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L,-THEORY FOR THE STOCHASTIC HEAT EQUATION
WITH INFINITE-DIMENSIONAL FRACTIONAL NOISE*

RAaLucA M. BarLan!

Abstract. In this article, we consider the stochastic heat equation du = (Au + f(¢,z))dt +
Yo g"(t,2)66F,t € [0,T], with random coefficients f and ¢*, driven by a sequence (%) of i.i.d.
fractional Brownian motions of index H > 1/2. Using the Malliavin calculus techniques and a p-th
moment maximal inequality for the infinite sum of Skorohod integrals with respect to (8%)x, we prove
that the equation has a unique solution (in a Banach space of summability exponent p > 2), and this
solution is Holder continuous in both time and space.
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1. INTRODUCTION

The study of stochastic partial differential equations driven by colored noise has become an active area of
research in the recent years, which is viewed as an alternative (with an increased potential for applications) to the
classical theory of equations perturbed by space-time white noise (see [5,10,13,26] for fundamental developments
— using different approaches — in the white noise case.)

A Gaussian noise is said to be fractional in time, if its temporal covariance structure coincides with that
of a fractional Brownian motion (fBm). Recall that a centered Gaussian process (f):c[o,7) is a fBm of index
H € (0,1) if Ry(t,s) == BE(BBs) = (t*7 + s2H — |t — 5|21) /2. The case H > 1/2 is referred as the “regular”
case, whereas the case H = 1/2 corresponds to the Brownian motion. (The survey articles [19] and [9] offer
more details on the fBm.)

Since the fBm is not a semimartingale, one cannot use the Itd calculus, which lies at the foundation of the
study of equations driven by white noise. Various methods exist in the literature to circumvent this difficulty,
based on the Skorokod integral (e.g. [1,2,4,6,7]), the pathwise generalized Stieltjes integrals (e.g. [21,23,27]), or
the “rough paths” analysis (e.g. [15,16]).

The present article is dedicated to the study of the stochastic heat equation with (additive) infinite-dimensional
fractional noise:

du(t, z) = (Au(t,z) + f(t, z))dt + ig’“(t, 2)8pf, tel[0,T],z R, (1.1)
k=1
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where (%)) is a sequence of i.i.d. fBm’s of index H > 1/2, the solution is defined in the weak sense (using
integration against test functions ¢ € C§°(R?)), and 68F is a formal way of indicating that the stochastic
integrals (which are used for defining the solution) are interpreted in the Skorohod sense.

Let H;(Rd) (n € R,p > 2) be the Sobolev space of all generalized functions on R? whose derivatives of
order k < n lie in L,(R%). Our main result shows that for suitable initial condition ug, and Sobolev-space
valued random processes f = {f(t,")}icjo,r) and ¢ = {g¥(t,")}iejo,r). & = 1, equation (1.1) has a unique
H;(Rd)—valued solution u = {u(t,-)}+ep0, 17, and v € C([0,T7, Hg_Q(Rd)) a.s., such that

T
Bsup [t gy o ey <00 B[ty oy < .

Moreover, u belongs to the Holder space C*~1/?([0, T, H{}fw), with probability 1, for any 1/2 > 8 > a > 1/p.
If in addition, v :=n—28—d/p > 0, u is also y-Hélder continuous in space, since Hg_% (RY) c C7(R?). These
results provide generalizations to the fractional case of the existing results for the heat equation driven by a
sequence (w"); of i.i.d. Brownian motions (see [12,13,22]).

We note that our result cannot be inferred from the results existing in the literature for parabolic equations
driven by Hilbert-space valued fractional noise with trace-class covariance operator (e.g. [8,17,25]). Neverthe-
less, we should mention the recent related investigations of [21] and [23], using fractional calculus techniques
(as opposed to the Malliavin calculus techniques used here), which establish the existence and Holder continu-
ity (in time) of a variational/mild Lo(D)-valued solution for a parabolic initial-boundary value problem with
multiplicative fractional noise, when D C R? is a bounded open set.

Similarly to the Brownian motion case, at the origin of our developments lie two basic tools: (1) a general-
ization of the Littlewood-Paley inequality for Banach-space valued functions (Thm. A.2, Appendix); and (2) a
suitable p-th moment maximal inequality for the sum of Skorokod integrals with respect to (3¥); (Thm. 3.6):

0 P T oo p/2
Esup Z/ ubopkl < Cpmr E/ Z|u’;|2ds
EST =1 70 0 k=1
e em 12 P
+E/O /O <Z|D§’“u’;|2> 49|  ds . (1.2)
k=1

Compared to the Burkholder-Davis-Gundy inequality (which was used in the Brownian motion case), inequal-
ity (1.2) contains an additional term involving the Malliavin derivative DA uk of the process u* with respect
to #*. It is because of this extra term that our developments deviate significantly from the white noise case,
and we require that the multiplication coefficient ¢* lie in a suitable space of Malliavin differentiable functions
with respect to G* (which in particular, implies that g" is measurable with respect to 3%).

This article is organized as follows. In Section 2, we give some preliminaries on the Malliavin calculus for
Hilbert-space valued fractional processes, and we develop a maximal inequality for these processes. In Section 3,
we convert the inequality obtained in Section 2 (which speaks about the Skorohod integral with respect to a
Hilbert-space valued fractional process), into an inequality which speaks about the sum of Skorohod intregrals
with respect to a sequence (3%); of i.i.d. fBm’s. In Section 4, we introduce the stochastic Banach spaces in
which we are allowed to select the coefficients f and (g¥)x. Section 5 is dedicated to the main result, as well
as the Holder continuity of the solution. The appendix contains the generalization of the Littlewood-Paley
inequality to Banach space valued functions.
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2. MALLIAVIN CALCULUS FOR FRACTIONAL PROCESSES

In this section, we introduce the basic facts about the Malliavin calculus with respect to (Hilbert-space
valued) fractional processes. We refer the reader to [18] and [20] for a comprehensive account on this subject.
Throughout this work, we let H € (1/2,1) be fixed.

We begin by introducing some Banach spaces and Hilbert spaces of deterministic functions, which are used
for the Malliavin calculus with respect to fractional processes.

If V is an arbitrary Banach space, we let £y be the class of all elementary functions ¢ : [0,7] — V of the
form ¢(t) = 321" 1y, 0, (t)ps With 0 < tg < ... <t,, <T and ¢; € V. Let [Hy| be the space of all strongly
measurable functions ¢ : [0, 7] — V with [|¢]|5,| < 0o, where

T pT
61 = [ [ 160l lo(lvle— sPH2deds, au = HzH - 1),
0 0

The space v is dense in |Hy | with respect to the norm |- ||3¢,,|. It is known that there exists a constant by > 0
such that |||, | < bulldllL,,,0.1):v) for any ¢ € Ly u([0,T]; V) (see e.g. relation (11) of [2]).

In particular, if V' =R, we denote &y = € and |Hy | = |H].

We let |H| ® [Hy| be the space of all strongly measurable functions ¢ : [0, 7% — V with [|¢|| e, | < o0,
where

163 = 0% /[

If V is a Hilbert space, we let Hy be the completion of &y with respect to the inner product (-, ), defined by:

; (2, 0)llv [lé(s,m)llv [¢ — s[*72 |0 —n|**~2dgdndsdt.

)

T T
(b, )y = OéH/O /0 (p(t),1h(s))y [t — 5|~ 2dsdt.

We have:
9ll2y < 1Dllj3 | < bulDlL, 0 0.11v) < bul L (0.77:v), (2.1)

and Ly([0,T}; V) C L1u([0,T];V) C |[Hyv| C Hy. In particular, if V' = R, we denote Hy = H. The space H
may contain distributions of order —(2H — 1). Note that Hy is isomorphic with H ® V', and the inner products
in the two spaces are the same.

We let |Hy |®|Hy | be the space of all strongly measurable functions ¢ : [0,T]> — V@V with ||¢]| 3, g4, | <
oo, where

161Frey 117y = 0T /[0 - ot Olvev llols, mllvev [t — 772 10 —n*~2dodndsdt,

s

and Hy ® Hy be the completion of &y @ &y with respect to the inner product (-, ), @n, defined by:

<¢7 w>7'lv®7'lv = a%—[ /[ | <¢(tﬂ 9); Z/J(Sa 77)>V®V|t - S|2H_2|9 - 7’|2H_2d9d77d8dt
0,T]4

We have: (see e.g. Lem. 1, [2] for the second inequality below)
[9llnyory < Dy igirey) < 0L, 40,12 vev) < bl L0112 veVv), (2:2)

and Lo([0, 7%V ® V) C Ll/H([O,T]Q; VeV)C|Hv|® [Hv| C Hy @ Hy.
We begin now to introduce the main ingredients of the Malliavin calculus with respect to fractional processes.
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Let V' be an arbitrary Hilbert space and B = (B(¢))gen, be a centered Gaussian process, defined on a
probability space (2, F, P), with covariance:

E(B(¢)B(Y)) = (6, ¥)ny, Vé,9 € Hy. (2.3)

If we let Bi(p) := B(1ljg¢) for any ¢ € V,t € [0,T], then
E(Bi(¢)Bs(n)) = Ru(t,s){e,mv, VYe,n€V,s,te(0,T].

