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CONTINUOUS-TIME MULTITYPE BRANCHING PROCESSES CONDITIONED
ON VERY LATE EXTINCTION ∗, ∗∗

Sophie Pénisson
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Abstract. Multitype branching processes and Feller diffusion processes are conditioned on very late
extinction. The conditioned laws are expressed as Doob h-transforms of the unconditioned laws, and
an interpretation of the conditioned paths for the branching process is given, via the immortal particle.
We study different limits for the conditioned process (increasing delay of extinction, long-time behavior,
scaling limit) and provide an exhaustive list of exchangeability results.
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Introduction

In this paper we analyse conditional limit theorems for multitype branching processes. As described in the
early papers of Kolmogorov ([15]) and Yaglom ([22]), interesting non-degenerate limits for branching processes
are obtained by conditioning on non-extinction. The study of the multitype case leads to the same statement, and
Yaglom’s theorem asserting the existence of a limiting probability measure for a process Xt conditioned onXt to
be alive can be generalized to the class of multitype irreducible subcritical processes ([21]). A natural alternative
is to condition the population to be still extant at some fixed time T , but this yields time-inhomogeneous kernels.
However, considering solely the particles at each time t ∈ [0, T ] having descendants at time T , one can obtain
asymptotical results as T tends to infinity. For this topic we refer to the literature on reduced branching
processes (see for example the seminal work of Fleischmann and Prehn in [9], or [10]). It is also meaningful to
generalize Yaglom’s results by conditioning the process Xt on the event that it is not extinct at time t+ θ, but
does eventually die out. The extinction is thus delayed of at least θ. The first published result on this question
is due to Lamperti and Ney ([17]) and applies to one-dimensional Bienaymé-Galton-Watson processes: letting
the delay of extinction θ tend to infinity yields a Markov chain known as the Q-process. This result has been
later extended to multitype irreducible Bienaymé-Galton-Watson processes ([3]).

We are here concerned with multitype continuous-time irreducible branching processes conditioned on very
late extinction, i.e. the continuous-time analog of the Q-process, as well as with their continuous-state coun-
terpart. As proved by Feller in [6], one can indeed apply a continuous approximation for large branching
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populations, leading to processes of the diffusion type (Feller diffusion processes). Such a diffusion approxima-
tion has also been investigated in [17] for branching processes conditioned on very late extinction. However, the
result only concerns single-type processes and the convergence of the finite-dimensional distributions. In this
paper we seek to analyse the connection between conditioned multitype branching processes and conditioned
Feller diffusion processes. Multitype Feller diffusion processes conditioned on very late extinction first appeared
in [2] (see [19] for the monotype case).

It is known that the Q-process introduced in [17] is positive recurrent under additional assumptions, and
admits as stationary measure a size-biased Yaglom distribution ([1]). In [2], the authors prove that the multitype
conditioned Feller diffusion process has a stationary distribution as well, which raises many natural questions.
Does the multitype conditioned branching process also admit a stationary distribution? Can this stationary
distribution be related to that of the conditioned Feller process? Considering the process Xt conditioned on
Xt+θ �= 0, the asymptotic behavior of the process conditioned on very late extinction is obtained by letting first
θ tend to infinity and then t tend to infinity. Would we obtain the same limit by taking first the limit t → ∞
and next the limit θ → ∞? We know from [2] that the answer is positive for a Feller diffusion process, and will
discuss the same question for branching processes.

The first section of this paper is dedicated to the multitype branching process conditioned on very late
extinction. We precisely define its law and in Theorem 1.1 express it as a Doob h-transform of the law of
the unconditioned process. In a second instance we provide an interpretation of the conditioned paths via an
immortal particle, and finally discuss the commutativity of the long-time limits in t and θ. The second section is
devoted to the conditioned Feller diffusion process. After recalling its definition and known results, we present
in Theorem 2.2 the conditioned Feller process as a solution to a limit martingale problem, which identifies it as a
limit of rescaled conditioned branching processes. Since this convergence also holds for unconditioned processes,
we deduce from this result that “rescaling and conditioning commute”. We finally investigate the many possible
commutativity results between the long-time and scaling limits of a rescaled conditioned branching process.

Notation
Let d be the number of types. In this paper we use the following notation.

N := {0, 1, 2, . . .} , N
∗ := {1, 2, . . .} ,

R+ := [0,∞[ , R
d
+ := [0,∞[d .

Any d-dimensional vector x ∈ R
d is denoted (x1, . . . , xd), and its transpose xt. 1 and 0 denote the vectors

(1, . . . , 1) and (0, . . . , 0) ∈ R
d, and for all i = 1 . . . d, ei = (0, . . . , 1, . . . , 0) the basis vector of R

d. x.y denotes
the scalar product between x and y in R

d, and ‖x‖ the euclidian norm. We define moreover

xy := (x1y1, . . . , xdyd) and xy := xy1
1 . . . xyd

d .

We introduce the following partial order on R
d: x � y (resp. x < y) means that for all i = 1 . . . d, xi � yi

(resp. xi < yi). We call a matrix positive (resp. non-negative) if all its coefficients are > 0 (resp. � 0).
Throughout this paper we work on the probability space (Ω, (Xt)t�0, (Ft)t�0), where Ω := D(R+,R

d
+) is the

canonical space of càdlàg functions from R+ to R
d
+. For every t � 0, Xt denotes the canonical t-th projection,

and (Ft)t�0 the right-continuous filtration generated by the canonical process (Xt)t�0.

1. Multitype branching processes conditioned on very late extinction

1.1. The model

In this section we consider a continuous-time N
d-valued branching process with law P on the probability

space (Ω, (Xt)t�0, (Ft)t�0). Let (p (j))j∈Nd be the offspring distribution of the branching process, where for all
i = 1 . . . d and all j ∈ N

d, pi(j) ∈ [0, 1] denotes the probability that a particle of type i produces j1 particles



CONDITIONED MULTITYPE BRANCHING PROCESSES 419

of type 1, j2 particles of type 2 etc. We denote by f(r) the generating function of the offspring distribution,
defined for all i = 1 . . . d and all r ∈ [0, 1]d by fi(r) :=

∑
j∈Nd pi(j)rj. Let αi > 0, i = 1 . . . d, be the branching

rates: each particle of type i lives an exponentially distributed lifetime of parameter αi before branching. The
infinitesimal generator of the process is then, for all smooth function f : R+ ×N

d → R and all (t,x) ∈ R+ ×N
d

(see e.g. Sect. 9.2 in [4]),

(Lf) (t,x) :=
∂f

∂t
(t,x) +

d∑
i=1

αixi

∑
k∈Nd

pi(k) [f (t,x+ k − ei) − f (t,x)] . (1.1)

From now on we assume that the first order moments of the offspring distribution are finite, and denote by M
the mean matrix with entries defined for all i, j = 1 . . . d by mij :=

∑
k∈Nd kjpi(k). We assume moreover that

M is irreducible, i.e. that there exists no permutation matrix S such that S−1MS is block triangular. We will
thus work under the following assumption.

(A1) The mean matrix M is finite and irreducible.

Under assumption (A1), the matrix defined by C := A(M − I), where A is the diagonal matrix A =
diag(α1, . . . , αd), is irreducible too and all its non-diagonal elements are non-negative. An extension of Perron-
Frobenius theorem (see Satz 13.2.2 in [7] or Thm. 2.5 in [20]) implies that C admits a real eigenvalue ρ larger
than the real part of any other eigenvalue. The so-called Perron’s root ρ is simple, with a one-dimensional
eigenspace, and there correspond right and left eigenvectors with positive coordinates. In the following we
denote by ξ (resp. η) the associated right (resp. left) eigenvector with normalization ξ.1 = 1, η.ξ = 1. The
branching process with law P is called critical, subcritical or supercritical according as ρ = 0, ρ < 0 or ρ > 0.

1.2. The conditioned branching process as h-process

We are interested in conditioning the discrete-state branching process on very late extinction. In the
(sub)critical non-simple case (see definition below) the extinction of the process occurs almost surely, hence
the conditioning simply consists in delaying the extinction: we consider the law of the process at time t condi-
tionally on non-extinction at time t+ θ, and let θ tend to infinity. In the supercritical case however we face the
“extinction versus explosion” dichotomy: the process can escape extinction with positive probability, and if so
it explodes to infinity. In order to condition a supercritical process on very late extinction we thus need firstly
to condition the process on extinction, and secondly to delay the extinction similarly as in the (sub)critical case.

Let us now define more precisely the law P
∗ of the process conditioned on very late extinction, for any class

of criticality. We first introduce the law P̃ of the process conditioned on extinction,

P̃ ( . ) := P

(
. | lim

s→∞Xs = 0
)
. (1.2)

Denoting by a subscript the initial condition, this definition makes sense if for any x ∈ N
d, Px (lims→∞ Xs = 0) >

0, or equivalently if for any x ∈ N
d, lims→∞ Px (Xs = 0) > 0. Thanks to the branching property, this is satisfied

if for all i = 1 . . . d, lims→∞ Pei
(Xs = 0) > 0. We define q(t) the extinction probability vector at time t (resp.

q the extinction probability vector) as follows, for all i = 1 . . . d and all t � 0,

qi(t) := Pei
(Xt = 0),

qi := lim
t→∞ qi(t),

and the assumption

(A2) The branching process has a positive risk of extinction q > 0.
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From what precedes it thus appears that under (A2), which will be assumed in all this paper, P̃ is a well-
defined probability measure on (Ω, (Xt)t�0, (Ft)t�0). If the branching process is supercritical, assumption (A2)
excludes the degenerate case for which the process explodes almost surely. If the process is critical, assumption
(A2) avoids the trivial case of a simple process, i.e. a process with a generating function fi(r) linear in
r1, . . . , rd with no constant term. In this case each particle has exactly one offspring and the process has a
constant number of particles.

