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SOJOURN TIME IN Z
+

FOR THE BERNOULLI RANDOM WALK ON Z

Aimé LACHAL
1

Abstract. Let (Sk)k�1 be the classical Bernoulli random walk on the integer line with jump param-
eters p ∈ (0, 1) and q = 1 − p. The probability distribution of the sojourn time of the walk in the
set of non-negative integers up to a fixed time is well-known, but its expression is not simple. By
modifying slightly this sojourn time through a particular counting process of the zeros of the walk as
done by Chung & Feller [Proc. Nat. Acad. Sci. USA 35 (1949) 605–608], simpler representations may
be obtained for its probability distribution. In the aforementioned article, only the symmetric case
(p = q = 1/2) is considered. This is the discrete counterpart to the famous Paul Lévy’s arcsine law for
Brownian motion.

In the present paper, we write out a representation for this probability distribution in the general
case together with others related to the random walk subject to a possible conditioning. The main
tool is the use of generating functions.
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1. Introduction

Let (Xk)k�1 be a sequence of Bernoulli random variables with parameters p = P{Xk = 1} ∈ (0, 1) and
q = 1− p = P{Xk = −1}, and (Sk)k�0 be the random walk defined on the set of integers Z = {. . . ,−1, 0, 1, . . .}
as Sk = S0 +

∑k
j=1Xj , k � 1 with initial location S0. For brevity, we write Pi = P{. . . |S0 = i} and P0 = P.

The probability distribution of the sojourn time of the walk (Sk)k�0 in Z
+ = Z ∩ [0,+∞) up to a fixed step

n � 1, Nn =
∑n

j=0 1lZ+(Sj) = #{j ∈ {0, . . . , n} : Sj � 0}, is well-known. A representation for this probability
distribution can be derived with the aid of Sparre Andersen’s theorem (see [9,10] and, e.g., [11] Chap. IV,
Sect. 20). This latter can be stated as the remarkable relationship, setting N0 = 0,

P{Nn = k} = P{Nk = k}P{Nn−k = 0} for 0 � k � n,

Keywords and phrases. Random walk, sojourn time, generating function.

1 Institut National des Sciences Appliquées de Lyon, Pôle de Mathématiques/Institut Camille Jordan, Bâtiment Léonard de
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where the probabilities P{Nk = 0} and P{Nk = k}, k ∈ N, are implicitly known through their generating
functions:

∞∑
k=0

P{Nk = 0}zk = exp
[ ∞∑

k=1

P{Sk < 0} z
k

k

]
,

∞∑
k=0

P{Nk = k}zk = exp
[ ∞∑

k=1

P{Sk � 0} z
k

k

]
·

Nevertheless, the result is not so simple. Rescaling the random walk and passing to the limit, we get Paul
Lévy’s famous arcsine law for Brownian motion.

By modifying slightly the counting process of the positive terms of the random walk as done by Chung &
Feller (see [4] and, e.g., [5], Chap. III, Sect. 4 and [8], Chap. 8, Sect. 11), an alternative sojourn time of the
walk (Sk)k∈N in Z

+ up to n can be defined as Tn =
∑n

j=1 δj with

δj =
{

1 if (Sj > 0) or (Sj = 0 and Sj−1 > 0),
0 if (Sj < 0) or (Sj = 0 and Sj−1 < 0).

We put T0 = 0. We obviously have 0 � Tn � n. In Tn, n � 1, one counts each step j such that Sj > 0 and only
those steps such that Sj = 0 which correspond to a downstep: Sj−1 = 1. This convention is described in [4]
(and, e.g., in [5] and [8]) in the symmetric case p = q = 1/2 when n is an even integer and, as written in [4]
–“The elegance of the results to be announced depends on this convention” (sic) –, it produces a remarkable
result. Indeed, in this case, the sojourn time is even and its probability distribution takes the simple following
form: for even integers k such that 0 � k � n, as in Sparre Andersen’s theorem,

P{Tn = k} = P{Tk = k}P{Tn−k = 0} =
1
2n

(
k

k/2

)(
(n− k)

(n− k)/2

)
.

In this paper, we derive explicit expressions for the probability distribution of Tn in any case, that is for any
p ∈ (0, 1) and any integer (even or odd) n � 1. The main results are displayed in Theorems 4.2 and 5.3. We
also compute the distribution of Tn under various constraints at the last step: Sn = 0, Sn > 0 or Sn < 0.
The constraint Sn = 0 (with S0 = 0) corresponds to the bridge of the random walk. The related results are
respectively included in Theorems 6.2 and 7.3. The main tool for this study is the use of generating functions,
excursions theory associated with random walks together with clever algebra. The intermediate results are
contained in Theorems 4.1, 5.1, 6.1 and 7.1.

Finally, by rescaling suitably the random walk, we retrieve the distribution of the sojourn time in (0,+∞)
for the Brownian motion with a possible drift. This includes of course Paul Lévy’s arcsine law for Brownian
motion without drift.

Although this problem is old and classical, we are surprised not to have found any related reference in the
literature.

2. Settings and mathematical background

2.1. Some preliminary identities

Let N = Z
+ = {0, 1, 2, . . .} be the usual set of non-negative integers, N

∗ = Z
+∗ = N \ {0} = {1, 2, 3, . . .} that

of positive integers, Z
−∗ = {. . . ,−3,−2,−1} that of negative integers and Z

∗ = Z \ {0}. Let E = {0, 2, 4, . . .}
denote the set of even non-negative integers, E∗ = E \ {0} = {2, 4, 6, . . .} the set of even positive integers and
O = {1, 3, 5, . . .} the set of odd positive integers. Set, for suitable real z,

A(z) =
√

1 − 4z2 and A(z) =
√

1 − 4pqz2.
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Set also for i ∈ E

ai =
1

i+ 2

(
i

i/2

)
=

1
4(i+ 1)

(
i+ 2

(i+ 2)/2

)
and bi = (i+ 2)ai =

(
i

i/2

)
.

The ai’s are closely related to the famous Catalan numbers: ai = Ci/2/2. We shall make use of the following
elementary identities.

Proposition 2.1. For any z such that |z| < 1/2,

A(z) =
√

1 − 4z2 = −
∑
i∈E

1
i− 1

(
i

i/2

)
zi = 1 − 4

∑
i∈E∗

ai−2z
i,

(2.1)
1

A(z)
=

1√
1 − 4z2

=
∑
i∈E

(
i

i/2

)
zi =

∑
i∈E

biz
i.

We have the following convolution relationships.

Proposition 2.2. For any even integer i � 0,

∑
j∈E:
j�i

ajai−j =
1
2
ai+2 and

∑
j∈E:
j�i

ajbi−j =
1
4
bi+2. (2.2)

Proof. The generating function of the left-hand side of the first equality in (2.2) can be evaluated as

∑
i∈E

( ∑
j∈E:
j�i

ajai−j

)
zi =

( ∑
i∈E

aiz
i

)2

=
(

1 −A(z)
4z2

)2

=
1

8z4
(1 − 2z2 −A(z)) =

1
2

∑
i∈E

ai+2z
i.

By identification of the coefficients of the foregoing generating functions, we immediately obtained the first
equality in (2.2). Analogously, for the second equality in (2.2),

∑
i∈E

( ∑
j∈E:
j�i

ajbi−j

)
zi =

( ∑
i∈E

aiz
i

)( ∑
i∈E

biz
i

)
=

1 −A(z)
4z2A(z)

=
1

4z2A(z)
− 1

4z2
=

1
4

∑
i∈E

bi+2z
i

and the second equality in (2.2) holds. �
We shall also use the identity below.

Proposition 2.3. For any x and y such that |x| < 1/2 and |y| < 1/2,

1
A(x) +A(y)

=
∑
i,j∈E

ai+j x
iyj . (2.3)

Proof. Let us write
1

A(x) +A(y)
=
A(x) −A(y)
4(y2 − x2)

. On one hand,

A(x) −A(y) = 4
∑
k∈E

ak(yk+2 − xk+2).

On the other hand,
yk+2 − xk+2

y2 − x2
=

∑
i,j∈E:
i+j=k

xiyj .
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Therefore,
1

A(x) +A(y)
=

∑
k∈E

ak

∑
i,j∈E:
i+j=k

xiyj =
∑

i,j∈E
ai+j x

iyj. �

2.2. Some well-known identities on random walks

Here, we recall several well-known formulas in the theory of random walks. We refer, e.g., to [11]. We have,
for j ∈ Z and k ∈ N such that |j| � k and k − j ∈ E ,

P{Sk = j} =
(

k

(j + k)/2

)
p(j+k)/2q(k−j)/2. (2.4)

Using the representation
(

k
(k+1)/2

)
= bk+1/2, we have in particular

P{Sk = 0} =

{
bk(pq)k/2 if k is even,

0 if k is odd,

P{Sk = 1} = P−1{Sk = 0} =

{ 1
2 bk+1 p

(k+1)/2q(k−1)/2 if k is odd,

0 if k is even,
(2.5)

P{Sk = −1} = P1{Sk = 0} =

{ 1
2 bk+1 p

(k−1)/2q(k+1)/2 if k is odd,

0 if k is even.

