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Lp-THEORY FOR THE STOCHASTIC HEAT EQUATION
WITH INFINITE-DIMENSIONAL FRACTIONAL NOISE ∗

Raluca M. Balan
1

Abstract. In this article, we consider the stochastic heat equation du = (Δu + f(t, x))dt +∑∞
k=1 gk(t, x)δβk

t , t ∈ [0, T ], with random coefficients f and gk, driven by a sequence (βk)k of i.i.d.
fractional Brownian motions of index H > 1/2. Using the Malliavin calculus techniques and a p-th

moment maximal inequality for the infinite sum of Skorohod integrals with respect to (βk)k, we prove
that the equation has a unique solution (in a Banach space of summability exponent p ≥ 2), and this
solution is Hölder continuous in both time and space.
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1. Introduction

The study of stochastic partial differential equations driven by colored noise has become an active area of
research in the recent years, which is viewed as an alternative (with an increased potential for applications) to the
classical theory of equations perturbed by space-time white noise (see [5,10,13,26] for fundamental developments
– using different approaches – in the white noise case.)

A Gaussian noise is said to be fractional in time, if its temporal covariance structure coincides with that
of a fractional Brownian motion (fBm). Recall that a centered Gaussian process (βt)t∈[0,T ] is a fBm of index
H ∈ (0, 1) if RH(t, s) := E(βtβs) = (t2H + s2H − |t − s|2H)/2. The case H > 1/2 is referred as the “regular”
case, whereas the case H = 1/2 corresponds to the Brownian motion. (The survey articles [19] and [9] offer
more details on the fBm.)

Since the fBm is not a semimartingale, one cannot use the Itô calculus, which lies at the foundation of the
study of equations driven by white noise. Various methods exist in the literature to circumvent this difficulty,
based on the Skorokod integral (e.g. [1,2,4,6,7]), the pathwise generalized Stieltjes integrals (e.g. [21,23,27]), or
the “rough paths” analysis (e.g. [15,16]).

The present article is dedicated to the study of the stochastic heat equation with (additive) infinite-dimensional
fractional noise:

du(t, x) = (Δu(t, x) + f(t, x))dt+
∞∑

k=1

gk(t, x)δβk
t , t ∈ [0, T ], x ∈ Rd, (1.1)
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where (βk)k is a sequence of i.i.d. fBm’s of index H > 1/2, the solution is defined in the weak sense (using
integration against test functions φ ∈ C∞

0 (Rd)), and δβk
t is a formal way of indicating that the stochastic

integrals (which are used for defining the solution) are interpreted in the Skorohod sense.
Let Hn

p (Rd) (n ∈ R, p ≥ 2) be the Sobolev space of all generalized functions on Rd whose derivatives of
order k ≤ n lie in Lp(Rd). Our main result shows that for suitable initial condition u0, and Sobolev-space
valued random processes f = {f(t, ·)}t∈[0,T ] and gk = {gk(t, ·)}t∈[0,T ], k ≥ 1, equation (1.1) has a unique
Hn

p (Rd)-valued solution u = {u(t, ·)}t∈[0,T ], and u ∈ C([0, T ], Hn−2
p (Rd)) a.s., such that

E sup
t≤T

‖u(t, ·)‖p

Hn−2
p (Rd)

<∞, E

∫ T

0

‖u(t, ·)‖p
Hn

p (Rd)
dt <∞.

Moreover, u belongs to the Hölder space Cα−1/p([0, T ], Hn−2β
p ), with probability 1, for any 1/2 ≥ β > α > 1/p.

If in addition, γ := n−2β−d/p > 0, u is also γ-Hölder continuous in space, since Hn−2β
p (Rd) ⊂ Cγ(Rd). These

results provide generalizations to the fractional case of the existing results for the heat equation driven by a
sequence (wk)k of i.i.d. Brownian motions (see [12,13,22]).

We note that our result cannot be inferred from the results existing in the literature for parabolic equations
driven by Hilbert-space valued fractional noise with trace-class covariance operator (e.g. [8,17,25]). Neverthe-
less, we should mention the recent related investigations of [21] and [23], using fractional calculus techniques
(as opposed to the Malliavin calculus techniques used here), which establish the existence and Hölder continu-
ity (in time) of a variational/mild L2(D)-valued solution for a parabolic initial-boundary value problem with
multiplicative fractional noise, when D ⊂ Rd is a bounded open set.

Similarly to the Brownian motion case, at the origin of our developments lie two basic tools: (1) a general-
ization of the Littlewood-Paley inequality for Banach-space valued functions (Thm. A.2, Appendix); and (2) a
suitable p-th moment maximal inequality for the sum of Skorokod integrals with respect to (βk)k (Thm. 3.6):

E sup
t≤T

∣∣∣∣∣
∞∑

k=1

∫ t

0

uk
sδβ

k
s

∣∣∣∣∣
p

≤ Cp,H,T

⎧⎪⎪⎨⎪⎪⎩E
∣∣∣∣∣
∫ T

0

∞∑
k=1

|uk
s |2ds

∣∣∣∣∣
p/2

+E

∣∣∣∣∣∣∣
∫ T

0

⎡⎣∫ T

0

( ∞∑
k=1

|Dβk

θ uk
s |2

)1/(2H)

dθ

⎤⎦2H

ds

∣∣∣∣∣∣∣
p/2

⎫⎪⎪⎬⎪⎪⎭ . (1.2)

Compared to the Burkholder-Davis-Gundy inequality (which was used in the Brownian motion case), inequal-
ity (1.2) contains an additional term involving the Malliavin derivative Dβk

uk of the process uk with respect
to βk. It is because of this extra term that our developments deviate significantly from the white noise case,
and we require that the multiplication coefficient gk lie in a suitable space of Malliavin differentiable functions
with respect to βk (which in particular, implies that gk is measurable with respect to βk).

This article is organized as follows. In Section 2, we give some preliminaries on the Malliavin calculus for
Hilbert-space valued fractional processes, and we develop a maximal inequality for these processes. In Section 3,
we convert the inequality obtained in Section 2 (which speaks about the Skorohod integral with respect to a
Hilbert-space valued fractional process), into an inequality which speaks about the sum of Skorohod intregrals
with respect to a sequence (βk)k of i.i.d. fBm’s. In Section 4, we introduce the stochastic Banach spaces in
which we are allowed to select the coefficients f and (gk)k. Section 5 is dedicated to the main result, as well
as the Hölder continuity of the solution. The appendix contains the generalization of the Littlewood-Paley
inequality to Banach space valued functions.
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2. Malliavin calculus for fractional processes

In this section, we introduce the basic facts about the Malliavin calculus with respect to (Hilbert-space
valued) fractional processes. We refer the reader to [18] and [20] for a comprehensive account on this subject.
Throughout this work, we let H ∈ (1/2, 1) be fixed.

We begin by introducing some Banach spaces and Hilbert spaces of deterministic functions, which are used
for the Malliavin calculus with respect to fractional processes.

If V is an arbitrary Banach space, we let EV be the class of all elementary functions φ : [0, T ] → V of the
form φ(t) =

∑m
i=1 1(ti−1,ti](t)ϕi with 0 ≤ t0 < . . . < tm ≤ T and ϕi ∈ V . Let |HV | be the space of all strongly

measurable functions φ : [0, T ] → V with ‖φ‖|HV | <∞, where

‖φ‖2
|HV | := αH

∫ T

0

∫ T

0

‖φ(t)‖V ‖φ(s)‖V |t− s|2H−2dtds, αH = H(2H − 1).

The space EV is dense in |HV | with respect to the norm ‖·‖|HV |. It is known that there exists a constant bH > 0
such that ‖φ‖|HV | ≤ bH‖φ‖L1/H([0,T ];V ) for any φ ∈ L1/H([0, T ];V ) (see e.g. relation (11) of [2]).

In particular, if V = R, we denote EV = E and |HV | = |H|.
We let |H| ⊗ |HV | be the space of all strongly measurable functions φ : [0, T ]2 → V with ‖φ‖|H|⊗|HV | < ∞,

where

‖φ‖2
|H|⊗|HV | := α2

H

∫
[0,T ]4

‖φ(t, θ)‖V ‖φ(s, η)‖V |t− s|2H−2 |θ − η|2H−2dθdηdsdt.

If V is a Hilbert space, we let HV be the completion of EV with respect to the inner product 〈·, ·〉HV defined by:

〈φ, ψ〉HV := αH

∫ T

0

∫ T

0

〈φ(t), ψ(s)〉V |t− s|2H−2dsdt.

We have:
‖φ‖HV ≤ ‖φ‖|HV | ≤ bH‖φ‖L1/H([0,T ];V ) ≤ bH‖φ‖L2([0,T ];V ), (2.1)

and L2([0, T ];V ) ⊂ L1/H([0, T ];V ) ⊂ |HV | ⊂ HV . In particular, if V = R, we denote HV = H. The space H
may contain distributions of order −(2H − 1). Note that HV is isomorphic with H⊗V , and the inner products
in the two spaces are the same.

We let |HV |⊗|HV | be the space of all strongly measurable functions φ : [0, T ]2 → V ⊗V with ‖φ‖|HV |⊗|HV | <
∞, where

‖φ‖2
|HV |⊗|HV | := α2

H

∫
[0,T ]4

‖φ(t, θ)‖V ⊗V ‖φ(s, η)‖V ⊗V |t− s|2H−2 |θ − η|2H−2dθdηdsdt,

and HV ⊗HV be the completion of EV ⊗ EV with respect to the inner product 〈·, ·〉HV ⊗HV defined by:

〈φ, ψ〉HV ⊗HV := α2
H

∫
[0,T ]4

〈φ(t, θ), ψ(s, η)〉V ⊗V |t− s|2H−2|θ − η|2H−2dθdηdsdt.

We have: (see e.g. Lem. 1, [2] for the second inequality below)

‖φ‖HV ⊗HV ≤ ‖φ‖|HV |⊗|HV | ≤ bH‖φ‖L1/H([0,T ]2;V ⊗V ) ≤ bH‖φ‖L2([0,T ]2;V ⊗V ), (2.2)

and L2([0, T ]2;V ⊗ V ) ⊂ L1/H([0, T ]2;V ⊗ V ) ⊂ |HV | ⊗ |HV | ⊂ HV ⊗HV .
We begin now to introduce the main ingredients of the Malliavin calculus with respect to fractional processes.
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Let V be an arbitrary Hilbert space and B = (B(φ))φ∈HV be a centered Gaussian process, defined on a
probability space (Ω,F , P ), with covariance:

E(B(φ)B(ψ)) = 〈φ, ψ〉HV , ∀φ, ψ ∈ HV . (2.3)

If we let Bt(ϕ) := B(1[0,t]ϕ) for any ϕ ∈ V, t ∈ [0, T ], then

E(Bt(ϕ)Bs(η)) = RH(t, s)〈ϕ, η〉V , ∀ϕ, η ∈ V, s, t ∈ [0, T ].

(In particular, if V = R, then βt := B(1[0,t]), t ∈ [0, T ] is a fBm of index H .)
Let

SB := {F = f(B(φ1), . . . , B(φn)); f ∈ C∞
b (Rn), φi ∈ HV , n ≥ 1}

be the space of all “smooth cylindrical” random variables, where C∞
b (Rd) denotes the class of all bounded

infinitely differentiable functions on Rn, whose partial derivatives are also bounded. Clearly SB ⊂ Lp(Ω) for
any p ≥ 1.

The Malliavin derivative of an element F = f(B(φ1), . . . , B(φn)) ∈ SB , with respect to B, is defined by:

DBF :=
n∑

i=1

∂f

∂xi
(B(φ1), . . . , B(φn))φi.

Note that DBF ∈ Lp(Ω;HV ) for any p ≥ 1; by abuse of notation, we write DBF = (DB
t F )t∈[0,T ] even if DB

t F
is not a function in t. We endow SB with the norm:

‖F‖p

D
1,p
B

:= E|F |p + E‖DβF‖p
HV

,

and we let D
1,p
B be the completion of SB with respect to this norm. The operator DB can be extended to D

1,p
B .