(In particular, if V' = R, then f; := B(1p4),t € [0,T] is a fBm of index H.)
Let
Sp:={F = f(B(¢1),...,B(¢n)); f € Ct°(R"), ¢ € Hy,n > 1}
be the space of all “smooth cylindrical” random variables, where C}° (R%) denotes the class of all bounded
infinitely differentiable functions on R™, whose partial derivatives are also bounded. Clearly Sp C L,(Q2) for

any p > 1.
The Malliavin derivative of an element F' = f(B(¢1),...,B(¢n)) € Sp, with respect to B, is defined by:

DBF =
i=1 Oz;

Note that DPF € L,(Q;Hy) for any p > 1; by abuse of notation, we write DPF = (DtBF)te[O,T] even if DEF
is not a function in t. We endow Sp with the norm:

1EII5s, == E|FP + E|ID°FII3,, .

1,p
Dy

and we let ]D)}B’p be the completion of S with respect to this norm. The operator DZ can be extended to ]D)}B’p .
The adjoint
68 :Dom 08 C Ly(QHy) — La(Q)
of the operator D? | is called the Skorohod integral with respect to B. The operator 62 is uniquely defined
by the following relation:
E(F§P(U)) = E(DPF,U)y, VYFeDy.
Note that E(6%(U)) = 0 for any u € Dom 6%. If U € Dom §”, we use the notation U = (Uy)sejo,r] and
§B(U) = [} U6B,.
If V’ is an arbitrary Hilbert space, we let

m
Sp(V'):=qU=> F;¢;;F; €Sp,¢; € V/,m>1

Jj=1

be the class of all “smooth cylindrical” V’-valued random variables. Clearly Sg(V’) C L,(Q; V') for any p > 1.
The Malliavin derivative of an element U = Z;”:l Fj¢; € Sp(V") is defined by DBU := Z;nzl (DBF;)¢;. We
have DBU € L,(Q;Hy ® V') for any p > 1. We endow Sp (V') with the norm:
U104y = BNV + BIDPUEy,
and let DP(V') be the completion of Sp(V"’) with respect to this norm. The operator DP can be extended to
D7 (V).



114 R.M. BALAN

In particular, if V/ = Hy, then Dy*(Hy) C Dom 67, If U € Di*(Hy) then DPU € Ly(QHy @ Hy); by
abuse of notation, we write DBU = (DtBUs)s,te[O,T]-

The space DEQ(HV) is viewed as a “suitable” class of Skorohod integrands with respect to B. For any
U € Dy*(Hy), we have:

BI"(U)P B|U|I3, +E ({DPU,(DPU) )y 0ty))

E||U|3, + EIDPUNyem, = U152

IN

(Hv)’

where (DBU)* is the adjoint of DPU in Hy @ Hy .
The following result is a consequence of Meyer’s inequalities.

Proposition 2.1 (Prop. 2.4.4 of [18]). Let p > 1 and U € Dy”(Hy). Then U lies in the domain of 6% in
L,(Q) and

El§P(U) < Crp {I By, + EIDPUNR, g0, }
where Cr,p s a constant depending on H and p.

As a consequence of Proposition 2.1, (2.1) and (2.2), we obtain:

EP O < CupbulI EW)IL, oy + EIDPUIL, ,o.112vsv) ) (2.5)

We denote by Dy?(|Hy|) the set of all elements U € DP(Hy ), such that U € [Hy| a.s., DPU € [Hy| ® [Hy|
a.s., and HUHD};]’(IH\/\) < 00, where

U] E|U|fy,, + EID"U]|

p p p
DEP(Hv ) [Hv| Hv|®Hyv |

The following result generalizes Theorem 4 of [2] to the case of V-valued fractional processes.

Theorem 2.2. Let 1/2< H <1,p>1/H and 0 < e < H — 1/p. Then, there exists a constant C depending
on H,p,e and T such that

t
/ Us6B;
0

E sup
t<T

P T p(H—E)
< ¢ (/ ||E<Us>||1v/<“>ds>

H p(H—¢)
H—¢

T T
+E / </ ||D£US||1V/§Vd9) ds (2.6)
0 0

for any process U = (Ut)iepo,1) € Dy ([Hy|) for which the right-hand side of (2.6) is finite.

Proof. The argument is similar to the one used in the proof of Theorem 4 of [2]. We include it for the sake of
completeness. Let a =1 —1/p —e.

By writing fot U8B = ¢y fot(t —r) (f07 Us(r — s)*710B;) dr, and using Hélder’s inequality, we obtain:

t p T
/ UsoBs| < C(M,E/
0 0

FE sup

T p
/ Us(r —s)* 1B, dr,
t<T 0




Lp-THEORY FOR THE STOCHASTIC HEAT EQUATION... 115

where ¢, , is a constant depending on « and p. Using (2.5), we have:

t
/ Us0Bs
0

H

P T r 1/H p
< H{ / ( / VB (rs><al>/Hds> ar
pH
+E/ (// IDEUL IV (r = s)e- 1>/Hd9ds> drp,

where cqp,r is a constant which depends on «,p andH. The result follows by applying Hardy-Littlewood
inequality (p. 119 of [24]). O

FE sup
t<T

When p > 2, the previous theorem leads to the following result.

Corollary 2.3. Let 1/2 < H < 1 and p > 2 be arbitrary. Then, there exists a constant C' depending on H,p

and T such that
¢ P T p/2
/ UsébBs| < C </ ||E(U5)||2Vds)
0 0
p/2

T T 2H
+E / ( / ||D£Us||1v/gvde> ds 2.7)
0 0

for any process U = (Ut)iepo,1) € Dy ([Hy|) for which the right-hand side of (2.7) is finite.

FE sup
t<T

Proof. The result follows by applying Theorem 2.2 with ¢ < H —1/2 and using the fact that |\¢||L1/(H75)([07T]) <
Cr @l o0,y for any ¢ € L([0,T7). O

3. THE MAXIMAL INEQUALITY

The goal of this section is to translate the p-th moment maximal inequality given by Corollary 2.3 into
a similar inequality (in the l;-norm) for a sequence (u*)y of Skorohod integrable processes, with respect to
a sequence (3);, of ii.d. fBm’s. The idea is to recover a Gaussian process B (as in Sect. 2) from (8%)g,
and to construct a Skorohod integrable process U (with respect to B) from the sequence (u¥)z, such that
§B(Uljoy) = >ones 50" (uF1jp.y) for all t € [0, 7] a.s.

Let g% = (BF )telo.7],k > 1 be a sequence of i.i.d. fBm’s of Hurst index H > 1/2, defined on the same
probability space (2, F, P). Let V be an arbitrary Hilbert space, and (ej)r a complete orthonormal system
inV.

The first result shows that it is possible to construct a centered Gaussian process B with covariance (2.3),
from the sequence (3%);. This result is probably well-known; we state it for the sake of completeness.