We define several generating functions. For j ∈ Z, let Hj be the generating function of the P{Sk = j}, k ∈ N,
and, for i ∈ Z, HF

i be the generating function of the Pi{Sk ∈ F}, k ∈ N:

Hj(z) =
∞∑

k=0

P{Sk = j}zk and HF
i (z) =

∞∑
k=0

Pi{Sk ∈ F}zk =
∑

j∈F−i

Hj(z) (2.6)

where F − i is the set of the numbers of the form j − i, j ∈ F . We explicitly have

Hj(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
A(z)

(
1 − A(z)

2qz

)j

=
1

A(z)

(
2pz

1 + A(z)

)j

if j � 0,

1
A(z)

(
1 − A(z)

2pz

)|j|
=

1
A(z)

(
2qz

1 + A(z)

)|j|
if j � 0.

(2.7)

We need to introduce the first hitting time of a level a ∈ Z for the random walk: τa = min{n � 1 : Sn = a}.
The probability distribution of τa for a ∈ Z

∗ can be expressed by means of the probabilities P{Sk = a}, k ∈ N,
as

P{τa = k} =
|a|
k

P{Sk = a} =
|a|
k

(
k

(k + a)/2

)
p(k+a)/2q(k−a)/2 for k � |a|. (2.8)

In some particular cases, we have for k ∈ E∗:

P{τ0 = k} =
1

k − 1

(
k

k/2

)
(pq)k/2
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and for k ∈ O:

P{τ1 = k} =
1
k

(
k

(k + 1)/2

)
p(k+1)/2q(k−1)/2,

P{τ−1 = k} =
1
k

(
k

(k + 1)/2

)
p(k−1)/2q(k+1)/2.

We sum up these formulas as follows:

• for k ∈ E∗,
P{τ0 = k} = 4ak−2(pq)k/2; (2.9)

• for k ∈ O,

P{τ1 = k} = P−1{τ0 = k} =
1
2q

P{τ0 = k + 1} = 2p ak−1(pq)(k−1)/2,

(2.10)
P{τ−1 = k} = P1{τ0 = k} =

1
2p

P{τ0 = k + 1} = 2q ak−1(pq)(k−1)/2.

Remark 2.4. The convolution identities (2.2) can be interpreted as Darling–Siegert-type equations (see,
e.g., [3]) which are due to the Markov property of the random walk. More precisely, the second identity
of (2.2) is the analytic form of the probabilistic equality

P{Sn = 0} =
∑
j∈E:
j�n

P{τ0 = j}P{Sn−j = 0}

which is obtained by remarking that a trajectory starting at zero and terminating at zero at time n necessarily
passes through zero at a time equal to or less than n and then τ0 � n. The first identity of (2.2) is the analytic
form of the probabilistic equality

P{τ2 = n} =
∑
j∈O:

j�n−1

P{τ1 = j}P{τ1 = n− j}

which is obtained by observing that a trajectory starting at zero and passing at level two at time n for the first
time necessarily crosses level one at a time less than n: τ1 < n.

The corresponding generating functions Ka defined as

Ka(z) = E(zτa) =
∞∑

k=1

P{τa = k}zk

are explicitly expressed by

Ka(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − A(z)

2qz

)a

if a � 1,

(
1 − A(z)

2pz

)|a|
if a � −1,

1 − A(z) if a = 0.

(2.11)
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We state a last elementary result. Noticing, by the Markov property, that P{τ0 = j, S1 > 0} = pP1{τ0 = j− 1}
and P{τ0 = j, S1 < 0} = q P1{τ0 = j − 1}, we get, by (2.10), P{τ0 = j, S1 > 0} = P{τ0 = j, S1 < 0} = 1

2 P{τ0 =
j} and then

E(zτa1l{S1>0}) = E(zτa1l{S1<0}) =
1
2

(1 − A(z)). (2.12)

2.3. Purpose of the article

The aim of this paper is to compute the probabilities

rF
k,n = P{Tn = k, Sn ∈ F}, 0 � k � n,

in the four cases F = Z, F = {0}, F = Z
+∗ and F = Z

−∗. The corresponding results are displayed in
Theorems 5.1, 6.1 and 7.1. The adopted way consists of first calculating the generating function GF of the rF

k,n’s:

GF (x, y) =
∑

k,n∈N:
k�n

rF
k,n x

kyn−k =
∑
n∈N

E
(
xTnyn−Tn1l{Sn∈F}

)

with the help of the excursions theory associated with random walks, and next of inverting this function.
Notice that rF

0,0 = 1lF (0) and for n � 1, the events {Tn = 0} and {Tn = n} respectively coincide with
{S1 � 0, . . . , Sn � 0} = {τ1 > n} and {S1 � 0, . . . , Sn � 0} = {τ−1 > n}. Therefore, for n � 1,

rF
0,n = P{τ1 > n, Sn ∈ F} and rF

n,n = P{τ−1 > n, Sn ∈ F}. (2.13)

The particular probabilities rF
0,n and rF

n,n, n ∈ N, are generated by the partial functions of GF , namely

GF (x, 0) =
∑
n∈N

rF
n,n x

k and GF (0, y) =
∑
n∈N

rF
0,n y

n. (2.14)

3. Generating function

Theorem 3.1. The generating function GF can be written as

GF (x, y) =
[1 + A(x)]GF (x, 0) + [1 + A(y)]GF (0, y) − 21lF (0)

A(x) + A(y)
(3.1)

where A(z) =
√

1 − 4pqz2. The quantities GF (x, 0) and GF (0, y) can be expressed as

GF (x, 0) = HF
0 (x) − 1 − A(x)

2px
HF

−1(x) and GF (0, y) = HF
0 (y) − 1 − A(y)

2qy
HF

1 (x) (3.2)

where HF
0 , HF

1 and HF
−1 are defined by (2.6).

Proof. Let us introduce the successive passage times by 0 recursively defined by N0 = 0 and for m ∈ N,
Nm+1 = min{n � Nm + 1 : Sn = 0}. We decompose the random walk into excursions and this yields the
following decomposition for the generating function GF :

GF (x, y) =
∑
n∈N

E
(
xTnyn−Tn1l{Sn∈F}

)
= 1lF (0) + E

[ ∑
m∈N

Nm+1∑
n=Nm+1

xTnyn−Tn1l{Sn∈F}

]
.
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For Nm + 1 � n � Nm+1, we have Tn = TNm + (n − Nm)1l{em�0} where em is the excursion of the random
walk on the interval [Nm, Nm+1]. In particular, e0 is the first excursion, it is defined on the interval [0, τ0].
The fact that e0 � 0 (respectively e0 � 0) is equivalent to that S1 > 0 (respectively S1 < 0). We have also
n− Tn = Nm − TNm + (n−Nm)1l{em�0} and then, by the independence of the excursions,

GF (x, y) = 1lF (0) + E

[ ∑
m∈N

xTNmyNm−TNm

Nm+1∑
n=Nm+1

(
xn−Nm1l{em�0} + yn−Nm1l{em�0}

)
1l{Sn∈F}

]

= 1lF (0) + E

[ ∑
m∈N

xTNmyNm−TNm

Nm+1−Nm∑
n=1

(
xn1l{em�0} + yn1l{em�0}

)
1l{Sn+Nm∈F}

]

= 1lF (0) + E

[ ∑
m∈N

xTNmyNm−TNm

]
E

[ τ0∑
n=1

(
xn1l{e0�0} + yn1l{e0�0}

)
1l{Sn∈F}

]
.

Hence, we have obtained a representation of the form

GF (x, y) = 1lF (0) +G0(x, y)[BF
+(x) +BF

−(y)] (3.3)

with

G0(x, y) = E

[ ∑
m∈N

xTNm yNm−TNm

]

and

BF
+(x) = E

[ τ0∑
n=1

1l{S1>0,Sn∈F}xn

]
, BF

−(y) = E

[ τ0∑
n=1

1l{S1<0,Sn∈F}yn

]
.

Actually, G0 is nothing but G{0} (i.e., GF associated with F = {0}) as it is immediately seen by definition.
The quantity G0(x, y) can be easily evaluated as follows. Set um = E

(
xTNm yNm−TNm

)
. We have u0 = 0 and

for m ∈ N, um+1 = um E
(
xτ01l{S1>0} + yτ01l{S1<0}

)
. Now, by (2.12),

E
(
xτ01l{S1>0} + yτ01l{S1<0}

)
=

1
2

[2 − A(x) − A(y)].

As a byproduct, the series (
∑

m∈N
um) is geometrical with ratio [2 − A(x) − A(y)]/2 and its sum is given by

2/[A(x) + A(y)]. This yields the following result which will be stated in Theorem 6.1:

G0(x, y) =
2

A(x) + A(y)
·

Thus, (3.3) can be written as

GF (x, y) = 1lF (0) +
2BF

+(x) + 2BF
−(y)

A(x) + A(y)
· (3.4)

We then deduce

GF (x, 0) = 1lF (0) +
2BF

+(x)
1 + A(x)

, GF (0, y) = 1lF (0) +
2BF−(y)
1 + A(y)

from which we extract

2BF
+(x) = [1 + A(x)][GF (x, 0) − 1lF (0)], 2BF

−(y) = [1 + A(y)][GF (0, y) − 1lF (0)]. (3.5)

Finally, putting (3.5) into (3.4) gives (3.1).
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Let us check (3.2). In view of (2.10), the probability rF
n,n admits the following representations:

rF
n,n = P{Sn ∈ F} − P{τ−1 � n, Sn ∈ F} = P{Sn ∈ F} −

n∑
j=1

P{τ−1 = j}P−1{Sn−j ∈ F}

= P{Sn ∈ F} − 1
2p

∑
j∈O:
j�n

P{τ0 = j + 1}P−1{Sn−j ∈ F}. (3.6)

Therefore, we have by (2.14) and (3.6)

GF (x, 0) =
∑
n∈N

rF
n,nx

n =
∑
n∈N

P{Sn ∈ F}xn − 1
2p

∑
n∈N∗

∑
j∈O:
j�n

P{τ0 = j + 1}P−1{Sn−j ∈ F}xn.

