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HIGH ORDER EDGE ELEMENTS ON SIMPLICIAL MESHES

Francesca Rapetti
1

Abstract. Low order edge elements are widely used for electromagnetic field problems. Higher order
edge approximations are receiving increasing interest but their definition become rather complex. In
this paper we propose a simple definition for Whitney edge elements of polynomial degree higher than
one. We give a geometrical localization of all degrees of freedom over particular edges and provide a
basis for these elements on simplicial meshes. As for Whitney edge elements of degree one, the basis
is expressed only in terms of the barycentric coordinates of the simplex.
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Introduction

Whitney elements on simplices [7, 18] are perhaps the most widely used finite elements in computational
electromagnetics. They offer the simplest construction of polynomial discrete differential forms on simplicial
complexes. Their associated degrees of freedom (dofs) have a very clear meaning as cochains and, thus, give
a recipe for discretizing physical balance laws, e.g., Maxwell’s equations. High order extensions of Whitney
forms are known and have become an important computational tool for their better convergence and accuracy
properties. However, in addition to the complexity in generating element basis functions, it has remained unclear
what kind of cochains they should be associated with, namely, the localization of the corresponding dofs on the
mesh volumes (here, tetrahedra). The current paper settles this issue for edge elements (see also [19] for a short
presentation of high order Whitney forms).

The interest in the use of high order schemes, such as hk-finite element or spectral element methods, has
become increasingly widespread (see [15] for a presentation of these methods). In the framework of curl-
conforming finite elements, i.e., vector approximations whose tangential components are continuous across
element interfaces, the approach proposed in [18] is efficient in terms of number of dofs but difficult to follow.
Consequently, the construction of basis functions which corresponds to the dofs defined in [18] has been the
subject of numerous papers in the literature, see, e.g., [11, 12, 14, 22].

Viable sets of basis functions for high order Whitney edge forms in dimension three have been proposed
in [2], with resulting well-conditioned Galerkin matrices (see also [1, 3]). In [6], the authors have developed an
alternative technique relying on projection based interpolation where the high order space is built by using a
hierarchical basis, with resulting optimal interpolation error estimates. A parallel approach using the Koszul
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differential complex has been developed in [5] and a general construction of high order discrete differential forms
can be found in [13].

The existing constructions of high order extensions of Whitney edge elements follow the traditional FEM
path of using higher and higher moments to define the needed dofs. As a result, such high order finite elements
include non-physical dofs associated to faces and tetrahedra that are not easy to interpret as field circulations
along edges. The present paper offers an approach based on using “small simplices”, a set of simplices obtained
through affine contractions of a mesh simplex, associated with the principal lattice of the simplex. The small
elements are used in conjunction with physical (natural) dofs only associated to edges. The present approach
can be seen as a high order reconstruction formula based on subdivision of the master simplex into an auxiliary
mesh of sub-simplices. By means of this subdivision, we provide a basis for these elements: at each tetrahedron,
this basis is obtained as the product of Whitney forms of degree one by suitable homogeneous monomials in
the barycentric coordinate functions of the simplex. Note that the adopted approach is consistent with the
classical technique to generate curl-conforming bases B complete to order k by considering the product of
zeroth-order curl-conforming bases with complete polynomial factors of order k (see [12] for an overview). In
the present paper, we justify from a geometric point of view the construction of curl-conforming basis functions
from products of barycentric coordinate monomials and Whitney 1-forms. The key heuristic points underlying
this construction are three: (i) these high order forms satisfy a partition of unity property; (ii) being a larger
number with respect to those of degree one, they are associated to a finer partition in each tetrahedron, the
so-called “small simplices”; (iii) the spaces spanned by high order p-forms constitute an exact sequence (see [9]
for details).

Handy local bases for high order curl-conforming elements are already known and widely used and the basis
we propose is not as conveniently implementable as those ones. Indeed, despite the element basis functions
are very simple to generate, the high order Whitney edge forms that we are going to describe are not linearly
independent: a selection procedure has to be specified to obtain a valid set of unisolvent local shape functions.
In addition, the resulting Galerkin matrices are badly-conditioned. In this paper, we aim at providing an insight
into the “geometrical nature” of high order edge elements, in the language of differential forms. Whitney forms
are differential geometric objects created long ago for other purposes and whose main characteristic is the
interpretation they suggest of dofs as integrals over geometric elements (edges, faces, . . .) of the discretization
mesh.

The paper is focused on edge elements and is organized as follows. In Section 1, some notations are introduced
and the chain/cochain concepts are briefly recalled. In Section 2, the definition and some properties of Whitney
edge elements of polynomial degree one together with their connection with the lowest-order Nédélec elements
are revisited. Section 3 is devoted to Whitney edge elements of higher order. Preliminary numerical tests in two
dimensions concerning the convergence rate and conditioning behavior with respect to the maximal diameter h
of the mesh triangles and to the polynomial degree k of these elements are presented in Section 4.

1. Algebraic tools

In this section, we recall some basic notions in algebraic topology (see, e.g., [4, 21]) and explain the adopted
notation. We consider a three-dimensional domain Ω but notions and proofs have general validity. For all
integrals we omit specifying the integration variable when this can be done without ambiguity. We shall denote
by
∫

γ u the circulation of a vector field u along the curve γ. Moreover, we shall put emphasis on the map
γ →

∫
γ u , that is to say, the differential form of degree 1 which one can associate with a given vector field u,

and we use notations specific to exterior calculus, such as the exterior derivative d, as in the Stokes theorem.

1.1. Simplicial mesh

Let d be the ambient dimension. Given a domain Ω ⊂ R
d, a simplicial mesh m in Ω is a tessellation of Ω

by d-simplices, under the condition that any two of them may intersect along a common face, i.e., a common
subsimplex of dimension 0 ≤ p ≤ (d − 1). In dimension d = 3, which we shall assume when giving examples,
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this means along a common face, edge or node, but in no other way. Labels n, e, f, t are used for nodes, edges,
etc., each with its own orientation, and wn, we, etc., refer to the corresponding Whitney forms of degree one [7].
Note that e (resp., f , t) is by definition an ordered couple (resp. triplet, quadruplet) of vertices, not merely a
collection. The forms we (resp., wf , wt) are indexed over the set of these couples (resp. triplets, quadruplets),
thus we use e (resp., f , t) also as a label since it points to the same object in both cases. The sets of nodes,
edges, faces, volumes (i.e., tetrahedra) of the mesh m, are denoted by N , E , F , T and the sets of nodes, edges,
faces of a tetrahedron t are denoted by N (t), E(t), F(t). In short, we denote by Sp the set of p-simplices of m,
by #Sp its cardinality, with similar notations when restricted to a given tetrahedron t.

