAMICAL SYSTEMS

Sévérien Nkurunziza
1

Abstract. In this paper, we are interested in estimation problem for the drift parameters matrices of
m independent multivariate diffusion processes. More specifically, we consider the case where the m-
parameters matrices are supposed to satisfy some uncertain constraints. Given such an uncertainty, we
develop shrinkage estimators which improve over the performance of the maximum likelihood estimator
(MLE). Under an asymptotic distributional quadratic risk criterion, we study the relative dominance
of the established estimators. Further, we carry out simulation studies for observation periods of small
and moderate lengths of time that corroborate the theoretical finding for which shrinkage estimators
outperform over the MLE. The proposed method is useful in model assessment and variable selection.
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1. Introduction

The diffusion processes play a crucial role in modeling diverse phenomenon in different scientific fields such
as quantitative finance [10], economics [3], biomedical sciences [7], physics [15] ecology [6]. In this paper, we
consider m independent p-vectors of the parametric diffusion processes

{(
X

(i)
k (t), k = 1, 2, . . . , p

)
; 0 � t � T

}
,

i = 1, 2, . . . ,m which are solutions of multi-factors stochastic differential equation (SDE)

dX(i)
k (t) =

p∑
j=1

θ
(i)
kj Vj

(
X(i)(t)

)
dt+ σ

(i)
k

(
X(i)(t)

)
dW (i)

k (t), 0 � t � T , (1.1)

with for each i = 1, 2, . . . ,m, X(i)(t) =
(
X

(i)
k (t), k = 1, 2, . . . , p

)
, and

{
W

(i)
k (t), 0 � t � T

}
, k = 1, 2, . . . , p are

p-independent Wiener processes, and σ(i)
k

(
X(i)(t)

)
> 0, k = 1, 2, . . . , p and the real-valued functions Vk

(
X(i)(t)

)
,

k = 1, 2, . . . , p are such that the processes in (1.1) exist. Thereafter, we denote

V
(
X(i)(t)

)
=

(
V1

(
X(i)(t)

)
, V2

(
X(i)(t)

)
, . . . , Vp

(
X(i)(t)

))′
,
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and in the sequel, we assume that the functions σ(i)
k

(
X(i)(t)

)
and Vk

(
X(i)(t)

)
are such that the process in (1.1)

is ergodic (see for example [11]). To give an example, note that if σ(i)
k

(
X(i)(t)

)
= σ

(i)
k > 0 and Vk

(
X(i)(t)

)
=

−X
(i)
k , k = 1, 2, . . . , p, i = 1, 2, . . . ,m, the process in (1.1) is ergodic if and only if θ(i) =

(
θ
(i)
kj

)
1�k,j�p

is a positive definite matrix, i = 1, 2, . . . ,m. In this paper, we are interested in estimating the parameters
matrices θ(i) ∈ Θ, i = 1, 2, . . . ,m when θ(i) may be subjected to some uncertainties. For the simplicity sake,
assume that σ(i)

k

(
X(i)(t)

)
= σ

(i)
k > 0, k = 1, 2, . . . , p, i = 1, 2, . . . ,m. Also, to simplify notation, let Σ(i) be

diagonal matrix whose diagonal entrees are σ2
1i, σ

2
2i, . . . , σ

2
pi, i.e., Σi = diag

(
σ2

1i, σ
2
2i, . . . , σ

2
pi

)
, and let W (i)(t) =(

W
(i)
1 (t),W (i)

2 (t), . . . ,W (i)
p (t)

)′
, for 0 � t � T and for each i = 1, 2, . . . ,m. Then, from relation (1.1), we have

dX(i)(t) = θ(i)V
(
X(i)(t)

)
dt+ Σ

1
2
i dW (i)(t), 0 � t � T , i = 1, 2, . . . ,m. (1.2)

Further, the parameters matrices θ(i) are assumed to lie or not in a restricted hyper-plan whose rank is q < p.
For instance, suppose that

L∗
1θ

(1)L∗
2 = L∗

1θ
(2)L∗

2 = · · · = L∗
1θ

(m)L∗
2, (1.3)

where L∗
1 is a given q×p-matrix of full rank with q < p, L∗

2 is known p×r matrix. It is noticed that the constraint
in (1.3) extends that in [8]. Thus, as in classical multivariate regression, the constraint in (1.3) is useful for
example in model assessment and variable selection, and in profile analysis. Also, the constraint in (1.3) is useful
in financial modeling where, for instance, different groups of countries decide to unify their economic policies,
as is the case for the European Union countries. Thus, within each group of the united countries, the economic
policy is supposed to has been harmonized and thus, one would expect homogeneity of the parameters of the
process under consideration. Further, because of the globalization of the economy, different groups (or unions)
need to negotiate on the international transactions rules and on some regulatory financial-economic rules. In
this context, it is reasonable to assume that the parameter matrices θ(i), i = 1, 2, . . . ,m satisfy the constraint
as in (1.3). Another interesting example is related to the current worldwide financial crisis where multinational
institutions may be forced to form the same chain group in order to survive.