The first sum in the above equality is HF
0 (x) while the second can be computed as follows: by (2.10),

∑
n∈N∗

∑
j∈O:
j�n

P{τ0 = j + 1}P−1{Sn−j ∈ F}xn =
∑
j∈O

P{τ0 = j + 1}xj
∑

n∈N∗:
n�j

P−1{Sn−j ∈ F}xn−j

= 2p
∑
j∈O

P{τ−1 = j}xj
∑
n∈N

P−1{Sn ∈ F}xn

= 2pK−1(x)HF
−1(x)

and the expression of GF (x, 0) in (3.2) ensues. The derivation of that of GF (0, y) is quite similar. The Proof of
Theorem 3.1 is finished. �

In [7], we propose a Proof of (3.1) based on a recursive relationship concerning the probabilities rk,n which
is similar to the proof originally described in [4]. We also refer the reader to the book [6] for a combinatorial
approach for tackling such problems.

4. The case F = {j} for j ∈ Z
∗

We suppose that F = {j} for a fixed j ∈ Z
∗. So, we are dealing with a random walk with a prescribed location

after the nth step. The case where j = 0 will be considered in Section 6. We set for simplicity r{j}
k,n = rj

k,n and

G{j}(x, y) = Gj(x, y), H{j}
i (z) = Hj

i (z).

4.1. Generating function

In order to write the generating function Gj(x, y), in view of (3.1), we need to know that Hj
i (z) = Hj−i(z)

and to evaluate the functions Gj(x, 0) and Gj(0, y). We have

Gj(x, 0) = Hj
0(x) − 1 − A(x)

2px
Hj

−1(x).

But

Hj
−1(x) =

⎧⎪⎪⎨
⎪⎪⎩

2px
1 + A(x)

Hj
0(x) if j ∈ Z

+∗,

2px
1 − A(x)

Hj
0(x) if j ∈ Z

−∗.
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Then, for j ∈ Z
+∗,

Gj(x, 0) = Hj
0(x)

[
1 − 1 − A(x)

2px
2px

1 + A(x)

]
=

2Kj(x)
1 + A(x)

and, for j ∈ Z
+∗,

Gj(x, 0) = Hj
0(x)

[
1 − 1 − A(x)

2px
2px

1 − A(x)

]
= 0.

Similarly, we have

Gj(0, y) =

⎧⎨
⎩

2Kj(y)
1 + A(y)

if j ∈ Z
−∗,

0 if j ∈ Z
+∗.

From this and (3.1), we immediately derive the function G(x, y).

Theorem 4.1. The generating function G is given by

Gj(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Kj(x)
A(x) + A(y)

if j ∈ Z
+∗

2Kj(y)
A(x) + A(y)

if j ∈ Z
−∗

(4.1)

where A(z) =
√

1 − 4pqz2.

4.2. Distribution of the sojourn time

We now invert the generating function Gj given by (4.1) in order to derive the coefficients rj
k,n.

Theorem 4.2. The probability rj
k,n = P{Tn = k, Sn = j} admits the following expression: for 0 � k � n such

that n− k is even,
if j � 1:

rj
k,n =

⎧⎪⎪⎨
⎪⎪⎩

2j
∑
i∈N:

j�i�k,
i−j∈E

an−i

i

(
i

(i+ j)/2

)
p(n+j)/2q(n−j)/2 if j � k and k − j is even,

0 if j > k or k − j is odd;

(4.2)

if j � −1:

rj
k,n =

⎧⎪⎪⎨
⎪⎪⎩

2|j|
∑
i∈N:

|j|�i�k,
i+j∈E

an−i

i

(
i

(i+ j)/2

)
p(n+j)/2q(n−j)/2 if j � k − n and k − j is even,

0 if j < k − n or k − j is odd,

(4.3)

where ai =
1

i+ 2

(
i

i/2

)
for i ∈ E.

Proof. Assume first that j � 1. We expand Gj(x, y) by using (2.3):

Gj(x, y) = 2
∞∑

i=0

P{τj = i}xi
∑

l,m∈E
al+m xlym = 2

∑
i,l,m∈N:
l,m∈E

al+m P{τj = i} xi+lym.
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By performing the transformations i+ l = k and m = n− k in the last sum, we get

Gj(x, y) = 2
∑

i,k,n∈N:
k−i∈E,n−k∈E

an−i P{τj = i} xkyn−k =
∑

k,n∈N:
n−k∈E

( ∑
i∈N:

k−i∈E

2an−i P{τj = i}
)
xkyn−k.

We finally obtain (4.2) by identifying the coefficients of the two expansions of Gj and using (2.8). For the case
where j � −1, we invoke an argument of duality which is explained in Remark 4.3 below. The expression of
rj
k,n for j � −1 can be deduced from that related to the case where j � 1 by interchanging p and q, k and n−k,
j and −j, and this proves (4.3). �

Remark 4.3. Let us introduce the dual random walk (S∗
n)n�0 with S∗

k =
∑k

j=1X
∗
j = −Sk. This sequence

is the Bernoulli random walk with interchanged parameters q = P{X∗
j = +1} and p = P{X∗

j = −1}. The
corresponding sojourn time is defined as T ∗

n =
∑n

j=1 δ
∗
j with

δ∗j =

{
1 if (S∗

j > 0) or (S∗
j = 0 and S∗

j−1 > 0),
0 if (S∗

j < 0) or (S∗
j = 0 and S∗

j−1 < 0),

=

{
1 if (Sj < 0) or (Sj = 0 and Sj−1 < 0),
0 if (Sj > 0) or (Sj = 0 and Sj−1 > 0).

We see that δ∗j = 1 − δj and then T ∗
n = n− Tn which implies rj

k,n = P{T ∗
n = n− k,S∗

n = −j}. As a result, the
probability rj

k,n can be deduced from the probability r−j
n−k,n by interchanging p and q.

5. The case F = Z (random walk without conditioning)

In this part, we study the sojourn time without conditioning the extremity of the random walk. This
corresponds to the case F = Z. We set for simplifying the notations rZ

k,n = rk,n and GZ(x, y) = G(x, y). A
possible expression for the rk,n’s can be obtained from Theorem 4.2 by summing the rj

k,n, j ∈ Z. Actually,
rj
k,n = 0 for |j| > n; so,

rk,n =
n∑

j=−n

rj
k,n.

We propose another representation which can be deduced from the generating function G.

5.1. Generating function

In order to derive the generating function G(x, y), in view of (3.1), we need to evaluate the functions HZ
i (z),

G(x, 0) and G(0, y). On one hand, by definition,

HZ

i (z) =
∞∑

k=0

Pi{Sk ∈ Z}zk =
∞∑

k=0

zk =
1

1 − z
·

On the other hand, by (3.2),

G(x, 0) = HZ

0 (x) − 1 − A(x)
2px

HZ

−1(x) =
1

1 − x

[
1 − 1 − A(x)

2px

]
=

2px− 1 + A(x)
2px(1 − x)

·
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Similarly,

G(0, y) =
2qy − 1 + A(y)

2qy(1 − y)
·

We can then write out G(x, y).

Theorem 5.1. The generating function G is given by

G(x, y) =
1

A(x) + A(y)

[
2p− 1 + A(x)

1 − x
+

2q − 1 + A(y)
1 − y

]
(5.1)

where A(z) =
√

1 − 4pqz2.

Proof. We have by (3.1)

G(x, y) =
[1 + A(x)]G(x, 0) + [1 + A(y)]G(0, y) − 2

A(x) + A(y)
·

Let us compute the terms [1 + A(x)]G(x, 0) and [1 + A(y)]G(0, y). We have

[1 + A(x)][2px− 1 + A(x)] = 2px− 1 + 2pxA(x) + A(x)2 = 2px[1 − 2qx+ A(x)]

and then

[1 + A(x)]G(x, 0) =
1 − 2qx+ A(x)

1 − x
·

Similarly,

[1 + A(y)]G(0, y) =
1 − 2py + A(y)

1 − y
·

Therefore, we get

[1 + A(x)]G(x, 0) + [1 + A(y)]G(0, y) − 2 =
[
1 − 2qx
1 − x

+
1 − 2py
1 − y

− 2
]

+
A(x)
1 − x

+
A(y)
1 − y

=
[(

1 − 2qx
1 − x

− 2q
)

+
(

1 − 2py
1 − y

− 2p
)]

+
A(x)
1 − x

+
A(y)
1 − y

=
2p− 1 + A(x)

1 − x
+

2q − 1 + A(y)
1 − y

from which we obtain (5.1). �

An interesting consequence of Theorem 5.1 concerns the “partial” generating function G̃ of the probabilities
rk,n limited to the even indices k and n:

G̃(x, y) =
∑

k,n∈E
rk,nx

kyn−k.