Note that under assumption (A2) a (sub)critical process almost surely dies out ([21], Satz 5.1.7), hence
conditioning on extinction in (1.2) does not change the measure and we have P̃ = P.

We can now condition on a delayed extinction. More precisely we define the law P
∗ by first delaying the

extinction of at least θ and then by letting θ tend to infinity: for all t � 0 and all B ∈ Ft,

P
∗ (B) := lim

θ→∞
P̃ (B |Xt+θ �= 0) , (1.3)

if this limit exists. To draw a parallel with the Q-process defined in [3] for a multitype Bienaymé-Galton-Watson
(BGW) process, we can write the conditioned law P

∗ as follows,

P
∗ (B) = lim

θ→∞
P

(
B |Xt+θ �= 0, lim

s→∞Xs = 0
)
. (1.4)

It appears that the law P
∗ can be roughly thought as the law of the process “conditioned on not being extinct

in the distant future and on being extinct in the even more distant future” ([1] Sect. 1.14).
In the following Theorem 1.1 we prove that the limit P

∗|Ft given by (1.3) is a well-defined probability measure
on Ft which is absolutely continuous with respect to P|Ft .

In order to handle with the supercritical case, for which P̃ �= P, we need the intermediate result given by
Lemma 1.2, which states that P̃ is the law of a specific subcritical branching process. In [11], the authors prove
that general branching processes conditioned on extinction remain branching processes, and more specifically
that supercritical general branching processes conditioned on extinction are subcritical. In Lemma 1.2 we
provide the explicit parameters of the subcritical process with law P̃ which will be needed in Theorem 1.1.

Theorem 1.1. Let P be the law of an irreducible branching process with positive risk of extinction. We assume
moreover that

(i) if ρ = 0, all the second order moments of the offspring distribution ∂2fi

∂rj∂rk
(1) are finite,

(ii) if ρ < 0, for all t > 0 and all i, j = 1 . . . d, Eei
[Xt,j lnXt,j] <∞,

(iii) if ρ > 0, for all t > 0 and all i, j = 1 . . . d, Eei

[
qXtXt,j lnXt,j

]
<∞.

Then P
∗ is a Doob h-transform of P satisfying for all t � 0 and all x ∈ N

d, x �= 0,

dP
∗
x|Ft = e−ρ̃t q

Xt

qx

Xt.ξ̃

x.ξ̃
dPx|Ft , (1.5)

where ρ̃ is the Perron’s root of the irreducible matrix C̃ := A(M̃− I), with M̃ defined by

m̃ij =
qj
qi

∂fi

∂rj
(q), (1.6)

and ξ̃ is the right eigenvector of C̃ for ρ̃ with norm ξ̃.1 = 1.
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In particular, if the process is (sub)critical, then P
∗ satisfies for all t � 0 and all x ∈ N

d, x �= 0,

dP
∗
x|Ft = e−ρt Xt.ξ

x.ξ
dPx|Ft . (1.7)

Let us first introduce the following preliminary result.

Lemma 1.2. Let P be the law of an irreducible supercritical branching process with positive risk of extinction.
Then P̃ is a Doob h-transform of P satisfying for all t � 0 and all x ∈ N

d,

dP̃x|Ft =
qXt

qx
dPx|Ft . (1.8)

Moreover, P̃ is the law of an irreducible subcritical branching process with branching rates (α1, . . . , αd) and
offspring generating function f̃

f̃i(r) :=
1
qi
fi(qr). (1.9)

Remark 1.3. For any class of criticality we will in the following use the definition (1.9) for f̃, and the associated
probability distributions

p̃i(k) :=
1
qi

qkpi(k), i = 1 . . . d, k ∈ N
d. (1.10)

In the (sub)critical case we clearly have f̃ = f and p̃(k) = p(k).

Proof of Lemma 1.2. Let t � 0, B ∈ Ft and x ∈ N
d. By definition,

Ẽx (1B) =
Ex [1BPx (lims→∞ Xs = 0 | Ft)]

Px (lims→∞ Xs = 0)
·

The branching property implies that for all x ∈ N
d, Px (lims→∞ Xs = 0) = qx, which together with the Markov

property leads to

Ẽx (1B) = Ex

[
1B

qXt

qx

]
·

It ensues (1.8) and that
(
qXt

)
t�0

is a (P,Ft)-martingale. Defining for all x ∈ N
d, h̃(x) := qx, the infinitesimal

generator L̃ of the conditioned process with law P̃ is then given for all smooth function f : N
d → R by

L̃f :=
1

h̃
L(h̃f).

Hence, for all x ∈ N
d,

(
L̃f

)
(x) =

d∑
i=1

αixi

∑
k∈Nd

pi(k)
[

1
qi

qkf (x+ k − ei) − f (x)
]
.

As a fixed point of the generating function f, the extinction probability vector q satisfies for all i = 1 . . . d,∑
k∈Nd pi(k)qk = qi, and it follows

(
L̃f

)
(x) =

d∑
i=1

αixi

∑
k∈Nd

p̃i(k) [f (x+ k − ei) − f (x)] . (1.11)
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Knowing from [11] that P̃ is the law of a subcritical branching process, we deduce from (1.11) its offspring
generating function f̃ and branching rates αi. We easily check that the associated irreducible mean matrix is
the matrix M̃ introduced in Theorem 1.1. �
Remark 1.4. Due to the equivalence between extinction of the continuous-time process and extinction of its
embedded generation counting process, we obtain unsurprisingly the same offspring generating function f̃ as the
one computed in [3] for conditioned BGW processes.

Proof of Theorem 1.1. The proof relies mostly on the asymptotical properties of the extinction probability
vector q(t) as t → ∞, in both critical and subcritical cases. Thanks to Lemma 1.2, the supercritical case is
then simply reduced to the subcritical case.

Let t � 0 and B ∈ Ft. By definition, for all θ � 0 and all x ∈ N
d, x �= 0,

Ẽx [1B | Xt+θ �= 0] =
Ẽx

[
1BP̃x (Xt+θ �= 0|Ft)

]
P̃x (Xt+θ �= 0)

·

By virtue of the Markov and branching properties we obtain

Ẽx [1B | Xt+θ �= 0] =
Ẽx

[
1B

(
1 − q̃(θ)Xt

)]
1 − q̃(t+ θ)x

· (1.12)

In the critical case ρ = 0 we have P̃ = P, and (1.12) becomes

Ex [1B | Xt+θ �= 0] = Ex

[
1B

1 − q(θ)Xt

1 − q(t+ θ)x

]
· (1.13)

Let us define

ζ :=
d∑

i,j,k=1

αi
∂2fi

∂rj∂rk
(1)ηiξjξk <∞.

Then, according to Satz 6.3.4 in [21], q(t) has the following asymptotic behavior: for all i = 1 . . . d,

qi(t) ∼ 1 − 2ξi
ζt

as t→ ∞.

It ensues that for all t � 0 and all x,y ∈ N
d, x �= 0,

lim
θ→∞

1 − q (θ)y

1 − q (t+ θ)x = lim
θ→∞

1 −∏d
i=1

[
1 − 2ξi

ζθ

]yi

1 −∏d
i=1

[
1 − 2ξi

ζ(t+θ)

]xi
=

∑d
i=1 yiξi∑d
i=1 xiξi

·

Using dominated convergence in (1.13) we thus obtain that

lim
θ→∞

Ex [1B | Xt+θ �= 0] = Ex

[
1B

Xt.ξ

x.ξ

]
,

which leads to (1.7).
In the subcritical case ρ < 0 we similarly use the known asymptotic behavior of q(t) given in [21] Satz 6.2.7,

which holds under assumption (ii): there exists K > 0 such that for all i = 1 . . . d,

qi(t) ∼ 1 −Kξieρt as t→ ∞,
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hence for all t � 0 and for all x,y ∈ N
d, x �= 0,

lim
θ→∞

1 − q (θ)y

1 − q (t+ θ)x = lim
θ→∞

1 −∏d
i=1

[
1 −Kξieρθ

]yi

1 −∏d
i=1

[
1 −Kξieρ(t+θ)

]xi
= e−ρt

∑d
i=1 yiξi∑d
i=1 xiξi

,

which by dominated convergence in (1.13) leads to (1.7).
In the supercritical case ρ > 0 we apply the previous result to the subcritical process with law P̃ (which is

possible under assumption (iii) since Ẽei
[Xt,j lnXt,j] = q−1

i Eei

[
qXtXt,j lnXt,j

]
): for all t � 0 and all x ∈ N

d,
x �= 0,

dP
∗
x|Ft = e−ρ̃t Xt.ξ̃

x.ξ̃
dP̃x|Ft , (1.14)

which combined with Lemma 1.2 leads to (1.5).
We finally check that for any class of criticality (e−ρ̃tqXtXt.ξ̃)t�0 is a (P,Ft)-martingale. Denoting for all

(t,x) ∈ R+ × N
d, h(t,x) := e−ρ̃tx.ξ̃ and using the fact that by definition C̃ξ̃

t
= ρξ̃

t
, we see that for all

(t,x) ∈ R+ × N
d,

(
L̃h

)
(t,x) = e−ρ̃t

[− ρ̃x.ξ̃ +
d∑

i=1

αixi

∑
k∈Nd

p̃i(k) (k − ei) .ξ̃
]

= e−ρ̃t
[− ρ̃x.ξ̃ +

d∑
i=1

xi

d∑
j=1

c̃ij ξ̃j
]

= 0,

which proves that (e−ρ̃tXt.ξ̃)t�0 is a (P̃,Ft)-martingale. This together with the fact that (qXt)t�0 is a (P,Ft)-
martingale then leads to the result, and implies that P

∗ is a Doob h-transform of P. �

1.3. The conditioned paths and the immortal particle

As already mentioned, it has been proved in [11] that a branching process conditioned to die out remains a
branching process, and that in the supercritical case the conditioned process becomes subcritical. Conditioning
on extinction in the distant future thus influences the life careers of the particles (and more precisely modifies
the offspring distribution) but it preserves the branching property. We will see that the same does not occur
when conditioning on very late extinction, and the purpose of this section is to describe the structure of the
conditioned process obtained in Theorem 1.1.

