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HOMOGENIZATION OF THIN PIEZOELECTRIC PERFORATED SHELLS

MARIUS GHERGU!, GEORGES GRISO?, HOUARI MECHKOUR® AND BERNADETTE MIARA*

Abstract. We rigorously establish the existence of the limit homogeneous constitutive law of a piezo-
electric composite made of periodically perforated microstructures and whose reference configuration
is a thin shell with fixed thickness. We deal with an extension of the Koiter shell model in which the
three curvilinear coordinates of the elastic displacement field and the electric potential are coupled.
By letting the size of the microstructure going to zero and by using the periodic unfolding method
combined with the Korn’s inequality in perforated domains, we obtain the limit model.
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1. INTRODUCTION

The homogenization method used in the modelling of periodically structured domains has been extensively
developed after the pioneering work (with a mathematical point of view) of Bensoussan et al. [3]. A rigorous
asymptotic study is given in Nguetseng [20], Allaire [1], Sanchez-Hubert and Sanchez-Palencia [22,23], Cio-
ranescu and Donato [8] and in Cioranescu and Saint-Jean Paulin [10] in the case of thin perforated domains.
The approach we use in this paper differs from these quoted before and is more similar to the periodic modula-
tion method found in [2,17]; it relies on the periodic unfolding method introduced by Cioranescu et al. [7] and
recently also extended to perforated domains [9].

The Koiter’s model for elastic shells combines the effects of the two tensors: the membrane tensor and the
flexural tensor. An asymptotic behavior of the displacement field in case of composite or laminated elastic shells
is described, for example, in Caillerie and Sanchez-Palencia [5] or Lewiriski and Telega [16]. The coupling, in the
Koiter model of the two-dimensional linearized change of metric and curvature tensors which present different
order of derivatives of the curvilinear coordinates of the elastic displacement field gives rise to local problems
of different nature than the global one; in our paper these problems can be found in equations (30)—(32) and
equations (34) respectively. Another interesting extension is due to Caillerie and Sanchez-Palencia [6] when
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the size of each microstructure is comparable with its thickness; this approach will be addressed later in our
framework of piezoelectric material.

In the piezoelectric effect there exists a coupling between elastic field and electric field, i.e., under an applied
mechanical force a piezoelectric body undergoes a strain that produces an electric field and conversely an applied
electric field produces a mechanical stress. Many cristalline materials (such as quartz, Rochelle salt) or ceramic
materials (barium titanate, lead zirconate titanate) exhibit a piezoelectric behavior. Also human skin and human
bone present this property but with a very low elastic-electric coupling efficiency. These materials are used as
sensors or actuators, ultrasonic or shear transducers. For a more complete study of piezoelectric materials we
refer the reader to Dieulesaint and Royer [12] or Ikeda [14]. The modelling of laminated three-dimensional
piezoelectric composite has already been analyzed by Bourgeat et al. [4] and Mechkour [18].

Having in mind such applications as [21] (which presents a piezoelectric porous electrode used as a spatial filter
sensor) or [19] (which presents a bio-material made of a piezoelectric matrix with elastic inclusions of osteoblasts
and used as a micro device supposed to improve the bone regeneration) our purpose in this paper is to combine
the different previous features: shell structure, perforations and piezoelectric model to mathematically analyze
a well adapted model. Hence we study the homogenization of a thin shell having periodically distributed
microstructures with small size €, each microstructure containing a hole. The shell is assumed to be of constant
thickness and periodicity, in this case, is viewed as periodicity with respect to the curvilinear parametrization
of its middle surface. The question we address here is to establish the limit model obtained when ¢ goes to zero.

The paper is organized as follows. In Section 2 we introduce the elements of differential geometry necessary
to describe the geometry of the shell, we recall the two-dimensional constitutive law of a piezoelectric material
(Eq. (4)) and the elastic-electric equilibrium equations of periodically perforated structures (Eq. (8)). In Sec-
tion 3 we recall the definition and main properties of the unfolding operator 7¢ associated to a reference cell.
Finally, in Section 4, we use the operator 7°¢ as a tool to establish the strong convergence of the three covariant
components of the displacement field and of the electric potential (Eq. (19)) and therefore to obtain the limit
model (Eq. (34)); moreover a strong convergence is established for the correctors (Eq. (45)). For the sake of
clarity the delicate proof of Korn’s inequality for shells in perforated domain is postponed to the Appendix.