To simplify the notation, let θ =
(
θ(1)′ ,θ(2)′ , . . . ,θ(m)′

)′
and let Im denote the identity matrix with rank

m. Then, the constraint in (1.3) can be rewritten as

(L∗
3 ⊗ L∗

1)θL∗
2 = 0, (1.4)

where L∗
3 is (m− 1) ×m-matrix given by

L∗
3 =

⎛⎜⎜⎜⎝
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
... · · · · · · ...

0 0 0 · · · −1 1

⎞⎟⎟⎟⎠ . (1.5)

Accordingly, one considers the following constraint that is more general than (1.4),

L1θL2 = d (1.6)

where L1 is a given q×mp-matrix of full rank with q < mp, and L2 and d are known mp× r and q× r-matrix
of full rank with r < mp. It should be noticed that the statistical model in (1.2) with the constraint (1.3) is an
extension of the model considered in [14] where V (X(t)) = X(t) and m = r = 1. An appropriate estimation
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method for
(
θ(1)′ ,θ(2)′, . . . ,θ(m)′

)′
needs to incorporate the constraint in (1.3). In particular, a test statistic

is used to take care of the constraint (1.6).
The rest of this paper is organized as follows. Section 1 presents the restricted and unrestricted MLEs of θ

as well as the asymptotic normality of these estimators. In Section 2, we present the shrinkage estimator and
show that it dominates the MLE. Section 3 presents some simulation results, and Section 4 gives concluding
remarks. Finally, technical results are given in the Appendix A.

2. The maximum likelihood estimator and asymptotic normality

In this section, we present the unrestricted maximum likelihood estimator (UMLE) and the restricted maxi-
mum likelihood estimator (RMLE) for the parameter matrix θ. Also, we present the results on the asymptotic
properties of the UMLE and RMLE, which are used in deriving the test statistic for the constraint (1.6). As
presented in Section 2, the UMLE and RMLE are combined in order to form a class of estimators which im-
prove the performance of UMLE and RMLE. For the sake of simplicity, we assume that the distribution of the

matrix-initial value X0 =
(
X

(1)′
0 ,X

(2)′
0 , . . . ,X

(m)′
0

)′
does not depend on θ. Indeed, for the case where the

distribution of X0 depends of θ, the obtained results are similar to that established conditionally to X0. Let

X(t) =
(
X(1)′(t),X(2)′ (t), . . . ,X(m)′(t)

)′
, V (X(t)) =

(
V

(
X(1)(t)

)
,V

(
X(2)(t)

)
, . . . ,V

(
X(m)(t)

))′
, and

let

Ui(T ) =
∫ T

0

dX(i)(t)V ′
(
X(i)(t)

)
, Di(T ) =

∫ T

0

V
(
X(i)(t)

)
V ′

(
X(i)(t)

)
dt, i = 1, 2, . . . ,m. (2.1)

Also, let

UT = (U ′
1(T ),U ′

2(T ), . . . ,U ′
m(T ))′ , and let DT = diag (D1(T ),D2(T ), . . . ,Dm(T )) . (2.2)

Further, let Σ = diag (Σ1,Σ2, . . . ,Σm) and let J = ΣL′
1 (L1ΣL′

1)
−1. Moreover, let θ̂ be the UMLE of θ, and

let θ̃ be the RMLE of θ. It is noticed that, for the one-parameter case, the UMLE θ̂ corresponds to that given
in [12] (Chap. 17, pp. 206–207) or in [11] (p. 63). This paper gives an extension of the one-parameter inference
problem to matrix-parameter inference problem. In addition, we generalize the inference strategies in [14].

The following proposition gives the UMLE θ̂ and the RMLE θ̃. The proof follows from standard stochastic
calculus techniques. For the convenience of the reader, we outline it below. It is noticed that since the subsequent
results are derived under continuous sampling plan, Σi, i = 1, 2, . . . ,m are assumed to be known. Indeed, it
suffices to take the corresponding quadratic variation.

Proposition 2.1. We have θ̂ = UT D−1
T , and θ̃ = θ̂ − J

(
L1θ̂L2 − d

) (
L′

2D
−1
T L2

)−1
L′

2D
−1
T .