One can easily verify that the branching property is not preserved for the process with law P
∗. For d = 1

and ρ = 0 we have for instance E
∗
x(Xt) = x−1

Ex(X2
t ) = x + ασ2t, where σ2 is the variance of the offspring

distribution. We thus obviously have E
∗
x(Xt) �= xE

∗
1(Xt) for x �= 1. Nevertheless we will see that the branching

structure is somehow preserved: the conditioned process with law P
∗ behaves like an unconditioned (sub)critical

branching process to which an external structure is added, forcing the process to die out very late.
In the monotype case d = 1, this external input is a standard immigration. It has indeed been shown in [14]

that a critical BGW process conditioned on very late extinction and from which one removes one particle has
the same law as a branching process with immigration. This result could be generalized to one-dimensional
continuous-time branching processes of any class of criticality. One obtains that under the assumptions of
Theorem 1.1, the law of the process with law P

∗ shifted downwards by 1 is the law of a branching process with
immigration: the branching process has branching rate α and offspring generating function f̃ defined in (1.9),
while the immigration is given by α(f̃ ′ − m̃).

In the multitype case, however, such an interpretation with a classical branching process with immigration
is not possible, and we will prove in Proposition 1.5 that the external input comes from an immortal particle
(so called in reference to [5]). In the monotype case this is clear thanks to the previous interpretation: the
conditioned process can be seen as the independent sum of an unconditioned branching process and of an
immortal particle, which produces offspring according to the distribution of the immigration, and corresponds
to the removed particle mentioned in the previous paragraph. The generalization to the multitype case then
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differs by the fact that the immortal particle can mutate from one type to another. More precisely, the behavior
of the immortal particle is the one of the trunk of a size-biased multitype Galton-Watson tree in its continuous-
time version, introduced in [8].

Let us introduce the following size-biased offspring distribution (si(k))k∈Nd with respect to the offspring
distribution (p̃i(k))k∈Nd defined in (1.10). For all i = 1 . . . d,

si(k) :=
αi

(αi + ρ̃)ξ̃i
k.ξ̃ p̃i(k), k ∈ N

d. (1.15)

We easily check that for all i = 1 . . . d, (si(k))k∈Nd is a probability distribution:

∑
k∈Nd

si(k) =
1

(αi + ρ̃)ξi

d∑
j=1

αim̃ij ξ̃j =
1

(αi + ρ̃)ξ̃i

[ d∑
j=1

c̃ij ξ̃j + αiξ̃i

]
= 1,

and that it is concentrated on N
d \ {0}.

Let us now describe in detail the structure of the conditioned process with law P
∗.

Proposition 1.5. Under the assumptions of Theorem 1.1, P
∗ is the law of the independent sum of a (sub)critical

branching process and of an “immortal particle”. The branching process has branching rates α1, . . . , αd and
offspring generating function f̃. Given that the immortal particle is of type i, it has an exponential life-time of
parameter αi + ρ̃ and an offspring distribution (si(k))k∈Nd . Its initial type is i with probability xiξ̃i/x.ξ̃, where
x ∈ N

d is the initial number of particles, and if it produces k offspring it mutates to type j with probability
kj ξ̃j/k.ξ̃.

Proof. Let us compute the infinitesimal generator L∗ of the process with law P
∗. According to Theorem 1.1,

denoting h̃(t,x) = e−ρ̃tx.ξ̃, we have for all smooth function f : R
+ × N

d \ {0} → R

L∗f :=
1

h̃
L̃(h̃f),

and thus

(L∗f) (t,x) =
∂f

∂t
(t,x) − ρ̃f(t,x) +

1

x.ξ̃

d∑
i=1

αixi

∑
k∈Nd

p̃i(k)
[
(x+ k − ei).ξ̃ f(t,x+ k − ei) − x.ξ̃ f(t,x)

]
.

(1.16)
Using the definition of ρ̃ and ξ̃ we obtain that

ρ̃ =
1

x.ξ̃

d∑
i=1

αixi

∑
k∈Nd

p̃i(k) (k − ei).ξ̃,

hence (1.16) becomes

(L∗f) (t,x) =
∂f

∂t
(t,x) +

d∑
i=1

αixi

∑
k∈Nd

p̃i(k)
(x+ k − ei).ξ̃

x.ξ̃
[f(t,x+ k − ei) − f(t,x)] . (1.17)

On the other hand, denoting by P the law of the time-homogeneous Markov process described in Proposition 1.5,
its infinitesimal generator L is by definition

(Lf)(t,x) := lim
h→0

1
h

Ex [f (t+ h,Xh) − f (t,x)] .
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Let h > 0. It appears that during the time-interval [0, h], the only non-trivial events whose probabilities are not
dominated by h as h → 0 are the ones consisting of exactly one branching event, either of the unconditioned
branching process or of the immortal particle. The first possibility is that during [0, h], the immortal particle
of type i splits into k offspring, with no other event occurring. The probability of this event is then

xiξ̃i

x.ξ̃
(αi + ρ̃)si(k)h = αixi

k.ξ̃

x.ξ̃
p̃i(k)h.

The second possible type of event appearing in the computation of L is that one particle of type i in the
unconditioned process splits into k offspring, while the immortal particle is of type j and no other event occurs.
The probability of this event is then

xj ξ̃j

x.ξ̃
αi(xi − δij)p̃i(k)h.

The infinitesimal generator L is thus given by

(
Lf

)
(t,x) =

∂f

∂t
(t,x) +

d∑
i=1

∑
k∈Nd

αixi
k.ξ̃

x.ξ̃
p̃i(k) [f (t,x+ k− ei) − f (t,x)]

+
d∑

i=1

d∑
j=1

∑
k∈Nd

xj ξ̃j

x.ξ̃
αi(xi − δij)p̃i(k) [f (t,x+ k− ei) − f (t,x)] ,

and we observe that L = L∗. �

Remark 1.6. In the critical case we can draw an analogy between the (state-dependent) offspring distribution
of the conditioned process with law P

∗, and the transition probabilities of its discrete-time analog studied in [3],
the so-called Q-process. In the critical case the infinitesimal generator L∗ becomes indeed

(L∗f) (x) =
d∑

i=1

αixi

∑
k∈Nd

pi(k)
(x+ k − ei).ξ

x.ξ
[f(x+ k − ei) − f(x)] ,

and we see that in this case, for every i = 1 . . . d and x ∈ N
d, x �= 0, (p∗i (x,k))k∈Nd is a probability distribution,

where

p∗i (x,k) :=
(x+ k − ei).ξ

x.ξ
pi(k)· (1.18)

The analogy between (1.18) and the formula (1.19) given in [3] for the Q-process, providing the relation between
the transition probabilities P ∗(i, j) (resp. P (i, j)) of the conditioned process (resp. unconditioned process)

P ∗(i, j) =
j.u
i.u

P (i, j), i, j ∈ N
d, i �= 0, (1.19)

is then obvious (here u denotes the normalized right eigenvector of the mean matrix M for its Perron’s root 1).

1.4. Long-time behavior of the conditioned branching process

We are now interested in the long-time behavior of the discrete-state branching process conditioned on very
late extinction introduced in Section 1.2. We show in Proposition 1.7 that the long-time limit is non-degenerate
in the subcritical and supercritical cases, and that it is a probability distribution independent of the initial
condition. By definition of P

∗, this limit is obtained by letting first θ and then t tend to infinity in the law of Xt

conditioned on extinction in the distant future and on Xt+θ �= 0. It is thus a natural question to ask whether
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the order of those two limits in t and θ can be exchanged. Proposition 1.7 provides an affirmative answer: the
non-degenerate limit mentioned above can also be obtained by letting first t and then θ tend to infinity, i.e. as
the limit as θ tends to infinity of the asymptotic law of the process Xt conditioned on extinction in the distant
future and on Xt+θ �= 0.

Furthermore, we will relate in (1.26) the asymptotic law when t → ∞ of the process Xt conditioned on
extinction in the distant future and on Xt+θ �= 0, θ fixed, to the well-known Yaglom distribution, which is the
exact equivalent asymptotic law obtained for θ = 0.

Proposition 1.7. Under the assumptions of Theorem 1.1, the following holds for all x ∈ N
d, x �= 0,

lim
t→∞ lim

θ→∞
Px

(
Xt ∈ . |Xt+θ �= 0, lim

s→∞Xs = 0
)

= lim
θ→∞

lim
t→∞ Px

(
Xt ∈ . |Xt+θ �= 0, lim

s→∞Xs = 0
)
. (1.20)

Furthermore, if ρ �= 0 then this limit is non-degenerate and is a probability distribution which does not depend
on x.