Lemma 3.1. Let (¢*)r, C 'H be such that Y -, ||¢*||3, < co. Then:
a) o) = Zszl dFer, € Hy for all N > 1, and there exists o := Y ne; ¢*ex € Hy such that [N — 3, —
0 as N — co. We have:

lellze, = > 16" 13 (3.1)
k=1

b) BN () := Zg L B%(9%) € La(2) for any N > 1, and there exists B(p) == Y poy BF(¢%) € La(Q) such
that E|BWN)(¢) — B(¢)|> — 0 as N — oo. The process B = {B(p)}peny, is Gaussian with mean zero and
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covariance (2.3). In particular, for any t € [0,T],¢ € V, we have:
Byi(p) = B(lpp) = > (¢, ex)v B in La(). (3.2)
k=1

Proof. a) The sequence {pN)} y is Cauchy in Hy, since (V) —p(M))(t) Zk w1 OF (t)e for any N > M >
1, and hence

1™ — oD,

om Z / / OF (£)ok ()|t — s[2H2dsdt

k=M+1

ZH&MHQ%MNHM
k=M+1

In particular, [[oM]|7, = S, l6F112,. By letting N — oo, we obtain (3.1).
b) The sequence {BM)(¢)}y is Cauchy in Ly(Q), since BN (p) — BIM) () = fo:Mﬂ B*(¢*) for any
N > M > 1, and hence

N N
EIBM(p) = BM (@) = > EIB*M)IP = Y 6"} — 0, as M,N — .
k=M+1 k=M+1

To prove (3 2), note that 1y = Yore, dFer, where ¢F = I, (@, ex)v. Tt follows that B(lp ) =
Zk 1ﬁk( Zk 1<‘Pa€k>Vﬁt U

We begin now to explore the relationship between the Malliavin derivatives with respect to (3%); and the
Malliavin derivative with respect to B.
An immediate consequence of (3.2) is that 8F = B(1j9,gex) for any ¢ € [0,T], and hence

3(¢) = B(ger), Vo €M (3.3)

Let F = f(B8%(¢1),-..,0%(dn)) € Sge be arbitrary, with f € C;°(R™) and ¢; € H. Then ¢; := ¢ep € Hy,
F = f(B(¢1),...,B(¢n)) € Sp, and

DPF = 3 2. Bl -

=1 =1

— (D! Fey

fww»wwmwi

From here we conclude that Sgr C Sp, and for any F' € Sgs,
k
ID2 Flhey = 1D Fllr, 1l = [ Fllpsg ¥ > 1.
It follows that D LP C DiP for any p > 1, and

DBPF = (DﬁkF)ek, for any F € ]D);,f (3.4)
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Ifu=73"" Fjd; € Sge(H) is arbitrary, with Fj € Sgr and ¢; € M, then uey, € D5 (Hy) and

m

m
Bueg) Z (DEF)pjen =Y (D7 F)pjen @ ey, = (D7 w)er @ ey
j=1 j=1
In general, if u € DZ{,?(H), then uey, € DEQ(HV) and
D (uey) = (Dﬁku)ek ® ek

Moreover, we have the following result:

117

(3.5)

Lemma 3.2. If u* € DI’Q(H) then ZkN Luber € DRA(Hy), DB(XN_ uker) = Son (DP ub)ey, @ ey, and

N
12 k=1 ukek”%ymv) Zk 1 H“kH]D)l 2

Proof. The result follows from the definitions of the norms in ]D)}B’2 (Hy ), respectively Déf (H), and the following

two identities:

N
E ukek
k=1

T ,pT N N
= OtH/ / <Zufek,2uiel > |t — s|*H ~2dsdt
o Jo — -

Hy Vv
= ag Z / / ubul (eg, e)v |t — s|*H ~2dsdt
k=1
= Z a3
N 2 N
HDB (Z ukek) = / < ZD ut ek ZDE(U@@[)>
k=1 Hy@Hv =1 VeV

x|t — s|>172|9 — p> ~2d0dndsdt
N

= a4 Z/ (DB ut)(Dﬁ Dier @ ex,e1 @ e vey
k=1 10,77

x|t — s[*172|9 — n|?7-2dfdndsdt
N k
= D ID7 R
k=1
where we used (3.5) for the second-last equality above.

We need an auxiliary result.

Lemma 3.3. Let X be a normed space and yn, TN n, Tn,® € X be such that: lim, . SUp N> llyn —

Imy oo |ZNn — Znl] = 0 for all n, and lim, . ||xn, — x| = 0. Then limy_ |Jlyn — x| = 0.
Proof. We use |lyny — z| < llyy —annll + [onn — 2ol + lzn — 2.
The previous observations allow us to extend Lemma 3.1 to the case of random integrands.

Theorem 3.4. Let u* € ]D);,?(’H) for all k> 1, such that

o0
k|2
; Hu H]D);f(H) <0

O

IN,TLH :0;

O

(3.6)
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Then:
a) UN) .= Z]kvzl uFey, € D*(Hy) for any N > 1, and there exists U := Y 5o, uFey, € D°(Hy) such that
[T — U||D§2(Hv) — 0 as N — oo. We have: DBU = Z,;“;I(Dﬁkuk)ek ® ey and

(o)
2 _ k2
HUHDEQ(HV) - kz Hu H]D)Zf(?—t)' (3'7)
=1
b) the sequence WN) = Zszl 58" (uF), N > 1 has a limit in Ly(SY), which coincides with §B(U). We write
By =307 (uk) in Lo(S). (3.8)

Proof. a) By Lemma 3.2, {UM)} y is a Cauchy sequence in D5*(Hy), since:

N
U = U2,y = D I6tlI5aagy) = 0, as M, N — oo.
B k=M1 ak

Hence, U := limy_,oo UMN) exists in DEQ(HV), and DBU = limy_o DBUW) in Lo(QHy @ Hy). Also,
\U N)||D1 12549 =0, HukHHQ);f(H), and relation (3.7) follows by letting N — oc.

b) By inequality (2.4) (applied for V =R and B = *), we have:

N N

B () k|2 k|2
Z E|5 (u )| < Z ||’U, ”Dzlikz(H) - 0; as MaN — 00,
k=M-+1 k=M+1

i.e. the sequence {W (M)} y is Cauchy in La(Q2). We let W be the limit of {IW )}y in Ly(Q). We now prove
that W = 65(U) (in Lo(2)).

Step 1. Suppose that u € Spx(H) for all k, i.e. uk Z chék for some Fk € Sgr and d)k € H. Since
UN) - UinDR*(Hy), 63(UMN) — §B(U) in Ly(). On the other hand Zk:l 58" (uF) — W in Ly(Q). Hence,
it suffices to prove that:

By Z 5ﬁk (3.9)

Note that U(N) = S22 S~ L Ffoker € Sp(Hy), since Fk € Sz C Sp and ¢ley, € Hy. Relation (3.9) follows
from (3.3) and (3.4), since:

N m N m
BNy = ZiFﬁB(qsfek Zi DPFF, ¢her)n
k=1 j=1 =1j=1
N N myg N my
DN = B3 FBD - 35 (D7 efn
k=1 k=1 j=1 k=1 j=

(We used relation (1.9) of [18], for the equalities above.)
Step 2. Suppose that u* € ]]])1’2(7-{) for all k. For any ¢ > 0, there exists u® € Sge(H) such that

1,2
|lul — ukHD;,:(H) < g/2%; hence Y7, [luk|? < oo. By part a), U. := Y22, ufer, € D" (Hy) and

D12H
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||U€ - UH]%)L?(H )

sequence (ul), C Sgr(H), such that U, := > ;= ukey, € Dy (Hy) and

=30 luk - Ulkll]%lﬁ(%) < ¢e?. Taking € = 1/n, we conclude that for any k, there exists a
8

U = Ul312 54, Z”“ k||D12 =0, asn— oo
We now invoke Lemma 3.3, with X = L(2), and
N N
=W =367 Wh), ann =) 07 (u)), wn=06"(Un), z=3"(U).

The hypothesis of the lemma are verified, since limy oo [|[N,n =0 || £, () = 0 for all n (by Step 1), limy, oo ||27—
x| L, = 0 (since U,, — U in DR (Hy)),

Zéﬁk (u* —uk ZE|5ﬁk (uf — uf)?

k k2
];1 Hu - u””D;’E(H)’

lyn — $N,n|\%2(9) =

IN

and hence sup ||yN—xN7n||%2(Q) <>, ||uk—u’fl||ﬂ2)1,2(m — 0, asn — 0o. We conclude that limy_,o [|[yn—
> s
|| ry) =0, i.e. W =05(U). O
In the case p = 2, we have the following preliminary result.

Theorem 3.5. There exists a constant C' depending on H and T such that
e} t 2 o0 T
E sup Z/ uiopi| < C ZE/ |u¥|2ds
t<T =1 /0 k=1 70
o T 2H
+ZE/ (/ Dy u’;|1/Hd9> ds (3.10)
k=1 70 0

for any process u = (u¥)y for which u* € D23(|H|) for all k > 1, and the right-hand side of (3.10) is finite.