For this function, we have the simple result below.

Corollary 5.2. The generating function G̃ is given by

G̃(x, y) =
4pq

[1 − 2p+ A(x)][1 − 2q + A(y)]
(5.2)
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where A(z) =
√

1 − 4pqz2. In particular,

G̃(x, y) = G̃(x, 0)G̃(0, y). (5.3)

Proof. We first try to relate G̃ to G. For this, we observe that

1
2
[G(x, y) +G(−x,−y)] =

∑
k,n∈N:

k�n

1 + (−1)n

2
rk,nx

kyn−k =
∑

k∈N,n∈E:
k�n

rk,nx
kyn−k.

We know that, for all even integer n, if k is odd, then rk,n = 0. We therefore have checked that

G̃(x, y) =
1
2
[G(x, y) +G(−x,−y)].

Thus,

G̃(x, y) =
1

A(x) + A(y)

[
2p− 1 + A(x)

1 − x2
+

2q − 1 + A(y)
1 − y2

]
·

We have now

2p− 1 + A(x) =
(2p− 1)2 − A(x)2

2p− 1 − A(x)
= 4pq

1 − x2

1 − 2p+ A(x)

and similarly,

2q − 1 + A(y) = 4pq
1 − y2

1 − 2q + A(y)
·

This gives

G̃(x, y) =
4pq

A(x) + A(y)

[
1

1 − 2p+ A(x)
+

1
1 − 2q + A(y)

]
which in turn, with [1 − 2p + A(x)] + [1 − 2q + A(y)] = A(x) + A(y), yields (5.2). This formula supplies in
particular

G̃(x, 0) =
2q

1 − 2p+ A(x)
and G̃(0, y) =

2p
1 − 2q + A(y)

and we immediately obtain (5.3). �

5.2. Distribution of the sojourn time

In this part, we invert the generating function G given by (5.1) in order to derive the coefficients rk,n.

Theorem 5.3. The probability rk,n = P{Tn = k} admits the following expression: for 0 � k � n,

rk,n = 1lE(n− k)
[
2p

∑
i∈E:

n−k�i�n

ai(pq)i/2 − 4
∑
i∈E:

n−k�i�n−2

( ∑
j∈E:

j�i+k−n

ajai−j

)
(pq)i/2+1

]

+ 1lE(k)
[
2q

∑
i∈E:

k�i�n

ai(pq)i/2 − 4
∑
i∈E:

k�i�n−2

( ∑
j∈E:

j�i−k

ajai−j

)
(pq)i/2+1

]
(5.4)

where ai =
1

i+ 2

(
i

i/2

)
for i ∈ E.
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More specifically:

• For odd n

rk,n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2p
∑
i∈E:

n−k�i�n−1

ai(pq)i/2 − 4
∑
i∈E:

n−k�i�n−3

( ∑
j∈E:

j�i+k−n

ajai−j

)
(pq)i/2+1 if k is odd,

2q
∑
i∈E:

k�i�n−1

ai(pq)i/2 − 4
∑
i∈E:

k�i�n−3

( ∑
j∈E:

j�i−k

ajai−j

)
(pq)i/2+1 if k is even;

(5.5)

• For even n

rk,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2p
∑
i∈E:

n−k�i�n

ai(pq)i/2 − 4
∑
i∈E:

n−k�i�n−2

( ∑
j∈E:

j�i+k−n

ajai−j

)
(pq)i/2+1

+2q
∑
i∈E:

k�i�n

ai(pq)i/2 − 4
∑
i∈E:

k�i�n−2

( ∑
j∈E:

j�i−k

ajai−j

)
(pq)i/2+1 if k is even,

0 if k is odd.

(5.6)

Proof. Rewrite (5.1) as

G(x, y) =
2p

1 − x

1
A(x) + A(y)

− 1 − A(x)
1 − x

1
A(x) + A(y)

+
2q

1 − y

1
A(x) + A(y)

− 1 − A(y)
1 − y

1
A(x) + A(y)

. (5.7)

We expand the first term of (5.7). By (2.1) and (2.3),

2p
1 − x

1
A(x) + A(y)

= 2p
( ∑

m∈N

xm

)( ∑
j,l∈E

aj+l(pq)(j+l)/2xjyl

)

= 2p
∑

j,l∈E,m∈N

aj+l(pq)(j+l)/2xj+myl

= 2p
∑

k,n∈N

[ ∑
j,l∈E,m∈N:

j+m=k,l=n−k

aj+l(pq)(j+l)/2

]
xkyn−k (5.8)

= 2p
∑

k,n∈N:
k�n,n−k∈E

[ ∑
m∈N:

m�k,n−m∈E

an−m(pq)(n−m)/2

]
xkyn−k (5.9)

= 2p
∑

k,n∈N:
k�n,

1lE(n− k)
[ ∑

i∈E:
n−k�i�n

ai(pq)i/2

]
xkyn−k. (5.10)

Let us explain certain transformations made in the above calculations:

(1) In (5.8), we have introduced the indices k = j + m and n = j + l + m. Then j = k − m and
l = n − k, the conditions j, l ∈ E are equivalent to k −m � 0, n − k � 0, k −m ∈ E , n − k ∈ E , or
m � k � n, n− k ∈ E , n−m ∈ E . This leads to (5.9);

(2) From (5.9) to (5.10), we have put i = n−m.
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We expand the second term of (5.7). By (2.1) and (2.3),

1 − A(x)
1 − x

1
A(x) + A(y)

= 4
( ∑

m∈N

xm

)( ∑
i∈E∗

ai−2(pq)i/2xi

)( ∑
j,l∈E

aj+l(pq)(j+l)/2xjyl

)

= 4
∑

i∈E∗,j,l∈E,m∈N

ai−2aj+l(pq)(i+j+l)/2xi+j+myl

= 4
∑

k,n∈N

[ ∑
i∈E∗,j,l∈E,m∈N:
i+j+m=k,l=n−k

ai−2aj+l(pq)(i+j+l)/2

]
xkyn−k (5.11)

= 4
∑

k,n∈N:
k�n,n−k∈E

[ ∑
i∈E∗,m∈N:

i+m�k,i+n−m∈E

ai−2an−m−i(pq)(n−m)/2

]
xkyn−k (5.12)

= 4
∑

k,n∈N:
k�n,n−k∈E

[ ∑
m∈N:

n−m∈E

( ∑
i∈E∗:

i�k−m

ai−2an−m−i

)
(pq)(n−m)/2

]
xkyn−k (5.13)

= 4
∑

k,n∈N:
k�n,n−k∈E

[ ∑
m∈N:

n−m∈E

( ∑
j∈E:

j�k−m−2

ajan−m−j−2

)
(pq)(n−m)/2

]
xkyn−k (5.14)

= 4
∑

k,n∈N:
k�n,n−k∈E

[ ∑
m∈N\{0,1}:

n−m∈E

( ∑
j∈E:

j�k−m

ajan−m−j

)
(pq)(n−m)/2+1

]
xkyn−k (5.15)

= 4
∑

k,n∈N:
k�n

1lE(n− k)
[ ∑

i∈E:
i�n−2

( ∑
j∈E:

j�i+k−n

ajai−j

)
(pq)i/2+1

]
xkyn−k. (5.16)

Let us explain the transformations used in the above computations:
(1) In (5.11), we have introduced the indices k = i+j+m and n = i+j+l+m. Then j = −i+k−m, l = n−k

and i ∈ E , the conditions j, l ∈ E are equivalent to k − i−m � 0, n− k � 0, k − i−m ∈ E , n− k ∈ E ,
or i+m � k � n, n− k ∈ E , n−m ∈ E . This leads to (5.12);

(2) From (5.13) to (5.14), we have put i = j + 2;
(3) From (5.14) to (5.15), we have changed m into m− 2;
(4) From (5.15) to (5.16), we have put i = n−m.

By invoking the argument of duality which is explained in Remark 4.3, the two last terms of (5.7) can be
deduced from the two first ones by interchanging p and q, and x and y (that is k and n− k). This yields

2q
1 − y

1
A(x) + A(y)

= 2q
∑

k,n∈N:
k�n

1lE(k)
[ ∑

i∈E:
k�i�n

ai(pq)i/2

]
xkyn−k, (5.17)

1 − A(y)
1 − y

1
A(x) + A(y)

= 4
∑

k,n∈N:
k�n

1lE(k)
[ ∑

i∈E:
i�n−2

( ∑
j∈E:

j�i−k

ajai−j

)
(pq)i/2+1

]
xkyn−k. (5.18)

By identifying the coefficients of the series lying in the definition of G and in (5.10), (5.16), (5.17) and (5.18),
we extract (5.4). �
Remark 5.4. The probabilities

r0,n = P{Tn = 0} = P{S1 � 0, . . . , Sn � 0} = P{τ1 > n},
rn,n = P{Tn = n} = P{S1 � 0, . . . , Sn � 0} = P{τ−1 > n}
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are given by
r0,n = 1 − 2p

∑
i∈E:

i�n−1

ai(pq)i/2 and rn,n = 1 − 2q
∑
i∈E:

i�n−1

ai(pq)i/2. (5.19)

The probabilities

r1,n = P{Tn = 1} = P{S1 � 0, . . . , Sn−1 � 0, Sn > 0} = P{τ1 = n},
rn−1,n = P{Tn = n− 1} = P{S1 � 0, . . . , Sn−1 � 0, Sn < 0} = P{τ−1 = n}

are given by r1,n = rn−1,n = 0 if n is even and, if n is odd,

r1,n = 2an−1 p
(n+1)/2q(n−1)/2 and rn−1,n = 2an−1 p

(n−1)/2q(n+1)/2. (5.20)

Formulas (5.20) can be easily deduced from (5.5) and (5.6). Formulas (5.19) could be deduced from Theorem 5.3.
The computations are postponed to the report [7].