If ρ = 0 however, this limit is degenerate and for all u � 0 we have

lim
t→∞ lim

θ→∞
Px (Xt > u |Xt+θ �= 0) = lim

θ→∞
lim

t→∞ Px (Xt > u |Xt+θ �= 0) = 1. (1.21)

Proof. We first assume that ρ �= 0 and focus on the right term of (1.20). We denote by F 0 the generating
function of the Yaglom limit of the subcritical process with law P̃. We thus have, for all r ∈ [0, 1]d and all
x ∈ N

d, x �= 0,

F 0(r) = lim
t→∞ Ẽx

[
rXt |Xt �= 0

]
. (1.22)

By means of Theorem 2 in [13] and its extension to the continuous-time case via the embedded process in
Theorem 6.1 in [18], we obtain that there exists a non-negative real function γ on [0, 1]d such that

lim
t→∞ e−ρ̃t

(
1 − F̃t(r)

)
= γ(r)ξ̃, (1.23)

where F̃t is the generating function at time t of the subcritical process with law P̃, F̃t,i(r) := Ẽei
(rXt). It follows

from the Markov and branching properties of P̃ that for all θ � 0, r ∈ [0, 1]d and x ∈ N
d, x �= 0,

Ẽx

[
rXt |Xt+θ �= 0

]
=

F̃t(r)x − F̃t (rq̃ (θ))x

1 − F̃t+θ (0)x
,

from which it ensues together with (1.23) that

lim
t→∞ Ẽx

[
rXt |Xt+θ �= 0

]
=
γ (rq̃ (θ)) − γ (r)

eρ̃θγ(0)
· (1.24)

Now for θ = 0 this relation becomes

F 0(r) = 1 − γ(r)
γ(0)

, (1.25)

and from the properties of the generating function F 0 it follows that the function defined by (1.24) is a probability
generating function as well. Moreover, denoting by F θ this generating function, we obtain thanks to (1.24) the
announced relation between the Yaglom distribution and its generalization to θ > 0:

F θ(r) = e−ρ̃θ
[
F 0(r) − F 0 (rq̃ (θ))

]
. (1.26)
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We now have all the tools in hand to study the right term of (1.20). By (1.23) and (1.24) we have indeed, for
all r ∈ [0, 1]d and all x ∈ N

d, x �= 0,

lim
θ→∞

lim
t→∞ Ẽx

[
rXt |Xt+θ �= 0

]
= lim

θ→∞

γ
(
r − eρ̃θγ (0) ξ̃

)
− γ (r)

eρ̃θγ(0)
= −

d∑
i=1

riξ̃i
∂γ(r)
∂ri

, (1.27)

the differentiability of γ stemming from (1.25).
Let us now focus on the left term of (1.20). Using (1.14) we obtain

lim
θ→∞

Ẽx

[
rXt |Xt+θ �= 0

]
= e−ρ̃t 1

x.ξ̃
Ẽx

[
Xt.ξ̃rXt

]
= e−ρ̃t 1

x.ξ̃

d∑
i=1

riξ̃i
∂

∂ri

[
F̃t(r)x

]
= e−ρ̃t 1

x.ξ̃

d∑
i=1

riξ̃i

d∑
j=1

xj
∂

∂ri

[
ln F̃t,j(r)

]
F̃t(r)x. (1.28)

But for all i, j = 1 . . . d and all r ∈ [0, 1]d such that ri > 0 we have (see Lemma 1.8 below)

lim
t→∞ e−ρ̃t ∂

∂ri

[
ln F̃t,j(r)

]
= −∂γ(r)

∂ri
ξ̃j ,

which together with (1.27) and (1.28) leads to the equality

lim
θ→∞

lim
t→∞ Ẽx

[
rXt |Xt+θ �= 0

]
= lim

t→∞ lim
θ→∞

Ẽx

[
rXt |Xt+θ �= 0

]
,

for all r ∈ [0, 1]d. Now from [21] Satz 6.2.8 we know that under the assumptions (ii), (iii) of Theorem 1.1, the
generating function F 0 is differentiable in r = 1, and its derivative satisfies, for all i = 1 . . . d,

∂F 0(1)
∂ri

=
η̃i

γ(0)
, (1.29)

where η̃ is the left eigenvector of M̃ for ρ̃, with η̃.ξ̃ = 1. Using Lebesgue’s dominated convergence theorem
together with the fact that (1.29) is finite, it comes that ∂F 0(r)

∂ri
is continuous in 1, which thanks to (1.25) implies

the continuity in r = 1 of the right term of (1.27). The second assertion of Proposition 1.7 then ensues from
Lévy’s continuity theorem.

We now consider the critical case ρ = 0. It is known (Satz 6.3.5 in [21]) that in the critical case the random
vector (2Xt,1

ζη1t , . . . ,
2Xt,d

ζηdt ) converges conditionally on Xt �= 0 to a random vector Y independent of x, with
coordinates Y1 = . . . = Yd almost surely, and such that each Yi is exponentially distributed with parameter 1.
We can easily show that the same holds when conditioning on Xt+θ �= 0, and that the limiting vector Y depends
neither on x nor on θ (this comes intuitively from the fact that rescaling the process by t or by t+ θ does not
make a difference any more once t tends to ∞). An immediate consequence is that for any θ � 0, Xt explodes
conditionally on Xt+θ �= 0 when t → ∞. Hence for all θ � 0, r ∈ Cd, r �= 1, limt→∞ Ex

[
rXt |Xt+θ �= 0

]
= 0.

On the other hand, limθ→∞ Ex

[
rXt |Xt+θ �= 0

]
= 1

x.ξEx

[
Xt.ξrXt

]
� 1

x.ξEx [Xt.ξ], and it ensues from the
asymptotic behavior of the mean matrix in the critical case that limt→∞ limθ→∞ Ex

[
rXt |Xt+θ �= 0

]
= 0. �

We finally provide the following technical lemma, needed in the proof of Proposition 1.7.

Lemma 1.8. For all i, j = 1 . . . d and all r ∈ [0, 1]d, r �= 1, such that ri > 0,

lim
t→∞ e−ρ̃t ∂

∂ri

[
ln F̃t,j(r)

]
= −∂γ(r)

∂ri
ξ̃j · (1.30)
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Proof. Deducing from (1.23) that limt→∞ e−ρ̃t ln F̃t,j(r) = −γ(r)ξ̃j , we obtain that for all h � 0,

γ(r)ξ̃j − γ(r + hei)ξ̃j = lim
t→∞

∫ h

0

e−ρ̃t ∂

∂ri

[
ln F̃t,j(r + uei)

]
du. (1.31)

Moreover,

0 � e−ρ̃t ∂

∂ri

[
ln F̃t,j(r)

]
� e−ρ̃t 1

F̃t,j(r)

1
ri

Ẽej
[Xt,i] ,

and as a consequence of the Perron-Frobenius theorem we know that limt→∞ e−ρ̃t
Ẽej

[Xt,i] = ξ̃j η̃i (see [21]).
We then have by the continuity of F̃t,j in r the existence of a constant C > 0 such that for all t � 0 and all
u ∈ [0, h], ∣∣∣∣e−ρt ∂

∂ri

[
ln F̃t,j(r + uei)

]∣∣∣∣ � C

ri + u
·

Using this upper bound integrable on u ∈ [0, h] together with Lebesgue’s dominated convergence theorem, (1.31)
leads to

γ(r)ξ̃j − γ(r + hei)ξ̃j =
∫ h

0

lim sup
t→∞

[
e−ρ̃t ∂

∂ri

(
ln F̃t,j(r + uei)

)]
du,

and thus lim supt→∞ e−ρ̃t ∂
∂ri

[
ln F̃t,j (r)

]
= −∂γ(r)

∂ri
ξ̃j . Proving the same way the result for the limit inferior we

finally obtain (1.30). �

2. The conditioned multitype Feller diffusion process as a limit

of conditioned branching processes

We are now interested in the continuous-state analog of the conditioned process studied in Section 1, as well
as the possible relation between continuous-state and discrete-state branching processes conditioned on very
late extinction. Monotype Feller diffusion processes conditioned to be never extinct have been studied in [19] in
the broader context of conditioned Dawson-Watanabe processes, and the multitype case has been introduced
in [2]. The structure of multitype conditioned Feller diffusion processes is thus well-known, and it is shown
in [2] that an irreducible (sub)critical multitype Feller diffusion process conditioned on non-extinction is a Doob
h-transform of the unconditioned process, via the harmonic function e−ρtx.ξ, where ρ (resp. ξ) is the Perron’s
root (resp. the right normalized eigenvector for ρ) of the irreducible mutation matrix of the diffusion process.
We generalize in Proposition 2.1 this result to multitype Feller diffusion processes of any class of criticality, in
order to obtain the continuous-state equivalent of Theorem 1.1.

In this section we present the conditioned Feller diffusion process as the solution to a limit martingale
problem. It is well known that a Feller diffusion process can be obtained as the scaling limit of discrete-state
branching processes (see e.g. Thm. 4.4.2 in [12] for the multitype case), and we show in Theorem 2.2 that
an appropriate approximation also holds for a conditioned Feller diffusion process. According to the intuition,
the approximating discrete-state processes are branching processes conditioned on very late extinction. As a
corollary we conclude that “rescaling and conditioning commute”, or in other words that “the diffusion limit of
conditioned branching processes is the conditioned diffusion limit”.

Our fundamental tools are martingale problems. We use the following notation. For a given infinitesimal
generator G with domain D(G) and a given subset D0(G) ⊆ D(G), we say that P is a solution to the martingale
problem MP (G,D0 (G)) (or MP(G) to avoid heavy notation) if for all f ∈ D0(G),

f(t,Xt) − f(0,X0) −
∫ t

0

(Gf)(s,Xs−)ds is a (P,Ft)-martingale.