Proof. Let 0 <e < H—1/2 and oo = 1/2 — . As in the proof of Theorem 4, [2], one can show that

2 T oo . 2
<, [ 3 [ k-9 ak
0 k=1 0

Since the random variables Xj, = [ u¥(r — s)*7164% k > 1 are independent with zero mean, E(Y ,_; Xj)? =
S h_y E(X?) for all n. By the Fatou’s lemma,

00 ot
sup Z/ uk o3k
— Jo

t=T |5

2

’I“—Sa 15ﬁk ukT—S)a 1(5ﬁk

<ZE
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Using (2.5) and Holder’s inequality we get:
2 o0 T r
< Z/ E / uk(r — s)*"topk
P 0

< CO"H{i/ (/ |uk 1/H S)(al)/HdS>2Hdr
i/ (/ / \DE"uE Y H g (r — 5) (@ 1/Hds>2Hdr
k=

(o) T T
< CaH Z/ 7“2(“_1)+2H_1E/ |u¥|?dsdr
/o 0

0o LT r T 2H
k
+E / T2(a71)+2H71E/ (/ |Dg ul§|1/Hd9> dsdr 3 . O
P 0 0

Let Iy be the set of sequences a = (a¥),a* € R with [alf, := Y237, |aF|> < co. If u = (u*); is such that
uk € D[lj,?(H) for all k > 1, we denote Du := (D? uk),.
The next theorem is the main result of this section. Its proof is based on Corollary 2.3, the connection

between the Skorohod integrals with respect to (8¥); and the Skorohod integral with respect to B (given by
Thm. 3.4), and Theorem 3.5.

2

00t
Esup Z/ uke Bk
— Jo

=T |5

Theorem 3.6. Let 1/2 < H < 1 and p > 2. Then, there exists a constant C' depending on H,p and T such

that
T p/2
< C{E / Jus |2 ds
0
2H p/2

T T
+E / </ |Dous }Q/Hd9> ds (3.11)
0 0

for any process u = (u*)y, for which u* € ]D)l’,f’(|7'l|) for all k > 1, and the right-hand side of (3.11) is finite.

o P
Esup Z/ uk 53k

t=<T |, = /o

Proof. Let u = (u*)y be such that u* € ]D)l’p(|H|) for all k£ > 1, and the right-hand side of (3.11) is finite. Since

p > 2, |[EX[P?2 < E|X[P/2 for any X € L,»(Q), and hence, EfOT lus|7 ds < oo and
2H

EfOT (fo |D9us|1/Hd9) ds < oo. By Minkowski’s inequality, > -, EfOT (fOT |ngu’;|1/Hd9) ds < oc.

From here we conclude that relation (3.6) holds, since:

o0 o0 o0 N
S ey = D Bl e+ 3 BN e
k=1

k=1 k=1

o0 o0 N
D Btz 0 + D EIDT WML o1y w0z < 00
k=1 k=1

IN
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By Theorem 3.4.(a), there exists U := Y ;- uFey € D3*(Hy) and DBU = Z;O:l(Dﬁkuk)ek ® ey. Similarly,
Ul[o,t] = 21211 ukl[o,t]ek S Dg2(7‘lv) for any t € [0, T].
For any t € [0,T7, let

X = chk(ukl[o,t]) and Y :=0%(Ulp,g).

Using the same argument as in Theorem 5 of [2], one can prove that ¥ = (Y;:)te[o,T] has an a.s. continuous
modification. We work with this modification.

Also, for each N > 1, the process X(N) = (Xt(N))tE[QT] defined by X (N) Zk (ukl[o,t]),t € [0,7],
has an a.s. continuous modification.

By Chebyshev’s inequality, Theorem 3.5, and (3.6), the sequence (X)) converges in probability to X, in
the sup-norm metric, since for any € > 0,

2

oo t
P(sup|Xt(N)—Xt|>€) < —2Esup /ulgéﬁf (3.12)
t<T € t<T |, N1 70
o 2H
k
< G4 3 e[ lras > m [0 ([Ni0r ) oo

k=N+1 k=N-+1

as N — oo. Therefore, X has an a.s. continuous modification. We work with this modification.
From Theorem 3.4.(b), we know that ¥; = X, a.s., for any ¢ € [0, T]. Since both Y and X are a.s. continuous,
it follows that Y; = X for all ¢ € [0, 7] a.s. In particular, Esup,<r Y|P = Esup,<p |X¢|P, i.e.

t P 0t P
E sup / UsdBs| = Esup Z/ uk o3k (3.13)
t<T |Jo t<T |+ =7 Jo

We now invoke Corollary 2.3. Note that E(Us) = > 7o, E(uf)ex. Hence |E(Us)|3 = Yopey [E(ub))? <
>oreq Elul? = Elusl?, for any s € [0,7], and

T p/2 T T p/2
(/ |E<Us>|2vds> §<E / |us|ids> SE(/ |us|ids) - (3.14)
0 0 0

Note also that DFU, = Z;il(ngulg)ek ® ey, and hence,

p/2

IDG s} oy = Z D] uk|? = | Doul?,. (3.15)
k=1
Relation (3.11) becomes a consequence of (2.7), combined with (3.13), (3.14) and (3.15). O

The following result is an immediate consequence of Theorem 3.6.

Corollary 3.7. Let 1/2 < H < 1 and p > 2. Then, there exists a constant C depending on H,p and T such

that
P T T pH
<c E/ |us|§’2ds+E/ </ | Dyus “Hde) ds p == Cllulf, , (3.16)
0 0 o (12)

for any process u = (u¥)y for which u* € Dgf(|7—[|) for all k > 1, and the right-hand side of (3.16) is finite.

[e}

> / ko

k=1

FE sup
t<T
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4. STOCHASTIC BANACH SPACES

In this section, we introduce some Banach spaces of stochastic integrands for the sequence of Skorohod
integrals with respect to (3*);, which are suitable for our analysis. To ease the exposition, we first treat the
case of a single fBm (Sect. 4.1), and then the case of a sequence of i.i.d. fBm’s (Sect. 4.2).

4.1. The case of a single fBm

We begin by recalling some basic facts about fractional Sobolev spaces, using the notation in [13]. We let
Cs° = C5°(R?) be the space of infinitely differentiable functions on R?, with compact support, and D = D(R?)
be the space of real-valued Schwartz distributions on C§°. For p > 1, we denote by L, = Lp(Rd) the set of all
measurable functions u : R? — R such that [ully, = [ga lu(z)Pdz < co.

For any p > 1 and n € R, we let H = H(R?) := {u € D; (1 — A)"/2y € L,} be the fractional Sobolev
space, with the norm ||ul| gz = |[(1 — A)"2u| 1. For any u € Hp and ¢ € C§°, we define

(16) = [ 0= A)2ua) - (1 = &)/ (a)d.
By Holder’s inequality, for any u € H}' and ¢ € C§°, we have:
|(w,¢)]* < Nllull7,, (4.1)

where N = ||(1 — A)in/2¢||%p/@,l) is a constant depending on n,p and ¢.
Let 3 = (Bt)tejo,r) be a fBm of index H > 1/2, defined on a probability space (22, F, P). We introduce the
following spaces of Banach-space valued integrands for the Skorohod integral with respect to (.

Definition 4.1. Let V be an arbitrary Banach space and p > 1.
a) We denote by D}j’p(|Hv|) the set of all elements g € ]D)E’p(HV) such that g € [Hy| a.s., D?g € |H| ® [Hv|
a.s., and ||9HD;'P(\HV|) < 00, where

P .f P B .17
”g”D},"’(\Hvl) = E||9H|HV| + E|D QH\H|®|HV\-

b) We denote by L}fﬁ (V') the set of all elements g € Dé’p(|Hv|) such that ||9|‘L}f5(v> < 00, where

pH
P — g P g g B, 1/H
19172, oy =B [ llgsllids + B 1D} gl ™ar ) ds.
H,3 0 0 0

¢) We denote by EI;E(V) the completion of Sz(€y) in Dé’p(|Hv|), with respect to the norm || - HL},”JB(V)-

Using (2.1) and (2.2), one can prove that:
||9HD};P(|HV\) < bHHg”L;}?B(V)a Vu € L}fﬁ(v)~ (42)

Remark 4.2. If V =R, we denote D”(|Hy|) = DyP(|H]), Li5(V) = Ly, and Ly (V) = L7, .

Note that the space ]D)é’p (|Hv| is not the particular instance of the space D" (|Hy|) (introduced in Sect. 2)

obtained for V' = R. The fundamental difference between the two spaces is that ]D)é’p (|Hv|) contains V-valued
random processes g = {g(s,)}se[0,r), for an arbitrary Banach space V' (which has nothing to do with the
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underlying Hilbert space R of the fBm ), whereas the space ]D)}B;p (|Hv|) contains V-valued random processes
U ={U(s,")}sefo,r), where V' is the underlying space of the Gaussian process B.

In the present article, we let V' = H}'. Since Cg° is dense in H,', we introduce the set Sg(Ecge) of smooth
elementary processes of the form

g(t,") = ZFil(t,,,l,t,,](t)qsi(), te[0,T]

with F; € Sp, 0 <tg < ... <ty <T and ¢; € C§°. The set Sp(Ecs<) is dense in ]D)é’p(|HHg|) with respect to
the norm || - HD};’D(IHH;;\)' The space L}fB(Hg) is the completion of Sg(Ecee) in Dé’p(|HH;

), with respect to
. =1, 1,
the norm || - HL;%(H;L). From (4.2), it follows that L ;" (H,") C L% (H}').
For any g € ]L}fﬁ(H”), we have:

p
p _ p B,.P
191255 11z, = sl + 1051 (4.3
where
HY = L(Qx [0,T],F x B(0, T)); HY)
HZ,H = L,,(Qx[O,T],]-'xB([O,T]);LI/H([O,T];H;])).