The sets of p-simplices are linked, as in [7], by incidence matrices for which the generic notation d is used, the
symbol ds

σ stands for the incidence matrix entry linking the p-simplex s to the (p+1)-simplex σ, 0 ≤ p ≤ d− 1.
In three dimensions, incidence matrices are usually denoted G for p = 0, R for p = 1 and D for p = 2. In
detail, let e = {�, n} be an edge of the mesh oriented from the node � to n. We can define the incidence numbers
Gn

e = 1, G�
e = −1 and Gk

e = 0 for all nodes k other than � and n. These numbers form the matrix G, which
describes how edges connect to nodes. A face f = {�, n, k} has three vertices which are the nodes �, n, k.
Note that {n, k, �} and {k, �, n} denote the same face f whereas {n, �, k} denotes an oppositely oriented face,
which is not supposed to belong to F if f does. An orientation of f induces an orientation of its boundary.
So, with respect to the orientation of the face f , the one of the edge {�, n} is positive and that of {k, n} is
negative. So we can define the incidence number Re

f = 1 (resp. −1) if the orientation of e matches (resp. does
not match) the one on the boundary of f and Re

f = 0 if e is not an edge of f . Finally, let us consider the
tetrahedron t = {k, �, m, n}, positively oriented if the three vectors {k, �}, {k, m} and {k, n} define a positive
frame (t′ = {�, m, n, k} has a negative orientation and does not belong to Tm if t does). The matrix D can
be defined by setting Df

t = ±1 if face f bounds the tetrahedron t, with the sign depending on whether the
orientation of f and of the boundary of t match or not, and Df

t = 0 in case f does not bound t. For consistency,
we may attribute an orientation to nodes as well, a sign ±1. Implicitly, we have been orienting all nodes the
same way (+1) up to now. Note that a sign (−1) to node n changes the sign of all entries of column n in the
above G. It can easily be proved that RG = 0 and DR = 0.

1.2. Chains

We now introduce chains over the mesh m. A p-chain c, 0 ≤ p ≤ d, is an assignment to each p-simplex s of an
integer αs. This can be denoted by c =

∑
s∈Sp αs s. Let Cp be the set of all p-chains. This set has a structure

of Abelian group with respect to the addition of p-chains: two p-chains are added by adding the corresponding
coefficients. If s is an oriented simplex, the elementary chain corresponding to s is the assignment αs = 1 and
α′

s = 0 for all s′ �= s. In the sequel, we will use the same symbol s (or n, e, etc.) to denote the oriented simplex
and the associated elementary chain. Note how this is consistent with the above expansion of c as a formal
weighted sum of simplices.

The boundary of an oriented p-simplex of m is a (p−1)-chain determined by the sum of its (p−1)-dimensional
faces, each taken with the orientation induced from that of the whole simplex. For instance, ∂e =

∑
n∈N Gn

e n
expresses the boundary of edge e as a formal linear combination of nodes (such a thing is a p-chain, with
p = 0 here). Symbol ∂ will serve for dt, i.e., as a generic notation for the transposed Dt, Rt, Gt. Given
c = {ce : e ∈ E}, we have ∂(

∑
e∈E ce e) =

∑
n∈N (∂ c)nn, with ∂ = Gt in this case.

1.3. Cochains

We introduce the dual concept of p-cochain. A p-cochain is a linear functional on the vector space of p-chains.
For instance, given an array b = {bs : s ∈ Sp} of real numbers, we can define the p-cochain c →

∑
s∈Sp bs cs

acting on p-chains c with coefficients cs. Given a differential form w, the mapping c →
∫

c w defines a p-cochain.
More generally, the p-cochain coefficients are obtained by integrating the differential form w on the elements of
the p-chain c, i.e., the map c →

∑
s∈Sp

m
cs

∫
s
w is a cochain.

Once a metric is introduced on the ambient affine space, differential forms are in correspondence with scalar
and vector fields (called “proxy fields”, metric dependent, of course). The coefficients of p-cochains become
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the dofs of scalar and vector fields (and this is exactly what occurs with Whitney finite elements). Let W p

denote the set of p-cochains (or p-forms) defined on Ω when triangulated by m. Then, Cp and W p are in duality
via the bilinear bicontinuous map 〈· ; ·〉 : W p × Cp → R defined as 〈w ; c〉 =

∫
c
w.

For p > 0, the exterior derivative of the (p−1)-form w is the p-form dw. Note that the matrices G, R, D are
the discrete representation of the exterior derivative operator d when applied to a 0-, 1- and 2-form, respectively.
The integral

∫
c w is treated in two ways: if c = ∂τ and w is smooth, one may go forward and integrate dw

over τ . Alternatively, if the form w = dv, one may go backward and integrate v over ∂c. In particular, we have∫
∂c w =

∫
c dw, which is the common form of Stokes’ theorem, or equivalently,

〈w ; ∂c〉 = 〈dw ; c〉 ∀c ∈ Cp and ∀w ∈ W p−1. (1)

Equation (1) reveals that d is the dual of ∂. As a corollary of the boundary operator property ∂ ◦ ∂ = 0, we
have that d ◦ d = 0.

2. Whitney elements of polynomial degree one

Fields, in electromagnetism, are observed via quantities, such as electromotive forces, intensities, etc., which
correspond to line integrals (circulations), surface integrals (fluxes), etc. A field (say, for example, the vector
potential a) then maps a p-manifold γ (p = 0 for points, 1 in our example where γ is a line, 2 for surfaces, and
so on) to a number, here

∫
γ a. If we are edge elements, then a is represented by

∑
e∈E aew

e which we shall
denote by pma, being pm the interpolation operator of a field on the Whitney forms. Suppose that we replace γ
by a p-chain pt

mγ =
∑

e∈E cee, being pt
m the operator mapping a p-manifold in its “finite” representation, and

let us interpret the scalars ae as the elementary values
∫

e
a (circulations, here). Then a natural approximation

of
∫

γ
a is obtained by substituting pt

mγ for γ. Hence an approximate knowledge of the field a, i.e., of all its
measurable attributes, from the array a = {ae : e ∈ E}. The problem is then: “how best to represent γ by
a chain?” (cf. Fig. 1). Solving it yields, by duality, a definition of Whitney forms [23]: we, for instance, is,
like the field a itself, a cochain, a map from lines γ to real numbers ce, whose value we denote by

∫
γ we or by

〈we, γ〉. Note that, with this convention, 〈a, pt
mγ〉 = 〈a,

∑
e∈E(

∫
γ we)e〉 =

∑
e∈E

∫
γ we〈a, e〉 ≡ 〈pma, γ〉. So, we is

the Whitney form of polynomial degree one associated to e and the weight (or moment) of γ in the chain pt
mγ

is
∫

γ
we ≡ 〈we, γ〉. Note how this justifies the “ pt

m ” notation. In the next sections we define we in the case of
polynomial degree one and higher.

2.1. Generative formula for Whitney edge elements

Our starting point will be the rationale for Whitney forms given in [8]. We wish to represent a p-manifold
by a p-chain, with special attention to the case p = 1. To do this, we give a look to what is usually done for
p = 0.