When imposing the initial condition x0 we write MP (G,D0 (G) ,x0).
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Denoting by L the infinitesimal generator of the unconditioned Feller diffusion process, we show in Proposi-
tion 2.1 that the conditioned Feller diffusion process is the unique solution to the martingale problem MP( 1

hL(h.)),
where h is a space-time harmonic function for L. Denoting by Ln the infinitesimal generator of the rescaled
discrete-state branching process (in a sense that will be detailed later), we know from Theorem 1.1 that the
corresponding conditioned process is a solution to the martingale problem MP( 1

hnL
n(hn.)), where hn is an

appropriate space-time harmonic function for Ln. On the other side it is known that any limit of solutions to
the martingale problems MP(Ln) is a solution to the martingale problem MP(L). Our aim is now to prove
that any limit of solutions to MP( 1

hnL
n(hn.)) is a solution to MP( 1

hL(h.)). The result is illustrated in the
following commutative diagram, where ��� stands for the transform by conditioning on very late extinction,
and ⇒ for the weak convergence of probability measures when the scaling parameter n tends to infinity:

MP(Ln) ��� MP( 1
hnL

n(hn.))
⇓ ⇓

MP(L) ��� MP( 1
hL(h.)).

(2.1)

2.1. The Feller diffusion process conditioned on very late extinction

Let us present a first statement on Feller diffusion processes conditioned on very late extinction. Our result
is a generalization of Theorem 2.2 in [2] to processes of any class of criticality. It is straightforward by using
the fact that by conditioning a supercritical processes on extinction, one recovers a subcritical process. For this
reason we omit the proof of Proposition 2.1.

We consider a d-type Feller diffusion process with sample paths in D(R+,Rd
+), and we denote by P its law on

(Ω, (Xt)t�0, (Ft)t�0). Let C ∈ Md(R) be the mutation matrix of the process, with non-negative non-diagonal
elements. We denote by σ2

1 , . . . , σ
2
d the variance parameters of the process, and assume that infi σ

2
i > 0. The

infinitesimal generator is then given on D(L) := C2
(
R

d
+,R

)
by (see e.g. [4], Sect. 8.1),

(Lf) (x) :=
1
2

d∑
i=1

σ2
i xi

∂2f

∂x2
i

(x) +
d∑

i=1

d∑
j=1

cjixj
∂f

∂xi
(x), (2.2)

(to avoid heavy notation we only give the generator for time-independent functions). We denote D0(L) :=
C2

b

(
R

d
+,R

)
the set of bounded C2-functions on R

d
+. Then P is the unique solution to the martingale problem

MP (L,D0 (L)) (see for example [4], Sect. 8.1, Thm. 1.7).
Assuming that the mutation matrix C is irreducible, and denoting by ρ its maximal eigenvalue, we call the

process subcritical, critical or supercritical according as ρ < 0, ρ = 0 or ρ > 0. In the following, we denote by ξ
(resp. η) the right (resp. left) eigenvector for ρ with normalization ξ.1 = 1, η.ξ = 1.

We denote by ut(λ) the cumulant of the process, such that for all t � 0, λ ∈ R
d
+ and x ∈ R

d
+,

Ex(e−λ.Xt) = e−x.ut(λ).

Then the probability of extinction at time t (resp. probability of extinction) is given by the vector ut :=
limλ→∞ ut(λ) (resp. u := limt→∞ ut). We have indeed, for all i = 1 . . . d,

Pei(Xt = 0) = e−x.ut ,

and

Pei( lim
t→∞Xt = 0) = e−x.u.
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Let us now condition the process on very late extinction. Assuming from now on that the Feller diffusion process
has a positive risk of extinction (i.e. u < ∞), we introduce as in Section 1.2 the conditioned law

P̃ ( . ) := P

(
. | lim

s→∞Xs = 0
)
, (2.3)

which is well-defined under the previous assumption. Similar to Section 1.2, we can prove that in the supercritical
case, the law P̃ is a Doob h-transform of the unconditioned law, satisfying for all t � 0 and all x ∈ R

d
+,

dP̃x|Ft =
e−Xt.u

e−x.u
dPx|Ft . (2.4)

Computing the infinitesimal generator of the process with law P̃, we obtain that it is a Feller diffusion process
with rates α1, . . . , αd, variance parameters σ2

1 , . . . , σ
2
d, and irreducible mutation matrix C̃ with entries c̃ij :=

cij−σ2
i uiδij . In the following we denote by ρ̃, ξ̃ and η̃ its Perron’s root and associated right and left eigenvectors

with the usual normalization convention. We then show by dominated convergence that limt→∞ Ẽei (Xt,j) = 0,
which proves that the process is subcritical.

We finally introduce the law of the process conditioned on very late extinction. For all t � 0 and all B ∈ Ft,

P
∗ (B) := lim

θ→∞
P̃ (B |Xt+θ �= 0) , (2.5)

provided this limit exists.
Combining (2.4) with Theorem 2.2 in [2], we come to the following statement.

Proposition 2.1. Let P be the law of an irreducible Feller diffusion process with positive risk of extinction.
Then P

∗ is a Doob h-transform of P satisfying for all t � 0 and all x ∈ R
d
+, x �= 0,

dP
∗
x|Ft = e−ρ̃t e

−Xt.u

e−x.u

Xt.ξ̃

x.ξ̃
dPx|Ft , (2.6)

where ρ̃ is the Perron’s root of the irreducible matrix C̃ with entries

c̃ij := cij − σ2
i uiδij , (2.7)

and ξ̃ is the associated right eigenvector with norm ξ̃.1 = 1.
In particular, if the process is (sub)critical, then P

∗ satisfies for all t � 0 and all x ∈ N
d, x �= 0,

dP
∗
x|Ft = e−ρt Xt.ξ

x.ξ
dPx|Ft . (2.8)

It is simple to deduce from (2.6) that the infinitesimal generator L∗ of the conditioned process with law P
∗ is

given on D(L∗) := C2
(
R

d
+ \ {0} ,R) by

(L∗f) (x) :=
1
2

d∑
i=1

σ2
i xi

∂2f

∂x2
i

(x) +
d∑

i=1

⎛⎝ d∑
j=1

c̃jixj +
1

x.ξ̃
σ2

i xiξ̃i

⎞⎠ ∂f

∂xi
(x)· (2.9)

The conditioned Feller diffusion process can thus be considered as a Feller diffusion with variance parameters
σ2

1 , . . . , σ
2
d and state-dependent mutation matrix C(x) defined by

cij(x) := c̃ij +
σ2

i ξ̃i

x.ξ̃
δij · (2.10)
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2.2. Limit of conditioned branching processes

We now approximate the conditioned Feller diffusion process with law P
∗ by discrete-state processes. Those

processes are rescaled branching processes conditioned on very late extinction. For every n ∈ N
∗ we consider P

n

the law of a continuous-time branching process with offspring distribution (pn(k))k∈Nd , branching rates αi = n,
i = 1 . . . d, and rescaled by 1

n . The process with law P
n consequently takes its values in 1

nN
d. We denote by Mn

its mean matrix, and whenever Mn is finite and irreducible, we denote by ρn the Perron’s root of the matrix
Cn := n(Mn − I). Finally, we denote by ξn and ηn the right and left eigenvectors of Cn for the eigenvalue
ρn, with the usual normalization convention ξn.1 = 1 and ηn.ξn = 1. Note that here and it was follows the
superscript n stands for the rescaling parameter and not for an exponentiation.

It is known that under appropriate assumptions on the initial distributions and on the first and second-order
moments, the sequence of branching processes with law P

n is a nice approximation of the Feller diffusion process
with law P ([12], Thm. 4.4.2). For each n ∈ N

∗, we denote by P
n,∗ the law of the process with law P

n conditioned
on very late extinction, as defined in (1.3). The following theorem then states that under a technical additional
assumption on the third-order moments (assumption (2.16)), the sequence of conditioned laws P

n,∗ converges
weakly to the conditioned law P

∗.
We denote by mn

ij the first-order moments of the offspring distribution pn(k),

mn
ij :=

∑
k∈Nd

kjp
n
i (k), (2.11)

and introduce the second-order moments: for all i, j, k = 1 . . . d,

σn
ij(l) :=

∑
k∈Nd

(ki − δli)(kj − δlj)pn
l (k). (2.12)

Theorem 2.2. Let P be the law of a Feller diffusion process with positive risk of extinction, irreducible mutation
matrix C and variance parameters σ2

1 , . . . , σ
2
d. Let

{
(pn(k))k∈Nd , n ∈ N

∗} be a sequence of offspring distributions
satisfying for all i, j, l = 1 . . . d, as n→ ∞,

mn
ij = δij +

1
n
cij + o(

1
n

), (2.13)

σn
ii(i) = σ2

i + o(1), (2.14)

lim
N→∞

sup
n∈N∗

∑
k/‖k‖>N

‖k‖2pn
i (k) = 0, (2.15)

sup
n∈N∗

∑
k∈Nd

k2
jklp

n
i (k) <∞. (2.16)

Let (Pn)n∈N∗ be the sequence of the associated rescaled branching processes, and (Pn,∗)n∈N∗ the sequence of
associated conditioned laws.

Then, for any y ∈ R
d
+, y �= 0, and any N

d-valued sequence yn such that limn→∞ 1
ny

n = y, the following
diagram is commutative,

P
n
1
n yn ��� P

n,∗
1
n yn

⇓ ⇓
Py ��� P

∗
y

, (2.17)

where ��� stands for the transform by conditioning on very late extinction, and ⇒ for the weak convergence of
probability measures as n tends to infinity.