For an arbitrary element g € D}i’p (IH Hr
and ¢ € C§°, we have:

)

), we write g(x, ) = {g(s, ) }sejo,77- Using (4.1), for any g € D}i’p(|HH;L

IN

El/(g(+,-), 9y
E[(DPg(+, ) ) Prjeirg < NEHDﬁngH\@mH;p (4.5)

NE gl (449)

N

where N is a constant depending on n,p and ¢.

). then for any ¢ € C§°, (g(x,-),¢) € D*(|H|), D7(g(+,-),¢) =

Proposition 4.3. a) If g € Dé’pﬂHH;
(Dﬁg(*’ ')a d)); and
l[(g(x, ), ¢)||D;’P(\H|) < NHQHDE’P(WH;D’ (4.6)

where N is a constant depending on n,p and ¢.
b) If g € Lyf5(H2), then for any ¢ € C§°, (g(*,-), ) € L'y, and

1906 ) D)z, < Nliglusg, . (47)

where N is a constant depending on n,p and ¢.

Proof. a) Using an approximation argument and the completeness of the space Dé’p (|H]), it suffices to assume
that g(t,-) = >0 Fil(s; e, (6 with F; € S, 0 < t1 < ... < tpy1 < T and ¢; € C§°. Clearly, (g(*,-),¢) =
S Fi(ds, &)1t 1000] € S8(E) C ]D)é’2(|H|), and due to the linearity of D?,

m

D (g(s,-),0) = > (DFi) (s, 0)1t,.1,,1)(5) = (D] g(s,-), 0).

i=1
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Using (4.4) and (4.5), we get:

196 sy = Bl ) 6y + BID (95, 1 Dlpgaing

P BalP = v
N <E||g|||HHg + E||D g||H|®|HHg) = Nllgligy 2,1

IN

b) By part a), (g(*,-),¢) € DyP(|H]). Using (4.1),

pH

(g ), NypEAI@@J@W®+E[;(AI@%@J@WWM> s

T T T 1/H pH
NE [ lglsyds+ B [ </|wf< I ) ds
0 0 0

< 0. O

IN

p
HgHL}{’?B(Hl’;)

4.2. The case of a sequence of fBm’s

For any p > 1 and n € R, we let H}(l2) be the set of all sequences u = (u®);, such that u* € Hp for all k, and
lull sy =11 1(1 = A)"2u|y, ||, < co. By Minkowski’s inequality, ||ul|? n (i) <3, Huk”?{g (with equality if
= 2). By Holder’s inequality, for any v € H}'(l2) and ¢ € CF°, we have:

o0
> 1W*, 9 < Nlullzry o) (4.8)
k=1

where N is the same constant as in (4.1).
Let g* = (6f)tE[O7T], k > 1 be a sequence of i.i.d. fBm’s with Hurst index H > 1/2, defined on the same
probability space (Q, F, P). We first define the l3-analogue of the space ]LH - Introduced in Section 4.1.

Definition 4.4. For any p > 1, we denote by L};”(I2) the set of all elements u = (u*);, such that u* € ]D);,f’(|7‘(|)
for all k, and ||“||L§I’P(12) < 00, where

T T T L pH
HuHLlp = E/ us|}, ds + E/ </ |D9us|l2/ d9> ds.
0 0 0

The next lemma shows that condition (3.6) in Theorem 3.4 is satisfied for any u = (u¥);, € LE?(I2).

Lemma 4.5. If p >2 and u = (u*) € L5 (la), then Y50, HukH%l,Q(H) < 0.
Bk

Proof. Note that ]D);,f’(|7‘(|) C D23(|H|) For any u € L};"(l2), we have:

00 ) T T X 2H
k2 k2 8% k|1/H
> fu HD;,3<H> < > /|u ds+E/ (/O D) uk| d@) ds
k=1 k=1
T T/ T 2H
< E/ |us|l22dS+E/ /|D9u5|}2/Hd9 ds
0 0 0
<

Cp,H,T”UHE;}p(b) < 00,
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where C), g1 is a constant depending on p, H and T'. The first inequality above is due to (2.1) and (2.2), the
second is due to Minkowski’s inequality, and the third is due to Hélder’s inequality. O

We now introduce the definition of the space LLP(H " ls), in which we are allowed to select the coefficients
H P
(¢*) multiplying the noise in the stochastic heat equation.

Definition 4.6. Let p > 1 be arbitrary.
a) We denote by L}f(H;},lg) the set of all elements g = (g¥)x such that g* € ]Dl’p(|HH;

||gHL}{’p(H;L’l2) < 00, where

pH
10031 =5 105 g ds + 5 [ (/ IDugs, )3, )d9> ds.

b) We let Hj};p(Hg, l2) be the set of all g € ]L}f(Hg, l) for which there exists a sequence (g,); C ]L}f(Hg, l2)
such that ||g; — g||]L1,p(H,L 1) — 0 as j — oo, g;? =0 for k> K, and g;»“ € Sgr(Ecge) for k < Kjj, e
H P’

) for all k, and

Mk

= Z F’ijl(tzﬁl,tzk](t)(bzk()) te [O7T]a
i=1

with F-jk €8sk, 0< tjk <... < tjk_k < T (non-random) and d)gk € Cg°.

Note that, for any g € IL P(H) ),

HQHEEP(H;,J?) = Hg”pg(lz) + HD9| ﬁ;,H(l2)7 (49)
where
HZ(lg) = Lp(Q X [O,T],]: X B([O,T]);H;(lg))
HY (1) = Lp(Qx 0,71, 7 x B0, T1); Ly ([0, T); H (I2)))-

Lemma 4.7. If g= (¢*), €L ’p(H” ls), then g~ € ]L}fm (H}) for all k, and
" ||1L1 P (Hp) = < llgllya. LP(HD 1) Jor all k.

In particular, if g = (g")x € i}i}p(Hg, lo), then g* € L}{pﬁk (Hy) for all k.
Proof. We have:

T T T i pH
191210 gy = [ N0t lpds+ E (/ 105" (s, ) 14! ) ds
T T [ T i " pH
= B[ 10yl ds+ B (/ 10511~ A)*2g¥ (s, ) ||H;> ds

T T T \ pH
< B[ 1108700l ds+ E (/ I 1Dol(1 — A)2g(s, )] |12||H;> ds

p
1902 015 10

The second statement follows from the definitions of spaces ]L P (Hp,l2) and L:P i (). O
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5. THE MAIN RESULT

The following definition introduces the solution space (see Def. 3.1 of [13]).

Definition 5.1. Let p > 2 be arbitrary.

Let u = {u(t,-) }+c[o,7] be a D-valued random process defined on the probability space (€2, F, P). We write
u € Hy g if:

(i) U(O, ) € L;D(Qa F, Hg_2/p)§

(i) u € HY, upe € HY ™%

(iii) there exist f € Hp~? and g € EZP(HZ’}*, l2) such that for any ¢ € C5°, the equality

(u(t..6) = (w(0.).0)+ [ (7G5, 0)ds + z / 0)55" (5.1)

holds for any ¢ € [0,T] a.s. We define

1/p
ey, = (Em( I ) sl -2 + 11y + 19l gam-1 1 (5.2)

If u € Hy 5, we write Du := f, Su:= g and du = fdt + S, gRépr, t € [0,T).
We say that u € Hy 5 is a solution of (1.1) if Du= Au+ f and Su = g.

Remark 5.2. The series of stochastic integrals in (5.1) converges uniformly in ¢, in probability. More precisely,
ifge LEP(H;L,ZQ),Qﬁ € Og° are arbitrary, and we let u¥ = (g*(¢,-), #),t € [0,T], then

ueLpP(ly).
(To see this, note that by Lem. 4.7, g € ]L H gk « (M) for all k). By Proposition 4.3, ub e ]L i ge for all k. Since
by (4.8), |usli, < Nllg(s,)llmy ) and [Dousl, < NHDeg( Mg z)s we gets [ullyirg,y < Nlglloye 1) <
00). By Lemma 4.5, 72 [luf||? < co. Denoting XV := S fo ukspl and Xy = 307, fo ukspk,
relation (3.12) shows that

DL (1))

lim P(Sup|X() Xi| >¢e)=0, foranye>0.