Proposition 5.5. For even n, k such that 0 � k � n, the following relationship holds:

rk,n = rk,kr0,n−k. (5.21)

Proof. The probabilities rk,n, k, n ∈ E , are generated by the function G̃ which was introduced in Section 5.2.
By (5.3), the quantity G̃(x, y) can be factorized into the product of G̃(x, 0) and G̃(0, y). Writing that

G̃(x, 0)G̃(0, y) =
∑

k,l∈E
(rk,kr0,l)xkyl =

∑
k,n∈E:

k�n

(rk,kr0,n−k)xkyn−k,

we conclude, by identification, that (5.21) holds true. Formula (5.21) could be obtained by using the explicit
representation (5.19) of the probabilities rk,k and r0,n−k and the representation (5.6) of rk,n. Nevertheless, the
computations are very cumbersome. They are included in the report [7]. In [7], the reader can find also a proof
by induction. �
Corollary 5.6. In the symmetric case (p = q = 1/2), the well-known following expression holds for even
integers n, k such that 0 � k � n:

rk,n =
1
2n

(
k

k/2

)(
(n− k)

(n− k)/2

)
.

Proof. In the case where p = 1/2, we have the particular identities

P{τ0 = j} = P{Sj−2 = 0} − P{Sj = 0} and P{τ−1 = j} = P{τ0 = j + 1}

which are due to the fact that bj−2 − bj/4 = aj−2 and to (2.10) respectively, and then

rk,k = P{τ−1 � k + 1} =
∑
j∈O:

j�k+1

P{τ−1 = j} =
∑
j∈O:

j�k+1

P{τ0 = j + 1} =
∑
j∈E:

j�k+2

P{τ0 = j}

=
∑
j∈E:

j�k+2

[P{Sj−2 = 0} − P{Sj = 0}] = P{Sk = 0} =
1
2k

(
k

k/2

)
.

Analogously,

r0,n−k = P{τ1 � n− k + 1} = P{Sn−k = 0} =
1

2n−k

(
(n− k)

(n− k)/2

)
.

We conclude with the help of (5.21). �
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Proposition 5.7. For odd integers n, k such that 0 � k � n− 1, the following relationship holds:

rk,n + rk+1,n = rk+1,n+1. (5.22)

Proof. Pick two odd integers n, k such that 0 � k � n− 1. We have

rk,n + rk+1,n = P{Tn = k} + P{Tn = k + 1} = P{Tn ∈ {k, k + 1}}. (5.23)

Let us introduce the last passage time by 0, say σ0, for the random walk. Is is plain that σ0 is even and that
there is an even number of δj up to time σ0 which are equal to one. Afterwards, it remains an odd number
(this is n− σ0) of steps up to time n. One has either Sσ0+1 > 0, Sσ0+2 > 0, . . . , Sn > 0 or Sσ0+1 < 0, Sσ0+2 <
0, . . . , Sn < 0. The corresponding δj , σ0 + 1 � j � n, are either all equal to one or all equal to zero. More
precisely:

• If Tn = k, since k is odd, one has in this case Sσ0+1 > 0, Sσ0+2 > 0, . . . , Sn > 0. Then, necessarily,
Sn+1 � 0 which entails that δn+1 = 1 and Tn+1 = Tn + 1 = k + 1;

• If Tn = k + 1, since k + 1 is even, one has in this case Sσ0+1 < 0, Sσ0+2 < 0, . . . , Sn < 0. Then,
necessarily, Sn+1 � 0 which entails that δn+1 = 0 and Tn+1 = Tn = k + 1.

This discussion implies the inclusion {Tn ∈ {k, k + 1}} ⊂ {Tn+1 = k + 1}. Conversely, since Tn+1 − Tn = δn ∈
{0, 1}, the equality Tn+1 = k + 1 implies Tn ∈ {k, k + 1} which proves the inclusion {Tn+1 = k + 1} ⊂ {Tn ∈
{k, k + 1}}. As a byproduct, the equality {Tn ∈ {k, k + 1}} = {Tn+1 = k + 1} holds and this proves, referring
to (5.23), the relationship (5.22). In [7], we propose another proof of (5.22) which uses the explicit results
obtained in Theorem 5.3. �

6. The case F = {0} (bridge of the random walk)

In this part, we shall set for simplifying r{0}k,n = r0k,n and G{0}(x, y) = G0(x, y). We consider the distribution
of the sojourn time Tn subject to the condition that Sn = 0, that is we are dealing with the so-called bridge of
the random walk pinned at zero at times 0 and n. The condition Sn = 0 can be fulfilled only when n is even.
So, we make here the assumption that n is an even integer throughout this section.

6.1. Generating function
In the Proof of Theorem 3.1, we have derived the remarkably simple result below.

Theorem 6.1. The generating function G0 is given by

G0(x, y) =
2

A(x) + A(y)
(6.1)

where A(z) =
√

1 − 4pqz2.

6.2. Distribution of the sojourn time

Theorem 6.2. Assume that n is even. The probability r0k,n = P{Tn = k, Sn = 0} admits the following
expression:

r0k,n =

⎧⎨
⎩

2
n+ 2

(
n

n/2

)
(pq)n/2 if k is even such that 0 � k � n,

0 if k is odd or such that k � n+ 1.
(6.2)

The distribution of Tn for the bridge of the random walk is given by

P{Tn = k |Sn = 0} =

⎧⎨
⎩

2
n+ 2

if k is even such that 0 � k � n,

0 if k is odd or such that k � n+ 1,

that is, the conditioned random variable (Tn = k |Sn = 0) is uniformly distributed on the set {0, 2, 4, . . . , n−2, n}.
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Proof. By (2.3), we rewrite G0(x, y) as

G0(x, y) = 2
∑
i,j∈E

ai+j(pq)(i+j)/2xiyj = 2
∑

k,n∈E:
k�n

an(pq)n/2xkyn−k.

From this, we immediately extract the announced expression for r0k,n. Moreover, we plainly have

P{Tn = k |Sn = 0} =
P{Tn = k, Sn = 0}

P{Sn = 0}

with

P{Sn = 0} =
(
n

n/2

)
(pq)n/2

and this prove the assertion related to the uniform law. �

7. The cases F = Z
+∗

and F = Z
−∗

In this part, we shall set for simplifying rZ
+∗

k,n = r+k,n, GZ
+∗

(x, y) = G+(x, y) and HZ
+∗

(z) = H+(z). We shall
also use similar notations with minus signs for the study of the case F = Z

−∗. Some expressions for the r+k,n’s
can be obtained from Theorem 4.2 by summing the rj

k,n, j ∈ Z
+∗ or j ∈ Z

−∗. Since rj
k,n = 0 for |j| > n, the

corresponding sums reduce to

r+k,n =
n∑

j=1

rj
k,n and r−k,n =

−1∑
j=−n

rj
k,n.

We propose other expressions which can be deduced from the generating functions G+ and G−.

7.1. Generating function

We first consider the case where F = Z
+∗. We need to evaluate the functions H+

i (z) for i ∈ {−1, 0, 1},
G+(x, 0) and G+(0, y). On one hand, we have for i ∈ {−1, 0, 1} (and then i � 0)

H+
i (z) =

∑
j∈Z+∗−i

Hj(z) =
1

A(z)

∞∑
j=1−i

(
1 − A(z)

2qz

)j

=
1

A(z)(1 − 1−A(z)
2qz )

(
1 − A(z)

2qz

)1−i

=
1 − A(z)

A(z)[2qz − 1 + A(z)]

(
1 − A(z)

2qz

)−i

·

Invoking (2.7) and observing that

[2pz − 1 + A(z)][2qz − 1 + A(z)] = 4pqz2 − 2z + 1 + 2(z − 1)A(z) + A(z)2 = 2(1 − z)[1 − A(z)],

we find that

H+
i (z) =

2pz − 1 + A(z)
2(1 − z)A(z)

(
1 − A(z)

2qz

)−i

=
2pz − 1 + A(z)
2(1 − z)A(z)

(
1 + A(z)

2pz

)i

·
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On the other hand, by (3.2),

G+(x, 0) = H+
0 (x) − 1 − A(x)

2px
H+

−1(x) = H+
0 (x)

[
1 − 1 − A(x)

2px
2px

1 + A(x)

]

=
2A(x)

1 + A(x)
H+

0 (x) =
2px− 1 + A(x)

(1 − x)[1 + A(x)]
·

Similarly,

G+(0, y) = H+
0 (y) − 1 − A(y)

2qy
H+

1 (y) = H+
0 (y)

[
1 − 1 − A(y)

2qy
2qy

1 − A(y)

]
= 0.