Let’s first recall the notion of barycentric coordinates. Let t = {n1, n2, n3, n4} be a tetrahedron of m. Four
real numbers λ1, λ2, λ3, λ4 such that

∑
i λi = 1 determine a point x, the barycenter of the nis for these weights,

uniquely defined by x − n0 =
∑

i λi(ni − n0), where n0 is any origin (for example one of the nis). Conversely,
any point x has a unique representation of the form x− n0 =

∑
i λi(ni − n0), and the weights λi, considered as

functions of x, are the barycentric coordinates of x in the affine basis provided by the four vertices nis. Note
that x belongs to the tetrahedron t if λi(x) ≥ 0 for all i. The λis are affine functions of x. Now, consider the
mesh m of tetrahedra over Ω. To each node n of the mesh, we attribute a function whose value at point x is 0, if
none of the tetrahedra with a vertex in n contains x, otherwise, it is the barycentric coordinate of x with respect
to n, in the affine basis provided by the vertices of the tetrahedron to which x belongs. We attribute to this
nodal function the symbol wn. Note that by construction, wn(x) ≥ 0 and

∑
n∈N wn(x) = 1 for all x ∈ Ω. The

wns themselves are often called “hat functions”. Note that working by restriction to the master d-simplex t,
wn and λn coincide. Any point x of the meshed domain can be represented as x =

∑
n∈N wn(x)n, where wn is

the only piecewise affine (affine by restriction to each tetrahedron) function that takes value 1 at node n and 0
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Figure 1. Representing the circle γ by a weighted sum of mesh edges, i.e., by a 1-chain.
Graded thickness of the edges are meant to suggest the respective weights assigned to them.
Edges whose “control domain” (two neighboring triangles) doesn’t intersect γ, have zero weight.
(A weight can be negative, if the edge is oriented backward with respect to c.) Which weights
thus to assign is the central issue in the approach proposed in [8] to Whitney forms.

k

l

x

n
m

Figure 2. The 1-chain associated with the oriented segment xn is −λm(x)nm + λk(x)kn +
λl(x)ln. The minus sign in front of λm(x) is due to the fact that the oriented edge nm starts
in n, and ends in m. In terms of incidence numbers, Gnm

m = 1 and Gnm
n = −1. Edges e of the

volume {m, k, n, l} which do not have n as vertex make no contribution to the 1-chain.

at all other nodes. So, the weight of x with respect to node n is wn(x). In the following, when e = {m, n} and
f = {l, m, n}, we denote the node l by f − e. Thus λf−e refers, in that case, to λl.

The Whitney 0-form wn is then λn, the hat function of the finite element method. The definition of pmq =∑
n∈N qnwn for a scalar field q is obtained by transposition:

〈q, pt
mx〉 = 〈q,

∑
n∈N

λn(x)n〉 =
∑
n∈N

λn(x)〈q, n〉 =
∑
n∈N

qnwn(x) = 〈
∑
n∈N

qnwn, x〉 ≡ 〈pmq, x〉.

Hat functions have a double feature: they are the weights that represent a generic point as a linear combination
of the mesh nodes, as well as the interpolants that allow to define scalar functions from their nodal values at
the mesh nodes.

For p = 1, let xy be the oriented segment going from point x to point y. We know that pt
mx =

∑
n∈N 〈wn, x〉n,

and we figure out pt
mxy by linearity: pt

mxy =
∑

n∈N 〈wn, y〉pt
m(xn). As suggested in Figure 2, pt

m(xn) =
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e∈E Ge

nλe−n(x)e. Thus pt
mxy =

∑
n∈N ,e∈E Ge

nλe−n(x)〈wn , y〉e ≡
∑

e∈E 〈we, xy〉e. Hence

〈we, xy〉 =
∑
n∈N

Ge
nλe−n(x)〈wn, y〉.

Being 0 = 〈we, xx〉 =
∑

n∈N Ge
nλe−n(x)〈wn , x〉 and d the dual of ∂, we get that

〈we, xy〉 =
∑
n∈N

Ge
nλe−n(x)〈wn, y − x〉 =

∑
n∈N

Ge
nλe−n(x)〈wn , ∂(xy)〉 =

∑
n∈N

Ge
nλe−n(x)〈dwn, xy〉

for any “small edge” xy, i.e., a segment xy entirely contained in the cluster of tetrahedra around e. We then
obtain the following definition.

Definition 2.1. The Whitney 1-form of polynomial degree 1 associated to the 1-simplex e is

we =
∑
n∈N

Gn
e λe−ndwn. (2)

The space of Whitney edge elements of polynomial degree 1 over m is W 1
1 = span{we, e ∈ E} (≡ W 1).

As remarked in Section 1.3, differential forms such as wn, we, etc., are in correspondence with scalar and
vector fields. For instance, the vector we = λ� gradλm − λmgradλ�, whose expression is recovered form (2)
by replacing d with grad, is the vector field associated to the edge e = {�, m}. Its weight with respect to e (or
circulation along e) is 1 and 0 on other simplices in m of matching dimension.

Let xy be the oriented edge with vertices x, y. In a code conceived in terms of proxy vector fields, with an
underlying metric, instead of differential forms, the evaluation of circulations along edges of we is done according
to the following well known result.

Proposition 2.2. Let t be a given tetrahedron. Then

〈we, xy〉 = |xy|(we(bxy) · txy), xy ⊂ t, e ∈ E(t) (3)

where bxy is the barycenter of xy, txy is the unit vector along xy, |xy| is the length of xy.

Note that Proposition 2.2 relies on metric tools, such as dot product, segment lengths, etc., to compute
metric-free quantities. The weight 〈we, xy〉 does not depend, in fact, on the shape of e and xy but on their
relative position and orientation.

Thanks to formula (2), in the following proposition we state an equivalent but affine way to compute the
weights.

Proposition 2.3. Let t = {k, l, m, n} be a given tetrahedron. Then

〈we, xy〉 = det
(

λm(x) λn(x)
λm(y) λn(y)

)
, xy ⊂ t, e = {m, n} ∈ E(t),

Proof. Thanks to Definition 2.1, we can write 〈we, xy〉 =
∑

n∈N Gn
e λe−n(x)〈dwn, xy〉. By duality between d

and ∂, the equality 〈dwn, xy〉 = 〈wn, ∂(xy)〉 holds for any node n ∈ N and for any segment xy ⊂ v. We remark
that 〈wn, ∂(xy)〉 = 〈wn, y − x〉. Since 0 = 〈we, xx〉, we have

〈we, xy〉 =
∑
n∈N

Gn
e λe−n(x)〈wn, y〉 = −λn(x)λm(y) + λm(x)λn(y) = det

(
λm(x) λn(x)
λm(y) λn(y)

)
. �



HIGH ORDER EDGE ELEMENTS ON SIMPLICIAL MESHES 1007

Corollary 2.4. Let t = {k, l, m, n} be a given tetrahedron with unit volume |klmn|. Then

〈wn, x〉 = |xklm|, x ∈ t,
〈we, xy〉 = |xykl|, xy ⊂ t, e = {m, n} ∈ E(t). (4)

Proof. By definition of barycentric coordinates of a point x ∈ v with respect to the vertices k, l, m, n of t, we
can write

x = λk(x) k + λl(x) l + λm(x)m + λn(x)n, with 1 = λk(x) + λl(x) + λm(x) + λn(x). (5)

By subtracting k from both sides, we get x − k = λl(x) (l − k) + λm(x) (m − k) + λn(x) (n − k). So, λn(x) =
det(l−k, m−k, x−k)/det(l−k, m−k, n−k) = |xklm|/|nklm|, being the mixed product (l−k)·[(m−k)×(x−k)] =
6|xklm| equal to det(l − k, m − k, x − k). Concerning the second statement, we write

det
(

λm(x) λn(x)
λm(y) λn(y)

)
= det

⎛⎜⎜⎝
1 0 0 0
0 1 0 0

λk(x) λl(x) λm(x) λn(x)
λk(y) λl(y) λm(y) λn(y)

⎞⎟⎟⎠ = det

⎛⎜⎜⎝
λk(k) λl(k) λm(k) λn(k)
λk(l) λl(l) λm(l) λn(l)
λk(x) λl(x) λm(x) λn(x)
λk(y) λl(y) λm(y) λn(y)

⎞⎟⎟⎠ .