Proof. The log-likelihood function is given by l (θ) = trace
(
θ′Σ−1UT

) − 1
2
trace

(
θ′Σ−1θDT

)
, and then, by

algebraic computations, we get the first statement of the proposition. Further, by the Lagrangian method, the
RMLE θ̃ satisfies the system of equations Σ−1UT − Σ−1DT θ̃ + L′

1λL′
2 = 0,

(
L1θ̃L2 − d

)
= 0, where the

matrices L1, L2 and d are given in (1.6). The rest of proof follows from algebraic computations. �

Note that the MLEs given in Proposition 2.1 presuppose that all sample paths of the process in (1.2) are
observed and that this sampling plan has a major impact on the diffusion term. Indeed, while in continuous
time it is possible to estimate it without error and therefore it makes perfect sense to assume it known, in
discrete time this is certainly not the case. Also, we assume that the drift coefficient is such that, almost surely,

lim
T→∞

‖DT ‖ = ∞, lim
T→∞

T−1 DT = E(X0X
′
0) = Σ0, (2.3)
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with Σ0 a positive definite matrix. Note that the second assumption in relation (2.3) holds for ergodic processes.
Under some conditions, the following proposition shows that the UMLE and RMLE are strongly consistent.

Proposition 2.2. Assume that the model (1.2) holds along with relations (1.6) and (2.3). Then,

θ̂
a.s.−−−−→

T→∞
θ, and θ̃

a.s.−−−−→
T→∞

θ. (2.4)

Proof. From equations (1.2), we have

θ̂ − θ = Σ
1
2

∫ T

0

dW (t)V ′ (X(t)) D−1
T , (2.5)

and by the martingale Strong Law of Large Numbers, we get the first statement of the proposition. Further,

θ̃ − θ = (Ipm − JL1)
(
θ̂ − θ

)
− J (L1θL2 − d) , (2.6)

and then, under (1.6), we get θ̃ − θ = (Ipm − JL1)
(
θ̂ − θ

)
. Therefore, from the first statement of the

proposition, we get θ̃ − θ
a.s.−−−−→

T→∞
0, and that completes the proof. �

Under Proposition 2.2, the following corollary shows that UMLE is asymptotically normal.

Corollary 2.3. Assume that the hypotheses of Proposition 2.2 hold. Then,

√
T

(
θ̂ − θ

) L−−−−→
T→∞

Nmp×mp

(
0, Σ⊗ Σ−1

0

)
and

√
T

(
θ̂ − θ

)
L2

L−−−−→
T→∞

Nmp×r

(
0, Σ⊗ L′

2Σ
−1
0 L2

)
.

Proof. The first statement follows directly from equation (2.5), and by applying the martingale central limit
Theorem. Further, combing the first statement and Slutsky’s theorem, we get the second statement of the
proposition, and that completes the proof. �

From Corollary 2.3, we establish the joint asymptotic normality of UMLE and RMLE under the following
class of alternative constraints

KT : L1θL2 = d +
δ√
T
, T > 0 (2.7)

where δ is a nonzero q × r-matrix no linearly dependent with d. Also, we assume that ‖δ‖ < ∞, and let
�T =

√
T

(
θ̂ − θ

)
L2, ξT =

√
T

(
θ̂ − θ̃

)
L2, ζT =

√
T

(
θ̃ − θ

)
L2. Further, let Σ∗ = JL1Σ. In the sequel,

we simplify the computations by assuming that the initial value is chosen such that Σ0 = Σ.

Proposition 2.4. If the hypotheses of Proposition 2.2 and the constraint in (2.7) hold, then(
�T

ξT

)
L−−−−→

T→∞

(
�
ξ

)
∼ N2mp×2r

((
0

Jδ

)
,

(
Σ⊗ (

L′
2Σ

−1L2

)
Σ∗ ⊗ (

L′
2Σ

−1L2

)
Σ∗ ⊗ (

L′
2Σ

−1L2

)
Σ∗ ⊗ (

L′
2Σ

−1L2

) ))
.

Furthermore,(
ζT

ξT

)
L−−−−→

T→∞

(
ζ
ξ

)
∼ N2mp×2r

((−Jδ
Jδ

)
,

(
Σ⊗ (

L′
2Σ

−1L2

)−Σ∗ ⊗ (
L′

2Σ
−1L2

)
0

0 Σ∗ ⊗ (
L′

2Σ
−1L2

)))
.
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The proof of this proposition is outlined in the Appendix. Note that, under some regularities conditions, as given
for example in [11] (p. 212), the convergence in law given in Corollary 2.3 and Proposition 2.4 hold uniformly in
θ. Also, from Proposition 2.4, we derive the following corollary that is useful in establishing the test statistic.
We denote Wr (n, Σ,Υ) a r × r-random matrix Wishart variate with degrees of freedom n, and parameter Σ,
and non-centrality parameter matrix Υ. Also, let χ2

n
(δ) denote a random chi-square variate with n degrees of

freedom, non-centrality parameter δ.

Corollary 2.5. Let Ξ = L
′
1

(
L1Σ−1L

′
1

)−1

L1. If the hypotheses of Proposition 2.4 hold, then

(
L′

2Σ
−1L2

)− 1
2 ξ′

TΞξT

(
L′

2Σ
−1L2

)− 1
2 L−−−−→

T→∞
Wr

(
q, Ir, δ

∗′
Ξδ∗

)
,

and trace
[
ξ′

TΞξT

(
L′

2Σ
−1L2

)−1
] L−−−−→

T→∞
χ2

qr

(
trace

(
δ∗′

Ξδ∗
))

.