N—o0

In what follows, we work with an a.s. continuous modification of X = (X¢):e[0,17-

Remark 5.3. By the definition of the norm in H} ;;, the operators D : H} ;; — HZ’Q([O, 1)) and S : Hy ;y —

m 1
Ly"(H}~',12) are continuous.

Proposition 5.4. (a) The operator (1 — A)™/? maps isometrically IL P(H}',l2) onto I’[:};,p(Hg’m,lg).
(b) The operator (1 — A)™'? maps isometrically Hy  onto Hy .

Proof. (a) By the definition of IE}f(Hg, l5), it suffices to prove that (1 — A)™/2 maps isometrically E}JPB(H;I)

onto EZPB(H”*’”) for a fixed fBm £ = (0¢)¢efo,1)-
Let g € Ll’p (H") be arbitrary. By Proposition 4.3,

(Dﬁ[(l - A)m/Qg(*a )]7 ¢) - Dﬁ((l - A)m/Qg(*a ')a ¢) - Dﬁ(g(*a ')a (1 - A)m/2¢)
(Dg(x,-), (1 = A)™2¢) = (1 — A)™2[DFg(x, )], ¢),
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for any ¢ € C§°, i.e.
DJ[(1 = A)"g(s, )] = (1 — A)™2[D/g(s,")], Vs,te0,T].

Using an approximation argument and the fact that [[u[ s = [|(1 - A)m/QuHH;fm for any u € H,', we conclude
1,
that (1 — A)™/%g € Dy (K gn-m|) and

p
n—m
Hp,H

+DP[(1 - 8)"™/2g]]

p
R
P

11— A)m”gllﬁgpﬁ(,{g%) = [I(1—2)""2g]

P B 1P _ P
o, + 109, = N1 ) < -

This proves that (1—A)"/2g € ]L}fﬁ(Hg*m). Finally, if g € ]It,}fﬁ (H,'), then an approximation argument shows
that (1 — A)™/2g € Ly (H2 ™).

(b) This is a consequence of part a). See Remark 3.8 of [13]. O

Theorem 5.5. (a) If u € H}} 1, then uw € C([0,T), H}~?) a.s.,

P p
Boup ult, s < Nlully - and sy < Nlulpe .

where N is a constant which depends on p, H,T and d.

(b) Hy g is a Banach space with the norm (5.2).

Proof. (a) By Proposition 5.4, it suffices to take n = 0. We use the same argument as in the proof of Theorem 3.7
of [13]. We refer the reader to this proof for the notation. In our case, we only need to justify that:

p
< Cllully, .
LP

oo

FE sup

t
/ g (s, 155"
0

where C' is a constant which depends on p, H and T.
Using Corollary 3.7, for any € R%, we have:

e3¢} + p T
Bswp (S [ g smant| < clE [l aas
t<T ;=5 /o 0

T [ T pH
+E/ (/ |Dgg(6)(s,x) ;2/Hd9> ds p,
0 0
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where C' is a constant depending on p, H and T'. We integrate with respect to x. Using Minkowski’s inequality
and the fact that ||h®)||1, < ||h| L, for any h € Ly, we get:

oo t T
Esup | / (s, )56’“ < C{E / 19 (s, 2)[7 dads
t<T || =1 /o . 0o Jra
T T . pH
+E/ / </ |Dg g (s, ) ;2/Hd9> dzds
0 R4 0
T T T " pH
< 03B [ N9l s+ [ (A I 1Dog® (s, ¥ d@ s
T T T U pH
< 3 [ ool s+ B [ ( |1 Dugts cw) s
0 0 0

T T T i pH
¢ E/o Hg(s")”iuwd”E/o </0 ||D99(5")||Lp<zz>d9> -

C llgll?

< Cllglif < Cllullze

L3P (Lp,l2) = LyP (HL 1) —

(b) Let {u;}; be a Cauchy sequence in Hj . By (a), {u;}; is a Cauchy sequence in H. Hence, there exists
u € Hj such that |luj — ullmy — 0. Moreover, ug, € Hy =2 and [[tjee — s

Say u; satisfies (5.1) for f; € H;“Q, g; € I’[:};,p(Hg’l, l): for any ¢ € Cg°,

HR o2 0.

(ui(t, ), 8) = (u;(0,), &) + / f; ds+Z / d5(s,), 6)68F (5.3)

for any t € [0,T] a.s. Then {u;(0,-)},,{f;}; and {g,}, are Cauchy in the (complete) spaces L,(£2, F; H;_Q/p),
HQ’Q and pr(ng’ l2), respectively. Hence, there exist u(0,-) € L,(£2, F, H;_Q/p), feH 2 ge ]L}f(H;}’l, I2)
such that E||u;(0,-) — u(0, -)||H;,72/p — 0, ||f; — fl pr—2 — 0 and llg; — g||L;p(H;717l2) — 0.

Since |[u; — ullmy — 0, there exists a subsequence of indices j such that [[u;(t, ) — u(t,-)|[mr — 0 a.e. in
(w,t). Say that this happens for w € Q\I" and ¢ € [0, T|\U, where T', U are negligible sets.

Fix ¢ € [0,T]\U. We are now passing to the limit in (5.3). On the left hand side, |(u;(¢,-) — u(t,-), ¢)| <
Nlu;(t,-)—u(t, - ||H — 0 a.s. On the right hand side of (5.3), the first two terms clearly Converge to (u(0,-), @),
respectively fo s,+), ®)ds. For the third term, we invoke Corollary 3.7 and (4.7):

oo ¢ p
BIY [ = o 500088 < NI =800 Dl
k=1
<

N||g] -9 ”]LIPH” 11)%0, as j — oQ.

Therefore, Y 7o, fg(g;?(s, ) — gk (s,+),#)6B% — 0 a.s. (for a subsequence of indices j). We infer that for every
¢ € C§° and for any ¢ € [0, T]\U, equality (5.1) holds almost surely (with the negligible set depending on t).
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To conclude that u € H) p, it remains to show that equality (5.1) holds for any t < T a.s. (i.e. the negligible
set does not depend on t). For this, it suffices to note that the process (u(x, ), ¢) is continuous a.s. This follows
from the a.s. continuity of processes (u;(x,-), ¢), by noting that (u;(t,-), ¢) converges to (u(t,-), ¢) uniformly
in ¢, in probability. U

The next theorem is the main result of the present article.

Theorem 5.6. Let p > 2 and n € R be arbitrary. Let
feHr 2, geLyP(Hr 1) and wg € Ly(Q,F, HI72/P).

Then the Cauchy problem for equation (1.1) with initial condition u(0,-) = ug has a unique solution u € Hy o
For this solution, we have

1/p
lulleg , < N {Ilfl a2 + 1ol + (Bloll, o ) } , (5.9

where N is a constant depending on p,d,T and H.

Proof. We first prove that it suffices to take uy = 0. To see this, we assume without loss of generality that n = 2

(using Prop. 5.4). By Theorem 2.1 of [13], for every w €  fixed, the equation du = Awu d¢ with initial condition

uo has a unique solution @ € H,*?, and ] 22 < N||u0||H§*2/p and [[tez ||, ((0,7)xre) < NHuOHHng/p. From

here, one can show that @ € H, 5 and [|al[32 =~ < NHuOHHszp Suppose that equation (1.1) with zero initial
9 p, H

condition has a unique solution v € H;H, and Hv||H; < N(HfHHO + ||gHL1 P(H ) Thenu:=v+ue H

is a solution of (1.1) with initial condition ug, and (5.4) holds.

For the remaining part of the proof, we assume that ug = 0. By Proposition 5.4, it is enough to consider
only one particular value of n. We take n = 1.

Case 1. Suppose that g* = 0 for k > K, and

ZF Las am®gf(), t€[0,T], k<K,

where F' € Sgr, 0 <t < ... <th <T, anngECO.

Let v(t,z) = > pey fo (s,2) 56’“ and z(t, ) fo Ti—s(Av+ f)(s,-)(xz)ds. One can show that u = v + z is
a solution of ( 1).