The adjoint
δB : Dom δB ⊂ L2(Ω;HV ) → L2(Ω)

of the operator DB, is called the Skorohod integral with respect to B. The operator δB is uniquely defined
by the following relation:

E(FδB(U)) = E〈DBF,U〉H, ∀F ∈ D
1,2
B .

Note that E(δB(U)) = 0 for any u ∈ Dom δB . If U ∈ Dom δB , we use the notation U = (Ut)t∈[0,T ] and
δB(U) =

∫ T

0 UsδBs.
If V ′ is an arbitrary Hilbert space, we let

SB(V ′) :=

⎧⎨⎩U =
m∑

j=1

Fjφj ;Fj ∈ SB , φj ∈ V ′,m ≥ 1

⎫⎬⎭
be the class of all “smooth cylindrical” V ′-valued random variables. Clearly SB(V ′) ⊂ Lp(Ω;V ′) for any p ≥ 1.

The Malliavin derivative of an element U =
∑m

j=1 Fjφj ∈ SB(V ′) is defined by DBU :=
∑m

j=1(D
BFj)φj . We

have DBU ∈ Lp(Ω;HV ⊗ V ′) for any p ≥ 1. We endow SB(V ′) with the norm:

‖U‖p

D
1,p
B (V ′)

:= E‖U‖p
V ′ + E‖DBU‖p

HV ⊗V ′ ,

and let D
1,p
B (V ′) be the completion of SB(V ′) with respect to this norm. The operator DB can be extended to

D
1,p
B (V ′).
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In particular, if V ′ = HV , then D
1,2
β (HV ) ⊂ Dom δB . If U ∈ D

1,2
B (HV ) then DBU ∈ L2(Ω;HV ⊗ HV ); by

abuse of notation, we write DBU = (DB
t Us)s,t∈[0,T ].

The space D
1,2
B (HV ) is viewed as a “suitable” class of Skorohod integrands with respect to B. For any

U ∈ D
1,2
B (HV ), we have:

E|δB(U)|2 = E‖U‖2
HV

+ E
(〈DBU, (DBU)∗〉HV ⊗HV )

)
≤ E‖U‖2

HV
+ E‖DBU‖2

HV ⊗HV
= ‖U‖2

D
1,2
B (HV )

, (2.4)

where (DBU)∗ is the adjoint of DBU in HV ⊗HV .
The following result is a consequence of Meyer’s inequalities.

Proposition 2.1 (Prop. 2.4.4 of [18]). Let p > 1 and U ∈ D
1,p
B (HV ). Then U lies in the domain of δB in

Lp(Ω) and

E|δB(U)|p ≤ CH,p

{‖E(U)‖p
HV

+ E‖DBU‖p
HV ⊗HV

}
,

where CH,p is a constant depending on H and p.

As a consequence of Proposition 2.1, (2.1) and (2.2), we obtain:

E|δB(U)|p ≤ CH,pbH{‖E(U)‖p
L1/H([0,T ];V ) + E‖DBU‖p

L1/H([0,T ]2;V ⊗V )}. (2.5)

We denote by D
1,p
B (|HV |) the set of all elements U ∈ D

1,p
B (HV ), such that U ∈ |HV | a.s., DBU ∈ |HV | ⊗ |HV |

a.s., and ‖U‖
D

1,p
B (|HV |) <∞, where

‖U‖p

D
1,p
B (|HV |) := E‖U‖p

|HV | + E‖DBU‖p
|HV |⊗|HV |.

The following result generalizes Theorem 4 of [2] to the case of V -valued fractional processes.

Theorem 2.2. Let 1/2 < H < 1, p > 1/H and 0 < ε < H − 1/p. Then, there exists a constant C depending
on H, p, ε and T such that

E sup
t≤T

∣∣∣∣∫ t

0

UsδBs

∣∣∣∣p ≤ C

⎧⎨⎩
(∫ T

0

‖E(Us)‖1/(H−ε)
V ds

)p(H−ε)

+E

⎡⎣∫ T

0

(∫ T

0

‖DB
θ Us‖1/H

V ⊗V dθ

) H
H−ε

ds

⎤⎦p(H−ε)
⎫⎪⎬⎪⎭ (2.6)

for any process U = (Ut)t∈[0,T ] ∈ D
1,p
B (|HV |) for which the right-hand side of (2.6) is finite.

Proof. The argument is similar to the one used in the proof of Theorem 4 of [2]. We include it for the sake of
completeness. Let α = 1 − 1/p− ε.

By writing
∫ t

0
UsδBs = cα

∫ t

0
(t− r)−α

(∫ r

0
Us(r − s)α−1δBs

)
dr, and using Hölder’s inequality, we obtain:

E sup
t≤T

∣∣∣∣∫ t

0

UsδBs

∣∣∣∣p ≤ cα,pE

∫ T

0

∣∣∣∣∫ r

0

Us(r − s)α−1δBs

∣∣∣∣p dr,
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where cα,p is a constant depending on α and p. Using (2.5), we have:

E sup
t≤T

∣∣∣∣∫ t

0

UsδBs

∣∣∣∣p ≤ cα,p,H

{∫ T

0

(∫ r

0

‖E(Us)‖1/H
V (r − s)(α−1)/Hds

)pH

dr

+ E

∫ T

0

(∫ r

0

∫ T

0

‖DB
θ Us‖1/H

V ⊗V (r − s)(α−1)/Hdθds

)pH

dr

⎫⎬⎭ ,

where cα,p,H is a constant which depends on α, p andH . The result follows by applying Hardy-Littlewood
inequality (p. 119 of [24]). �

When p ≥ 2, the previous theorem leads to the following result.

Corollary 2.3. Let 1/2 < H < 1 and p ≥ 2 be arbitrary. Then, there exists a constant C depending on H, p
and T such that

E sup
t≤T

∣∣∣∣∫ t

0

UsδBs

∣∣∣∣p ≤ C

⎧⎨⎩
(∫ T

0

‖E(Us)‖2
V ds

)p/2

+E

⎡⎣∫ T

0

(∫ T

0

‖DB
θ Us‖1/H

V ⊗V dθ

)2H

ds

⎤⎦p/2
⎫⎪⎬⎪⎭ (2.7)

for any process U = (Ut)t∈[0,T ] ∈ D
1,p
B (|HV |) for which the right-hand side of (2.7) is finite.

Proof. The result follows by applying Theorem 2.2 with ε < H−1/2 and using the fact that ‖φ‖L1/(H−ε)([0,T ]) ≤
CT ‖φ‖L2([0,T ]) for any φ ∈ L2([0, T ]). �

3. The Maximal inequality

The goal of this section is to translate the p-th moment maximal inequality given by Corollary 2.3 into
a similar inequality (in the l2-norm) for a sequence (uk)k of Skorohod integrable processes, with respect to
a sequence (βk)k of i.i.d. fBm’s. The idea is to recover a Gaussian process B (as in Sect. 2) from (βk)k,
and to construct a Skorohod integrable process U (with respect to B) from the sequence (uk)k, such that
δB(U1[0,t]) =

∑∞
k=1 δ

βk

(uk1[0,t]) for all t ∈ [0, T ] a.s.
Let βk = (βk

t )t∈[0,T ], k ≥ 1 be a sequence of i.i.d. fBm’s of Hurst index H > 1/2, defined on the same
probability space (Ω,F , P ). Let V be an arbitrary Hilbert space, and (ek)k a complete orthonormal system
in V .

The first result shows that it is possible to construct a centered Gaussian process B with covariance (2.3),
from the sequence (βk)k. This result is probably well-known; we state it for the sake of completeness.

Lemma 3.1. Let (φk)k ⊂ H be such that
∑∞

k=1 ‖φk‖2
H <∞. Then:

a) ϕ(N) :=
∑N

k=1 φ
kek ∈ HV for all N ≥ 1, and there exists ϕ :=

∑∞
k=1 φ

kek ∈ HV such that ‖ϕ(N)−ϕ‖HV →
0 as N → ∞. We have:

‖ϕ‖2
HV

=
∞∑

k=1

‖φk‖2
H; (3.1)

b) B(N)(ϕ) :=
∑N

k=1 β
k(φk) ∈ L2(Ω) for any N ≥ 1, and there exists B(ϕ) :=

∑∞
k=1 β

k(φk) ∈ L2(Ω) such
that E|B(N)(ϕ) − B(ϕ)|2 → 0 as N → ∞. The process B = {B(ϕ)}ϕ∈HV is Gaussian with mean zero and
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covariance (2.3). In particular, for any t ∈ [0, T ], ϕ ∈ V , we have:

Bt(ϕ) := B(1[0,t]ϕ) =
∞∑

k=1

〈ϕ, ek〉V βk
t in L2(Ω). (3.2)

Proof. a) The sequence {ϕ(N)}N is Cauchy in HV , since (ϕ(N)−ϕ(M))(t) =
∑N

k=M+1 φ
k(t)ek for any N > M ≥

1, and hence

‖ϕ(N) − ϕ(M)‖2
HV

= αH

N∑
k=M+1

∫ T

0

∫ T

0

φk(t)φk(s)|t− s|2H−2dsdt

=
N∑

k=M+1

‖φk‖2
H → 0, as M,N → ∞.

In particular, ‖ϕ(N)‖2
HV

=
∑N

k=1 ‖φk‖2
H. By letting N → ∞, we obtain (3.1).

b) The sequence {B(N)(ϕ)}N is Cauchy in L2(Ω), since B(N)(ϕ) − B(M)(ϕ) =
∑N

k=M+1 β
k(φk) for any

N > M ≥ 1, and hence

E|B(N)(ϕ) −B(M)(ϕ)|2 =
N∑

k=M+1

E|βk(φk)|2 =
N∑

k=M+1

‖φk‖2
H → 0, as M,N → ∞.

To prove (3.2), note that 1[0,t]ϕ =
∑∞

k=1 φ
kek, where φk = 1[0,t]〈ϕ, ek〉V . It follows that B(1[0,t]ϕ) =∑∞

k=1 β
k(φk) =

∑∞
k=1〈ϕ, ek〉V βk

t . �

We begin now to explore the relationship between the Malliavin derivatives with respect to (βk)k and the
Malliavin derivative with respect to B.

An immediate consequence of (3.2) is that βk
t = B(1[0,t]ek) for any t ∈ [0, T ], and hence

βk(φ) = B(φek), ∀φ ∈ H. (3.3)

Let F = f(βk(φ1), . . . , βk(φn)) ∈ Sβk be arbitrary, with f ∈ C∞
b (Rn) and φi ∈ H. Then ϕi := φiek ∈ HV ,

F = f(B(ϕ1), . . . , B(ϕn)) ∈ SB , and

DB
t F =

n∑
i=1

∂f

∂xi
(B(ϕ1), . . . , B(ϕn))ϕi =

[
n∑

i=1

∂f

∂xi
(βk(φ1), . . . , βk(φn))φi

]
ek

= (Dβk

t F )ek.

From here we conclude that Sβk ⊂ SB, and for any F ∈ Sβk ,

‖DBF‖HV = ‖Dβk

F‖H, ‖F‖
D

1,p
B

= ‖F‖
D

1,p

βk
, ∀p ≥ 1.

It follows that D
1,p
βk ⊂ D

1,p
B for any p ≥ 1, and

DBF = (Dβk

F )ek, for any F ∈ D
1,2
βk . (3.4)
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If u =
∑m

j=1 Fjφj ∈ Sβk(H) is arbitrary, with Fj ∈ Sβk and φj ∈ H, then uek ∈ D
1,2
B (HV ) and

DB(uek) =
m∑

j=1

(DBFj)φjek =
m∑

j=1

(Dβk

Fj)φjek ⊗ ek = (Dβk

u)ek ⊗ ek.

In general, if u ∈ D
1,2
βk (H), then uek ∈ D

1,2
B (HV ) and

DB(uek) = (Dβk

u)ek ⊗ ek. (3.5)

Moreover, we have the following result:

Lemma 3.2. If uk ∈ D
1,2
βk (H), then

∑N
k=1 u

kek ∈ D
1,2
B (HV ), DB(

∑N
k=1 u

kek) =
∑N

k=1(D
βk

uk)ek ⊗ ek, and

‖∑N
k=1 u

kek‖2
D

1,2
B (HV )

=
∑N

k=1 ‖uk‖2
D

1,2
βk (H)

.