432 S. PÉNISSON

Proof. It is already known (see e.g. [12]) that under assumptions (2.13)–(2.15), the following weak convergence
holds

P
n
1
n yn =⇒ Py, n→ ∞. (2.18)

The infinitesimal generator of the rescaled branching process with law P
n is, for all smooth function f : 1

nN
d → R

and all x ∈ 1
nN

d,

(Lnf) (x) := n2
d∑

i=1

xi

∑
k∈Nd

pn
i (k)

[
f

(
x+

k − ei

n

)
− f (x)

]
. (2.19)

Similar to (1.10) we denote by (p̃n(k))k∈Nd the probability distribution

p̃n
i (k) := q

− 1
n

n,i (qn)
k
n pn

i (k), (2.20)

where qn stands for the extinction probability vector

qn,i := lim
t→∞ P

n
ei

(Xt = 0) . (2.21)

We introduce the associated first and second-order moments

m̃n
ij :=

∑
k∈Nd

kj p̃
n
i (k), (2.22)

σ̃n
ij(l) :=

∑
k∈Nd

(ki − δli)(kj − δlj)p̃n
l (k), (2.23)

and define the matrices M̃
n

:=
(
m̃n

ij

)
i,j=1...d

and C̃
n

:= n(M̃
n−I). Assumption (2.13) means that limn→∞ Cn =

C, which implies that for n large enough, every matrix Cn has at least as many positive non-diagonal entries as C
and is thus irreducible. As shown in the proof of Lemma 1.2, this implies that the matrices C̃

n
are irreducible as

well, and we denote by ρ̃n, ξ̃
n

and η̃n their Perron’s roots and right and left eigenvectors. Moreover, from (2.18)
it follows that for all i = 1 . . . d,

lim
n→∞ qn,i = e−ui , (2.24)

which implies that for n large enough the rescaled branching process with law P
n has a positive risk of extinction

qn > 0. Besides, assumptions (2.13)–(2.15) imply

lim
n→∞σn

ij(l) =

{
σ2

i if (i, j) = (l, l),
0 otherwise.

(2.25)

Indeed if (i, j) �= (l, l), say i �= l, we have for any N > 0,

σn
ij(l) =

∑
k∈Nd

kikjp
n
l (k) − δljm

n
li �

∑
‖k‖�N

kikjp
n
l (k) +

∑
‖k‖>N

kikjp
n
l (k)

� N
∑

‖k‖�N

kip
n
l (k) +

1
2

⎡⎣ ∑
‖k‖>N

k2
i p

n
l (k) +

∑
‖k‖>N

k2
jp

n
l (k) −

∑
‖k‖>N

(ki − kj)2pn
l (k)

⎤⎦
� Nmn

li +
1
2

sup
n∈N∗

∑
‖k‖>N

‖k‖2pn
l (k).
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Let ε > 0. (2.15) implies that there exists N such that supn∈N∗
∑

‖k‖>N ‖k‖2pn
l (k) < ε, and from (2.13) there

exists N0 ∈ N
∗ such that for all n � N0, mn

li <
ε

2N . Then for all n � N0, σn
ij(l) < ε, which completed with (2.14)

leads to (2.25).
This ensures finiteness of the second-order moments for the distribution pn(k) from a certain rank. P

n thus
satisfies assumptions (i)−(iii) of Theorem 1.1. From now on we work with n large enough such that Theorem 1.1
holds for P

n. From (1.17) the infinitesimal generator Ln,∗ of the rescaled branching process conditioned on very
late extinction with law P

n,∗ is, for all smooth function f : 1
nN

d \ {0} → R and all x ∈ 1
nN

d, x �= 0,

(Ln,∗f) (x) := n2
d∑

i=1

xi

∑
k∈Nd

p̃n
i (k)

(nx+ k − ei).ξ̃
n

nx.ξ̃
n

[
f

(
x+

k − ei

n

)
− f (x)

]
. (2.26)

Introducing the state-dependent probability distribution (sn(x,k))k∈Nd and branching rates αn
i (x) defined for

all x ∈ N
d, x �= 0, by

sn
i (x,k) :=

(x+ k− ei) .ξ̃
n

x.ξ̃
n

+ ρ̃nξ̃n
i

p̃n
i (k),

αn
i (x) :=

x.ξ̃
n

+ ρ̃nξ̃n
i

x.ξ̃
n ,

the infinitesimal generator Ln,∗ can be written

(Ln,∗f) (x) = n2
d∑

i=1

αn
i (nx) xi

∑
k∈Nd

sn
i (nx,k)

[
f

(
x+

k − ei

n

)
− f (x)

]
. (2.27)

The law P
n,∗ is thus the law of a branching process with state-dependent offspring distribution and branching

rates.
We can now apply the convergence criterion provided in [12]. For this purpose, we introduce the moments

associated with the probability distribution (sn(x,k))k∈Nd . For every x ∈ N
d, x �= 0,

mn
ij(x) :=

∑
k∈Nd

sn
i (x,k)kj ,

σn
ij(l)(x) :=

∑
k∈Nd

sn
l (x,k)(ki − δli)(kj − δlj), (2.28)

and we define
cnij(x) := nαn

i (x)
(
mn

ij(x) − δij
)
. (2.29)

Then, according to Theorem 4.4.2 in [12], the weak convergence of P
n,∗
n−1yn to P

∗
y holds if for all i, j = 1 . . . d and

all x ∈ N
d, x �= 0,

sup
n∈N∗

sup
x∈N

d

x �=0

αn
i (nx) <∞, lim

n→∞αn
i (nx) = 1, (2.30)

sup
n∈N∗

sup
x∈N

d

x �=0

cnij(nx) <∞, lim
n→∞ cnij(nx) = cij(x), (2.31)

lim
N→∞

sup
n∈N∗

sup
x∈N

d

x �=0

∑
k/‖k‖>N

‖k‖2sn
i (x,k) = 0, (2.32)

sup
n∈N∗

sup
x∈N

d

x �=0

σn
ii(i)(x) <∞, lim

n→∞αn
i (nx)σn

ii(i)(nx) = σ2
i , (2.33)
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and if the martingale problem MP (
L∗, C2

b

(
R

d
+ \ {0} ,R) ,y) has a unique solution.

First we can easily prove that limn→∞ Cn = C implies

lim
n→∞ ρn = ρ, lim

n→∞ ξ
n = ξ. (2.34)

Moreover, we have on the one hand c̃ij = cij − σ2
i uiδij , and on the other hand

c̃nij = n

⎛⎝ 1
qn,i

∑
k∈Nd

(qn)k kjp
n
i (k) − δij

⎞⎠ = cnij +
∑
k∈Nd

n
(
q−1
n,i (qn)k − 1

)
kjp

n
i (k).

We deduce from (2.24) that for all i = 1 . . . d,

lim
n→∞ q

1
n
n,i = 1, (2.35)

and that for all k ∈ N
d,

lim
n→∞n

(
q
− 1

n

n,i (qn)
k
n − 1

)
= −(ki − 1)ui.

It ensues that
lim

n→∞ C̃
n

= C̃, (2.36)

from which it follows that
lim

n→∞ ρ̃n = ρ̃, lim
n→∞ ξ̃

n
= ξ̃. (2.37)

Let us now prove that (2.30)–(2.33) are satisfied. (2.30) is immediate. Let us show (2.31). For all x ∈ N
d,

x �= 0, we have

cnij(nx) = n

⎡⎣∑
k∈Nd

kj
(nx+ k − ei) .ξ̃

n

nx.ξ̃
n p̃n

i (k) − nx.ξ̃
n

+ ρ̃nξ̃n
i

nx.ξ̃
n δij

⎤⎦
= n

(
m̃n

ij − δij
)

+
1

x.ξ̃
n

⎡⎣∑
k∈Nd

kj (k − ei) .ξ̃
n
p̃n

i (k) − ρ̃nξ̃n
i δij

⎤⎦ = c̃nij +
1

x.ξ̃
n

d∑
l=1

ξ̃n
l σ̃

n
jl(i), (2.38)

From the definition of σ̃n
ij(l) we easily obtain thanks to (2.25) and (2.35) that

lim
n→∞ σ̃n

ij(l) =

{
σ2

i if (i, j) = (l, l),
0 otherwise,

(2.39)

which together with (2.36), (2.37) and (2.38) implies that supn∈N∗ supx∈N
d

x �=0

cnij(nx) <∞, and that

lim
n→∞ cnij(nx) = c̃ij +

σ2
i ξ̃i

x.ξ̃
δij ·

Let us next prove (2.32). For all N ∈ N
∗ and all x ∈ N

d, x �= 0,

∑
‖k‖>N

‖k‖2sn
i (x,k) =

1

x.ξ̃
n

+ ρ̃nξ̃n
i

⎡⎣x.ξ̃n ∑
‖k‖>N

‖k‖2p̃n
i (k) +

∑
‖k‖>N

‖k‖2 (k − ei) .ξ̃
n
p̃n

i (k)

⎤⎦ .
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We have on the one hand ∑
‖k‖>N

‖k‖2p̃n
i (k) � 1

qn,i

∑
‖k‖>N

‖k‖2pn
i (k),

and on the other hand

∑
‖k‖>N

‖k‖2 (k − ei) .ξ̃
n
p̃n

i (k) � 1
qn,i

d∑
l=1

ξ̃n
l

d∑
j=1

∑
k∈Nd

k2
jklp

n
i (k).

This together with assumptions (2.15)–(2.16) and the convergence results given by (2.35) and (2.37) leads
to (2.32).