The proof is outlined in the Appendix A. Based on Corollary 2.5, we propose the following test statistic for
taking care of uncertain prior information given by the constraint in (1.6)

ψ(T ) = trace
[
ξ′

TΞξT

(
L′

2Σ
−1L2

)−1
]
. (2.8)

3. Shrinkage estimation strategy (SES)

In this subsection, we present a class of estimators that combine both UMLE and RMLE. Such estima-
tors are so-called “shrinkage estimators”. For more details, we refer to Judge and Bock [9], Ahmed and
Saleh [2], Nkurunziza and Ahmed [14] among others. In particular, we consider the following class of esti-
mators

{
θ̃ + {1 − cψ(T )−1}(θ̂ − θ̃) : c ∈ [0, 2(qr − 2)), qr > 2

}
, where ψ(T ) is the test statistic given in (2.8).

As often the case in classical shrinkage strategy, we consider the shrinkage estimator (SE) that corresponds to

c = qr − 2. Namely, SE θ̂
S

of θ is defined as θ̂
S

= θ̃ + {1 − (qr − 2)/ψ(T )}
(
θ̂ − θ̃

)
. Since qr > 2, and since

ψ > 0 with probability one, we have ψ < (qr − 2) if and only if 1 − (qr − 2)ψ−1 < 0. This causes a possible
over-shrinking, and thus, following Ahmed [2], the shrinkage estimator should not be used as an estimator in

its own right, but as a tool for developing the positive-rule shrinkage estimators (PSE), θ̂
S+

that is defined as

θ̂
S+

= θ̃ + max{(1 − (qr − 2)ψ−1
)
, 0}

(
θ̂ − θ̃

)
. (3.1)

In the following subsection, we present the asymptotic distributional risk (ADR) and asymptotic distributional
bias (ADB). For more details about the concepts of ADR and ADB, we refer to Ahmed and Saleh [2]. For the
sake of simplicity, we assume that the model in (1.2) satisfies the similar regularities conditions as given in [11]
(pp. 212–213).

3.1. Asymptotic distributional risk and asymptotic distributional Bias

As often observed in shrinkage strategy, the effective domain of risk dominance of PSE or SE over MLE is a
small neighborhood of the constraint (pivot), that is here L1θL2 − d = 0. Also, as the observation period T
increases, this domain becomes narrower. This justifies the choice of the class of local alternatives given in (2.7),
and for the optimality criterion, we consider the quadratic loss function of the form

L
(
θ̂

�
,θ;W

)
= T × trace

[
L′

2

(
θ̂

� − θ
)′

W
(
θ̂

� − θ
)

L2

]
, (3.2)

where W is a nonnegative definite matrix. Using the distribution of
√
T

(
θ̂

� − θ
)

L2 and taking the ex-
pected value of both sides of (3.2), we get the expected loss, so-called the quadratic risk and this will be
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denoted by Ro
T

(
θ̂

�
,θ;W

)
. In particular, if Σ̂1(T ) ⊗ Σ̂2(T ) = T E

[
vec

((̂
θ

� − θ
)

L2

)(
vec

((̂
θ

� − θ
)

L2

))′]
,

with Σ̂1(T ) nonsingular matrix, we get Ro
T

(
θ̂

�
,θ;W

)
= trace

(
WΣ̂2(T )

)
trace

(
Σ̂1(T )

)
. Thus, whenever

lim
T→∞

Σ̂1(T ) = Σ01 and lim
T→∞

Σ̂2(T ) = Σ02 exists, Ro
T

(
θ̂

�
,θ;W

)
−−−−→
T→∞

Ro
(
θ̂

�
,θ;W

)
= trace (WΣ02)

trace (Σ01). Let G̃T (u) denote the cumulative distribution function (cdf) of
√
T

(
θ̂

� − θ
)

L2 and let G̃ be

the cdf of a matrix variate and square-integrable ρ∗. Also, suppose that
√
T

(
θ̂

� − θ
)

L2
L−−−−→

T→∞
ρ∗, i.e.

G̃T −−−−→
T→∞

G̃ (at all points of continuity of G̃), and let Σ(1)

G̃
⊗Σ(2)

G̃
= E

(
ρρ∗′

)
with Σ(1)

G̃
and Σ(2)

G̃
respectively

k × k and q × q-matrices . From Fatou’s Lemma, we have trace
(
WΣ(2)

G̃

)
trace

(
Σ(1)

G̃

)
� Ro

(
θ̂

�
,θ;W

)
, and

the left-hand side of the above inequality is termed the asymptotic distributional risk (ADR), i.e. the ADR of
θ̂

�
is defined as

ADR
(
θ̂

�
,θ;W

)
= trace

(
E

(
ρ∗Wρ∗′))

. (3.3)

In general, ADR
(
θ̂

�
,θ;W

)
� Ro

(
θ̂

�
,θ;W

)
and additional assumptions are required for the equality to hold.