Proof. The result follows from the definitions of the norms in D
1,2
B (HV ), respectively D

1,2
βk (H), and the following

two identities: ∥∥∥∥∥
N∑

k=1

ukek

∥∥∥∥∥
2

HV

= αH

∫ T

0

∫ T

0

〈
N∑

k=1

uk
t ek,

N∑
l=1

ul
sel

〉
V

|t− s|2H−2dsdt

= αH

N∑
k,l=1

∫ T

0

∫ T

0

uk
t u

l
s〈ek, el〉V |t− s|2H−2dsdt

=
N∑

k=1

‖uk‖2
H∥∥∥∥∥DB

(
N∑

k=1

ukek

)∥∥∥∥∥
2

HV ⊗HV

= α2
H

∫
[0,T ]4

〈
N∑

k=1

DB
θ (uk

t ek),
N∑

l=1

DB
η (ul

sel)

〉
V ⊗V

×|t− s|2H−2|θ − η|2H−2dθdηdsdt

= α2
H

N∑
k,l=1

∫
[0,T ]4

(Dβk

θ uk
t )(Dβk

η ul
s)〈ek ⊗ ek, el ⊗ el〉V ⊗V

×|t− s|2H−2|θ − η|2H−2dθdηdsdt

=
N∑

k=1

‖Dβk

uk‖2
H⊗H,

where we used (3.5) for the second-last equality above. �
We need an auxiliary result.

Lemma 3.3. Let X be a normed space and yN , xN,n, xn, x ∈ X be such that: limn→∞ supN≥1 ‖yN −xN,n‖ = 0,
limN→∞ ‖xN,n − xn‖ = 0 for all n, and limn→∞ ‖xn − x‖ = 0. Then limN→∞ ‖yN − x‖ = 0.

Proof. We use ‖yN − x‖ ≤ ‖yN − xN,n‖ + ‖xN,n − xn‖ + ‖xn − x‖. �
The previous observations allow us to extend Lemma 3.1 to the case of random integrands.

Theorem 3.4. Let uk ∈ D
1,2
βk (H) for all k ≥ 1, such that

∞∑
k=1

‖uk‖2
D

1,2
βk (H)

<∞. (3.6)
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Then:
a) U (N) :=

∑N
k=1 u

kek ∈ D
1,2
B (HV ) for any N ≥ 1, and there exists U :=

∑∞
k=1 u

kek ∈ D
1,2
B (HV ) such that

‖U (N) − U‖
D

1,2
B (HV ) → 0 as N → ∞. We have: DBU =

∑∞
k=1(D

βk

uk)ek ⊗ ek and

‖U‖2
D

1,2
B (HV )

=
∞∑

k=1

‖uk‖2
D

1,2
βk (H)

. (3.7)

b) the sequence W (N) :=
∑N

k=1 δ
βk

(uk), N ≥ 1 has a limit in L2(Ω), which coincides with δB(U). We write

δB(U) =
∞∑

k=1

δβk

(uk) in L2(Ω). (3.8)

Proof. a) By Lemma 3.2, {U (N)}N is a Cauchy sequence in D
1,2
B (HV ), since:

‖U (N) − U (M)‖2
D

1,2
B (HV )

=
N∑

k=M+1

‖uk‖2
D

1,2
βk

(H)
→ 0, as M,N → ∞.

Hence, U := limN→∞ U (N) exists in D
1,2
B (HV ), and DBU = limN→∞DBU (N) in L2(Ω;HV ⊗ HV ). Also,

‖U (N)‖2
D

1,2
B (HV )

=
∑N

k=1 ‖uk‖2
D

1,2
βk

(H)
, and relation (3.7) follows by letting N → ∞.

b) By inequality (2.4) (applied for V = R and B = βk), we have:

N∑
k=M+1

E|δβk

(uk)|2 ≤
N∑

k=M+1

‖uk‖2
D

1,2
βk

(H)
→ 0, as M,N → ∞,

i.e. the sequence {W (N)}N is Cauchy in L2(Ω). We let W be the limit of {W (N)}N in L2(Ω). We now prove
that W = δB(U) (in L2(Ω)).

Step 1. Suppose that uk ∈ Sβk(H) for all k, i.e. uk =
∑mk

j=1 F
k
j φ

k
j for some F k

j ∈ Sβk and φk
j ∈ H. Since

U (N) → U in D
1,2
B (HV ), δB(U (N)) → δB(U) in L2(Ω). On the other hand

∑N
k=1 δ

βk

(uk) →W in L2(Ω). Hence,
it suffices to prove that:

δB(U (N)) =
N∑

k=1

δβk

(uk). (3.9)

Note that U (N) =
∑N

k=1

∑mk

k=1 F
k
j φ

k
j ek ∈ SB(HV ), since F k

j ∈ Sβk ⊂ SB and φk
j ek ∈ HV . Relation (3.9) follows

from (3.3) and (3.4), since:

δB(U (N)) =
N∑

k=1

mk∑
j=1

F k
j B(φk

j ek) −
N∑

k=1

mk∑
j=1

〈DBF k
j , φ

k
j ek〉HV

N∑
k=1

δβk

(uk) =
N∑

k=1

mk∑
j=1

F k
j β

k(φk
j ) −

N∑
k=1

mk∑
j=1

〈Dβk

F k
j , φ

k
j 〉H.

(We used relation (1.9) of [18], for the equalities above.)
Step 2. Suppose that uk ∈ D

1,2
βk (H) for all k. For any ε > 0, there exists uk

ε ∈ Sβk(H) such that

‖uk
ε − uk‖

D
1,2
βk

(H) < ε/2k; hence
∑∞

k=1 ‖uk
ε‖2

D
1,2
βk (H)

< ∞. By part a), Uε :=
∑∞

k=1 u
k
εek ∈ D

1,2
B (HV ) and
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‖Uε − U‖2
D

1,2
B (HV )

=
∑∞

k=1 ‖uk
ε − uk‖2

D
1,2
βk (H)

≤ ε2. Taking ε = 1/n, we conclude that for any k, there exists a

sequence (uk
n)n ⊂ Sβk(H), such that Un :=

∑∞
k=1 u

k
nek ∈ D

1,2
B (HV ) and

‖Un − U‖2
D

1,2
B (HV )

=
∞∑

k=1

‖uk
n − uk‖2

D
1,2
βk (H)

→ 0, as n→ ∞.

We now invoke Lemma 3.3, with X = L2(Ω), and

yN = W (N) =
N∑

k=1

δβk

(uk), xN,n =
N∑

k=1

δβk

(uk
n), xn = δB(Un), x = δB(U).

The hypothesis of the lemma are verified, since limN→∞ ‖xN,n−xn‖L2(Ω) = 0 for all n (by Step 1), limn→∞ ‖xn−
x‖L2(Ω) = 0 (since Un → U in D

1,2
B (HV )),

‖yN − xN,n‖2
L2(Ω) = E

∣∣∣∣∣
N∑

k=1

δβk

(uk − uk
n)

∣∣∣∣∣
2

=
N∑

k=1

E|δβk

(uk − uk
n)|2

≤
N∑

k=1

‖uk − uk
n‖2

D
1,2
βk (H)

,

and hence supN≥1 ‖yN−xN,n‖2
L2(Ω) ≤

∑∞
k=1 ‖uk−uk

n‖2
D

1,2
βk (H)

→ 0, as n→ ∞. We conclude that limN→∞ ‖yN−
x‖L2(Ω) = 0, i.e. W = δB(U). �

In the case p = 2, we have the following preliminary result.

Theorem 3.5. There exists a constant C depending on H and T such that

E sup
t≤T

∣∣∣∣∣
∞∑

k=1

∫ t

0

uk
sδβ

k
s

∣∣∣∣∣
2

≤ C

{ ∞∑
k=1

E

∫ T

0

|uk
s |2ds

+
∞∑

k=1

E

∫ T

0

(∫ T

0

|Dβk

θ uk
s |1/Hdθ

)2H

ds

⎫⎬⎭ (3.10)

for any process u = (uk)k for which uk ∈ D
1,2
βk (|H|) for all k ≥ 1, and the right-hand side of (3.10) is finite.

Proof. Let 0 < ε < H − 1/2 and α = 1/2 − ε. As in the proof of Theorem 4, [2], one can show that

sup
t≤T

∣∣∣∣∣
∞∑

k=1

∫ t

0

uk
sδβ

k
s

∣∣∣∣∣
2

≤ c′α

∫ T

0

∣∣∣∣∣
∞∑

k=1

∫ r

0

uk
s(r − s)α−1δβk

s

∣∣∣∣∣
2

dr.

Since the random variables Xk =
∫ r

0
uk

s(r − s)α−1δβk
s , k ≥ 1 are independent with zero mean, E(

∑n
k=1Xk)2 =∑n

k=1E(X2
k) for all n. By the Fatou’s lemma,

E

∣∣∣∣∣
∞∑

k=1

∫ r

0

uk
s(r − s)α−1δβk

s

∣∣∣∣∣
2

≤
∞∑

k=1

E

∣∣∣∣∫ r

0

uk
s(r − s)α−1δβk

s

∣∣∣∣2 .
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Using (2.5) and Hölder’s inequality we get:

E sup
t≤T

∣∣∣∣∣
∞∑

k=1

∫ t

0

uk
sδβ

k
s

∣∣∣∣∣
2

≤ c′α
∞∑

k=1

∫ T

0

E

∣∣∣∣∫ r

0

uk
s(r − s)α−1δβk

s

∣∣∣∣2 dr

≤ cα,H

{ ∞∑
k=1

∫ T

0

E

(∫ r

0

|uk
s |1/H(r − s)(α−1)/Hds

)2H

dr

+
∞∑

k=1

∫ T

0

E

(∫ r

0

∫ T

0

|Dβk

θ uk
s |1/Hdθ(r − s)(α−1)/Hds

)2H

dr

⎫⎬⎭
≤ cα,H

{ ∞∑
k=1

∫ T

0

r2(α−1)+2H−1E

∫ r

0

|uk
s |2dsdr

+
∞∑

k=1

∫ T

0

r2(α−1)+2H−1E

∫ r

0

(∫ T

0

|Dβk

θ uk
s |1/Hdθ

)2H

dsdr

⎫⎬⎭ . �

Let l2 be the set of sequences a = (ak)k, a
k ∈ R with |a|2l2 :=

∑∞
k=1 |ak|2 < ∞. If u = (uk)k is such that

uk ∈ D
1,2
βk (H) for all k ≥ 1, we denote Du := (Dβk

uk)k.
The next theorem is the main result of this section. Its proof is based on Corollary 2.3, the connection

between the Skorohod integrals with respect to (βk)k and the Skorohod integral with respect to B (given by
Thm. 3.4), and Theorem 3.5.

Theorem 3.6. Let 1/2 < H < 1 and p ≥ 2. Then, there exists a constant C depending on H, p and T such
that

E sup
t≤T

∣∣∣∣∣
∞∑

k=1

∫ t

0

uk
sδβ

k
s

∣∣∣∣∣
p

≤ C

⎧⎨⎩E
(∫ T

0

|us|2l2ds
)p/2

+E

⎡⎣∫ T

0

(∫ T

0

|Dθus|1/H
l2

dθ

)2H

ds

⎤⎦p/2
⎫⎪⎬⎪⎭ (3.11)

for any process u = (uk)k for which uk ∈ D
1,p
βk (|H|) for all k ≥ 1, and the right-hand side of (3.11) is finite.