Let uy (¢, x) fo Ti—s[f(s,")](x)ds. We first show that
llu = urllmg o,r7) < NllgllLrer, iy e — vazllmg oy < Nligliirw, 1, (5.5)

where N is a constant depending on p,d, T and H.
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By definition, u(t,z) — ui(t,x) = v(t,z) + fot Ty—s(Av)(s,-)(x)ds. Note that v(s,z) = > o S gF(x)
IN Fikl(t’.gl,tlv]( 7)§3E. Using the stochastic Fubini’s theorem and the fact that f T s(AgF)(z)ds = Ty gk (x) —
gk (z), we get:

oo My (o]
u(t,z) — ui (t, ) ZZ/ Ffl s (N Tirgf (2)00) = Z/ Ty g™ (r, ) (x)0 5%, (5.6)
k=1i=1 k=170

By Corollary 3.7,

||[L [Ll” 0
H
P ]Rd

T t [ p/2
E/ T_sgk s, ) (x)? dsdzdt
// (9 (s.)@)]
pH

, [y 1/(2H)
+/ / E/ / <Z|D5 [Tt—sgk(s,-)(x)]l2> dg|  dsdzdt
o Jre Jo |Jo \;3

C(I + ). (5.7)

Tt $g"( )55’“ dzdt

IN

By Theorem 3.6,

dx dt

I
/OT/]Rd < 0 klet ‘sgx ()] d3>p/2dxdt
J

00 p
Z Tt sgg, )565
k=

llue — ulz”]%g

IN

p/2

T e[ o f 1(2m) 72
+ / / E / > DY [Tieagh(s, ) ()] 0| ds%  dadt
0o Jrd o |Jo \r&1
= C(1+J2). (58)
For evaluating the terms I, and Js above, we need to observe that:
k k
Dy [Ti-sg"(s,)(@)] = Ti—s[D} " (s,)](x). (5.9)

(This is a consequence of Prop. 4.3.(a), and the fact that T;_.g*(s,-)(z) = (¢%(s,") * Gi—s)(x) = (9" (s,),
Gro(z— 1))
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By (A.1) (see Appendix A) and Minkowski’s inequality, we have:

Tt Tt
L = E/ / T —s9(s,-)(2)]}, dedsdt = E/ / 1T —sg(s, ~)||’£p(l2)dsdt
o Jo Jre o Jo

T t
< B[ [ a0, 005 < Tlally, (5.10)

L = E/ //}Rd </ Ty —<[Dag(s, )](x)112/Hd9>pdedsdt
o L[ ([ o) ]
- //(/ ITis[Dag(s, )] 1}/, )pHdsdt

/ / (/ 1Dag(s, VY%, )pHdsdt

pH
< TE / (/ |Dag(s, 1Y md@) ds = TIDgly o) (5.11)

IN

IN

From (5.7), (5.10) and (5.11), we conclude that:

lu=willy < T (g, + 10910 o)) = CTIgIE oy o

Using Theorem A.1 (Appendix A) and Minkowski’s inequality, we have:

T t p/2
E/ / </ |thsga:(5; )(ﬂf)|l22d8) dtdz
R4 JO 0

T
< N8 [ [l ol dsd = Nlgly, (512)

Ji

Using Theorem A.2 (Appendix A), we have:

2H p/2

B /OT / (/OTmS[Degz<s,~>1<x>§!’*d9> ds|  dtda

T[T ) PH
< NE/ / (/ |Dgg(s,x)|f2dx) do| ds
o |Jo Rd
T/ T " pH
= NE/O /0 1Dog(s, 2)ll; )0 ds:NHDgH%gYH(lz). (5.13)

From (5.8), (5.12) and (5.13), we infer that:

e = urallBy < CN (llgltig + 109120 1)) = OV 0y

This concludes the proof of (5.5).
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It remains to prove that u € H;H. Using (5.5), we have:

sy < sl + u = wsliag < N (Wl s + sz, ) (5.14)
”UzzHH;l < ”UIMJHH;l + l|uze — ulCECEHH;1 < ”UMJHH?, + fJuz — ulz”Hg
< N (Wl + gl i ) - (5.15)

Using the fact that [|¢[|gs < [|¢[|lz, + [[¢wall -1, (5.14) and (5.15), we get:

ey < ety + Netwallgr < N (1 fllgss + gl gz, ) -

We conclude that v € Hl and ug, € Hy L and hence u € H;H. Since Du = Au + f, we also infer that
lullses < N1l + lalusnce, 1)
Case 2. The case of arbitrary g = (¢*); € ]L}f(Lp, ly) follows as in the proof of Theorem 4.2 of [13], using

an approximation argument. This is based on the validity of the result in Case I and the completeness of the
spaces H7~2, L7 (H2 1, 15) and H7 p (Thm. 5.5.(b)) O

Recall that, if V' is a Banach space and o € (0, 1), the Holder space C?([0,T], V) is defined as the class of all
continuous functions v : [0,7] — V with

u(t) —u(s)||v
lullcoo.ry,vy = sup Jlu(®)|lv +  sup M .
te[0,7] o<s<t<T  (t—s

Our final result is an embedding theorem for the space My ;, similar to Theorem 7.2 of [13].

Theorem 5.7. Letp >2,n€ R and 1/2> > a > 1/p. If u € Hy j then u € Co‘fl/”([O,T],Hg*M) a.s
and
Blut, )~ u(s, )2y 2o < N, Bp. T~ )7 Jully . VO<s<t<T:

p
C“*l/P([O,T],H;"72B) S N(d7 ﬁaaapaT)HU’H ZYH.

Proof. We define f = Du — Au, g = Su and ug = u(0,-). Then wu satisfies the equation dv = (Av + f)dt +
>, gF6Br, with initial condition v(0,-) = ug. By Theorem 5.6, this equation has a unique solution v € Hy w-
It follows that u(t,-) = v(t,-) for all ¢t € [0,T], and it suffices to prove the theorem for v in place of u. By
Proposition 5.4, without loss of generality, we take n = 23. The theorem will be proved once we show that

Elul?

Bllu(t,-) = u(s, )|, < N(t—s)*"~" {|f| e E||u0|?{g2/p} (5.16)
E sup ”U(t, ) - U(Sa )pr <N Hf” + ||g|| n EHU ” (5 17)
o<s<t<T  (t—s)P~1 pe LLP(HD 1) Ol ym—2/o (- :

Using an approximation argument and Theorem 5.5, it is enough to assume that ug(-) = 14,¢(:) with Ay €
F,¢p e Cg°,

ZZlA Lo g (i () and - g¥( ZFl(t" o (DgF () (5.18)

=1 j=1
where 4; € F, 0 < t; < ... < t,,, < T (non-random), f;; € Cg°, Fik € Spr, 0 < th < ... < t’;@k <T
(non-random), g¥ € C§°, and g¥ = 0 for k > K.
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Clearly, ug € L,(,F, Hy /"), f € HO and g € L};”(H}, l5). By Theorem 5.6, it follows that u € H2 ;. By
Theorem 5.5.(a), uw € C([0,T],L,) a.s.

Let uq (¢, x) = Tyuo(x) —i—fot Ti—sf(s,)(z)ds and ua(t, x) = u(t, ) —uy (¢, z). Relations (5.16) and (5.17) for uy
follow as in the proof of Theorem 7.2 of [13].
Hence, it suffices to prove (5.16) and (5.17) for us. Using (5.6), it follows that

w4 7,2) — wa(r, @) = (T, — Dus(r, +Z/ T (0, ) (@)55E

and hence E|luz(r +,-) — ua(r, )||]Zp < N(As(r,vy) 4+ Ba2(r,v)), where

) = B [T = D) @)
00 r4y p
Bar) = B[ 3 / Trioypg" (0, )(2)08%| d

We now apply Lemma 7.4 of [13] to the continuous function us : [0,7] — Lp:

Bllua(t,) —ua(s, )l < N(t =) (L2(t, 5) + Ja(t, 5))

£ sup lua(t, ) — ua(s, )7,

0<s<t<T (t — s)or—1 < N(Ix(t, s) + Jao(t, 5)),

with

t—s d"}/ t—y t—s d"}’ t—y
bt = [ =5 [ i e = [ 75 [ Baroar

The term I»(t, s) is estimated as in [13], using Theorem 5.6:
— g)(B=a)p|| 4P
(t,5) < N(t = )OIl s (5.19)

It remains to estimate Ja(t, s). Using Theorem 3.6, we have:

T4y p/2
Byry) < N{ /E(/ |Tr+7_pg<p,-><x>|idp) da
i
oH p/2

o /+ (/OT|D9[T7-+w_pg<p,->< ]P/Hde) dp| da

= N(By(r,v) + By (r,7)). (5.20)

The term Bj(r,) is treated as in [13]:

vy
By(r,7) < Nvﬁ”’lE/O lg(r + o Mpi

dp. (5.21)
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For the term BY(r,v), we use (5.9), Holder’s inequality with ¢ = p/(p — 2), Minkowski’s inequality, and
Lemma 7.3 of [13]:

p/2

B 2H
" il r 1/H
By (r,y) = E/ /O|Tr+vfp[D99(Pa')](Z) i do) dp|  dx
.