It remains to prove (2.33). For all x ∈ N
d, x �= 0,

αn
i (nx)σn

ii(i)(nx) =
∑
k∈Nd

(nx+ k − ei) .ξ̃
n

nx.ξ̃
n (ki − 1)2p̃n

i (k)

= σ̃n
ii(i) +

1
n

1
x.ξn

d∑
l=1

ξ̃n
l

∑
k∈Nd

(kl − δil)
(
k2

i − 2ki + 1
)
p̃n

i (k)

= σ̃n
ii(i) +

1
n

1
x.ξn

d∑
l=1

ξ̃n
l

⎛⎝∑
k∈Nd

k2
i klp̃

n
i (k) − 2σ̃n

il(i) + m̃n
il − δil

⎞⎠ ,

which thanks to (2.36), (2.37), (2.39) and assumption (2.16) converges to σ2
i as n tends to infinity. Writing

σn
ii(i)(x) =

x.ξ̃
n

x.ξ̃
n

+ ρ̃nξ̃n
i

⎡⎣σ̃n
ii(i) +

1
x.ξn

d∑
l=1

ξ̃n
l

⎛⎝∑
k∈Nd

k2
i klp̃

n
i (k) − 2σ̃n

il(i) + m̃n
il − δil

⎞⎠⎤⎦ ,
we obtain (2.33) thanks to the same convergence results.

Let us finally prove that the martingale problem MP (
L∗, C2

b

(
R

d
+ \ {0} ,R) ,y) admits as unique solution

the conditioned law P
∗
y. For this purpose we define the following subset of bounded C2-functions on R

d
+ \ {0},

D0 (L∗) :=
{
x �→ e−λ.x, λ ∈ R

d
+

}
.

Since L∗ maps D0 (L∗) into bounded continuous functions on R
d
+ \ {0}, D0 (L∗) is a core for L∗. It is thus

enough to prove that MP (L∗, D0 (L∗) ,y) admits a unique solution, i.e. that there exists at most one P such
that for all λ ∈ R

d
+,

e−λ.Xt − e−λ.y −
∫ t

0

(
Xs.ψ(λ) +

Xs.ϕ(λ)
Xs.ξ

)
e−λ.Xsds (2.40)

is a (P,Ft)-martingale, where for all i = 1 . . . d and all i, j = 1 . . . d,

ψi(λ) := −
d∑

j=1

c̃ijλj +
1
2
σ2

i λ
2
i , ϕi(λ) := −σ2

i ξ̃iλi. (2.41)

Applying the martingale problem MP (L,D0 (L) ,y) to the function f(t,x) := e−ρ̃tx.ξ̃e−λ.x, λ ∈ R
d
+, we know

that

e−ρ̃tXt.ξ̃e−λ.Xt − y.ξ̃e−λ.y −
∫ t

0

e−ρ̃sXs.ξ̃

(
Xs.ψ(λ) +

Xs.ϕ(λ)

Xs.ξ̃

)
e−λ.Xsds (2.42)
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is a (Py,Ft)-martingale. Furthermore, according to Theorem 1.1, P
∗
y is a Doob h-transform of Py via the

harmonic function h(t,x) := e−ρ̃tx.ξ̃. Together with (2.42) this implies that (2.40) is a (P∗
y,Ft)-martingale for

all λ ∈ R
d
+. The law P

∗
y is thus a solution to MP (L∗, D0 (L∗) ,y). Any other solution P̂

∗
y would have the same

representation dP̂y|Ft := h(0,y)
h(t,Xt)

dP̂
∗
y|Ft . By uniqueness of the solution to the martingale problem MP(L) this

implies P̂y = Py, and thus P̂
∗
y = P

∗
y. �

Remark 2.3. The proof of Theorem 2.2 ensures as well the commutativity between rescaling and conditioning
on extinction. We obtain indeed thanks to (2.36) and (2.39) that under assumptions (2.13)–(2.15), the laws
P̃

n
n−1yn of the rescaled branching processes conditioned on extinction converge weakly to the law P̃y of the Feller

diffusion process conditioned on extinction. The following diagram is thus commutative,

P
n
1
n yn � P̃

n
1
n yn

⇓ ⇓
Py � P̃y

, (2.43)

where� stands for the transform by conditioning on extinction, and ⇒ for the weak convergence of probability
measures as n tends to infinity.

2.3. Commutativity of the long-time limits

The purpose of this section is to show the commutativity between the three possible limits in n, t and θ of

P
n
1
n xn

(
Xt ∈ . |Xt+θ �= 0, lim

s→∞Xs = 0
)
.

From the study of the long-time behavior of the conditioned branching processes in Proposition 1.7, we first
obtain that under the assumptions of Theorem 2.2, for ρ �= 0,

lim
n

lim
θ

lim
t

= lim
n

lim
t

lim
θ
. (2.44)

On the other hand, we immediately deduce from the commutativity result for the long-time limits of the
conditioned Feller diffusion process (Thm. 3.7 in [2]) that

lim
θ

lim
t

lim
n

= lim
t

lim
θ

lim
n
, (2.45)

and from Theorem 2.2 that
lim

t
lim

θ
lim
n

= lim
t

lim
n

lim
θ
. (2.46)

In order to obtain the equality of the six possible combinations of limits in n, t and θ, we have to prove that
for any θ � 0 fixed the limits in t and n commute. This would lead to the equality

lim
θ

lim
n

lim
t

= lim
θ

lim
t

lim
n
. (2.47)

Let θ � 0 fixed. We want to show that the following holds

lim
n→∞ lim

t→∞ P
n
1
n xn

(
Xt ∈ . |Xt+θ �= 0, lim

s→∞Xs = 0
)

= lim
t→∞ lim

n→∞ P
n
1
n xn

(
Xt ∈ . |Xt+θ �= 0, lim

s→∞Xs = 0
)
.

(2.48)
From the proof of Proposition 1.7, we know that for n large enough the long-time limit

lim
t→∞ P

n
1
n xn

(
Xt ∈ . |Xt+θ �= 0, lim

s→∞Xs = 0
)
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defines a probability distribution on 1
nN

d with generating function F θ,n given by

F θ,n(r) = e−ρ̃nθ
[
F 0,n(r) − F 0,n (rq̃n (θ)n)

]
. (2.49)

Here q̃n(θ) denotes the extinction probability vector at time θ for the subcritical process with law P̃
n, and F 0,n

denotes the generating function of the Yaglom distribution associated with the subcritical process with law P̃
n,

F 0,n(r) := limt→∞ Ẽ
n
[
rXt |Xt �= 0

]
.

On the other hand, by Remark 2.3, the right side of (2.48) is equal to limt→∞ P̃x0 (Xt ∈ . |Xt+θ �= 0). We
easily show that this limit defines a probability distribution on R

d
+ with Laplace transform Φθ given by

Φθ(λ) = e−ρ̃θ
[
Φ0(λ) − Φ0 (λ+ ũ (θ))

]
. (2.50)

Here ũ(θ) denotes the cumulant at time θ of the process with law P̃, and Φ0 denotes the Laplace transform of the
Yaglom distribution associated with the subcritical process with law P̃, Φ0(λ) := limt→∞ Ẽ

[
e−λ.Xt |Xt �= 0

]
.

Hence we need to prove that for any θ � 0 and for all λ � 0, denoting e−λ := (e−λ1 , . . . , e−λd),

lim
n→∞F θ,n(e−λ) = Φθ(λ). (2.51)

From Remark 2.3 we have limn→∞ q̃n,i (θ) = e−ũi(θ) and, as shown in (2.37), limn→∞ ρ̃n = ρ̃. Hence we see
by (2.49) and (2.50) that the convergence (2.51) holds as soon as it is true for θ = 0, i.e.

lim
n→∞F 0,n(e−λ) = Φ0(λ). (2.52)

On the one hand we have, as seen in (1.25),

F 0,n(r) = 1 − γn(r)
γn(0)

,

where γn(r) satisfies (see (1.23))
lim

t→∞ e−ρ̃ntη̃n.
(
1− F̃

n

t (r)
)

= γn(r). (2.53)

Here F̃
n

t denotes the generating function at time t of the rescaled process with law P̃
n, defined by F̃n

t,i(r) :=
Ẽ

n
ei

(rXt). On the other hand, a small computation shows that for all λ ∈ R
d
+,

Φ0(λ) = 1 − κ(λ)
κ

,

where κ(λ) and κ > 0 satisfy (see proof of Theorem 3.7 in [2])

lim
t→∞ e−ρ̃tη̃.ũt(λ) = κ(λ),

lim
t→∞ e−ρ̃tη̃.

(
lim

λ→∞
ũt(λ)

)
= κ.

In order to obtain (2.52) we first prove that the convergence (2.53) is uniform in n. As already mentioned, (1.23)
(and thus (2.53)) is obtained as an extension via the embedded process of a convergence result for BGW processes
(Thm. 2 in [13]), via a method detailed in the proof of Theorem 6.1 in [18]. Analysing this proof, it appears
that the uniform convergence in n for (2.53) stems from the uniform convergence in n of

lim
k→∞
k∈N

e−ρ̃nkη̃n.
(
1− F̃

n

k (r)
)

= γn(r). (2.54)
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We thus consider the embedded subcritical BGW process with offspring generating function F̃
n

1 , mean matrix
exp(C̃

n
), maximal eigenvalue eρ̃n

, associated eigenvectors ξ̃
n

and η̃n. By the integral form of the remainder
term in the Taylor expansion of F̃

n

1 , there exists a non-negative matrix-valued rest An(r) such that for all
r ∈ [0, 1]d,

1− F̃
n

1 (r) =
(
exp(C̃

n
) − An(r)

)
(1− r) , (2.55)

satisfying An(r) = O (‖1− r‖) as r → 1. Moreover, the second-order derivatives of F̃
n

1 being finite and bounded
in n thanks to (2.39), we have in the neighborhood of 1

An(r) = O (‖1− r‖) uniformly in n. (2.56)

Let us denote
Δn

k (r) := e−ρ̃nkη̃n.
(
1− F̃

n

k (r)
)
.