Proof. Let u = (uk)k be such that uk ∈ D
1,p
βk (|H|) for all k ≥ 1, and the right-hand side of (3.11) is finite. Since

p ≥ 2, |EX |p/2 ≤ E|X |p/2, for any X ∈ Lp/2(Ω), and hence, E
∫ T

0
|us|2l2ds < ∞ and

E
∫ T

0

(∫ T

0
|Dθus|1/H

l2
dθ
)2H

ds < ∞. By Minkowski’s inequality,
∑∞

k=1 E
∫ T

0

(∫ T

0
|Dβk

θ uk
s |1/Hdθ

)2H

ds < ∞.
From here we conclude that relation (3.6) holds, since:

∞∑
k=1

‖uk‖2
D

1,2
βk (H)

=
∞∑

k=1

E‖uk‖2
H +

∞∑
k=1

E‖Dβk

uk‖2
H⊗H

≤
∞∑

k=1

E‖uk‖2
L2([0,T ]) +

∞∑
k=1

E‖Dβk

uk‖2
L2([0,T ];L1/H([0,T ])) <∞.
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By Theorem 3.4.(a), there exists U :=
∑∞

k=1 u
kek ∈ D

1,2
B (HV ) and DBU =

∑∞
k=1(D

βk

uk)ek ⊗ ek. Similarly,
U1[0,t] =

∑∞
k=1 u

k1[0,t]ek ∈ D
1,2
B (HV ) for any t ∈ [0, T ].

For any t ∈ [0, T ], let

Xt :=
∞∑

k=1

δβk

(uk1[0,t]) and Yt := δB(U1[0,t]).

Using the same argument as in Theorem 5 of [2], one can prove that Y = (Yt)t∈[0,T ] has an a.s. continuous
modification. We work with this modification.

Also, for each N ≥ 1, the process X(N) = (X(N)
t )t∈[0,T ], defined by X

(N)
t :=

∑N
k=1 δ

βk

(uk1[0,t]), t ∈ [0, T ],
has an a.s. continuous modification.

By Chebyshev’s inequality, Theorem 3.5, and (3.6), the sequence (X(N))N converges in probability to X , in
the sup-norm metric, since for any ε > 0,

P (sup
t≤T

|X(N)
t −Xt| > ε) ≤ 1

ε2
E sup

t≤T

∣∣∣∣∣
∞∑

k=N+1

∫ t

0

uk
sδβ

k
s

∣∣∣∣∣
2

(3.12)

≤ C

ε2

⎧⎨⎩
∞∑

k=N+1

E

∫ T

0

|uk
s |2ds+

∞∑
k=N+1

E

∫ T

0

(∫ T

0

|Dβk

θ uk
s |1/Hdθ

)2H

ds

⎫⎬⎭ → 0,

as N → ∞. Therefore, X has an a.s. continuous modification. We work with this modification.
From Theorem 3.4.(b), we know that Yt = Xt a.s., for any t ∈ [0, T ]. Since both Y and X are a.s. continuous,

it follows that Yt = Xt for all t ∈ [0, T ] a.s. In particular, E supt≤T |Yt|p = E supt≤T |Xt|p, i.e.

E sup
t≤T

∣∣∣∣∫ t

0

UsδBs

∣∣∣∣p = E sup
t≤T

∣∣∣∣∣
∞∑

k=1

∫ t

0

uk
sδβ

k
s

∣∣∣∣∣
p

. (3.13)

We now invoke Corollary 2.3. Note that E(Us) =
∑∞

k=1 E(uk
s)ek. Hence ‖E(Us)‖2

V =
∑∞

k=1 |E(uk
s)|2 ≤∑∞

k=1E|uk
s |2 = E|us|2l2 for any s ∈ [0, T ], and(∫ T

0

‖E(Us)‖2
V ds

)p/2

≤
(
E

∫ T

0

|us|2l2ds
)p/2

≤ E

(∫ T

0

|us|2l2ds
)p/2

. (3.14)

Note also that DB
θ Us =

∑∞
k=1(D

βk

θ uk
s)ek ⊗ ek, and hence,

‖DB
θ Us‖2

V ⊗V =
∞∑

k=1

|Dβk

θ uk
s |2 = |Dθu|2l2 . (3.15)

Relation (3.11) becomes a consequence of (2.7), combined with (3.13), (3.14) and (3.15). �
The following result is an immediate consequence of Theorem 3.6.

Corollary 3.7. Let 1/2 < H < 1 and p ≥ 2. Then, there exists a constant C depending on H, p and T such
that

E sup
t≤T

∣∣∣∣∣
∞∑

k=1

∫ t

0

uk
sδβ

k
s

∣∣∣∣∣
p

≤ C

⎧⎨⎩E
∫ T

0

|us|pl2ds+ E

∫ T

0

(∫ T

0

|Dθus|1/H
l2

dθ

)pH

ds

⎫⎬⎭ := C‖u‖p

L
1,p
H (l2)

(3.16)

for any process u = (uk)k for which uk ∈ D
1,p
βk (|H|) for all k ≥ 1, and the right-hand side of (3.16) is finite.
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4. Stochastic banach spaces

In this section, we introduce some Banach spaces of stochastic integrands for the sequence of Skorohod
integrals with respect to (βk)k, which are suitable for our analysis. To ease the exposition, we first treat the
case of a single fBm (Sect. 4.1), and then the case of a sequence of i.i.d. fBm’s (Sect. 4.2).

4.1. The case of a single fBm

We begin by recalling some basic facts about fractional Sobolev spaces, using the notation in [13]. We let
C∞

0 = C∞
0 (Rd) be the space of infinitely differentiable functions on Rd, with compact support, and D = D(Rd)

be the space of real-valued Schwartz distributions on C∞
0 . For p ≥ 1, we denote by Lp = Lp(Rd) the set of all

measurable functions u : Rd → R such that ‖u‖p
Lp

:=
∫

Rd |u(x)|pdx <∞.
For any p > 1 and n ∈ R, we let Hn

p = Hn
p (Rd) := {u ∈ D; (1 − Δ)n/2u ∈ Lp} be the fractional Sobolev

space, with the norm ‖u‖Hn
p

:= ‖(1 − Δ)n/2u‖Lp . For any u ∈ Hn
p and φ ∈ C∞

0 , we define

(u, φ) :=
∫

Rd

[(1 − Δ)n/2u](x) · [(1 − Δ)−n/2φ](x)dx.

By Hölder’s inequality, for any u ∈ Hn
p and φ ∈ C∞

0 , we have:

|(u, φ)|2 ≤ N‖u‖2
Hn

p
, (4.1)

where N = ‖(1 − Δ)−n/2φ‖2
Lp/(p−1)

is a constant depending on n, p and φ.
Let β = (βt)t∈[0,T ] be a fBm of index H > 1/2, defined on a probability space (Ω,F , P ). We introduce the

following spaces of Banach-space valued integrands for the Skorohod integral with respect to β.

Definition 4.1. Let V be an arbitrary Banach space and p > 1.
a) We denote by D

1,p
β (|HV |) the set of all elements g ∈ D

1,p
β (HV ) such that g ∈ |HV | a.s., Dβg ∈ |H| ⊗ |HV |

a.s., and ‖g‖
D

1,p
β (|HV |) <∞, where

‖g‖p

D
1,p
β

(|HV |) := E‖g‖p
|HV | + E‖Dβg‖p

|H|⊗|HV |.

b) We denote by L
1,p
H,β(V ) the set of all elements g ∈ D

1,p
β (|HV |) such that ‖g‖

L
1,p
H,β(V ) <∞, where

‖g‖p

L
1,p
H,β(V )

:= E

∫ T

0

‖gs‖p
V ds+ E

∫ T

0

(∫ T

0

‖Dβ
t gs‖1/H

V dt

)pH

ds.

c) We denote by L̃
1,p

H,β(V ) the completion of Sβ(EV ) in D
1,p
β (|HV |), with respect to the norm ‖ · ‖

L
1,p
H,β(V ).

Using (2.1) and (2.2), one can prove that:

‖g‖
D

1,p
β (|HV |) ≤ bH‖g‖

L
1,p
H,β(V ), ∀u ∈ L

1,p
H,β(V ). (4.2)

Remark 4.2. If V = R, we denote D
1,p
β (|HV |) = D

1,p
β (|H|), L

1,p
H,β(V ) = L

1,p
H,β , and L̃

1,p
H,β(V ) = L̃

1,p
H,β .

Note that the space D
1,p
β (|HV | is not the particular instance of the space D

1,p
B (|HV |) (introduced in Sect. 2)

obtained for V = R. The fundamental difference between the two spaces is that D
1,p
β (|HV |) contains V -valued

random processes g = {g(s, ·)}s∈[0,T ], for an arbitrary Banach space V (which has nothing to do with the
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underlying Hilbert space R of the fBm β), whereas the space D
1,p
B (|HV |) contains V -valued random processes

U = {U(s, ·)}s∈[0,T ], where V is the underlying space of the Gaussian process B.
In the present article, we let V = Hn

p . Since C∞
0 is dense in Hn

p , we introduce the set Sβ(EC∞
0

) of smooth
elementary processes of the form

g(t, ·) =
m∑

i=1

Fi1(ti−1,ti](t)φi(·), t ∈ [0, T ]

with Fi ∈ Sβ , 0 ≤ t0 < . . . < tm ≤ T and φi ∈ C∞
0 . The set Sβ(EC∞

0
) is dense in D

1,p
β (|HHn

p
|) with respect to

the norm ‖ · ‖
D

1,p
β (|HHn

p
|). The space L̃

1,p
H,β(Hn

p ) is the completion of Sβ(EC∞
0

) in D
1,p
β (|HHn

p
|), with respect to

the norm ‖ · ‖
L
1,p
H,β(Hn

p ). From (4.2), it follows that L̃
1,p
H,β(Hn

p ) ⊂ L
1,p
H,β(Hn

p ).

For any g ∈ L
1,p
H,β(Hn

p ), we have:

‖g‖p

L
1,p
H,β(Hn

p )
= ‖g‖p

Hn
p

+ ‖Dβg‖p
H

n
p,H
, (4.3)

where

Hn
p := Lp(Ω × [0, T ],F × B([0, T ]);Hn

p )

Hn
p,H := Lp(Ω × [0, T ],F × B([0, T ]);L1/H([0, T ];Hn

p )).

For an arbitrary element g ∈ D
1,p
β (|HHn

p
|), we write g(∗, ·) = {g(s, ·)}s∈[0,T ]. Using (4.1), for any g ∈ D

1,p
β (|HHn

p
|)

and φ ∈ C∞
0 , we have:

E‖(g(∗, ·), φ)‖2
|H| ≤ NE‖g‖2

|HHn
p
| (4.4)

E‖(Dβg(∗, ·), φ)‖2
|H|⊗|H| ≤ NE‖Dβg‖2

|H|⊗|HHn
p
|, (4.5)

where N is a constant depending on n, p and φ.

Proposition 4.3. a) If g ∈ D
1,p
β (|HHn

p
|), then for any φ ∈ C∞

0 , (g(∗, ·), φ) ∈ D
1,2
β (|H|), Dβ(g(∗, ·), φ) =

(Dβg(∗, ·), φ), and

‖(g(∗, ·), φ)‖
D

1,p
β (|H|) ≤ N‖g‖

D
1,p
β (|HHn

p
|), (4.6)

where N is a constant depending on n, p and φ.
b) If g ∈ L

1,p
H,β(Hn

p ), then for any φ ∈ C∞
0 , (g(∗, ·), φ) ∈ L

1,p
H,β , and

‖(g(∗, ·), φ)‖
L
1,p
H,β

≤ N‖g‖
L
1,p
H,β

(Hn
p ), (4.7)

where N is a constant depending on n, p and φ.