Thanks to Proposition 2.3 and the change of basis (5) from barycentric coordinates to Cartesian ones, we have
〈we, xy〉 = |xykl|. �

2.2. Properties

In this subsection, we recall some properties of the forms defined in (2).

Proposition 2.5. For any edge e and face f we have∑
n∈N

Gn
e λe−n wn = 0,

∑
e∈E

Re
f λf−e we = 0. (6)

Proof. The first identity is evident: we get −λm λn + λn λm = 0 for the edge e = {n, m}. To prove the second
identity, we replace we by its expression given in (2) and we get

∑
e Re

f λf−e we =
∑

n,e λf−eλe−n Re
f Gn

e dwn =
0 since RG = 0 and λf−eλe−n is the same for all e in ∂f . �

Recall that barycentric functions sum to 1, thus forming a “partition of unity”:
∑

n∈N wn = 1. For 1-forms,
going back to the standard vector formalism, let us denote by we the vector field associated to we.

Proposition 2.6. At all points x, for all vectors v,∑
e∈E

(we(x) · v) e = v. (7)

Proof. A vector length associated to an edge e is a vector e of modulus length(e) parallel to the edge e.
Relation (7) results from the identity xy =

∑
e∈E〈we, xy〉e. We replace we by we, then xy by its vector length v

and e by its vector length e. �

The connection between the lowest order Nédélec elements (see [18], Defs. 2 and 4 with d = 3 and k = 1)
and Whitney forms is well known and revisited in the following proposition.

Proposition 2.7. In a given tetrahedron t = {m, n, k, l}, the vector field w{m,n} is of the form a×x+ b, where
a, b ∈ R

d and a is parallel to the edge {k, l} opposite to {m, n}.
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Proof. Let |t| denote the volume of t and (l − k) the vector starting in k and ending in l. We can write that

w{m,n} =
(l − k) × (x − k)

6|t|

since (l − k) × (x − k) · (m − n) = 6|t| for a point x lying on the edge {m, n} and 〈w{m,n}, {m, n}〉 = 1. This
yields,

w{n,m} =
(l − k) × [(x − o) + (k − o)]

6|t| =
(l − k)

6|t| × x + b = a × x + b

with a = (l−k)
6|t| parallel to {k, l} (being o the origin in the Cartesian coordinates). �

Next proposition states the curl-conformity (see [18] for a definition of this conformity) of the space W 1
1 .

Proposition 2.8. Vector fields in W 1
1 have tangential part continuous across faces.

Proof. Let us consider two tetrahedra t1 = {n, m, l, k} and t2 = {m, l, k, q} with face f = {m, l, k} in common
and let x be a point of f . The vector grad λk is not continuous at x. We have in fact that (l−m)× (n−m) =
2 nml, where nml denotes the vector area associated to {n, m, l}, and that 1/|gradλk| is the height of t1 with
respect to {n, m, l}. This yields (grad λk)|t1 = nml/(3 vol(t1)). Similarly, (gradλk)|t2 = mlq/3vol(t2). But the
tangential part of gradλk on face f changes in a continuous way when one crosses the face from one tetrahedron
to its neighbor; indeed, it only depends on the values of λk on this face, whatever the tetrahedron one considers.
As it goes the same for gradλm, and for all the faces of the mesh, one may conclude that the tangential part
of w{k,m} is continuous across faces. �

Thanks to this property, the set W 1
1 = span {we, e ∈ E} plays the role of internal Galerkin approximation

space for the Sobolev space H(curl, Ω) (see [10] for a definition of H(curl, Ω)). Therefore, a vector field
h ∈ H(curl, Ω) can be represented in W 1

1 by pmh =
∑

e∈E he we where the scalar he is the circulation of h along
the mesh edge e ∈ E , i.e., the weight 〈pmh, e〉.

3. Whitney edge elements of higher degree

We set out to construct edge elements of higher degree and from now on multi-index notations are used.
Note that the integer k will be no more a vertex label but a multi-index weight. Let k, boldface, be the array
(k0, . . . , kd) of d + 1 integers ki ≥ 0, and denote by k its weight

∑d
i=0 ki. The set of multi-indices k with d + 1

components and of weight k is denoted I(d + 1, k) and its cardinality #I(d + 1, k) is the binomial coefficient(
k + d

d

)
=

(k + d)!

d! k!
. We then adopt the following definition.

Definition 3.1. Let k ∈ I(d + 1, k). Then λk means the homogeneous monomial Πd
i=0 (λi)ki .

Let us denote by Pk(Σ) the vector space of polynomials defined on a domain Σ ⊂ R
d in d variables of

degree ≤ k and by P̃k(Σ) the subspace of Pk(Σ) of homogeneous polynomials of degree k. A well-known result

in algebra states that the dimension of Pk(Σ) is
(

k + d
k

)
and that of P̃k(Σ) is

(
k + d − 1

k

)
. Homogeneous

polynomials of degree k in the d + 1 barycentric coordinates are in 1-to-1 correspondence with polynomials
of degree ≤ k in the d Cartesian ones. For this reason, we can say that Pk(t) = span(λk)k∈I(d+1,k) on each
tetrahedron t.

In each tetrahedron t of vertices ai, i = 0, d, and for each integer k ≥ 0, the principal lattice of order k + 1
in t is the set of points Tk+1 defined by their barycentric coordinates with respect to the vertices ai as follows

Tk+1 = {x ∈ R
d, λj(x) ∈ {0,

1
k + 1

, . . . ,
k

k + 1
, 1}, 1 � j � d + 1}

(cf. Fig. 3 for T3).
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Figure 3. The mapping k̃ associated to k = (2, 0, 0) (top) and k = (1, 0, 1) (bottom) with
k = 2, and the (dashed) triangle k̃(t).

In order to define higher order Whitney edge elements, we do not follow the traditional FEM path of using
higher and higher moments to define the needed dofs to avoid including non-physical quantities that are not
easy to interpret. We follow a new approach based on a set of edges, called “small edges”, associated to the
principal lattice of the simplex and defined by means of a particular application, the k̃ map, explained in the
next section.

3.1. The k̃ map

We start by defining a geometrical partition within each mesh tetrahedron t: this partition is the key point
in the construction Whitney forms of any degree k.

Definition 3.2. To each multi-integer k ∈ I(d + 1, k) corresponds a map, denoted by k̃, from t into itself.
Let k̃i denote the affine function that maps [0, 1] onto [ ki

k+1 , 1+ki

k+1 ]. If λi(x), 0 ≤ i ≤ d, are the barycentric

coordinates of point x ∈ t, its image k̃(x) has barycentric coordinates k̃i(λi(x)), with k̃i(λi(x)) = λi(x)+ki

k+1 .