The study of such assumptions is beyond the scope of this paper. Here, as in [2], Nkurunziza and Ahmed [14]
among others, the performance of the estimators of θ are based on theirs ADR. More specifically, the estimator
θ̂

�

1 is asymptotically more efficient than θ̂
�

2 if ADR
(
θ̂

�

1,θ;W
)

� ADR
(
θ̂

�

2,θ;W
)
.

Even though the shrinkage estimators are, in general, biased, the bias is accompanied by reduction in risk,
and hence, it does not have a serious impact on risk assessment. Recall that the asymptotic bias is defined
as B0

T

(
θ̂

�
,θ

)
= E

[√
T

(
θ̂

� − θ
)

L2

]
, and then, the asymptotic distributional bias (ADB) is defined as E [ρ∗].

Below, Theorem 3.1–3.3 give ADR and ADB of the shrinkage estimators. The derivation of ADR and ADB
of the shrinkage estimators are based on Proposition 2.4 and Corollary 2.5, along with the results on the
normal distribution parametric model. To simplify the notation, let Hν(x ; Δ) = P{χ2

ν(Δ) ≤ x}, x � 0 with
Δ = trace

(
δ∗′

Ξδ∗
)
.

Theorem 3.1. If the hypotheses of Proposition 2.4 hold, the ADB functions of the estimators are given by

ADB
(
θ̂,θ

)
= 0, ADB

(
θ̃,θ

)
= δ∗, ADB

(
θ̂

S
,θ

)
= −δ∗(qr − 2)E

{
χ−2

qr+2(Δ)
}

ADB
(
θ̂

S+
,θ

)
= −δ∗ [

Hqr+2(qr + 2; Δ) + (qr − 2)E
{
χ−2

qr+2(Δ)I
(
χ2

qr+2(Δ) > (qr − 2)
)}]

.
(3.4)

The proof is outlined in the Appendix A.

Remark 3.2. Note that the component δ∗ is common to the ADB of θ̃, θ̂
S

and θ̂
S+

, and thus, these expressions
differ only by scalar factors Δ. On one hand, the bias of the θ̃ is an unbounded function of Δ. On the other
hand, the ADB of both θ̂

S
and θ̂

S+
are bounded in Δ. Also, since E{χ−2

qr+2(Δ)} is a decreasing log-convex

function of Δ, the ADB of θ̂
S

starts from the origin at Δ = 0, increases to a maximum, and then decreases to
0. Further, the bias curve of θ̂

S+
remains below the curve of the SE θ̂

S
for all values of Δ.
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Theorem 3.3. If the hypotheses of Proposition 2.4 hold, the ADR functions of the estimators are given by

ADR
(
θ̂,θ;W

)
=trace

(
L′

2Σ
−1L2

)
trace(WΣ),

ADR
(
θ̃,θ;W

)
=trace

(
L′

2Σ
−1L2

)
trace(WΣ) − trace

(
L′

2Σ
−1L2

)
trace(WΣ∗) + trace

(
δ∗′

Wδ∗
)
,

ADR
(
θ̂

S
,θ;W

)
=ADR(θ̂,θ;W) + trace

(
δ∗′

Wδ∗
) (

(qr)2 − 4
)
E

(
χ−4

qr+4(Δ)
)

− (qr − 2)trace
(
L′

2Σ
−1L2

)
trace (WΣ∗)

{
2E

(
χ−2

qr+2(Δ)
) − (qr − 2)E

(
χ−4

qr+2(Δ)
)}
,

ADR
(
θ̂

S+
,θ;W

)
=ADR(θ̂

S
,θ;W) − trace

(
L′

2Σ
−1L2

)
trace (WΣ)Hqr+2(qr − 2; Δ) (3.5)

+ 2(qr − 2)trace
(
L′

2Σ
−1L2

)
trace (WΣ∗) E

{
χ−2

qr+2(Δ)1{χ2
qr+2(Δ)≤(qr−2)}

}
− (qr − 2)2trace

(
L′

2Σ
−1L2

)
trace (WΣ∗) E

{
χ−4

qr+2(Δ)1{χ2
qr+2(Δ)≤(qr−2)}

}
− (qr − 2)trace

(
δ∗′

Wδ∗
) [

2E
{
χ−2

qr+2(Δ))1{χ2
qr+2(Δ)≤(qr−2)}

}
− 2E

{
χ−2

qr+4(Δ)1{χ2
qr+4(Δ)≤(qr−2)}

}
+ (qr − 2)E

{
χ−4

qr+4(Δ)1{χ2
qr+4(Δ)≤(qr−2)}

}]

+ trace
(
δ∗′

Wδ∗
)
{2Hqr+2(qr − 2; Δ) −Hqr+4(qr − 2; Δ)} .