Proof. a) Using an approximation argument and the completeness of the space D
1,p
β (|H|), it suffices to assume

that g(t, ·) =
∑m

i=1 Fi1(ti,ti+1](t)φi with Fi ∈ Sβ , 0 ≤ t1 < . . . < tm+1 ≤ T and φi ∈ C∞
0 . Clearly, (g(∗, ·), φ) =∑m

i=1 Fi(φi, φ)1(ti,ti+1] ∈ Sβ(E) ⊂ D
1,2
β (|H|), and due to the linearity of Dβ ,

Dβ
t (g(s, ·), φ) =

m∑
i=1

(Dβ
t Fi)(φi, φ)1(ti,ti+1](s) = (Dβ

t g(s, ·), φ).
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Using (4.4) and (4.5), we get:

‖(g(∗, ·), φ)‖p

D
1,p
β (|H|) = E‖(g(∗, ·), φ)‖p

|H| + E‖Dβ(g(∗, ·), φ)‖p
|H|⊗|H|

≤ N

(
E‖g‖p

|HHn
p
| + E‖Dβg‖p

|H|⊗|HHn
p
|

)
= N‖g‖p

D
1,p
β (|HHn

p
|).

b) By part a), (g(∗, ·), φ) ∈ D
1,p
β (|H|). Using (4.1),

‖(g(∗, ·), φ)‖p

L
1,p
H,β

= E

∫ T

0

|(g(s, ·), φ)|pds+ E

∫ T

0

(∫ T

0

|(Dβ
t g(s, ·), φ)|1/Hdt

)pH

ds

≤ NE

∫ T

0

‖g(s, ·)‖p
Hn

p
ds+ E

∫ T

0

(∫ T

0

‖Dβ
t g(s, ·)‖1/H

Hn
p

dt

)pH

ds

= ‖g‖p

L
1,p
H,β(Hn

p )
<∞. �

4.2. The case of a sequence of fBm’s

For any p > 1 and n ∈ R, we let Hn
p (l2) be the set of all sequences u = (uk)k such that uk ∈ Hn

p for all k, and
‖u‖Hn

p (l2) := ‖ |(1−Δ)n/2u|l2‖Lp <∞. By Minkowski’s inequality, ‖u‖2
Hn

p (l2)
≤∑∞

k=1 ‖uk‖2
Hn

p
(with equality if

p = 2). By Hölder’s inequality, for any u ∈ Hn
p (l2) and φ ∈ C∞

0 , we have:

∞∑
k=1

|(uk, φ)|2 ≤ N‖u‖2
Hn

p (l2)
(4.8)

where N is the same constant as in (4.1).
Let βk = (βk

t )t∈[0,T ], k ≥ 1 be a sequence of i.i.d. fBm’s with Hurst index H > 1/2, defined on the same
probability space (Ω,F , P ). We first define the l2-analogue of the space L

1,p
H,β , introduced in Section 4.1.

Definition 4.4. For any p > 1, we denote by L
1,p
H (l2) the set of all elements u = (uk)k such that uk ∈ D

1,p
βk (|H|)

for all k, and ‖u‖
L
1,p
H (l2)

<∞, where

‖u‖p

L
1,p
H (l2)

:= E

∫ T

0

|us|pl2ds+ E

∫ T

0

(∫ T

0

|Dθus|1/H
l2

dθ

)pH

ds.

The next lemma shows that condition (3.6) in Theorem 3.4 is satisfied for any u = (uk)k ∈ L
1,p
H (l2).

Lemma 4.5. If p ≥ 2 and u = (uk)k ∈ L
1,p
H (l2), then

∑∞
k=1 ‖uk‖2

D
1,2
βk (H)

<∞.

Proof. Note that D
1,p
βk (|H|) ⊂ D

1,2
βk (|H|). For any u ∈ L

1,p
H (l2), we have:

∞∑
k=1

‖uk‖2
D

1,2
βk (H)

≤
∞∑

k=1

⎧⎨⎩E
∫ T

0

|uk
s |2ds+ E

∫ T

0

(∫ T

0

|Dβk

θ uk
s |1/Hdθ

)2H

ds

⎫⎬⎭
≤ E

∫ T

0

|us|2l2ds+ E

∫ T

0

(∫ T

0

|Dθus|1/H
l2

dθ

)2H

ds

≤ Cp,H,T ‖u‖p

L
1,p
H (l2)

<∞,
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where Cp,H,T is a constant depending on p,H and T . The first inequality above is due to (2.1) and (2.2), the
second is due to Minkowski’s inequality, and the third is due to Hölder’s inequality. �

We now introduce the definition of the space L̃
1,p
H (Hn

p , l2), in which we are allowed to select the coefficients
(gk)k multiplying the noise in the stochastic heat equation.

Definition 4.6. Let p > 1 be arbitrary.
a) We denote by L

1,p
H (Hn

p , l2) the set of all elements g = (gk)k such that gk ∈ D
1,p
βk (|HHn

p
|) for all k, and

‖g‖
L
1,p
H (Hn

p ,l2)
<∞, where

‖g‖p

L
1,p
H (Hn

p ,l2)
:= E

∫ T

0

|g(s, ·)|pHn
p (l2)

ds+ E

∫ T

0

(∫ T

0

|Dθg(s, ·)|1/H
Hn

p (l2)
dθ

)pH

ds.

b) We let L̃
1,p
H (Hn

p , l2) be the set of all g ∈ L
1,p
H (Hn

p , l2) for which there exists a sequence (gj)j ⊂ L
1,p
H (Hn

p , l2)
such that ‖gj − g‖

L
1,p
H (Hn

p ,l2)
→ 0 as j → ∞, gk

j = 0 for k > Kj , and gk
j ∈ Sβk(EC∞

0
) for k ≤ Kj , i.e.

gk
j (t, ·) =

mjk∑
i=1

F jk
i 1(tjk

i−1,tjk
i ](t)φ

jk
i (·), t ∈ [0, T ],

with F jk
i ∈ Sβk , 0 ≤ tjk

0 < . . . < tjk
mjk

≤ T (non-random) and φjk
i ∈ C∞

0 .

Note that, for any g ∈ L
1,p
H (Hn

p , l2),

‖g‖p

L
1,p
H (Hn

p ,l2)
= ‖g‖p

Hn
p (l2) + ‖Dg‖p

H
n
p,H(l2)

, (4.9)

where

Hn
p (l2) := Lp(Ω × [0, T ],F × B([0, T ]);Hn

p (l2))

Hn
p,H(l2) := Lp(Ω × [0, T ],F × B([0, T ]);L1/H([0, T ];Hn

p (l2))).

Lemma 4.7. If g = (gk)k ∈ L
1,p
H (Hn

p , l2), then gk ∈ L
1,p
H,βk(Hn

p ) for all k, and

‖gk‖
L
1,p

H,βk (Hn
p ) ≤ ‖g‖

L
1,p
H (Hn

p ,l2)
for all k.

In particular, if g = (gk)k ∈ L̃
1,p
H (Hn

p , l2), then gk ∈ L̃
1,p
H,βk(Hn

p ) for all k.

Proof. We have:

‖gk‖p

L
1,p

H,βk (Hn
p )

= E

∫ T

0

‖gk(s, ·)‖p
Hn

p
ds+ E

∫ T

0

(∫ T

0

‖Dβk

θ gk(s, ·)‖1/H
Hn

p

)pH

ds

= E

∫ T

0

‖(1 − Δ)n/2gk(s, ·)‖p
Lp

ds+ E

∫ T

0

(∫ T

0

‖Dβk

θ [(1 − Δ)n/2gk(s, ·)] ‖1/H
Hn

p

)pH

ds

≤ E

∫ T

0

‖ |(1 − Δ)n/2g(s, ·)|l2‖p
Lp

ds+ E

∫ T

0

(∫ T

0

‖ |Dθ[(1 − Δ)n/2g(s, ·)] |l2‖1/H
Hn

p

)pH

ds

= ‖g‖p

L
1,p
H (Hn

p ,l2)
.

The second statement follows from the definitions of spaces L̃
1,p
H (Hn

p , l2) and L̃
1,p
H,βk(Hn

p ). �
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5. The main result

The following definition introduces the solution space (see Def. 3.1 of [13]).

Definition 5.1. Let p ≥ 2 be arbitrary.
Let u = {u(t, ·)}t∈[0,T ] be a D-valued random process defined on the probability space (Ω,F , P ). We write

u ∈ Hn
p,H if:

(i) u(0, ·) ∈ Lp(Ω,F , Hn−2/p
p );

(ii) u ∈ Hn
p , uxx ∈ Hn−2

p ;
(iii) there exist f ∈ Hn−2

p and g ∈ L̃
1,p
H (Hn−1

p , l2) such that for any φ ∈ C∞
0 , the equality

(u(t, ·), φ) = (u(0, ·), φ) +
∫ t

0

(f(s, ·), φ)ds +
∞∑

k=1

∫ t

0

(gk(s, ·), φ)δβk
s (5.1)

holds for any t ∈ [0, T ] a.s. We define

‖u‖Hn
p,H

=
(
E‖u(0, ·)‖p

H
n−2/p
p

)1/p

+ ‖uxx‖H
n−2
p

+ ‖f‖
H

n−2
p

+ ‖g‖
L
1,p
H (Hn−1

p ,l2)
. (5.2)

If u ∈ Hn
p,H , we write Du := f , Su := g and du = fdt+

∑∞
k=1 g

kδβk
t , t ∈ [0, T ].

We say that u ∈ Hn
p,H is a solution of (1.1) if Du = Δu+ f and Su = g.

Remark 5.2. The series of stochastic integrals in (5.1) converges uniformly in t, in probability. More precisely,
if g ∈ L

1,p
H (Hn

p , l2), φ ∈ C∞
0 are arbitrary, and we let uk

t = (gk(t, ·), φ), t ∈ [0, T ], then

u ∈ L
1,p
H (l2).

(To see this, note that by Lem. 4.7, gk ∈ L
1,p
H,βk(Hn

p ) for all k). By Proposition 4.3, uk ∈ L
1,p
H,βk for all k. Since

by (4.8), |us|l2 ≤ N‖g(s, ·)‖Hn
p (l2) and |Dθus|l2 ≤ N‖Dθg(s, ·)‖Hn

p (l2), we get: ‖u‖
L
1,p
H (l2)

≤ N‖g‖
L
1,p
H (Hn

p ,l2)
<

∞). By Lemma 4.5,
∑∞

k=1 ‖uk‖2
D

1,2
βk

(|H|) < ∞. Denoting X
(N)
t :=

∑N
k=1

∫ t

0
uk

sδβ
k
s and Xt :=

∑∞
k=1

∫ t

0
uk

sδβ
k
s ,

relation (3.12) shows that

lim
N→∞

P (sup
t≤T

|X(N)
t −Xt| ≥ ε) = 0, for any ε > 0.

In what follows, we work with an a.s. continuous modification of X = (Xt)t∈[0,T ].

Remark 5.3. By the definition of the norm in Hn
p,H , the operators D : Hn

p,H → Hn−2
p ([0, T ]) and S : Hn

p,H →
L̃

1,p
H (Hn−1

p , l2) are continuous.

Proposition 5.4. (a) The operator (1 − Δ)m/2 maps isometrically L̃
1,p
H (Hn

p , l2) onto L̃
1,p
H (Hn−m

p , l2).
(b) The operator (1 − Δ)m/2 maps isometrically Hn

p,H onto Hn−m
p,H .

Proof. (a) By the definition of L̃
1,p
H (Hn

p , l2), it suffices to prove that (1 − Δ)m/2 maps isometrically L̃
1,p
H,β(Hn

p )
onto L̃

1,p
H,β(Hn−m

p ), for a fixed fBm β = (βt)t∈[0,T ].
Let g ∈ L

1,p
H,β(Hn

p ) be arbitrary. By Proposition 4.3,

(Dβ [(1 − Δ)m/2g(∗, ·)], φ) = Dβ((1 − Δ)m/2g(∗, ·), φ) = Dβ(g(∗, ·), (1 − Δ)m/2φ)

= (Dβg(∗, ·), (1 − Δ)m/2φ) = ((1 − Δ)m/2[Dβg(∗, ·)], φ),
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for any φ ∈ C∞
0 , i.e.

Dβ
t [(1 − Δ)m/2g(s, ·)] = (1 − Δ)m/2[Dβ

t g(s, ·)], ∀s, t ∈ [0, T ].

Using an approximation argument and the fact that ‖u‖Hn
p

= ‖(1−Δ)m/2u‖Hn−m
p

for any u ∈ Hn
p , we conclude

that (1 − Δ)m/2g ∈ D
1,p
β (|HHn−m

p
|) and

‖(1 − Δ)m/2g‖p

L
1,p
H,β(Hn−m

p )
= ‖(1 − Δ)m/2g‖p

H
n−m
p

+ ‖Dβ [(1 − Δ)m/2g]‖p

H
n−m
p,H

= ‖g‖p
Hn

p
+ ‖Dβg‖p

H
n
p,H

= ‖g‖p

L
1,p
H,β(Hn

p )
<∞.