Geometrically, this map is a homothety, more precisely a transformation of space which dilates distances of
a factor 1

k+1 with respect to a fixed point of barycentric coordinates ki

k (cf. Fig. 3 for two examples). Note that
k̃(t) for all possible k ∈ I(d + 1, k), are congruent by translation and homothetic to t. They don’t pave t, and
the holes left are not necessarily homothetic to t. As an example, take k = 2: for d = 2, cf. Figure 4 (left),
the holes left are 3 small triangles not homothetic to t; for d = 3, cf. Figure 4 (center and right), the holes left
are 1 central small tetrahedron and 4 octahedra. The k̃(xi), for all possible multi-indices k ∈ I(d + 1, k) and
nodes i of t, make Tk+1, the principal lattice of order k + 1 in t.

Definition 3.3. We call small edges of a mesh tetrahedron t the images k̃(E) for all (big) edge E ∈ E(t) and
all k ∈ I(d + 1, k), and denote them by e = {k, E}.

In short, all the edges of k̃(t), for k ∈ I(d+1, k), are small edges. Looking again to Figure 4, one has 6 small
triangles k̃(t) in 2D and 10 small tetrahedra k̃(t) in 3D. This yields 18 small edges in 2D and 60 in 3D for each
mesh element t.

3.2. High order edge elements

Edge elements of higher degree in a tetrahedron t are associated to the geometrical partition in t defined by
the k̃ map for all possible multi-indices k ∈ I(d + 1, k).
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Figure 4. The images k̃(t) for a mesh triangle and tetrahedron t, for k = 2 and (in thick line)
examples of “holes”, i.e., triangles, tetrahedra or octahedra not congruent to t.

Definition 3.4. Whitney 1-forms of polynomial degree k + 1 over m are the we = λkwE , for all multi-index
k ∈ I(d + 1, k), for all (big) edges E ∈ E , being e = {k, E} and wE defined in (2). The space of Whitney edge
elements of polynomial degree k + 1 over m is W 1

k+1 = span{we, e = {k, E}, k ∈ I(d + 1, k), E ∈ E}.

Examples. In two dimensions (d = 2), let us consider the triangle t = {n, l, m}. The set of its (big) edges E is
E(t) = {{n, l}, {l, m}, {m, n}} and λk = λk0

n λk1
l λk2

m .

(1) For k = 0, the set of multi-indices with 3 components and of weight 0 is I(3, 0) = {(0, 0, 0)} and the
k̃ map is the identity over the considered triangle. The space of Whitney edge elements of polynomial
degree 1 over t is thus

W 1
1 (t) = span{w{n,l}, w{l,m}, w{m,n}}, (8)

where, e.g., w{n,l} = λngradλl − λlgradλn.
(2) For k = 1, the set of multi-indices with 3 components and of weight 1 is

I(3, 1) = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

and the space of Whitney edge elements of polynomial degree 2 over t is

W 1
2 (t) = span{λnw{n,l}, λnw{l,m}, λnw{m,n},

λlw
{n,l}, λlw

{l,m}, λlw
{m,n},

λmw{n,l}, λmw{l,m}, λmw{m,n}}.
(9)

Note that in (9), the forms λnw{n,l}, λnw{l,m}, λnw{m,n} are obtained from Definition 3.4 for k =
(1, 0, 0), the forms λlw

{n,l}, λlw
{l,m}, λlw

{m,n} for k = (0, 1, 0) and λmw{n,l}, λmw{l,m}, λmw{m,n} for
k = (0, 0, 1), respectively (see Fig. 5 left).

(3) For k = 2, the set of multi-indices with 3 components and of weight 2 is

I(3, 2) = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}



HIGH ORDER EDGE ELEMENTS ON SIMPLICIAL MESHES 1011

m, {m, n}
nm

m, {
l,m

}

l, {
l,m

}
l, {n,l}

n, {n,l}
n, 

{l,
 m

}

l, {m, n}

m, {n, l}

l

n, {m, n}
nm

m,m,{m,n} m,n,{m,n} n,n,{m,n}

l

l,l
,{l

,m
}

m,l,{
l,m

}

m,m
,{l

,m
}

l,l,{m,n}

m,l,{n,l}
m,l,{m,n}

m,m,{n,l}
m,n,

{l,
m}

n,l
,{l

,m
}

l,l,{n,l}

n,l,{n,l}

n,n,{n,l}

n,n
,{l

,m
}

n,l,{m,n}

n,l,{n,l}

Figure 5. Indexing and orientation of the small edges in the triangle t = {n, l, m} for the
forms spanning W 1

2 (t) (left) and W 1
3 (t) (right) respectively. The index n, {m, n} denotes the

small edge {k, {m, n}} where k = (1, 0, 0) and is linked to the form λnw{m,n}, etc. The index
m, m, {l, m} denotes the small edge {k, {l, m}} with k = (2, 0, 0) and is linked to the form
λ2

mw{l,m}, etc.

and the space of Whitney edge elements of polynomial degree 3 over t is

W 1
3 (t) = span{λ2

nw{n,l}, λ2
nw{l,m}, λ2

nw{m,n},

λ2
l w

{n,l}, λ2
l w

{l,m}, λ2
l w

{m,n},

λ2
mw{n,l}, λ2

mw{l,m}, λ2
mw{m,n},

λnλlw
{n,l}, λnλlw

{l,m}, λnλlw
{m,n},

λnλmw{n,l}, λnλmw{l,m}, λnλmw{m,n},

λlλmw{n,l}, λlλmw{l,m}, λlλmw{m,n}}.

(10)

In (10), the forms λ2
nw{n,l}, λ2

nw{l,m}, λ2
nw{m,n} are obtained from Definition 3.4 for k = (2, 0, 0), etc.

(see Fig. 5 right).
The recipe given in Definition 3.4 for Whitney 1-forms of higher polynomial degree over m is simple: for W 1

2 ,
attach to edges E ∈ E products λn wE , where n spans N and wE ∈ W 1

1 . For W 1
3 , attach to edges E ∈ E

products λnλm wE , where n, m span N and wE ∈ W 1
1 , etc.

The quantities 〈λk wE , {k′, E′}〉, i.e., the circulations of we defined in Definition 3.4 along oriented small
edges, can be interpreted again as volumes of suitable tetrahedra, as done for k = 0. The scaling factor∫
{k′,E′} λk is involved, whose dependency on the homothetic parameters of the maps k̃ and k̃′ is given in the

following.
Let xy ⊂ t be the oriented segment with vertices x, y, contained in the tetrahedron t, E ∈ E(t) and

k ∈ I(d + 1, k). Then

〈λkwE , xy〉 = 〈wE , xy〉
∫

xy

λk. (11)

Identity (11) results from the fact that 〈wE , xy〉 represents the weight of the oriented segment xy with respect
to the oriented edge E ∈ E(t) and does not depend on the point over the line xy (see the second line of (4) in
Cor. 2.4). Given the line xy and the edge E, the weight 〈wE , xy〉 is a fixed quantity, namely, here comes again
the definition of Whitney 1-forms as a tool to describe segments as 1-chains. This is a peculiarity of Whitney
forms. Thank to the linearity of the map 〈·, ·〉 and identity (11), we have that if xy is a 1-chain of small or big
edges ei of t, i.e., xy =

∑
ciei, then

〈λkwE , xy〉 = 〈λkwE ,
∑

ciei〉 =
∑

ci〈λkwE , ei〉 =
∑

ci〈wE , ei〉
∫

ei

λk.
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The quantity
∫

ei
λk can be computed by applying Proposition 3.5 with d = 1, for any big edge ei, and Propo-

sition 3.6 with d = 1, for any small one.
Let us start by Proposition 3.5 that represents a classical result in nodal finite elements.