With this at hand, we can derive G+(x, y). Indeed, using the general formula (3.1), we obtain

G+(x, y) =
1 + A(x)

A(x) + A(y)
G+(x, 0) =

2px− 1 + A(x)
(1 − x)[A(x) + A(y)]

·

Exactly in the same way, we could find the result related to the case F = Z
−∗. We state both results in the

theorem below.

Theorem 7.1. The generating functions G+ and G− are given by

G+(x, y) =
2px− 1 + A(x)

(1 − x)[A(x) + A(y)]
and G−(x, y) =

2qy − 1 + A(y)
(1 − y)[A(x) + A(y)]

(7.1)

where A(z) =
√

1 − 4pqz2.

Remark 7.2. We have the following relationship between the generating functions G, G+, G−, G0:

G+(x, y) +G−(x, y) +G0(x, y) = G(x, y)

which can be directly checked by using the expressions (5.1), (6.1) and (7.1). In fact, it is due to the fact that
{Sn ∈ Z

+∗} ∪ {Sn ∈ Z
−∗} ∪ {Sn = 0} = Ω which implies that

r+k,n + r−k,n + r0k,n = rk,n.

7.2. Distribution of the sojourn time

From Theorem 7.1, we derive the coefficients r+k,n and r−k,n.

Theorem 7.3. The probabilities r+k,n = P{Tn = k, Sn > 0} and r−k,n = P{Tn = k, Sn < 0} admit the following
expressions: for 0 � k � n,

r+k,n = 1lE(n− k)
[
2p

∑
i∈E:

n−k�i�n−1

ai(pq)i/2 − 4
∑
i∈E:

n−k�i�n−2

( ∑
j∈E:

j�i+k−n

ajai−j

)
(pq)i/2+1

]
, (7.2)

r−k,n = 1lE(k)
[
2q

∑
i∈E:

k�i�n−1

ai(pq)i/2 − 4
∑
i∈E:

k�i�n−2

( ∑
j∈E:

j�i−k

ajai−j

)
(pq)i/2+1

]
, (7.3)

where ai =
1

i+ 2

(
i

i/2

)
for i ∈ E.
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Proof. We invert the generating function G+. For its expansion, we refer to the Proof of Theorem 5.3. We have

G+(x, y) =
2px

1 − x

1
A(x) + A(y)

− 1 − A(x)
1 − x

1
A(x) + A(y)

= 2p
∑

k,n∈N:
k�n,

1lE(n− k)
[ ∑

i∈E:
n−k�i�n

ai(pq)i/2

]
xk+1yn−k

− 4
∑

k,n∈N:
k�n

1lE(n− k)
[ ∑

i∈E:
i�n−2

( ∑
j∈E:

j�i+k−n

ajai−j

)
(pq)i/2+1

]
xkyn−k.

Performing the substitution (k, n) �→ (k − 1, n− 1) in the first term of the last above equality, we get

G+(x, y) = 2p
∑

k,n∈N:
k�n,

1lE(n− k)
[ ∑

i∈E:
n−k�i�n−1

ai(pq)i/2

]
xkyn−k

− 4
∑

k,n∈N:
k�n

1lE(n− k)
[ ∑

i∈E:
i�n−2

( ∑
j∈E:

j�i+k−n

ajai−j

)
(pq)i/2+1

]
xkyn−k.

Formula (7.2) ensues by identification. Formula (7.3) can be deduced from (7.2) by invoking the duality
argument mentioned in Remark 4.3: it suffices to interchange p and q on one hand, and k and n − k on the
other hand. �
Remark 7.4. By comparing (5.4) and (7.2), we can see that, for odd integer n, r+k,n = rk,n if k is odd, r+k,n = 0
if k is even, and, for even integer n, r+0,n = r+1,n = 0 and r+2,n = p2r00,n−2. These relations can be directly checked.
For instance, in the last case, we can easily observe that the conditions Tn = 2 and Sn > 0 are fulfilled only in
the case where S0 � 0, S1 � 0, . . . , Sn−3 � 0, Sn−2 = 0, Sn−1 = 1 and Sn = 2. Thus,

P{Tn = 2, Sn > 0} = P{S0 � 0, S1 � 0, . . . , Sn−3 � 0, Sn−2 = 0, Xn−1 = Xn = 1}
= p2

P{Tn−2 = 0, Sn−2 = 0}

which is nothing but r+2,n = p2r00,n−2.

Remark 7.5. In Remark 7.2, we mentioned the relationship r+k,n + r−k,n + r0k,n = rk,n. This one can be checked
by adding (6.2), (7.2) and (7.3) after noticing that

r0k,n = 21lE(k)1lE(n)an(pq)n/2 = 1lE(n− k)1lE(n)2p an(pq)n/2 + 1lE(k)1lE(n)2q an(pq)n/2,

the foregoing sum coincides with (5.4).

8. Asymptotics: Brownian motion with a linear drift

In this part, our aim is to retrieve certain probability distributions related to the sojourn time in (0,+∞) of
Brownian motion with a linear drift.

8.1. Rescaled random walk

We consider a sequence of random walks (SN

k )k∈N indexed by N ∈ N, defined by

SN

k = SN

0 +
k∑

j=1

XN

j , k � 1,
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where for each N ∈ N
∗, (XN

j )j∈N∗ is a sequence of independent Bernoulli variables with jump probabilities
depending on N as follows:

p
N

= P{XN

k = +1} =
1
2

+
ρ

2
√
N

and q
N

= P{XN

k = −1} =
1
2
− ρ

2
√
N
,

ρ being a fixed parameter. We also define the centered random walk (S̃N

k )k∈N as

S̃N

k = SN

k − E(SN

k ) = SN

k − ρ
k√
N

·

Let TN
n be the corresponding sojourn time in Z

+: TN
n =

∑n
j=1 δ

N
j with

δN

j =
{

1 if (SN
j > 0) or (SN

j = 0 and SN
j−1 > 0),

0 if (SN

j < 0) or (SN

j = 0 and SN

j−1 < 0).

Let us introduce the rescaled random walks

BN

t =
1√
N
SN

[Nt] and B̃N

t = BN

t − E(BN

t ) =
1√
N
S̃N

[Nt]

defined on continuous time t � 0. We have

BN

t = B̃N

t + ρ
[Nt]
N

, t � 0.

Donsker’s theorem (see, e.g., [1], p. 68) asserts that the sequence of processes (B̃N
t )t�0, N ∈ N, weakly converges

to the standard linear Brownian motion (B̃t)t�0 and the sequence of processes (B̃N
t )t�0, N ∈ N, weakly converges

to the drifted Brownian motion (Bt)t�0 defined as

Bt = B̃t + ρt, t � 0.

We now introduce the sojourn times in R
+ of the processes (BN

t )t�0 and (Bt)t�0:

TN

t =
∫ t

0

1lR+(BN

s ) ds and Tt =
∫ t

0

1lR+(Bs) ds.

We have

TN

t =
[Nt]∑
j=0

∫ (j+1)/N

j/N

1lR+(SN

j ) ds−
∫ ([Nt]+1)/N

t

1lR+(SN

[Nt]) ds

=
1
N

[Nt]∑
j=0

1lR+(SN

j ) −
( [Nt] + 1

N
− t

)
1lR+(SN

[Nt])

=
1
N
TN

[Nt] +
1
N

[Nt]∑
j=1

(
1lR+(SN

j ) − δN

j

)
+

1
N

1lR+(SN

0 ) −
( [Nt] + 1

N
− t

)
1lR+(SN

[Nt]). (8.1)

We compare the sojourn time of the random walk (SN

k )k∈N and that of the Brownian motion (Bt)t�0:

1
N
TN

[Nt] − Tt =
(

1
N
TN

[Nt] − TN

t

)
+ (TN

t − Tt) .
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On one hand, for j � 1,

1lR+(SN

j ) − δN

j =
{

0 if (SN

j 
= 0) or (SN

j = 0 and SN

j−1 > 0),
1 if SN

j = 0 and SN

j−1 < 0,

and then,

|1lR+(SN

j ) − δN

j | � 1l{0}(Sj).

On the other hand, by (8.1), the following estimate holds:

∣∣∣∣ 1
N
TN

[Nt] − TN

t

∣∣∣∣ � 1
N

[Nt]∑
j=1

1l{0}(SN

j ) +
2
N

·

We observe, by (2.1), that

E

[ [Nt]∑
j=1

1l{0}(SN

j )
]

�
∞∑

j=1

P{SN

j = 0} �
∑
j∈E

bj(pN qN )j/2 =
1

A(pN qN )
=

√
N

ρ
= o(N)

which implies that 1
N TN

[Nt]−Tt tends to 0 in mean. Now, by Donsker’s theorem, the sequence (TN
t )N∈N∗ weakly

converges to Tt (see [1], p. 72). This discussion shows that 1
N TN

[Nt] − Tt converges to 0 in mean. As a result,
the probability distribution of 1

N TN

[Nt] converges to that of Tt. In the following subsection, we compute this
limit.

8.2. Limiting distribution of the sojourn time

Theorem 8.1. The probability distribution function of the sojourn time Tt admits the following expression:
for 0 < s < t,

P{Tt ∈ ds}/ds =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2π

[
ρ+

1
2
√

2π

∫ ∞

s

e−ρ2z/2

z3/2
dz

]∫ ∞

t−s

e−ρ2z/2

z3/2
dz if ρ � 0,

1√
2π

[
|ρ| + 1

2
√

2π

∫ ∞

t−s

e−ρ2z/2

z3/2
dz

]∫ ∞

s

e−ρ2z/2

z3/2
dz if ρ � 0.