This proves that (1−Δ)m/2g ∈ L
1,p
H,β(Hn−m

p ). Finally, if g ∈ L̃
1,p
H,β(Hn

p ), then an approximation argument shows
that (1 − Δ)m/2g ∈ L̃

1,p
H,β(Hn−m

p ).

(b) This is a consequence of part a). See Remark 3.8 of [13]. �

Theorem 5.5. (a) If u ∈ Hn
p,H , then u ∈ C([0, T ], Hn−2

p ) a.s.,

E sup
t≤T

‖u(t, ·)‖p

Hn−2
p

≤ N‖u‖p
Hn

p,H
and ‖u‖Hn

p
≤ N‖u‖Hn

p,H
,

where N is a constant which depends on p,H, T and d.

(b) Hn
p,H is a Banach space with the norm (5.2).

Proof. (a) By Proposition 5.4, it suffices to take n = 0. We use the same argument as in the proof of Theorem 3.7
of [13]. We refer the reader to this proof for the notation. In our case, we only need to justify that:

E sup
t≤T

∥∥∥∥∥
∞∑

k=1

∫ t

0

g(ε)k(s, ·)δβk
s

∥∥∥∥∥
p

Lp

≤ C‖u‖p
H2

p,H
,

where C is a constant which depends on p,H and T .
Using Corollary 3.7, for any x ∈ Rd, we have:

E sup
t≤T

∣∣∣∣∣
∞∑

k=1

∫ t

0

g(ε)k(s, x)δβk
s

∣∣∣∣∣
p

≤ C

{
E

∫ T

0

|g(ε)(s, x)|pl2ds

+E
∫ T

0

(∫ T

0

|Dθg
(ε)(s, x)|1/H

l2
dθ

)pH

ds

⎫⎬⎭ ,
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where C is a constant depending on p,H and T . We integrate with respect to x. Using Minkowski’s inequality
and the fact that ‖h(ε)‖L2 ≤ ‖h‖L2 for any h ∈ L2, we get:

E sup
t≤T

∥∥∥∥∥
∞∑

k=1

∫ t

0

g(ε)k(s, ·)δβk
s

∥∥∥∥∥
p

Lp

≤ C

{
E

∫ T

0

∫
Rd

|g(ε)(s, x)|pl2dxds

+E
∫ T

0

∫
Rd

(∫ T

0

|Dβk

θ g(ε)(s, x)|1/H
l2

dθ

)pH

dxds

⎫⎬⎭
≤ C

⎧⎨⎩E
∫ T

0

‖ |g(ε)(s, ·)|l2‖p
Lp

ds+E
∫ T

0

(∫ T

0

‖ |Dθg
(ε)(s, ·)|l2‖1/H

Lp
dθ

)pH

ds

⎫⎬⎭
≤ C

⎧⎨⎩E
∫ T

0

‖ |g(s, ·)|l2‖p
Lp

ds+ E

∫ T

0

(∫ T

0

‖ |Dθg(s, ·)|l2‖1/H
Lp

dθ

)pH

ds

⎫⎬⎭
= C

⎧⎨⎩E
∫ T

0

‖g(s, ·)‖p
Lp(l2)

ds+ E

∫ T

0

(∫ T

0

‖Dθg(s, ·)‖1/H
Lp(l2)dθ

)pH

ds

⎫⎬⎭
= C ‖g‖p

L
1,p
H (Lp,l2)

≤ C‖g‖p

L
1,p
H (H1

p ,l2)
≤ C‖u‖p

H2
p,H
.

(b) Let {uj}j be a Cauchy sequence in Hn
p,H . By (a), {uj}j is a Cauchy sequence in Hn

p . Hence, there exists
u ∈ Hn

p such that ‖uj − u‖Hn
p
→ 0. Moreover, uxx ∈ Hn−2

p and ‖ujxx − uxx‖H
n−2
p

→ 0.

Say uj satisfies (5.1) for fj ∈ Hn−2
p , gj ∈ L̃

1,p
H (Hn−1

p , l2): for any φ ∈ C∞
0 ,

(uj(t, ·), φ) = (uj(0, ·), φ) +
∫ t

0

(fj(s, ·), φ)ds +
∞∑

k=1

∫ t

0

(gk
j (s, ·), φ)δβk

s (5.3)

for any t ∈ [0, T ] a.s. Then {uj(0, ·)}j, {fj}j and {gj}j are Cauchy in the (complete) spaces Lp(Ω,F ;Hn−2/p
p ),

Hn−2
p and L̃

1,p
H (Hn−1

p , l2), respectively. Hence, there exist u(0, ·) ∈ Lp(Ω,F , Hn−2/p
p ), f ∈ Hn−2

p , g ∈ L̃
1,p
H (Hn−1

p , l2)
such that E‖uj(0, ·) − u(0, ·)‖

H
n−2/p
p

→ 0, ‖fj − f‖
H

n−2
p

→ 0 and ‖gj − g‖
L
1,p
H (Hn−1

p ,l2)
→ 0.

Since ‖uj − u‖Hn
p
→ 0, there exists a subsequence of indices j such that ‖uj(t, ·) − u(t, ·)‖Hn

p
→ 0 a.e. in

(ω, t). Say that this happens for ω ∈ Ω\Γ and t ∈ [0, T ]\U , where Γ, U are negligible sets.
Fix t ∈ [0, T ]\U . We are now passing to the limit in (5.3). On the left hand side, |(uj(t, ·) − u(t, ·), φ)| ≤

N‖uj(t, ·)−u(t, ·)‖Hn
p
→ 0 a.s. On the right hand side of (5.3), the first two terms clearly converge to (u(0, ·), φ),

respectively
∫ t

0
(f(s, ·), φ)ds. For the third term, we invoke Corollary 3.7 and (4.7):

E

∣∣∣∣∣
∞∑

k=1

∫ t

0

(gk
j (s, ·) − gk(s, ·), φ)δβk

s

∣∣∣∣∣
p

≤ N‖(gk
j (∗, ·) − gk(∗, ·), φ)‖p

L
1,p
H (l2)

≤ N‖gk
j − gk‖p

L
1,p
H (Hn−1

p ,l2)
→ 0, as j → ∞.

Therefore,
∑∞

k=1

∫ t

0 (gk
j (s, ·) − gk(s, ·), φ)δβk

s → 0 a.s. (for a subsequence of indices j). We infer that for every
φ ∈ C∞

0 and for any t ∈ [0, T ]\U , equality (5.1) holds almost surely (with the negligible set depending on t).
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To conclude that u ∈ Hn
p,H , it remains to show that equality (5.1) holds for any t ≤ T a.s. (i.e. the negligible

set does not depend on t). For this, it suffices to note that the process (u(∗, ·), φ) is continuous a.s. This follows
from the a.s. continuity of processes (uj(∗, ·), φ), by noting that (uj(t, ·), φ) converges to (u(t, ·), φ) uniformly
in t, in probability. �

The next theorem is the main result of the present article.

Theorem 5.6. Let p ≥ 2 and n ∈ R be arbitrary. Let

f ∈ Hn−2
p , g ∈ L̃

1,p
H (Hn−1

p , l2) and u0 ∈ Lp(Ω,F , Hn−2/p
p ).

Then the Cauchy problem for equation (1.1) with initial condition u(0, ·) = u0 has a unique solution u ∈ Hn
p,H .

For this solution, we have

‖u‖Hn
p,H

≤ N

{
‖f‖

H
n−2
p ([0,T ]) + ‖g‖

L
1,p
H (Hn−1

p ,l2)
+
(
E‖u0‖p

H
n−2/p
p

)1/p
}
, (5.4)

where N is a constant depending on p, d, T and H.

Proof. We first prove that it suffices to take u0 = 0. To see this, we assume without loss of generality that n = 2
(using Prop. 5.4). By Theorem 2.1 of [13], for every ω ∈ Ω fixed, the equation du = Δu dt with initial condition
u0 has a unique solution ū ∈ H1,2

p , and ‖ū‖H1,2
p

≤ N‖u0‖H
2−2/p
p

and ‖ūxx‖Lp((0,T )×Rd) ≤ N‖u0‖H
2−2/p
p

. From
here, one can show that ū ∈ H2

p,H and ‖ū‖H2
p,H

≤ N‖u0‖H
2−2/p
p

. Suppose that equation (1.1) with zero initial
condition has a unique solution v ∈ H2

p,H , and ‖v‖H2
p,H

≤ N(‖f‖H0
p

+ ‖g‖
L
1,p
H (H1

p ,l2)
). Then u := v + ū ∈ H2

p,H

is a solution of (1.1) with initial condition u0, and (5.4) holds.
For the remaining part of the proof, we assume that u0 = 0. By Proposition 5.4, it is enough to consider

only one particular value of n. We take n = 1.
Case 1. Suppose that gk = 0 for k > K, and

gk(t, ·) =
mk∑
i=1

F k
i 1(tk

i−1,tk
i ](t)g

k
i (·), t ∈ [0, T ], k ≤ K,

where F k
i ∈ Sβk , 0 ≤ tk0 < . . . < tkmk

≤ T , and gk
i ∈ C∞

0 .
Let v(t, x) =

∑∞
k=1

∫ t

0
gk(s, x)δβk

s and z(t, x) =
∫ t

0
Tt−s(Δv + f)(s, ·)(x)ds. One can show that u = v + z is

a solution of (1.1).
Let u1(t, x) =

∫ t

0 Tt−s[f(s, ·)](x)ds. We first show that

‖u− u1‖H0
p([0,T ]) ≤ N‖g‖

L
1,p
H (Lp,l2)

, ‖ux − u1x‖H0
p([0,T ]) ≤ N‖g‖

L
1,p
H (Lp,l2)

, (5.5)

where N is a constant depending on p, d, T and H .
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By definition, u(t, x) − u1(t, x) = v(t, x) +
∫ t

0 Tt−s(Δv)(s, ·)(x)ds. Note that v(s, x) =
∑∞

k=1

∑mk

i=1 g
k
i (x)∫ s

0 F
k
i 1(tk

i−1,tk
i ](r)δβ

k
r . Using the stochastic Fubini’s theorem and the fact that

∫ t

r Tt−s(Δgk
i )(x)ds = Tt−rg

k
i (x)−

gk
i (x), we get:

u(t, x) − u1(t, x) =
∞∑

k=1

mk∑
i=1

∫ t

0

F k
i 1(tk

i−1,tk
i ](r)Tt−rg

k
i (x)δβk

r =
∞∑

k=1

∫ t

0

Tt−rg
k(r, ·)(x)δβk

r . (5.6)

By Corollary 3.7,

‖u− u1‖p
H0

p
=

∫ T

0

∫
Rd

E

∣∣∣∣∣
∞∑

k=1

∫ t

0

Tt−sg
k(s, ·)(x)δβk

s

∣∣∣∣∣
p

dxdt

≤ C

⎧⎨⎩
∫ T

0

∫
Rd

E

∫ t

0

( ∞∑
k=1

|Tt−sg
k(s, ·)(x)|2

)p/2

ds dxdt

+
∫ T

0

∫
Rd

E

∫ t

0

⎡⎣∫ T

0

( ∞∑
k=1

|Dβk

θ [Tt−sg
k(s, ·)(x)]|2

)1/(2H)

dθ

⎤⎦pH

ds dxdt

⎫⎪⎬⎪⎭
:= C(I1 + I2). (5.7)