Proposition 3.5. The average A(d,k) of λk over the tetrahedron t is
∫

t
λk = |t|k0! k1! ...kd! d!

(k+d)! .

Proof. This result is normally stated on the unit simplex and proved by recurrence of the simplex dimension d, as
we recall here. Let t be the unit d-simplex {(λi)i=0,d, 0 ≤ λi ≤ 1,

∑d
i=0 λi = 1}. Moreover,

∫
t
dλ1 . . .dλd = 1

d! .
We have that∫

t λkdx = d!
∫∑d

i=0 λi≤1 Πd
i=0λ

ki

i dλ1 . . . dλd

= d
∫ 1

λd=0
λkd

d

(
(d − 1)!

∫∑d−1
i=0 λi≤1−λd

λk0
0 . . . λ

kd−1
d−1 dλ′

)
dλd

= d
∫ 1

λd=0
λkd

d

(
(d − 1)!

∫∑d−1
i=0 λi≤1−λd

(1 − λd −
∑d−1

i=1 λi)k0Πd−1
i=1 λki

i dλ′
)

dλd.

By the change of variable λ′ = (λ1, . . . , λd−1) = (1 − λd)µ, being r =
∑d−1

i=1 ki, we have

∫
T λkdx = d

∫ 1

λd=0 λkd

d (1 − λd)r+k0+d−1dλd

(
(d − 1)!

∫∑d−1
i=0 µi≤1(1 −

∑d−1
i=1 µi)k0Πd−1

i=1 µki

i dµ
)

= d
∫ 1

λd=0
λkd

d (1 − λd)r+k0+d−1dλd

(
(d − 1)!

∫∑d−1
i=0 µi≤1

Πd−1
i=0 µki

i dµ
)

.

This means that
A(d,k) = dB(kd + 1, k′ + d − 1 + 1)A(d − 1,k′)

where k′ = (k0, . . . , kd−1) and B denotes Euler’s Beta function, defined by

B(m + 1, n + 1) =
∫ 1

0

xm(1 − x)ndx = m! n!/(m + n + 1)!.

For k = 1, then λk is one of the λi, i = 0, d, and A(d,k) = 1
1+d . Suppose that the formula is correct for

A(d − 1,k′) (as recursion hypothesis), then

A(d,k) = d
kd!(k′ + d − 1)!

(k + d)!
A(d − 1,k′) = d

kd!(k′ + d − 1)!
(k + d)!

k0! . . . kd−1!(d − 1)!
(k′ + d − 1)!

=
k0! . . . kd! d!

(k + d)!

being k′ + kd = k. �

For Proposition 3.6, we adopt the following notation that generalizes the binomial expansion formula to
arrays. Let x, y be two real arrays and k an integer array indexed over the set J = {0, 1, . . . , d}. Then

(x+y)k =
∑k

r=0

(
k
r

)
xk−ryr. Indeed, when both x and y are real, we have (x+y)k =

∑k
r=0

(
k
r

)
xk−ryr for

all integers k. We now consider two real arrays x, y, and an integer array k indexed over the set J = {0, 1, . . . , d}.
With our conventions,

(x + y)k = Πj∈J (xj + yj)kj = Πj∈J
kj∑

rj=0

(
kj

rj

)
x

kj−rj

j y
rj

j ,

which prompts us to introduce the notation(
k
r

)
= Πj∈J

(
kj

rj

)
= Πj∈J

kj !
(kj − rj)! rj !

=
Πj∈J kj !

Πj∈J (kj − rj)! Πj∈J rj !
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which we may as well write
(

k
r

)
= k!

(k−r)! r! by introducing the natural convention k! = Πj∈J kj ! for an

J -indexed multi-integer. By distributivity, we get the generalized formula.

Proposition 3.6. The average of λk, k ∈ I(d + 1, k), over a small volume {k′, t}, k′ ∈ I(d + 1, k′), is

I =
∫
{k′,t}

λk =
1

(1 + k′)d+k

k∑
r=0

(
k
r

)
(k′)k−rA(d, r).

Proof. Let us suppose that t is the unit d-simplex. We recall that the small volume {k′, t} is homothetic to t

through the homothety s = h(x) with ration 1
1+k′ and center the point k′

k′ . By definition of homothety, we have

(h(x))i =
k′

i

k′ +
1

1 + k′

(
xi −

k′
i

k′

)
=

1
1 + k′ (xi + k′

i) , 1 ≤ i ≤ d.

So that

I =
∫
{k′,t}

λk(s)ds =
∫

t

λk(h(x))|jac(h(x))|dx =
1

(1 + k′)d

∫
t

λk(h(x))dx.

In terms of barycentric coordinates (we are in the unit d-simplex), we can write

λi(h(x)) =
1

1 + k′ (xi + k′
i), 1 ≤ i ≤ d, λ0(h(x)) = 1 −

d∑
i=1

λi(h(x)) =
1

1 + k′

(
1 −

d∑
i=1

xi

)
.

Then

I =
1

(1 + k′)d

∫
t

Πd
i=0λ

ki

i (h(x))dx =
1

(1 + k′)d+k

∫
t

(
1 −

d∑
i=1

xi

)k0

Πd
i=1(xi + k′

i)
kidx.

We can write

I =
1

(1 + k′)d+k

∫
t

(
1 −

d∑
i=1

xi

)k0

(k′ + x)kdx =
1

(1 + k′)d+k

∫
t

(
1 −

d∑
i=1

xi

)k0 k∑
r=0

(
k
r

)
(k′)k−rxrdx

=
1

(1 + k′)d+k

k∑
r=0

(
k
r

)
(k′)k−r

∫
t

(1 −
d∑

i=1

xi)k0xrdx =
1

(1 + k′)d+k

k∑
r=0

(
k
r

)
(k′)k−r

∫
t

λrdx. �

3.3. Properties and remarks

We now state some properties of the 1-forms of Definition 3.4. A straightforward generalization of Proposi-
tion 2.6 for Whitney edge elements of degree one, yields the following property.

Proposition 3.7. The 1-forms of Definition 3.4 constitute a partition of unity.

Thank to Proposition 2.8, we have the following property.

Proposition 3.8. Functions in W 1
k+1 are curl-conforming.

Proof. Elements in W 1
k+1 are defined as products between an element in W 1

1 and the continuous function λk,
k ∈ I(d + 1, k). �

The main difficulty with the 1-forms of Definition 3.4 is recalled in the following proposition.

Proposition 3.9. The forms we of Definition 3.4 are generators of W 1
k+1 but not linearly independent.
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Table 1. The elements of the matrix Ae′
e over the triangle {n, l, m} for k = 0.