The integral
∫ ∞

σ
e−ρ2z/2

z3/2 dz can be expressed by means of the error function according as

∫ ∞

σ

e−ρ2z/2

z3/2
dz =

2√
σ

e−ρ2σ/2 −
√

2π ρErfc(ρ
√
σ/2).

Let us point out that the density of Tt is known under another form, see formula 2.1.4.8 in [2].

Proof. We shall assume that ρ � 0, the case ρ � 0 being quite similar. We begin by computing the limit of the
following probability as N → ∞:

P{s1 < 1
N
TN

[Nt] � s2} = P{[Ns1] < TN

[Nt] � [Ns2]} =
[Ns2]∑

k=[Ns1]+1

P

{
TN

[Nt] = k
}
.
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• Case where [Nt] is even. Suppose that [Nt] is even and set αN
i = ai(pN qN )i/2 with pN qN = 1

4 (1 − ρ2/N). By
using (5.19) and (5.21), for even integer k such that [Ns1] < k � [Ns2], we get

P{TN

[Nt] = k} = P{TN

k = k}P{TN

[Nt]−k = 0} =
[
1 − qN

∑
i∈E:

0�i�k−1

αN

i

][
1 − pN

∑
i∈E:

0�i�[Nt]−k−1

αN

i

]
. (8.2)

Since ρ is assumed to be non negative, we have by (2.1)

∑
i∈E

αN

i =
1 −A(√p

N
q

N
)

2p
N
q

N

=
1 − |p

N
− q

N
|

2p
N
q

N

=
1
p

N

,

and we can rewrite (8.2) as

P{TN

[Nt] = k} =
[
1 − qN

p
N

+ q
N

∑
i∈E:
i�k

αN

i

][
p

N

∑
i∈E:

i�[Nt]−k

αN

i

]
. (8.3)

We aim to evaluate the limit of the foregoing quantity as N → ∞. For this, we need an asymptotic for the sum∑
i∈E:
i�k

αN

i as k,N → ∞ with c1N � k � c2N for any c1, c2 > 0.

Lemma 8.2. The following asymptotics holds: for any c1, c2 > 0 such that c1 < c2,

∑
i∈E:
i�k

αN

i ∼
k,N→∞

c1N�k�c2N

√
2
πN

∫ ∞

k/N

e−ρ2z/2

z3/2
dz. (8.4)

The proof of this lemma is postponed to Appendix A. Set, for z > 0 and s ∈ (0, t),

ϕ(z) =
e−ρ2z/2

z3/2
and ψ(s, t) =

√
2
π

[
ρ+

1
2
√

2π

∫ ∞

s

ϕ(z) dz
]∫ ∞

t−s

ϕ(z) dz.

In the light of (8.3) and (8.4), for even k such that [Ns1] < k � [Ns2], we have

P{TN

[Nt] = k} ∼
N→∞
[Nt]∈E

[
2ρ√
N

+
1√

2πN

∫ ∞

k/N

ϕ(z) dz
][

1√
2πN

∫ ∞

([Nt]−k)/N

ϕ(z) dz
]

∼
N→∞
[Nt]∈E

1
N
ψ(k/n).

Finally,

P{s1 < 1
N
TN

[Nt] � s2} ∼
N→∞
[Nt]∈E

1
N

∑
k∈E:

[Ns1]�k�[Ns2]

ψ(k/N) →
N→∞
[Nt]∈E

1
2

∫ s2

s1

ψ(s, t) ds.



346 A. LACHAL

• Case where [Nt] is odd.
Assume that [Nt] is odd. Then, by invoking (5.22), we obtain

P{s1 < 1
N
TN

[Nt] � s2} =
∑
k∈E:

[Ns1]<k�[Ns2]

P{TN

[Nt] = k} +
∑
k∈O:

[Ns1]<k�[Ns2]

P{TN

[Nt] = k}

=
∑
k∈E:

[Ns1]<k�[Ns2]

P{TN

[Nt] = k} +
∑
k∈E:

[Ns1]+1<k�[Ns2]+1

P{TN

[Nt] = k − 1}

=
[Ns2]∑

k=[Ns1]+1

P{TN

[Nt]+1 = k} + ε
N

= P{[Ns1] < TN

[Nt]+1 � [Ns2]} + ε
N

where ε
N

= 1lO([Ns2])P{TN

[Nt] = [Ns2]} − 1lO([Ns1])P{TN

[Nt] = [Ns1]}. We have

|ε
N
| � P{TN

[Nt] = [Ns1]} + P{TN

[Nt] = [Ns2]}

� P{TN

[Nt]+1 ∈ {[Ns1], [Ns1] + 1}} + P{TN

[Nt]+1 ∈ {[Ns2], [Ns2] + 1}}

∼
N→∞
[Nt]∈O

1
N

[
ψ

( [Ns1]
N

)
+ ψ

( [Ns1] + 1)
N

)
+ ψ

( [Ns2]
N

)
+ ψ

( [Ns2] + 1)
N

)]

∼
N→∞
[Nt]∈O

2
N

[ψ(s1) + ψ(s1)].

Since [Nt] is odd, [Nt] + 1 is even and we can use the foregoing analysis. Hence,

P{s1 � 1
N
TN

[Nt] � s2} ∼
N→∞
[Nt]∈O

1
2

∫ s2

s1

ψ(s, t) ds.

We know that 1
N TN

[Nt] →
N→∞

Tt, then

P{s1 � Tt � s2} =
1
2

∫ s2

s1

ψ(s, t) ds and P{Tt ∈ ds}/ds =
1
2
ψ(s, t)

which ends up the Proof of Theorem 8.1. �
For ρ = 0, we retrieve Paul Lévy’s famous arcsine law for standard Brownian motion: for s ∈ (0, t),

P{Tt ∈ ds}/ds =
1

π
√
s(t− s)

·

Remark 8.3. Let t tend to ∞ in the formula of Theorem 8.1. The limiting random variable T∞ denotes the
total sojourn time in R

+ and its probability distribution is given by

P{T∞ ∈ ds}/ds =

⎧⎨
⎩

0 if ρ � 0,
|ρ|√
2π

∫ ∞

s

e−ρ2z/2

z3/2
dz if ρ < 0.
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From this, we deduce P{T∞ = ∞} = 1 if ρ � 0. If ρ < 0,

P{T∞ <∞} =
|ρ|√
2π

∫ ∞

0

ds
∫ ∞

s

e−ρ2z/2

z3/2
dz =

|ρ|√
2π

∫ ∞

0

e−ρ2z/2

√
z

dz = 1.

This is in good accordance with the effect of the drift near infinity.

Theorem 8.4. The probability distribution functions of Tt1l(−∞,0)(Bt) and Tt1l(0,+∞)(Bt) admit the following
expressions: for 0 < s < t,

P{Tt ∈ ds,Bt < 0}/ds =
ρ−√
2π

∫ t

s

e−ρ2z/2

z3/2
dz +

1
4π

∫ t

s

e−ρ2u/2

u3/2
du

∫ ∞

t−u

e−ρ2v/2

v3/2
dv,

P{Tt ∈ ds,Bt > 0}/ds =
ρ+

√
2π

∫ t

t−s

e−ρ2z/2

z3/2
dz +

1
4π

∫ t

t−s

e−ρ2u/2

u3/2
du

∫ ∞

t−u

e−ρ2v/2

v3/2
dv.

Proof. Set αi = ai(pq)i/2. We first begin by rewriting r−k,n as follows. By (7.3), we have

r−k,n = 1lE(k)
[
2q

∑
i∈E:

k�i�n−1

αi − 4pq
∑
i∈E:

k�i�n−2

( ∑
j∈E:

j�i−k

αjαi−j

)]
.

The double sum of the foregoing expression can be written as

∑
i∈E:

k�i�n−2

( ∑
j∈E:

j�i−k

αjαi−j

)
=

∑
j∈E:

j�n−k−2

αj

( ∑
i∈E:

j+k�i�n−2

αi−j

)
=

∑
j∈E:

j�n−k−2

αj

( ∑
i∈E:

k�i�n−j−2

αi

)

=
∑
i∈E:

k�i�n−2

αi

( ∑
j∈E:

j�n−i−2

αj

)
=

∑
i∈E:

k�i�n−2

αi

(∑
j∈E

αj −
∑
j∈E:

j�n−i−1

αj

)

=
1

2(p ∨ q)
∑
i∈E:

k�i�n−2

αi −
∑
i∈E:

k�i�n−2

αi

( ∑
j∈E:

j�n−i−1

αj

)
.

Therefore,

r−k,n = 1lE(k)
[
2q1lO(n)αn−1 + 2(q − p)+

∑
i∈E:

k�i�n−2

αi + 4pq
∑
i∈E:

k�i�n−2

αi

( ∑
j∈E:

j�n−i−1

αj

)]
.