The proof is outlined in the Appendix.

Remark 3.4. First, it is noticed that for the special case where r = 1, Theorems 3.1 and 3.3 give the same result
as in [14]. Second, for a suitable choice of the matrix W, the risk dominance of the estimators are similar to that

established under normal distribution. More specifically, the following corollary shows that both θ̂
S+

and θ̂
S

outperform θ̂. At first glance, this may seem to be in contradiction with the fact that the model (1.2) satisfies
the condition of locally asymptotically normal (LAN) family. Recall that for a LAN family, MLE is optimal in
class of regular (smooth) estimators (see [4], p. 249, among others). However, as in classical multivariate normal
samples, the proposed shrinkage estimators (or Stein-type estimators) are not regular (see [4], pp. 249–250).

So, here as classical shrinkage estimators, θ̂
S

and θ̂
S+

showcase the well known Stein’s phenomenon.

Corollary 3.5. Let chmax(A) denote the largest eigenvalue of the matrix A and let W ∈ {W : 0 < (qr + 2)

chmax(WΣ∗) � 2 trace (WΣ∗) trace
(
L′

2Σ
−1L2

)}
. Then, ADR

(
θ̂

S+
,θ;W

)
� ADR

(
θ̂

S
,θ;W

)
< ADR

(
θ̂,

θ;W) for all Δ ∈ [0,∞).

The proof follows from Theorem 3.3 along with Courant’s Theorem and some algebraic computations. For the
convenience of the reader, the proof is outlined in the Appendix.

4. Simulation study

In this section, we carry out a Monte Carlo simulation study to examine risk (namely MSE) performance of
all estimators under consideration. To this end, we consider V

(
X(i)(t)

)
= −X(i)(t), i = 1, 2, . . . , 3. Different

values of p are explored, but in order to save the space, we present the results for p = 3 and p = 4 only. Also,
for each i = 1, 2, . . . ,m, we choose Σi = Ip. Further, we choose different matrices θ(i), i = 1, 2, . . . ,m, with
m = 2 and m = 3. For the constraint in (1.6), we choose d = 0, and L1 = (L∗

3 ⊗ L∗
1) where L∗

3 is given as
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(b) T = 25, m = 2, q = 2, r = 2,p = 3
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(c) T = 35, m = 2, q = 2, r = 2,p = 3
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(d) T = 45, m = 2, q = 2, r = 2,p = 3

Figure 1. Relative efficiency vs. Δ.

in (1.5). Also, we choose some matrices L2, L∗
1 according to the value of p. In particular, for p = 3, we choose,

θ(1) =

⎛⎝ 0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

⎞⎠ , θ(2) =

⎛⎝ 0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

⎞⎠ ,

L∗
2 =

⎛⎝ 1 0
1 0
1 1

⎞⎠ , and L∗
1 =

( −1 1 0
0 −1 1

)
.

Further, for p = 4, we choose

θ(1) =

⎛⎜⎜⎝
0.5226 0.2714 0.1365 0.2987
0.8801 0.2523 0.0118 0.6614
0.1730 0.8757 0.8939 0.2844
0.9797 0.7373 0.1991 0.4692

⎞⎟⎟⎠ , θ(2) =

⎛⎜⎜⎝
0.0648 0.5155 0.5798 0.2091
0.9883 0.3340 0.7604 0.3798
0.5828 0.4329 0.5298 0.7833
0.4235 0.2259 0.6405 0.6808

⎞⎟⎟⎠ ,
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(a) T = 15, m = 3, q = 3, r = 2,p = 4
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(c) T = 35, m = 3, q = 3, r = 2,p = 4
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Figure 2. Relative efficiency vs. Δ.

L∗
2 =

⎛⎜⎜⎝
1 0
1 0
1 0
1 1

⎞⎟⎟⎠ , and L∗
1 =

⎛⎝ −1 1 0 0
0 −1 1 0
0 0 − 1 1

⎞⎠ .

Also, the short and medium time periods of observation have been considered. Namely, we consider T = 15,
T = 25, T = 35, and T = 45, and we perform 1000 replications. The comparison between estimators is based on
the quantity called the relative mean square efficiency (RMSE) of the estimators with respect to θ̂. In passing,
recall that RMSE is defined as RMSE (proposed estimator)=risk

(̂
θ
)/

risk (proposed estimator). Accordingly,

RMSE
(
θ̂
)

=
risk

(
θ̂
)

risk
(
θ̂
) , RMSE

(
θ̃
)

=
risk

(
θ̂
)

risk
(
θ̃
) , RMSE

(
θ̂

S
)

=
risk

(
θ̂
)

risk
(
θ̂

S
) , RMSE

(
θ̂

S+
)

=
risk

(
θ̂
)

risk
(
θ̂

S+
) ·

Thus, a relative efficiency greater than one indicates the degree of superiority of the estimator over θ̂. Figures 1
and 2 highlight the performance of shrinkage strategy. Both Figures 1 and 2 corroborate the theoretical findings
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as presented in Section 2. Indeed,
(i) the asymptotic behavior of the SES is stable and, as theoretically expected, around the pivot, the SES

dominate the MLE;
(ii) around the pivot, θ̃ dominates shrinkage estimators. However, shrinkage estimators dominate θ̃ as the

constraint is seriously violated.