Ae′
e {n, l} {l, m} {m, n}

w{n,l} 1 0 0
w{l,m} 0 1 0
w{m,n} 0 0 1

Table 2. The elements of the matrix A
{k′,E′}
{k,E} multiplied by 16 over the triangle {n, l, m} for

k = 1 (cf. Fig. 5 left for the small edge indexing and orientation). This 9 × 9 matrix is not
regular, it has rank 8 and the vector (4, 1, 1, 1, 4, 1, 1, 1, 4) generates its kernel.

A
{k′,E′}
{k,E} m, {n, l} n, {n, l} l, {n, l} m, {l, m} n, {l, m} l, {l, m} m, {m, n}! n, {m, n} l, {m, n}

λmw{n,l} 2 0 0 0 −1 0 0 0 −1
λnw{n,l} 1 6 2 0 −2 0 0 0 −1
λlw{n,l} 1 2 6 0 −1 0 0 0 −2

λmw{l,m} −2 0 0 6 1 2 0 0 −1
λnw{l,m} −1 0 0 0 2 0 0 0 −1
λlw{l,m} −1 0 0 2 1 6 0 0 −2

λmw{m,n} −2 0 0 0 −1 0 6 2 1
λnw{m,n} −1 0 0 0 −2 0 2 6 1
λlw{m,n} −1 0 0 0 −1 0 0 0 2

With standard edge elements, the dof ve was the integral of the 1-form
∑

e′ ve′we′
over edge e. In other

words, the square matrix Ae′
e = 〈we, e′〉 is the identity (cf. Tab. 1 for an example in two dimensions). This

means that edges and 1-forms are in duality. To sum up, with edge elements of the lowest degree, dofs are
localized over mesh edges and represent field circulations along them.

With the higher order forms defined in Definition 3.4, we cannot expect to find a family of edges, simple
1-chains, such that each vkE would be the integral of

∑
k,E vkEλk wE over one of them, and have a null integral

over all other chains of the family, i.e., a family of 1-chains in duality with the λk wE . This fact makes the
interpretation of dofs difficult with such forms. The most natural candidates, i.e., the “small edges” {k, E},
fail because the square matrix A

{k′,E′}
{k,E} = 〈λk wE , {k′, E′}〉 is not the identity (cf. Tab. 2 for an example in two

dimensions with k = 1). Moreover, the matrix A
{k′,E′}
{k,E} is not regular, we cannot invert it to find out another

family of chains, linear combination of the {k, E} in duality with λk wE . We must be content with less: 1-cells
such that integrals over them of

∑
k,E vkEλk wE determine the vkE and in clear 1-to-1 correspondence with the

forms λk wE . To sum up, with edge elements of the higher degree, dofs are localized over 1-chains composed of
several (small) edges and represent field circulations along them.

Actually, to obtain a set of linearly independent forms for the space W 1
k+1(t), one can eliminate the redundant

ones, i.e., one form for each k̃(t) not homothetic to t (and the corresponding small edge). As an example, for the
space defined in (9), we can neglect the form λlw

{m,n}, and for that defined in (10), the three forms λ2
nw{l,m},

λnλlw
{l,m}, λnλmw{l,m}. Numerical results are independent of the selection procedure.

Remark 3.10 (Geometrical interpretation). In this paper we have shown that high order 1-forms are indeed
associated with geometric figures of dimension 1, even though this association is not as obvious as in the case
of Whitney 1-forms of degree one. Whatever the polynomial degree, dofs are paired with 1-chains composed
of small edges. Let us analyze in detail the basis we found out for W 1

k+1(t) giving a geometrical interpretation
with respect to the geometry of the tetrahedron t = {n, l, m, i} we consider.
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Figure 6. In light line, the refinement of t associated to k = 2 and, in thick line, the (three, six
and one) small edges to list the functions λrλsw

{m,n} in Be (left), Bf (center) and Bv (right),
respectively.

The set B of basis functions for W 1
k+1(t) can be partitioned in three subsets, namely Be, Bf and Bv. Note

that Bf is empty for k = 0 and Bv is empty for k = 0, 1. So, we assume that k = 2, i.e., the minimum value for
k for which the three subsets Be, Bf and Bv are not empty.

Be =
⋃

{n,m}∈E(t){λr λs w{n,m}, both r and s equal to n or m}, #Be = 18

Bv =
⋃

{n,m}∈E(t){λr λs w{n,m}, both r and s different from n and m}, #Bv = 6,

Bf =
⋃

{n,m}∈E(t){λr λs w{n,m} �∈ Be ∪ Bv}, #Bf = 36.

Functions in B verify 15 relations, three for face plus three for the internal tetrahedron not similar to t (cf. Fig. 4
center).

The set Bv gives “interior” basis functions in the sense that the moments on the (big) edges and faces (see [18],
Def. 4) are zero for these functions. Indeed, functions in Bv can be expressed as a difference of two terms each
of which has a factor of the form λkλlλngradλm. This factor is zero on faces containing the vertex m, while
on face {k, l, n}, its tangential component is zero due to the presence of gradλm. Hence, functions in Bv have
zero face and edge moments.

The set Bf gives “face” basis functions in the sense that these functions have edge dofs equal to zero.
Indeed, these functions are of the form λα

nλβ
mλγ

l (λl w{m,n}) for some nonnegative integer powers α, β and γ

with α + β + γ = 1. It is easily verified that the tangential components of the function λl w{m,n} is zero on all
faces except face {l, m, n}. Its tangential component is zero on all edges of the tetrahedron.

The remaining functions, those in Be, are “edge” basis functions. These functions take the form λα
nλβ

mw{m,n}.
Their tangential component is nonzero on the edge {m, n} but vanishes on every other edge of the tetrahedron.

The small edges to build up functions λrλsw
{m,n} in Be, Bf and Bv respectively, are drawn in Figure 6. We

recall that the edge basis functions we proposed may not have zero face dofs, and the face basis functions may
not have zero interior moments. Figure 6 is just a visualization help to list all the basis functions contained
in B. Thank to Figure 6, it is easy to see that, for k = 2, three functions in Be are λ2

nw{m,n}, λnλmw{m,n},
λ2

mw{m,n}, six functions in Bf are λnλlw
{m,n}, λmλlw

{m,n}, λ2
l w

{m,n}, λnλkw{m,n}, λmλkw{m,n}, λ2
kw{m,n}

and one function in Bv is λkλlw
{m,n} (cf. Tab. 3 for the list of basis functions in affine coordinates for W 1

k+1(t),
k = 0, 1, 2).

Remark 3.11 (Other bases). Edge element basis functions of Nédélec type are distinguished by two important
properties, namely, their curl-conforming nature and their reduced number of dofs for a fixed order of approxi-
mation. Given a basis that is complete to polynomial order k +1, the accuracy of the overall solution is limited
by the terms involving the curl of the basis, which can only be of complete polynomial order k. Hence, those
terms of exact order k+1, and whose curls vanish, neither contribute to the modeling of the curl nor to the over-
all accuracy of the solution. Hence, these unnecessary dofs can be discarded in forming curl-conforming bases.
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Table 3. Basis for Whitney edge element spaces on a tetrahedron {n, l, m, i} in barycentric
coordinates for some degrees.