Recall that αN

i = ai(pN
q

N
)i/2. We now search an asymptotic for the following probability:

P{s1 < 1
N
TN

[Nt] � s2, B
N

t < 0} =
[Ns2]∑

k=[Ns1]+1

P{TN

[Nt] = k, S[Nt] < 0}

where

P{TN

[Nt] = k, S[Nt] < 0} = 1lE(k)
[
2qN 1lO([Nt])αN

[Nt]−1 + 2(qN − pN )+
∑
i∈E:

k�i�[Nt]−2

αN

i

+ 4p
N
q

N

∑
i∈E:

k�i�[Nt]−2

αN

i

( ∑
j∈E:

j�[Nt]−i−1

αN

j

)]
.



348 A. LACHAL

Observing that, as N → ∞,

(q
N
− p

N
)+ ∼ 2ρ−√

N
, 4p

N
q

N
∼ 1, 2q

N
αN

[Nt]−1 = O(N−3/2),

and invoking (8.4), we get, for k ∈ E ,

P{TN

[Nt] = k, S[Nt] < 0} ∼ 2

√
2
π

ρ−

N2

∑
i∈E:

k�i�[Nt]−2

ϕ
( i

N

)
+

2
πN3

∑
i∈E:

k�i�[Nt]−2

ϕ
( i

N

) ∑
j∈E:

j�[Nt]−i−1

ϕ
( j

N

)
. (8.5)

We can easily see that ∑
i∈E:

k�i�[Nt]−2

ϕ
( i

N

)
∼ N

2

∫ t

k/N

ϕ(z) dz (8.6)

and ∑
j∈E:

j�[Nt]−i−1

ϕ
( j

N

)
∼ N

2

∫ ∞

([Nt]−i−1)/N

ϕ(v) dv ∼ N

2

∫ ∞

t−i/N

ϕ(v) dv.

Moreover,

∑
i∈E:

k�i�[Nt]−2

ϕ
( i

N

) ∑
j∈E:

j�[Nt]−i−1

ϕ
( j

N

)
∼ N

2

∑
i∈E:

k�i�[Nt]−2

ϕ
( i

N

)∫ ∞

t−i/N

ϕ(v) dv

∼ N2

4

∫ t

k/N

ϕ(u) du
∫ ∞

t−u

ϕ(v) dv. (8.7)

Put now

χ±(s, t) =
2ρ±√

2π

∫ t

s

ϕ(z) dz +
1
2π

∫ t

s

ϕ(u) du
∫ ∞

t−u

ϕ(v) dv.

In the light of (8.5), (8.6) and (8.7), we derive

P{TN

[Nt] = k, S[Nt] < 0} ∼
N→∞

1
N
χ−(k/N, t)

and finally

P{s1 < 1
N
TN

[Nt] � s2, B
N

t < 0} ∼
N→∞

1
N

∑
k∈E:

[Ns1]<k�[Ns2]

χ−(k/N, t) →
N→∞

1
2

∫ s2

s1

χ−(s, t) ds.

Since 1
N TN

[Nt]1l(−∞,0)(BN
t ) →

N→∞
Tt1l(−∞,0)(Bt), we deduce that

P{s1 � Tt � s2, Bt < 0} =
1
2

∫ s2

s1

χ−(s, t) ds and P{Tt ∈ ds,Bt < 0}/ds =
1
2
χ−(s, t).

We can prove in a quite similar way that

P{Tt ∈ ds,Bt > 0}/ds =
1
2
χ+(t− s, t).

This last result can be deduced also from the previous one by invoking a duality argument related to drifted
Brownian motion. Indeed, setting more precisely Bt = Bρ

t and Tt = Tρ
t , it can be easily seen that (Bρ

t ,T
ρ
t ) and
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(−B−ρ
t , t−T−ρ

t ) have the same distributions. This explains why the term χ−(s, t) is changed into χ+(t− s, t).
The Proof of Theorem 8.4 is finished. �

For ρ = 0, we retrieve the well-known results for standard Brownian motion: for s ∈ (0, t),

P{Tt ∈ ds,Bt < 0}/ds =
1
πt

√
t− s

s
and P{Tt ∈ ds,Bt > 0}/ds =

1
πt

√
s

t− s
.

Appendix A

Proof of Lemma 8.2. The main idea is roughly speaking that, referring to Stirling formula for ai,

ai =
1

i+ 2

(
i

i/2

)
∼

i→∞
i∈E

2i+1/2

√
π i3/2

and (p
N
q

N
)i/2 =

[
1
4

(
1 − ρ2

N

)]i/2

∼
i,N→∞
i/N2→0

1
2i

e−ρ2i/(2N).

Then, recalling that αN

i = ai(pN qN )i/2,

αN

i ∼
i,N→∞
i/N2→0

√
2
π

e−ρ2i/(2N)

i3/2

and next

∑
i∈E:
i�k

αN

i ∼
k,N→∞

c1N�k�c2N

√
2
π

∑
i∈E:
i�k

e−ρ2i/(2N)

i3/2
=

√
2√

πN3/2

∑
i∈E:
i�k

ϕ(i/N) ∼
k,N→∞

c1N�k�c2N

√
2
πN

∫ ∞

k/N

ϕ(z) dz.

To make the argument more precise, we note that

(
1 − ρ2

N

)i/2

= exp
[
i

2
ln

(
1 − ρ2

N

)]
= e−ρ2i/(2N) exp

[
i

2

(
ln

(
1 − ρ2

N

)
+
ρ2

N

)]

from which we see that (
1 − ρ2

N

)i/2

∼
i,N→∞
i/N2→0

e−ρ2i/(2N).

Pick ε > 0. There exists an integerN0 such that, for anyN � N0, for any i, k ∈ E such that c1N � k � i � N3/2,

αN

i � (1 − ε)
√

2√
π i3/2

e−ρ2i/(2N)

and for any i, k ∈ E such that c1N � k � i ∧ (c2N),

αN

i � (1 + ε)
√

2√
π i3/2

e−ρ2i/(2N).

Then, for any N � N0 and any k such that c1N � k � c2N ,

(1 − ε)
√

2√
πN3/2

∑
i∈E:

k�i�N3/2

ϕ
( i

N

)
�

∑
i∈E:
i�k

αN

i � (1 + ε)
√

2√
πN3/2

∑
i∈E:
i�k

ϕ
( i

N

)
. (A.1)
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Remarking that ϕ is decreasing, we have

N

2

∫ (i+2)/N

i/N

ϕ(z) dz � ϕ
( i

N

)
� N

2

∫ i/N

(i−2)/N

ϕ(z) dz.

Then
N

2

∫ ∞

k/N

ϕ(z) dz �
∑
i∈E:
i�k

ϕ
( i

N

)
� ϕ

( k

N

)
+
N

2

∫ ∞

k/N

ϕ(z) dz

which shows, since we plainly have for c1N � k � c2N , ϕ(k/N) = o(N
∫ ∞

k/N ϕ(z) dz), that

∑
i∈E:
i�k

ϕ
( i

N

)
∼

k,N→∞
c1N�k�c2N

N

2

∫ ∞

k/N

ϕ(z) dz. (A.2)

On the other hand, ∑
i∈E:

k�i�N3/2

ϕ
( i

N

)
=

∑
i∈E:
i�k

ϕ
( i

N

)
−

∑
i∈E:

i>N3/2

ϕ
( i

N

)
. (A.3)

The last sum in (A.3) can be estimated as follows:

∑
i∈E:

i>N3/2

ϕ
( i

N

)
� N

2

∫ ∞
√

N

ϕ(z) dz + ϕ
( [N3/2]

N

)
+ ϕ

( [N3/2] + 1
N

)
∼

N→∞
N

2

∫ ∞
√

N

ϕ(z) dz =
N→∞

o(N). (A.4)

Putting (A.2) and (A.4) into (A.3), we obtain that

∑
i∈E:

k�i�N3/2

ϕ
( i

N

)
∼

N→∞
N

2

∫ ∞

k/N

ϕ(z) dz (A.5)

and next putting (A.2) and (A.5) into (A.1), we find, for N large enough and c1N� k �c2N , that

(1 − 2ε)
√

2√
πN

∫ ∞

k/N

ϕ(z) dz �
∑
i∈E:
i�k

αN

i � (1 + 2ε)
√

2√
πN

∫ ∞

k/N

ϕ(z) dz

from which we finally deduce (8.4). �
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[8] A. Rényi, Calcul des probabilités. Dunod (1966).
[9] E. Sparre Andersen, On the number of positive sums of random variables. Skand. Aktuarietidskrift (1949) 27–36.

[10] E. Sparre Andersen, On the fluctuations of sums of random variables I-II. Math. Scand. 1 (1953) 263–285; 2 (1954) 195–223.
[11] F. Spitzer, Principles of random walk, 2nd edition. Graduate Texts in Mathematics 34 (1976).


	Introduction
	Settings and mathematical background
	Some preliminary identities
	Some well-known identities on random walks
	Purpose of the article

	Generating function
	The case F={j} for jZ*
	Generating function
	Distribution of the sojourn time

	The case F=Z (random walk without conditioning)
	Generating function
	Distribution of the sojourn time

	The case F={0} (bridge of the random walk)
	Generating function
	Distribution of the sojourn time

	The cases F=Z+* and F=Z-*
	Generating function
	Distribution of the sojourn time

	Asymptotics: Brownian motion with a linear drift
	Rescaled random walk
	Limiting distribution of the sojourn time

	Appendix A
	References