2. TWO-DIMENSIONAL MODEL OF SHELL

2.1. Reference configuration

We denote! by x,, the coordinates of a point x € R?, and by 9, := 0/0z, the derivative with respect to x.
Let © C R? be a smooth, connex domain with C? boundary. The shell with middle surface S is defined with the
aid of a one-to-one mapping 6 € C3(Q2) with S = 6(Q2). We assume that for all z = (1, 72) € Q, the two vectors
ay(z) := 9,0(x) are linearly independent. Hence, the vectors a,(x) span the tangent plane to the surface at
the point 8(x) € S, x € Q. Let asg(z) be the unit normal vector to S at #(x) defined by

() = ai(z) x as(x)
(%) = [21@) x az(@)]

The three vectors a;(z) form the covariant basis at 6(x) while the three vectors a’(x) given by relations
a'(z) - a;(2) = 3,

form the two dimensional contravariant basis at 6(x). Let us remark that the vectors a®(x) defined above also
span the tangent plane to S at #(z) and that as(z) = a3(z). Let anp = a, - ap and a®® = a® - a” be the
covariant and the contravariant components of the metric tensor of S. The area element along the surface S is
Vadzy dze where a = det(ang).

1Throughout this paper, Latin indices and exponents take their values in the set {1, 2, 3}, Greek indices and exponents (except ¢)
take their values in the set {1,2} and the summation convention with respect to repeated indices and exponents is used. Boldface
letters represent vector-valued functions or spaces.
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The shell with thickness 2¢ and middle surface S is defined by the map
0: 0 :=Q x [~t,t] — R3,

O(z1, w2, 73) = O(w1,22) + w3a3(T1,72), for all (w1, 2, 73) € Q.
For t > 0 small enough, the mapping © is injective and the three vectors g,(z1, z2,23) = 0;0(x1, 22, x3) are
linearly independent at each point (z1,z2,23) € Qf. The vectors g;(z1,22,23) form the three dimensional
covariant basis at the point ©(z1, z2,x3). In this way we have defined a shell having the middle surface S and

constant thickness 2t > 0, i.e., a body whose reference configuration is the set ©(Q?).

2.2. Three-dimensional piezoelectricity

Under the action of applied volume loading f € L? (%) and without electric charges, the shell undergoes an
elastic displacement field u and a scalar electric potential ¢ given by the equations below:
—div o(u, ) = f in O,
u

1
—div D(u, ) =0 in QF, M)

where o = (¢%/) is the linearized stress tensor and D = (D?) is the electric displacements vector defined as

{aﬁ‘( ) = M sia(u) + 0, o)

u
Di(u,p) = — e* sy (u) + d70;¢,

and ) g
(le O'(B’U,, 90))] = a’io—” (’U;, 50)7
div D(u, (,0) = a,LDZ(’U,, 50)7

here (s;;) represents the linearized deformation tensor which is given by
1
Sij (u) = 5(61’11,] + 6]"&1').

Hence, the characteristics of the three dimensional piezoelectric material are given by the elastic tensor (¢ kl),
the dielectric tensor (d*/) and the piezoelectric coupling tensor (e“*). These three tensors have the following
properties:

e the elastic tensor (cijkl) is symmetric and positive definite, that is,

czjkl _ Cjzkl _ cklw7

and there exists a, > 0 such that ¢/ X;; Xpy > a.X;; X5, VXij = Xji € R;

e the dielectric tensor (d/) is symmetric and positive definite, that is, d” = d’¢, and there exists ag > 0
such that d¥X; X; > aqX; X;, VX = (X;) € R3;

e the piezoelectric tensor (e¥!) is symmetric in the sense that ei/* = efik,

We assume that the components of the the above three tensors belong to L™ (Q!).
The variational formulation of the problem (1) reads: find w € H}(Q%R3) and ¢ € H}(QF) such that

/ (c(u,v) + e(v, p))dz = f-vde Vove HHQLRY),
[94d Ot

| (cetw ) +dig, )z =0 Vi € HA(O),
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where ¢, e and d are given by

c(u,v) = cijklsij(u)skl(’v),
e(v,¢) = eilj‘ksij(’v)akw,
d(p,¥) = d” 0;p 99

2.3. From three-dimensional equations to two-dimensional equations:
the piezoelectric shell equations

In the case of two-dimensional model of piezoelectric shell, four new tensors are needed. Their expressions
in terms of the previous three dimensional ones are given in Haenel [13], equations 3.2.23, 3.2.27:
e the membrane elastic tensor (cOA‘fUT), which is symmetric and positive definite;
e the flexural elastic tensor (C;B 77, which is symmetric and positive definite;
e the diclectric tensor (d*?), which is symmetric and positive definite;

e the piezoelectric tensor (e*57), which is symmetric in the sense that e®?7 = ¢fao,

With previous assumptions, we deduce that the components of the four above tensors belong to L> ().