By Theorem 3.6,

‖ux − u1x‖p
H0

p
=

∫ T

0

∫
Rd

E

∣∣∣∣∣
∞∑

k=1

∫ t

0

Tt−sg
k
x(s, ·)(x)δβk

s

∣∣∣∣∣
p

dxdt

≤ C

⎧⎨⎩
∫ T

0

∫
Rd

E

(∫ t

0

∞∑
k=1

|Tt−sg
k
x(s, ·)(x)|2ds

)p/2

dxdt

+
∫ T

0

∫
Rd

E

⎧⎪⎨⎪⎩
∫ t

0

⎡⎣∫ T

0

( ∞∑
k=1

|Dβk

θ [Tt−sg
k
x(s, ·)(x)]|2

)1/(2H)

dθ

⎤⎦2H

ds

⎫⎪⎬⎪⎭
p/2

dxdt

⎫⎪⎪⎬⎪⎪⎭
:= C(J1 + J2). (5.8)

For evaluating the terms I2 and J2 above, we need to observe that:

Dβk

θ [Tt−sg
k(s, ·)(x)] = Tt−s[D

βk

θ gk(s, ·)](x). (5.9)

(This is a consequence of Prop. 4.3.(a), and the fact that Tt−sg
k(s, ·)(x) = (gk(s, ·) ∗ Gt−s)(x) = (gk(s, ·),

Gt−s(x− ·)).)
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By (A.1) (see Appendix A) and Minkowski’s inequality, we have:

I1 = E

∫ T

0

∫ t

0

∫
Rd

|Tt−sg(s, ·)(x)|pl2dxdsdt = E

∫ T

0

∫ t

0

‖Tt−sg(s, ·)‖p
Lp(l2)

dsdt

≤ E

∫ T

0

∫ t

0

‖g(s, ·)‖p
Lp(l2)dsdt ≤ T ‖g‖p

H0
p(l2) (5.10)

I2 = E

∫ T

0

∫ t

0

∫
Rd

(∫ T

0

|Tt−s[Dθg(s, ·)](x)|1/H
l2

dθ

)pH

dxdsdt

≤ E

∫ T

0

∫ t

0

[∫ T

0

(∫
Rd

|Tt−s[Dθg(s, ·)](x)|pl2dx
)1/(pH)

dθ

]pH

dsdt

= E

∫ T

0

∫ t

0

(∫ T

0

‖Tt−s[Dθg(s, ·)] ‖1/H
Lp(l2)dθ

)pH

dsdt

≤ E

∫ T

0

∫ t

0

(∫ T

0

‖Dθg(s, ·)‖1/H
Lp(l2)

dθ

)pH

dsdt

≤ TE

∫ T

0

(∫ T

0

‖Dθg(s, ·)‖1/H
Lp(l2)

dθ

)pH

ds = T ‖Dg‖p
H

0
p,H(l2)

. (5.11)

From (5.7), (5.10) and (5.11), we conclude that:

‖u− u1‖p
H0

p
≤ CT

(
‖g‖p

H0
p(l2)

+ ‖Dg‖p
H

0
p,H(l2)

)
= CT ‖g‖p

L
1,p
H (Lp,l2)

.

Using Theorem A.1 (Appendix A) and Minkowski’s inequality, we have:

J1 = E

∫
Rd

∫ T

0

(∫ t

0

|Tt−sgx(s, ·)(x)|2l2ds
)p/2

dtdx

≤ NE

∫
Rd

∫ T

0

|g(s, x)|pl2ds dx = N‖g‖p
H0

p(l2) (5.12)

Using Theorem A.2 (Appendix A), we have:

J2 = E

∫
Rd

∫ T

0

⎡⎣∫ t

0

(∫ T

0

|Tt−s[Dθgx(s, ·)](x)|1/H
l2

dθ

)2H

ds

⎤⎦p/2

dtdx

≤ NE

∫ T

0

[∫ T

0

(∫
Rd

|Dθg(s, x)|pl2dx
)1/(pH)

dθ

]pH

ds

= NE

∫ T

0

(∫ T

0

‖Dθg(s, x)‖1/H
Lp(l2)

dθ

)pH

ds = N‖Dg‖p
H

0
p,H(l2)

. (5.13)

From (5.8), (5.12) and (5.13), we infer that:

‖ux − u1x‖p
H0

p
≤ CN

(
‖g‖p

H0
p(l2)

+ ‖Dg‖p
H

0
p,H(l2)

)
= CN‖g‖p

L
1,p
H (Lp,l2)

.

This concludes the proof of (5.5).
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It remains to prove that u ∈ H1
p,H . Using (5.5), we have:

‖u‖H0
p

≤ ‖u1‖H0
p

+ ‖u− u1‖H0
p
≤ N

(
‖f‖

H
−1
p

+ ‖g‖
L
1,p
H (Lp,l2)

)
(5.14)

‖uxx‖H
−1
p

≤ ‖u1xx‖H
−1
p

+ ‖uxx − u1xx‖H
−1
p

≤ ‖u1x‖H0
p

+ ‖ux − u1x‖H0
p

≤ N
(
‖f‖

H
−1
p

+ ‖g‖
L
1,p
H (Lp,l2)

)
. (5.15)

Using the fact that ‖φ‖H1
p
≤ ‖φ‖Lp + ‖φxx‖H−1

p
, (5.14) and (5.15), we get:

‖u‖H1
p
≤ ‖u‖H0

p
+ ‖uxx‖H

−1
p

≤ N
(
‖f‖

H
−1
p

+ ‖g‖
L
1,p
H (Lp,l2)

)
.

We conclude that u ∈ H1
p and uxx ∈ H−1

p , and hence u ∈ H1
p,H . Since Du = Δu + f , we also infer that

‖u‖H1
p,H

≤ N(‖f‖
H

−1
p

+ ‖g‖
L
1,p
H (Lp,l2)

).

Case 2. The case of arbitrary g = (gk)k ∈ L̃
1,p
H (Lp, l2) follows as in the proof of Theorem 4.2 of [13], using

an approximation argument. This is based on the validity of the result in Case 1 and the completeness of the
spaces Hn−2

p , L̃
1,p
H (Hn−1

p , l2) and Hn
p,H (Thm. 5.5.(b)) �

Recall that, if V is a Banach space and σ ∈ (0, 1), the Hölder space Cσ([0, T ], V ) is defined as the class of all
continuous functions u : [0, T ] → V with

‖u‖Cσ([0,T ],V ) := sup
t∈[0,T ]

‖u(t)‖V + sup
0≤s<t≤T

‖u(t) − u(s)‖V

(t− s)σ
<∞.

Our final result is an embedding theorem for the space Hn
p,H , similar to Theorem 7.2 of [13].

Theorem 5.7. Let p > 2, n ∈ R and 1/2 ≥ β > α > 1/p. If u ∈ Hn
p,H then u ∈ Cα−1/p([0, T ], Hn−2β

p ) a.s.
and

E‖u(t, ·) − u(s, ·)‖p

Hn−2β
p

≤ N(d, β, p, T )(t− s)βp−1‖u‖p
Hn

p,H
, ∀0 ≤ s < t ≤ T ;

E‖u‖p

Cα−1/p([0,T ],Hn−2β
p )

≤ N(d, β, α, p, T )‖u‖p
Hn

p,H
.

Proof. We define f = Du − Δu, g = Su and u0 = u(0, ·). Then u satisfies the equation dv = (Δv + f)dt +∑
k g

kδβk
t , with initial condition v(0, ·) = u0. By Theorem 5.6, this equation has a unique solution v ∈ Hn

p,H .
It follows that u(t, ·) = v(t, ·) for all t ∈ [0, T ], and it suffices to prove the theorem for v in place of u. By
Proposition 5.4, without loss of generality, we take n = 2β. The theorem will be proved once we show that

E‖u(t, ·) − u(s, ·)‖p
Lp

≤ N(t− s)αp−1

{
‖f‖p

H
n−2
p

+ ‖g‖p

L
1,p
H (Hn−1

p ,l2)
+ E‖u0‖p

H
n−2/p
p

}
(5.16)

E sup
0≤s<t≤T

‖u(t, ·) − u(s, ·)‖p
Lp

(t− s)αp−1
≤ N

{
‖f‖p

H
n−2
p

+ ‖g‖p

L
1,p
H (Hn−1

p ,l2)
+ E‖u0‖p

H
n−2/p
p

}
. (5.17)

Using an approximation argument and Theorem 5.5, it is enough to assume that u0(·) = 1A0φ(·) with A0 ∈
F , φ ∈ C∞

0 ,

f(t, ·) =
m∑

i=1

m′∑
j=1

1Aj 1(ti−1,ti](t)fij(·) and gk(t, ·) =
mk∑
i=1

F k
i 1(tk

i−1,tk
i ](t)g

k
i (·) (5.18)

where Aj ∈ F , 0 ≤ t1 < . . . < tm ≤ T (non-random), fij ∈ C∞
0 , F k

i ∈ Sβk , 0 ≤ tk1 < . . . < tkmk
≤ T

(non-random), gk
i ∈ C∞

0 , and gk
i = 0 for k > K.
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Clearly, u0 ∈ Lp(Ω,F , H2−2/p
p ), f ∈ H0

p and g ∈ L
1,p
H (H1

p , l2). By Theorem 5.6, it follows that u ∈ H2
p,H . By

Theorem 5.5.(a), u ∈ C([0, T ], Lp) a.s.
Let u1(t, x) = Ttu0(x)+

∫ t

0
Tt−sf(s, ·)(x)ds and u2(t, x) = u(t, x)−u1(t, x). Relations (5.16) and (5.17) for u1

follow as in the proof of Theorem 7.2 of [13].
Hence, it suffices to prove (5.16) and (5.17) for u2. Using (5.6), it follows that

u2(r + γ, x) − u2(r, x) = (Tγ − 1)u2(r, ·)(x) +
∞∑

k=1

∫ r+γ

r

Tr+γ−ρg
k(ρ, ·)(x)δβk

ρ

and hence E‖u2(r + γ, ·) − u2(r, ·)‖p
Lp

≤ N(A2(r, γ) +B2(r, γ)), where

A2(r, γ) := E

∫
Rd

|(Tγ − 1)u2(r, ·)(x)|pdx

B2(r, γ) := E

∫
Rd

∣∣∣∣∣
∞∑

k=1

∫ r+γ

r

Tr+γ−ρg
k(ρ, ·)(x)δβk

ρ

∣∣∣∣∣
p

dx.

We now apply Lemma 7.4 of [13] to the continuous function u2 : [0, T ] → Lp:

E‖u2(t, ·) − u2(s, ·)‖p
Lp

≤ N(t− s)αp−1(I2(t, s) + J2(t, s))

E sup
0≤s<t≤T

‖u2(t, ·) − u2(s, ·)‖p
Lp

(t− s)αp−1
≤ N(I2(t, s) + J2(t, s)),

with

I2(t, s) =
∫ t−s

0

dγ
γ1+αp

∫ t−γ

s

A2(r, γ)dr, J2(t, s) =
∫ t−s

0

dγ
γ1+αp

∫ t−γ

s

B2(r, γ)dr.