Basis functions
Degree Interior face {n, l, m} edge {l, m}

1 none none w{l,m}

2 none λmw{n,l} λlw
{l,m}

λnw{l,m} λmw{l,m}

3 λmλlw
{n,i} λmλnw{n,l} λ2

l w
{l,m}

λmλiw
{n,l} λ2

mw{n,l} λmλlw
{l,m}

λiλlw
{m,n} λmλlw

{n,l} λ2
mw{l,m}

λ2
l w

{m,n}

λmλlw
{m,n}

λnλlw
{m,n}

As their construction makes clear, a feature of Nédélec curl-conforming bases is that the bases of polynomial
order k + 1 are complete only to the same order as their curl, that is k. Then, a Nédélec family of order k can
be simply generated as the product of bases of the Nédélec type of order zero and a complete scalar polynomial
of degree k. The set of polynomial factors used may take one of several different forms chosen for convenience
(cf. [12,20] for an overview); since all are complete, they span the same space and are merely linear combination
of one another. In this sense they are equivalent. Among several possibilities, the polynomial factor of degree
k may be of homogeneous form, as in our case. A numerical comparison with respect to other bases presented
in the literature has still to be done (see [20] where computationally effective high order edge elements are
presented).

Remark 3.12 (Error estimates). Let h be the maximal diameter of the elements in the mesh, Ih,k the inter-
polation operator over W 1

k and || · || the norm defined in W 1
k . While we can analyze the interpolation error

||u− Ih,ku|| in the mesh elements for a fixed polynomial degree k as the mesh is refined, i.e., h → 0 (cf. [17,18]),
there is no analysis yet that provides error estimates including the influence of the polynomial degree k. We
would like that a result such as

||u − Ih,ku|| = O(hµ−1k1−r) (12)

where µ = min(r, k + 1) and r is the regularity of the function u, which is valid for H1-conforming hk elements
also holds for hk curl-conforming elements. If the function u is smooth enough to have bounded derivatives such
that r ≥ k + 1, then estimate (12) states that we can achieve super-algebraic convergence as we increase the
polynomial order k and algebraic convergence as we decrease the mesh element size h. The results of preliminary
numerical tests done in 2D are presented in the following section and are in agreement with estimate (12).

There is also another way to understand the dependency on h. Whitney forms are best viewed as a device
to represent manifolds by simplicial chains, here the manifolds being the mesh edges and the simplicial chains
being the “small edges”. The representation gets better and better as the “small edges” get smaller and smaller,
and, by duality, we improve the approximation of the differential form associated to the manifold.

4. Numerical results and conclusions

We wish to give a simple concrete application of the notions presented in the previous sections. In particular,
we shall solve the model problem

au + curl(b curlu) = f in Ω, u · t = 0 on ∂Ω, (13)



HIGH ORDER EDGE ELEMENTS ON SIMPLICIAL MESHES 1017

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

1/31/61/91/121/15

E
rr

or
 m

ax
 n

or
m

h

N=1
O(h)
N=2

O(h^2)
N=3

O(h^3)
N=4

O(h^4)
N=5

O(h^5)

Figure 7. h-convergence of the approximation error.

for some parameters a, b > 0 and Ω a bounded polygonal domain in R
2.

We report the results of numerical experiments for the conjugate gradient applied to the linear system
obtained by discretizing the model problem (13) with triangular Whitney edge elements of higher order. The
computational domain is the rectangle Ω = [0.5, 1.5]× [0.25, 0.75] and the body force f is consistent with

u =
(

2 π sin(π x) cos(2 π y)
−π cos (π x) sin(2 π y)

)
as exact solution of (13). The triangular mesh is simply obtained by first dividing Ω into J2 rectangles and
second by dividing each of them in two triangles. As a results, the number of triangles is 2J2. Computations
have been made for different values of the total polynomial approximation degree, i.e., k+1 = N = {1, 2, 3, 4, 5}
and for a number of triangles obtained with J = {3, 6, 9, 12, 15}.

As stated by Proposition 3.9, the high order edge element functions we consider are not linearly independent
and a selection procedure must be specified in order to get a basis for W 1

k+1. For the numerical results presented
in this section, given the mesh triangle t = {n, l, m}, we have neglected all functions associated to internal small
edges parallel to {l, m}. For the degrees {1, 2, 3, 4, 5}, we have discarded, respectively, 0, 1, 3, 6, 10 functions in
each mesh triangle, one function for each k̃(t) not homothetic to t, k ∈ I(3, k). Numerical results have shown
to be independent of the selection procedure. The evaluation of the quantities 〈λk wE , {k′, E′}〉, for k,k′ ∈
I(d+1, k) and E, E′ ∈ E , i.e., the circulations of we defined in Definition 3.4 along oriented small edges, is done
numerically by suitable high order Gauss-Legendre quadrature formulas. For the adopted non-preconditioned
conjugate gradient (CG) method, the initial guess is zero and the stopping criterion is ||r(ν)||/||r(0)|| ≤ 10−6,
where r(ν) is the νth residual.

Figure 7 shows the log-plots of the error for the considered choices of N = k+1. As expected the convergence
to the exact solution is of algebraic type and achieved with an order of accuracy equal to N with respect to h.
Figure 8 shows the semi log-plots of the error for the considered choices of h. A super-algebraic convergence is
achieved with respect to N .

One important aspect to consider is the condition number of the system matrix which results from the edge
element approximation of problem (13). Figure 9 shows the condition number in log-scaling (as computed by
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the routine DGESVX of the LAPACK library) versus the adopted degree N for different values of h. Unluckily,
we find an exponential dependency of the condition number with respect to N . We have an asymptotic behavior
of the form c eα N for the condition number presented in Figure 9, with, e.g., c = 6.3873278 and α = 3.1509274
for h = 1/15. The proposed basis does not prove to be well conditioned with respect to the polynomial degree N
and some preconditioning should be attempted. Figure 10 shows the log-plot of the inverse of the condition
number versus the mesh size for different values of N . Clearly the condition number shows a O(1/h2) behavior,
in agreement with classical theoretical results [16].
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To conclude, this work deals with the definition of shape functions for high order edge finite element spaces.
The case of lowest order is well understood in the literature and dofs are generally associated with suitable
moments along edges of the triangulation. This is where the name “edge” elements originates. When moving
to higher orders, the situation is somehow more complicated and various possible definitions of shape functions
have been introduced in the literature. Such definitions generally involve dofs which do not correspond to
moments along edges (like face or volume moments). Here, the main goal consists in designing shape functions
which use only edge dofs. This task is performed with the introduction of so-called “small edges” which are
defined by means of a particular homothety. Simple numerical tests have been presented which aim at showing
that the proposed shape functions can be used in practice. Optimal error estimates are numerically proved and
the condition number of the resulting algebraic system is computed as a function of h and N .

As a final remark, we remind how important it was, back in the 80 s when edge elements began to be used, to
realize that gradients of nodal scalar functions were included in the span of edge elements. But this all important
inclusion property is only a part of a larger frame: the “exact sequence” property of Whitney forms. Hence
higher degree Whitney forms, whatever they are, must keep this property (we refer to [9] for more details). Here
we have shown that this can be achieved without forfeiting another property of Whitney 1-forms, which also
contributed to the popularity of edge elements: the natural association of dofs with geometric mesh elements
of dimension 1, namely the “small edges” discussed here.

Acknowledgements. The author wishes to warmly thank M. Alain Bossavit for his helpful comments and suggestions on
the subject.
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