5. Conclusion

In this paper, we studied the inference problem concerning m-drift parameter matrices of k-multivariate
diffusion processes, when these parameter matrices may satisfy certain constraints. We developed shrinkage
estimation methods for the m-parameter matrices. As demonstrated in Section 2, the established shrinkage
estimators improve the performance of the maximum likelihood estimator. This theoretical finding has been
confirmed by the simulation study results. Further, our simulation finding show that the suggested SES is
robust in the sense that it preserves a good performance whether or not the constraint holds. The proposed
strategy is useful for example in econometric and/or financial modeling, particularly for model assessment and
variable selection.

Acknowledgements. The author would like to acknowledge the financial support received from Natural Sciences and
Engineering Research Council of Canada. Also, the author would like to thank the Editors-in-Chief and anonymous
referees for useful comments.

Appendix A. Some technical details

Proof of Proposition 2.4. Using relation (2.6), we get
(
�

′
T , ζ

′
T

)′

=
(
Imp, Imp − L

′
1J

′
)′

�T − Jδ. Then, us-

ing Proposition 2.3 and Slutsky’s theorem, we get
(
�

′
T , ζ

′
T

)′
L−−−−→

T→∞

(
Ip, Imp − L

′
1J

′
)′

� − Jδ where � ∼
Nmp×r

(
0, Σ ⊗ L′

2Σ
−1
0 L2

)
. Hence,

(
�

′
T , ζ

′
T

)′
L−−−−→

T→∞
Nmp×r

(
−Jδ,

(
Imp, Imp − L

′
1J

′)′

Σ (Imp, Imp − L1J ) ⊗ L′
2Σ

−1
0 L2

)
. (A.1)

Further, (
�T

ξT

)
=

(
Ip 0
Ip −Ip

) (
�T

ζT

)
. (A.2)

Therefore, by combining (A.1) and (A.2), we get the first statement of the proposition. Further, we have
ζT = (Imp,−Imp) (�′

T , ξ
′
T )′, and then, using the first statement of the proposition and Slutsky’s theorem we

get the second statement and that completes the proof. �

Proof of Corollary 2.5. From Proposition 2.4, under local alternative, ξT
L−−−−→

T→∞
Z ∼ Nmp×r

(
δ∗, Σ∗⊗(

L′
2Σ

−1L2

) )
, and then

(
L′

2Σ
−1L2

)− 1
2 ξ′

TΞξT

(
L′

2Σ
−1L2

)− 1
2 L−−−−→

T→∞
(
L′

2Σ
−1L2

)− 1
2 Z ′ΞZ

(
L′

2Σ
−1L2

)− 1
2 . (A.3)

Further, using the well known properties of quadratic random matrices (see for example [5]), we get

(
L′

2Σ
−1L2

)− 1
2 Z ′ΞZ

(
L′

2Σ
−1L2

)− 1
2 ∼Wr

(
q, Ir , δ

∗′
Ξδ∗

)
. (A.4)
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Therefore, combining relations (A.3) and (A.4), we get
(
L′

2Σ
−1L2

)− 1
2 ξ′

T ΞξT

(
L′

2Σ
−1L2

)− 1
2 L−−−−→

T→∞
Wr

(
q, Ir ,

δ∗′
Ξδ∗), and then, trace

[(
L′

2Σ
−1L2

)− 1
2 ξ′

TΞξT

(
L′

2Σ
−1L2

)− 1
2
] L−−−−→

T→∞
χrq

(
trace

(
δ∗′

Ξδ∗
))

, that completes

the proof. �

Proof of Theorem 3.1. Using Proposition 2.4, we have ADB
(
θ̂,θ

)
= E(ρ) = 0, and ADB

(
θ̃,θ

)
=

E(ζ) = −δ∗, that proves the two first statements. Also, we have ADB
(
θ̂

S
,θ

)
= E

[
ζ+

(
1−(qr−2)ϕ−1

)
ξ
]

= −δ∗ +E
[(

1−(qr−2)ϕ−1!
)
ξ
]
. Further, let Δ = trace

(
δ∗′

Ξδ∗
)
. Using the fact that Σ− 1

2 Σ∗Σ− 1
2 is a

symmetric and idempotent matrix, along with Theorem 2 in [9], we get Vec
(
ADB

(
θ̂

S
,θ

))
= −Vec (δ∗) +

E
[(

1 − (qr − 2)/χ2
qr+2 (Δ)