The term I2(t, s) is estimated as in [13], using Theorem 5.6:

I2(t, s) ≤ N(t− s)(β−α)p‖g‖p

L
1,p
H (Hn−1

p ,l2)
. (5.19)

It remains to estimate J2(t, s). Using Theorem 3.6, we have:

B2(r, γ) ≤ N

{∫
Rd

E

(∫ r+γ

r

|Tr+γ−ρg(ρ, ·)(x)|2l2dρ
)p/2

dx

+
∫

Rd

E

⎡⎣∫ r+γ

r

(∫ T

0

|Dθ[Tr+γ−ρg(ρ, ·)(x)]|1/H
l2

dθ

)2H

dρ

⎤⎦p/2

dx

⎫⎪⎬⎪⎭
:= N(B′

2(r, γ) +B′′
2 (r, γ)). (5.20)

The term B′
2(r, γ) is treated as in [13]:

B′
2(r, γ) ≤ Nγβp−1E

∫ γ

0

‖g(r + ρ, ·)‖p

Hn+1
p (l2)

dρ. (5.21)
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For the term B′′
2 (r, γ), we use (5.9), Hölder’s inequality with q = p/(p − 2), Minkowski’s inequality, and

Lemma 7.3 of [13]:

B′′
2 (r, γ) = E

⎡⎣∫ r+γ

r

(∫ T

0

|Tr+γ−ρ[Dθg(ρ, ·)](x)|1/H
l2

dθ

)2H

dρ

⎤⎦p/2

dx

= E

⎡⎣∫ γ

0

ρ2β−1ρ1−2β

(∫ T

0

|Tρ[Dθg(r + γ − ρ, ·)](x)|1/H
l2

dθ

)2H

dρ

⎤⎦p/2

dx

≤ Nγβp−1E

∫ γ

0

ρ(1−2β)p/2

∫
Rd

(∫ T

0

|Tρ[Dθg(r + γ − ρ, ·)](x)|1/H
l2

dθ

)pH

dxdρ

≤ Nγβp−1E

∫ γ

0

ρ(1−2β)p/2

[∫ T

0

(∫
Rd

|Tρ[Dθg(r + γ − ρ, ·)](x)|pl2dx
)1/(pH)

dθ

]pH

dρ

≤ Nγβp−1E

∫ γ

0

ρ(1−2β)p/2

(
eρ

ρ1/2−β

)p
(∫ T

0

‖Dθg(r + γ − ρ, ·)‖1/H

Hn−1
p (l2)

dθ

)pH

dρ

= Nγβp−1E

∫ γ

0

(∫ T

0

‖Dθg(r + γ − ρ, ·)‖1/H

Hn−1
p (l2)

dθ

)pH

dρ. (5.22)

Using (5.20), (5.21) and (5.22), we obtain:

J2(t, s) ≤ N

⎧⎨⎩E

∫ t−s

0

1
γ2+(α−β)p

∫ t−γ

s

∫ γ

0

‖g(r + ρ, ·)‖p

Hn−1
p (l2)

drdρdγ

+E
∫ t−s

0

1
γ2+(α−β)p

∫ t−γ

s

∫ γ

0

(∫ T

0

‖Dθg(r + ρ, ·)‖1/H

Hn−1
p (l2)

dθ

)pH

drdρdγ

⎫⎬⎭
≤ N(t− s)(β−α)p

⎧⎨⎩E
∫ t

0

‖g(r, ·)‖p

Hn−1
p (l2)

dr + E

∫ t

0

(∫ T

0

‖Dθg(r, ·)‖1/H

Hn−1
p (l2)

dθ

)pH

dr

⎫⎬⎭
≤ N(t− s)(β−α)p‖g‖p

L
1,p
H (Hn−1

p ,l2)
. (5.23)

Relations (5.16) and (5.17) for u2 follow from (5.19) and (5.23). �

Appendix A. A banach-space generalization of littlewood-paley inequality

Let V be an arbitrary Hilbert space. For any f ∈ Lp(V ) = Lp(Rd, V ), p ≥ 1, we let

Ttf(x) :=
∫

Rd

f(x− y)Gt(y)dy,

where Gt(x) = (4πt)−d/2 exp{−|x|2/(4t)}, t > 0, x ∈ Rd is the heat kernel.
First, notice that:

‖Ttf‖Lp(V ) ≤ ‖f‖Lp(V ). (A.1)
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To see this, note that |Ttf(x)|V ≤ ∫
Rd |f(x − y)|VGt(y)dy for any x ∈ Rd. Using Minkowski’s inequality for

integrals, we have:

‖Ttf‖Lp(V ) ≤
[∫

Rd

(∫
Rd

|f(x− y)|V Gt(y)dy
)p

dx
]1/p

≤
∫

Rd

Gt(y)
(∫

Rd

|f(x− y)|pV dx
)1/p

dy = ‖f‖Lp(V )‖Gt‖L1.

The following result is a generalization of the Littlewood-Paley inequality, due to [11] (see Thm. 1.1 of [11],
and [14]).

Theorem A.1. Let p ∈ [2,∞) and f ∈ C∞
0 ((a, b) × Rd, V ), where −∞ ≤ a < b ≤ ∞. Then

∫
Rd

∫ b

a

[∫ t

a

|�Tt−sf(s, ·)(x)|2V ds
]p/2

dt dx ≤ N

∫
Rd

∫ b

a

|f(t, x)|pV dt dx,

where N is a constant depending only on d and p.

In the present article, we need the following generalization of Theorem A.1 to the case of U -valued functions,
where U = L1/H((α, β), V ) is a Banach space.

Theorem A.2. Let p ∈ [2,∞) and f ∈ C∞
0 ((a, b)×Rd, U), where −∞ ≤ a < b ≤ ∞ and U = L1/H((α, β), V ),

with −∞ ≤ α < β ≤ ∞ and 1/2 < H < 1. Then

∫
Rd

∫ b

a

⎡⎣∫ t

a

(∫ β

α

|�Tt−sf(s, ·, θ)(x)|1/H
V dθ

)2H

ds

⎤⎦p/2

dt dx ≤

N

∫ b

a

[∫ β

α

(∫
Rd

|f(t, x, θ)|pV dx
)1/pH

dθ

]pH

dt, (A.2)

where N is a constant depending only on d and p.

The remaining part of this section is dedicated to the proof of Theorem A.2. We follow the lines of the proof
of Theorem 16.1 of [14]. It is enough to assume that a = −∞ and b = ∞. We first treat the case p = 2.

Lemma A.3. Relation (A.2) holds for p = 2.

Proof. Due to Minkowski’s inequality, the left-hand side of (A.2) is smaller than

∫ ∞

−∞

[∫ β

α

(∫ ∞

s

∫
Rd

|�Tt−sf(s, ·, θ)(x)|2V dxdt
)1/(2H)

dθ

]2H

ds.

Using the Fourier transform, the inner integral equals∫ ∞

s

∫
Rd

|ξ|2e−(t−s)|ξ|2 |Ff(s, ξ, θ)|2V dξdt =
∫

Rd

|Ff(s, ξ, θ)|2V |ξ|2
(∫ ∞

s

e−(t−s)|ξ|2dt
)

dξ

=
∫

Rd

|Ff(s, ξ, θ)|2V dξ,

which proves (A.2) for p = 2. �
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Assume now that p > 2. Note that �Tth(x) = t−1/2Ψth(x), where Ψth(x) = t−d/2φ(x/
√
t) ∗ h(x) and

φ(x) = −(4π)−d/2xe−|x|2/4. Set

u(t, x) = Gf(t, x) =

⎡⎣∫ t

−∞

(∫ β

α

|Ψt−sf(s, ·, θ)(x)|1/Hdθ

)2H
1

t− s
ds

⎤⎦1/2

.

=
(∫ t

−∞
|Ψt−sf(s, ·, ∗)(x)|2U

1
t− s

ds
)1/2

.

We want to prove that:

∫
Rd

∫ ∞

−∞
|u(t, x)|pdt dx ≤ N

∫ ∞

−∞

[(∫
Rd

|f |pV (t, x, θ)dx
)1/(pH)

dθ

]pH

dt. (A.3)

Recall that the maximal function of g : Rd → R is defined by:

Mxg(x) = sup
r>0

1
Br

∫
Br(x)

|g(y)|dy,

where Br(x) = {y; |y − x| < r} and Br = Br(0). If h : Rd+1 → R, we define Mxh(t, x) = Mxh(t, ·)(x). Let
Q0 = [−4, 0]× [−1, 1]d.

Lemma A.4. Assume that f(t, x, θ) = 0 for (t, x) �∈ (−12, 12)×B3d. Then for any (t, x) ∈ Q0∫
Q0

|u(s, y)|2dsdy ≤ NMt‖Mx|f |2V (t, x, ∗)‖U0 , (A.4)

where U0 = L1/(2H)((α, β)) and N depends only on d.

Proof. Using Lemma A.3, the left-hand side of (A.4) is smaller than:

N

∫ 0

−∞

[∫ β

α

(∫
Rd

|f |2V (s, y, θ)dy
)1/(2H)

dθ

]2H

ds ≤ N

∫ 0

−12

[∫ β

α

(Mx|f |2V (s, x, θ))1/(2H)dθ

]2H

ds

= N

∫ 0

−12

‖Mx|f |2V (s, x, ∗)‖U0ds ≤ NMt‖Mx|f |2V (t, x, ∗)‖U0 .

�
Lemma A.5. Assume that f(t, x, θ) = 0 for t �∈ (−12, 12). Then (A.4) holds for any (t, x) ∈ Q0.

Proof. Let ζ ∈ C∞
0 (Rd) be such that ζ = 1 in B2d, ζ = 0 outside B3d, and ζ(x) ∈ (0, 1) for x ∈ B3d\B2d. Let

α = ζf and β = (1 − ζ)f . Then

Gf(t, x) = G(α + β)(t, x) =
(∫ t

−∞
|Ψt−s(α+ β)(s, ·, ∗)(x)|2U

1
t− s

ds
)1/2

≤ Gα(t, x) + Gβ(t, x),

using Minkowski’s inequality in L2(R, U), which in turn relies on Minkowski’s inequality in the Banach space U .
Since α satisfies the conditions of Lemma A.4 and |α|V ≤ |f |V , for any (t, x) ∈ Q0∫

Q0

|Gα(s, y)|2dsdy ≤ NMt‖Mx|α|2V (t, x, ∗)‖U0 ≤ NMt‖Mx|f |2V (t, x, ∗)‖U0 .
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Therefore, it suffices to prove that (A.4) holds for any function f such that f(t, x, θ) = 0 if t �∈ (−12, 12) or
x ∈ B2d (in particular for β). This follows as in the proof of Lemma 16.5 of [14], using Minkowski’s inequality
for integrals. �

Lemma A.6. Assume that f(t, x, θ) = 0 for t ≥ −8. Then for any (t, x) ∈ Q0∫
Q0

|u(s, y) − u(t, x)|2dsdy ≤ NMt‖Mx|f |2V (t, x, ∗)‖U0 .

Proof. The argument is similar to the one used in the proof of Lemma 16.6 of [14], with some minor modifications
(as above). �

We introduce now the filtration Qn, n ∈ Z of partitions Qn = {Qn(i0, i1, . . . , id);
i0, i1 . . . , id ∈ Z} of Rd+1, as in [14]. For any x ∈ Rd and n ∈ Z, we denote by Qn(x) the unique Q ∈ Qn

containing x. The sharp function of g ∈ L1,loc(Rd) is defined by:

g#(x) = sup
n∈Z

1
|Qn(x)|

∫
Qn(x)

|g(y) − g|n(x)|dy,

where g|n(x) = |Qn(x)|−1
∫

Qn(x)
g(y)dy. If p ∈ (1,∞), then by the Fefferman-Stein theorem, for any g ∈ Lp(Rd),

‖g‖Lp(Rd) ≤ N‖g#‖Lp(Rd).

Lemma A.7. Let f ∈ C∞
0 (Rd+1, U) be arbitrary. For any (t, x) ∈ Rd+1,

(Gf)#(t, x) ≤ N(Mt‖Mx|f |2V (t, x, ∗)‖U0)
1/2.

Proof. The argument is based on Lemma A.5 and Lemma A.6, and is similar to the one used for proving
relation (16.20) of [14]. �

Proof of Theorem A.2. Assume that p > 2. We use the Fefferman-Stein theorem, Lemma A.7, the boundedness
of the operators Mt and Mx (p > 2), and Minkowski’s inequality for integrals (pH > 1):

‖u‖p
Lp(Rd+1)

≤ N‖(Gf)#‖p
Lp(Rd+1)

≤ N

∫
Rd

∫
R

(Mt‖Mx|f |2V (t, x, ∗)‖U0)
p/2dt dx

= N

∫
Rd

‖Mt‖Mx|f |2V (t, x, ∗)‖U0‖p/2
Lp/2(R)dx

≤ N

∫
Rd

∫
R

‖Mx|f |2V (t, x, ∗)‖U0dt dx

= N

∫
R

∫
Rd

[∫ β

α

(Mx|f |2V (t, x, θ))1/(2H)dθ

]pH

dxdt

≤ N

∫
R

[∫ β

α

(∫
Rd

(Mx|f |2V (t, x, θ))p/2dx
)1/(pH)

dθ

]pH

dt

≤ N

∫
R

[∫ β

α

(∫
Rd

|f |pV (t, x, θ))dx
)1/(pH)

dθ

]pH

dt,

i.e. (A.3) holds. �
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