By (2.55) we have
Δn

k+1(r) − Δn
k (r) = −e−(k+1)ρ̃n

η̃n.An
(
F̃

n

k (r)
)(

1− F̃
n

k (r)
)
,

hence for every n and r, Δn
k (r) is decreasing in k. It follows that for every n, k ∈ N and r ∈ [0, 1]d,

Δn
k (r) � Δn

0 (r) = η̃n. (1− r) � sup
n∈N

η̃n.1,

the right term being finite by means of (2.36). This ensures that supn∈N γ
n(r) < ∞. Let N ∈ N such that

supn�N ρ̃n < 0. From (1.23) we obtain that for every n, as k → ∞,

1− F̃
n

k (r) ∼ eρ̃nkγn(r)ξ̃
n
,

from which we deduce thanks to (2.37) that

lim
k→∞

F̃
n

k (r) = 1 uniformly in n up to N .

(Note that the convergence is also uniform in r ∈ [0, 1]d). Together with (2.56) this implies the existence of
C1 > 0 and K > 0 such that for all k � K and all n � N ,

An
(
F̃

n

k (r)
)
� C1‖1− F̃

n

k (r) ‖I. (2.57)

Since

e−ρ̃nk
(
1 − F̃n

k,i (r)
)
� 1

infn,i η̃n
i

e−ρ̃nkη̃n.
(
1− F̃

n

k (r)
)
,

there exists C2 > 0 such that for all k and all n � N ,

e−ρ̃nk‖1− F̃
n

k (r) ‖ � C2. (2.58)

Now, for every k � K, p � 0 and every n � N ,

Δn
k (r) − Δn

k+p(r) =
p−1∑
i=0

e−ρ̃n(k+1+i)η̃n.An
(
F̃

n

k+i(r)
)(

1− F̃
n

k+i(r)
)

� e(k−1) supn ρ̃n

C1(C2)2 sup
n

(η̃n.1)
1

1 − esupn ρ̃n ·
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We thus obtain by virtue of Cauchy criterion that the convergence (2.54) is uniform in n up to N . As a
consequence, the convergence (2.53) is uniform as well, and we obtain that for all λ ∈ R

d
+,

lim
n→∞ γn(e−λ) = lim

n→∞ lim
t→∞ e−ρ̃ntη̃n.

(
1− F̃

n

t

(
e−λ

))
= lim

t→∞ lim
n→∞ e−ρ̃ntη̃n.

(
1− F̃

n

t

(
e−λ

))
= lim

t→∞ e−ρ̃tη̃.
(
1− e−ũt(λ)

)
= κ(λ).

Similarly

lim
n→∞ γn(0) = κ.

This finally proves (2.52), which ensures (2.48).

It finally remains to prove that for ρ �= 0,

lim
n

lim
t

lim
θ

= lim
t

lim
n

lim
θ
, (2.59)

for which we show that the convergence proved for every fixed n in Proposition 1.7,

lim
t→∞ E

n,∗
1
n xn

[
rXt

]
= −

d∑
i=1

ri ξ̃
n
i

∂γn(r)
∂ri

,

is indeed uniform in n. As seen in the proof of Proposition 1.7, it is enough to prove that

lim
t→∞ e−ρ̃nt ∂

∂ri

[
ln F̃n

t,j(r)
]

= −∂γ
n(r)
∂ri

ξ̃n
j uniformly in n. (2.60)

For this purpose we follow the steps of Lemma 1.8. First we prove that

lim
t→∞ e−ρ̃nt (1− Fn

t (r)) = γn (r) ξ̃
n

uniformly in n, (2.61)

which similarly as for (2.53) can be deduced from the convergence of the embedded BGW process

lim
k→∞
k∈N

e−ρ̃nk (1− Fn
k (r)) = γn (r) ξ̃

n
uniformly in n. (2.62)

(2.62) is itself a consequence from (2.54) together with

lim
k→∞

1− F̃
n

k (r)

η̃n.
(
1 − F̃

n

k (r)
) = ξ̃

n
uniformly in n. (2.63)

Let us prove (2.63). We denote by {λn
l , l} the eigenvalues of C̃

n
different from ρ̃n, and define the spectral gap

of C̃
n
, Rn := minl (|ρ̃n| − |λn

l |). Let R be the spectral gap of the matrix C̃. By (2.36) we have limn→∞Rn = R.
Moreover, for all i, j = 1 . . . d and k ∈ N

∗,[
exp(kC̃

n
)
]

ij
= ξ̃n

i η̃
n
j eρ̃nk +

∑
l

ϕn
ij,l(k)e

λn
l k,
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where ϕn
ij,l is a complex-valued polynomial with degree smaller than the algebraic multiplicity of λn

l . Since the
ϕn

ij,l converge as n tends to infinity, we have supn |ϕn
ij,l(k)| <∞ and we can write∣∣∣∣e−ρ̃nk

[
exp(kC̃

n
)
]

ij
− ξ̃n

i η̃
n
j

∣∣∣∣ �∑
l

sup
n

∣∣ϕn
ij,l(k)

∣∣ e− infn Rnk.

Consequently, denoting by Pn the matrix with entries ξ̃n
i η̃

n
j ,

lim
k→∞

e−ρ̃nk exp(kC̃
n
) = Pn uniformly in n, (2.64)

and we can find a null sequence uk such that for all k, n � 1,

(1 − uk)Pn � e−ρ̃nk exp(kC̃
n
) � (1 + uk)Pn.

On the other hand, we know by (2.57) and (2.58) that limk→∞ e−ρ̃n

An(F̃
n

k−1(r)) = 0 uniformly in n up to N ,
hence we can choose a null sequence vk such that for all k � 1 and all n � N ,

0 � e−ρ̃n

An
(
F̃

n

k−1 (r)
)
� vkPn.

Then, as detailed in the proof of Theorem 1 in [13], we have for any k � l � 1 and any n � N ,∥∥∥∥∥∥ 1− F̃
n

k (r)

η̃n.
(
1− F̃

n

k (r)
) − ξ̃n

∥∥∥∥∥∥ � 2ul +
∑k

m=k−l+1 vm

1 −∑k
m=k−l+1 vm − ul

·

By letting first k tend to infinity, and then l, we obtain (2.63) and thus (2.61). Now from (2.61) we deduce that
the convergence limt→∞ e−ρ̃nt ln F̃n

t,j(r) = −γn(r)ξ̃n
j is uniform in n too, and for all h � 0,

γ(r)nξ̃n
j − γn(r + hei)ξ̃n

j = lim
t→∞

∫ h

0

e−ρ̃nt ∂

∂ri

[
ln F̃n

t,j(r + uei)
]
du uniformly in n.

Moreover,

0 � e−ρ̃nt ∂

∂ri

[
ln F̃n

t,j(r)
]
� e−ρ̃nt 1

F̃n
t,j(r)

1
ri

Ẽ
n
ej

[Xt,i] ,

and by (2.64)

lim
t→∞ e−ρ̃nt

Ẽ
n
ej

[Xt,i] = ξ̃n
j η̃

n
i uniformly in n.

Since limt→∞ F̃n
t,j(r) = 1 uniformly in n and r, there exists a constant C > 0 such that for all n ∈ N, t � 0 and

all u ∈ [0, h], ∣∣∣∣e−ρnt ∂

∂ri

[
ln F̃n

t,j(r + uei)
]∣∣∣∣ � C

ri + u
,

which is integrable in u. By Lebesgue’s dominated convergence theorem we thus have

γn(r)ξ̃n
j − γn(r + hei)ξ̃n

j =
∫ h

0

lim
t→∞

[
e−ρ̃nt ∂

∂ri

(
ln F̃n

t,j(r + uei)
)]

du uniformly in n,
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which leads to (2.60). Hence we can write

lim
n→∞ lim

t→∞ E
n,∗
1
n xn

[
rXt

]
= lim

t→∞ lim
n→∞ E

n,∗
1
n xn

[
rXt

]
,

which ensures (2.59).
Summing up the results of this section we consequently obtain the following statement.

Proposition 2.4. Under the assumptions of Theorem 2.2 and assuming that ρ �= 0, the three limits interchange

lim
n, t, θ

P
n
1
n yn

(
Xt ∈ . |Xt+θ �= 0, lim

s→∞Xs = 0
)
. (2.65)

Furthermore, the obtained limit is non-degenerate and defines a probability distribution on R
d
+ which does not

depend on y := limn→∞ 1
ny

n.

Remark 2.5. In the monotype case d = 1, this limit is known to be a Gamma distribution. Denoting by ρ
the mutation matrix (reduced to its eigenvalue) of the unconditioned Feller diffusion process, by σ2 its variance
parameter, and defining ρ̃ := ρ− σ2u as in (2.7), we have indeed (see e.g. [2], Prop. 3.1),

lim
t→∞ lim

θ→∞
lim

n→∞ P
n
1
n yn

(
Xt ∈ . |Xt+θ �= 0, lim

s→∞Xs = 0
)

= lim
t→∞ P

∗ (Xt ∈ . )

= Exp (−2ρ̃/σ2
)⊗ Exp (−2ρ̃/σ2

)
= Γ

(
2,−2ρ̃/σ2

)
.

We illustrate Proposition 2.4 in the following commutative diagram (where BP stands for branching process).
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