r p/2

2H
o T
= E /p%‘lpl_w </ [ Tp[Dog(r + — p, )l |1/Hd9> dp| da
0 0

pH

Y T
nyﬁp_lE/ p(l—Qﬁ)P/Q /Rd (/ |Tp[D99(’I" + v = p, )](I) llz/Hd9> dxdp
0 0
K r 1/pr)  1PH
prflE/O p(1-20)p/2 VO (/Rd T, [Dog(r +~ — p, -)](x)|g’2dx) d@] dp
o1 7 a2 (N[ [T H v
ny E/O p <p1/2_ﬁ> /0 |‘Deg(7’+’yfp,~)||H" l(l ) dp

0% T
= N’Vﬂp‘lE/ </ 1Dog(r +~ = p,-)|
0 0

Using (5.20), (5.21) and (5.22), we obtain:

IN

IN

IN

pH
1/H
H;Ll(h)d9> dp. (5.22)

t—s 1 t— o
- - P
nits) < NE [ o [ gt gy oy
t—s t—ry 1H pH
+E/ o ﬁ)p/ / / 1Dog(r + p: )l s, 40 | drdpdy
t pH

- 1/H

< M- E [ g8 [ ( [T ) ar
_ 5)(B—a)
< N(@t—s)77 p”gHLl Lo (gn L ) (5.23)
Relations (5.16) and (5.17) for ug follow from (5.19) and (5.23). O

APPENDIX A. A BANACH-SPACE GENERALIZATION OF LITTLEWOOD-PALEY INEQUALITY

Let V' be an arbitrary Hilbert space. For any f € L,(V) = L,(R%, V), p > 1, we let
Tif(z) := y [ —y)Gi(y)dy,
where Gy (z) = (47t)~ %2 exp{—|z|?/(4t)},t > 0,2 € R? is the heat kernel.

First, notice that:
ITefllz,0v) < 1fllL, vy (A1)
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To see this, note that |T;f(z)|v < [za |f(z — y)|lvGi(y)dy for any z € R Using Minkowski’s inequality for

integrals, we have:
P 1/p
Tty < | [ ([ - nhGina) a
Rd \JRd

1/p
< [t ([ 15 ntar) " = 11le,wGiln

The following result is a generalization of the Littlewood-Paley inequality, due to [11] (see Thm. 1.1 of [11],
and [14]).

A

Theorem A.1. Letp € [2,00) and f € C§°((a,b) x R, V), where —0o < a < b < oo. Then

/Rd/a [/ |VTi—sf(s ()IvdS] /thd:c<N/ / (¢ )| dt da,

where N is a constant depending only on d and p.

In the present article, we need the following generalization of Theorem A.1 to the case of U-valued functions,
where U = Ly, ((a, 3), V) is a Banach space.

Theorem A.2. Letp € [2,00) and f € C°((a,b) x RE, U), where —0o < a <b< oo and U = Ly ((o, 8),V)
with —oco < a< <00 and 1/2 < H < 1. Then

)

p/2

b t 8 s 2H
/Rd/a /(/ﬂ [VTi—sf(s,-,0)(@)ly d9> ds| dtdr <

N/ab Vj </R (2, 9)|{’/dx> o de] " dat, (A.2)

where N is a constant depending only on d and p.

The remaining part of this section is dedicated to the proof of Theorem A.2. We follow the lines of the proof
of Theorem 16.1 of [14]. It is enough to assume that a = —oco and b = co. We first treat the case p = 2.

Lemma A.3. Relation (A.2) holds for p = 2.
Proof. Due to Minkowski’s inequality, the left-hand side of (A.2) is smaller than

o B o 1/(2H) 2H
/ l/ (/ [VTi—sf(s,-, 9)(x)|%,d:£dt> dG] ds.
—00 e s R4

Using the Fourier transform, the inner integral equals

/OO/ €20 =9l | T (s, €, 0|2 dedt
s R4

/ FFs, .0 e? < / me<ts>€2dt) at
R4 s

[ 1o

which proves (A.2) for p = 2. O
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Assume now that p > 2. Note that VTih(z) = t~Y/2U,h(x), where W,h(z) = t=42¢(x/\/t) * h(z) and
o(x) = 7(47r)*d/2:ce*|“’|2/4. Set

t 8 2H
u(t,x) = Gf () = / (/ |wt_sf<s,-,e><x>|l/Hde> L ds

oo t—s
t

pH

/}Rd /_o; lu(t, 2)Pdt dz < N/_Z l(/}R |f|{’,(t,x,9)dx) V) de] N .

Recall that the maximal function of g : R? — R is defined by:

1/2

1/2

We want to prove that:

1
M, g(x) = sup B l9(y)|dy,
r>0 DPr JB,(z)

where B,.(r) = {y;|y — 2| < r} and B, = B,(0). If h : R — R, we define M, h(t,z) = M,h(t,-)(x). Let
Qo =[—4,0] x [-1, l]d.
Lemma A.4. Assume that f(t,z,0) =0 for (t,z) € (—12,12) X Bsq. Then for any (t,z) € Qo

/Q Ju(s, ) Pdsdy < N M| £ (6,2, ) [, (A.4)
0

where Uy = L1 /2m)((c, B)) and N depends only on d.
Proof. Using Lemma A.3, the left-hand side of (A.4) is smaller than:

N/OOO /j </R |f|2v(s,y,9>dy>

2H

1/(2H) H 0 s
dg| ds < N/ /(Mx|f|2v(s,x,9))1/<2H>de ds
—12 a

0
= N/ M| £ (s, 2, %) |uods < NM[Malf (£ 2, %) v,
—12

O

Lemma A.5. Assume that f(t,x,0) =0 for t & (—12,12). Then (A.4) holds for any (t,z) € Qo.

Proof. Let ¢ € C§°(R?) be such that ¢ = 1 in Bag, ¢ = 0 outside Bsg, and ((z) € (0,1) for € B3g\Bag. Let
a=(fand f=(1—-C)f. Then

, 1/2
Gita) — g(a+6)(t,z)(/ I\Ift5(a+6)(8,.,*)(x)|2ut18ds)

< Galt,z) +G6(t ),

using Minkowski’s inequality in Lo (R, U), which in turn relies on Minkowski’s inequality in the Banach space U.
Since « satisfies the conditions of Lemma A.4 and |a|y < |f|v, for any (¢,2) € Qo

/ |Ga(s, y)*dsdy < NMy[Ma|aly (8, 2, ) v, < NM|[Ma| f[7 (£ 2, ) llv,.-

0



Lp-THEORY FOR THE STOCHASTIC HEAT EQUATION... 137

Therefore, it suffices to prove that (A.4) holds for any function f such that f(¢,2,0) = 0if t ¢ (—12,12) or
x € Bag (in particular for 3). This follows as in the proof of Lemma 16.5 of [14], using Minkowski’s inequality
for integrals. O

Lemma A.6. Assume that f(t,z,0) =0 for t > —8. Then for any (t,z) € Qo
[ tuls,) = u(t.0)Pdsdy < VMM b0
0

Proof. The argument is similar to the one used in the proof of Lemma 16.6 of [14], with some minor modifications
(as above). O

We introduce now the filtration Q,,n € Z of partitions Q, = {Qn(io,i1,-..,%4d);
i0,01...,iq € Z} of R4 asin [14]. For any 2 € R? and n € Z, we denote by Q,(z) the unique Q € Q,
containing x. The sharp function of g € LLlOC(Rd) is defined by:

1
#
g7 (x) = l9(y) — gjn(z)|dy,
neZ |Qn( )| Qn(x) !
where g|,,(z) = |Qn (2 fQ @) g(y)dy. If p € (1, 00), then by the Fefferman-Stein theorem, for any g € L,(R?),

lgllz,®aey < N||9#||Lp RY)-
Lemma A.7. Let f € C3°(R4 U) be arbitrary. For any (t,r) € R,
(GH#(t,x) < N(M|[Mo | f5 (8,2, ) [0y) /2

Proof. The argument is based on Lemma A.5 and Lemma A.6, and is similar to the one used for proving
relation (16.20) of [14]. O

Proof of Theorem A.2. Assume that p > 2. We use the Fefferman-Stein theorem, Lemma A.7, the boundedness
of the operators M; and M, (p > 2), and Minkowski’s inequality for integrals (pH > 1):

IN

Jull}, garsy < NIGHPIL gory < N / / (ML IV £13 (1, 2, %) )P/t de

= N [ MM (07,9l 22 ey
S T
R4 JR

B pH
- [/ (Mx|f|%/(t,m,9))1/(2H)d91 o

pH

N/ V (/ (M, |f|V(tx9))”/2dx)1/(pH)d9] d
N/R Vj (/R |f|{’,(t,x,9))dx) v deert,

i.e. (A.3) holds. O

IN

IN
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