)]
Vec (δ∗) and this proves the third statement of the theorem. The last statement

of the theorem is proved by using same method. �

Proposition A.1. Let Λ = L′
2Σ

−1L2 and let c be a real number. If the hypotheses of Proposition 2.4 hold,
then

E
{
trace

[(
1 − cψ−1

)2
ξ′Wξ

]}
= E

[(
1 − cχ−2

qr+2 (Δ)
)2

]
trace (WΣ∗) trace (Λ)

+ E
[(

1 − cχ−2
qr+4 (Δ)

)2
]
trace

(
δ∗′

Wδ∗
)
,

and E
[(

1 − c ψ−1
)
η′Wξ

]
= −E

[(
1 − c χ−2

qr+2 (Δ)
)]

δ∗′
Wδ∗.

Proof. The proof of the first statement follows by using similar transformations as used in proof of the third
and fourth statements of Theorem 3.1. Further, since η and ξ are independent, we have E

[ (
1 − c ψ−1

)
η′Wξ

]
= (E (η))′ W E

[(
1 − c ψ−1

)
ξ
]

= − (δ∗)′ W E
[(

1 − c ψ−1
)
ξ
]
, and then, following the same steps as

used in proof of Theorem 3.1, we get E
[(

1 − c ψ−1
)
Wξ

]
= E

[(
1 − c χ−2

qr+2 (Δ)
)]

δ∗, that completes the proof
of the proposition. �

Proof of Theorem 3.3. By applying Proposition 2.4, we establish the ADR of θ̂ and θ̃. Further, we have
ADR

(
θ̂

S
,θ;W

)
= E

{
trace

[(
η +

(
1 − (qr − 2)ψ−1

)
ξ
)′

W
(
η +

(
1 − (qr − 2)ψ−1

)
ξ
)]}

, and that gives

ADR
(
θ̂

S
,θ;W

)
= ADR

(
θ̃,θ;W

)
+ 2E

{
trace

[
η′W

(
1 − (qr − 2)ψ−1

)
ξ
]}

+ E
{
trace

[
ξ′W

(
1 − (qr − 2)ψ−1

)2
ξ
]}

. (A.5)

Then, applying Proposition 5, we have

ADR
(
θ̂

S
,θ;W

)
= ADR

(
θ̃,θ;W

)
− 2 E

[(
1 − (qr − 2)χ−2

qr+2 (Δ)
)]

trace
(
δ∗′

Wδ∗
)

+ E
[(

1 − (qr − 2)χ−2
qr+2 (Δ)

)2
]

trace (WΣ∗) trace (Λ) + E
[(

1 − (qr − 2)χ−2
qr+4 (Δ)

)2
]

trace
(
δ∗′

Wδ∗
)
,

and then, by some computations, we get

ADR
(
θ̂

S
,θ;W

)
=ADR

(
θ̂,θ;W

)
+ trace

(
δ∗′

Wδ∗
) (

(qr)2 − 4
)

E
(
χ−4

qr+4(Δ)
)

− (qr − 2) trace
(
L′

2Σ
−1L2

)
trace (WΣ∗)

{
2 E

(
χ−2

qr+2(Δ)
) − (qr − 2) E

(
χ−4

qr+2(Δ)
)}
,

Further, by following the same steps, we establish the ADR of θ̂
S+

. �
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Proof of Corollary 3.5. Let c1 = trace
(
L′

2Σ
−1L2

)
trace (WΣ∗) and let c2 = trace

(
δ∗′

Wδ∗
)
. By using

Theorem 3.3 and the identity (qr − 2)E
(
χ−4

qr+2(Δ)
)

= E
(
χ−2

qr+2(Δ)
) − 2ΔE

(
χ−4

qr+4(Δ)
)
, we have ADR

(
θ̂

S
,θ;

W
) − ADR

(
θ̂,θ,W

)
= −(qr − 2)

{
c1E

(
χ−2

qr+2(Δ)
)

+
[
2Δc1E

(
χ−4

qr+2(Δ)
) − (qr + 2)c2E

(
χ−4

qr+2(Δ)
)]}

. Then,
since qr−2 > 0, it suffices to prove that for the given choice of W, we have 2Δc1− (qr+2)c2 � 0, for all Δ � 0.
Obviously, the inequality holds if c2 = 0. Further, if c2 > 0, the inequality is equivalent to Δc1/c2 � (qr+2)/2,
for all Δ � 0. Let chmin(A) denote the smallest eigenvalue of the matrix A. By using Courant’s Theorem along
with some algebraic computations, we have c1/chmax(WΣ∗) � Δc1/c2 � c1/chmin(WΣ∗), for all Δ � 0, that
proves the desired inequality. Further, by using Theorem 3.3 along with some algebraic computations, one can
prove that ADR

(
θ̂

S+
,θ;W

)
� ADR

(
θ̂

S
,θ;W

)
for all Δ � 0, that completes the proof. �
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