We consider a shell in curvilinear coordinates inspired by a Koiter model for the elastic shells (see [15])
in which the relation between the membrane constraints 7%, the bending constraints M7 and the electric
displacements D7 are expressed in terms of the three covariant components u = (u;) of the elastic displacement
a’u; and of the electric potential ¢ as follows:

TP (u, 90) = cifm—’)/m' (U) + eaﬁaaa(p,
)

MP (ua 50) = C??ﬁUTPUT (u)
D7 (u, ) = — e y,5(u) + d770- .

(4)

In relations (4), the tensor v = (yq3) represents the two-dimensional linearized change of metric tensor. Its
components are given by

1
Yas(0) = 5(Bavs + Bgva) — T340 — bagts, (5)

Also in relations (4), p = (pag) denotes the two-dimensional linearized change of curvature tensor. Its compo-
nents are given by

pPap(v) = 83[31)3 —I'0505v3 — b bopvs + b3,0505 + 05040 + (007, — o TG, — bET0. v, (6)

where bng3, bg represent the covariant and the contravariant components of the curvature tensor of the surface S,
they are given by
bas = a3 - 0qag, bg =a3-d,a’.

In (5)-(6), (I'7;3) denote the two-dimensional Christoffel symbols for the surface S, that is, I't 3 = a” - Oaagp.

On the boundary 092 we assume that the elastic dispacement field w and the electric potential ¢ verify an
homogeneous Dirichlet condition, u = 0 and ¢ = 0 on 0f).

Assume that the resultant of the applied mechanics forces p expressed in terms of the mean value of f in the
covariant basis satisfies the regularity condition p € L?(Q2) and set V(Q) = H}(Q) x H}(Q) x HZ(Q). Then,
the couple (u, ) € V(Q) x H}(Q) is the unique solution of the variational problem (see Haenel [13]):

/Q(CK(u,v)—l—eK('v,ap))\/de:/Qp-v\/adac Yo e V(Q),

/Q (—ex(w, ) + dc(, ) vade = 0 Vi € B,
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Y*
T

F1GURE 1. The reference cell Y* and the periodically perforated domain €2°.

where ¢k, ex and di are given by

afor affoT

2
cx (u,v) = ;" Yap(U)Vor (V) + %CF pap(w)por (v),
eK('Ua l/}) = eaﬁU’Yaﬁ(v)aawa
di (@, 0) = d*Pdap 1.

2.4. Geometry of the perforated domain and equilibrium equations

Let Y = [0,1[%2 be the reference cell and let T be the reference hole included in Y, that is, T C Y and
Y* =Y \ T is the part of Y which is occupied by the material. Let € be a positive parameter that represents
the size of the elementary microstructure that contains the holes. Consider

Ke ={k € Z%e(Y +k)NQ+# 0}

and set _
o= Je(r +n).
kek.
The periodically perforated domain Q¢ (see Fig. 1) is defined as

QF = Qn0Oe.

Remark that QF is the smallest union of eY* cells that contains €.
We are now in position to formulate our problem. Let us first introduce the functional spaces

V() ={pe H(Q%);p=00n dQNQ},
W) ={¢p e H>(Q);¢=00n 00N},
V(Q5) = V(QF) x V() x W ().

Since the reference configuration Q2° of the structure and the characteristic tensors cj, d%, e depend upon ¢,
the solution (u®, ¢°) also depends upon . The equilibrium equations satisfied by the couple (u®, ¢°) € V(QF) x



880 M. GHERGU ET AL.

V(§2°) are given by

/ (5 (u®,v) + €5 (v, %)) Vadr = / p-vvadr Vv e V(QF),
: 0
[ (- eiew 0) + dig(e" ) Vade =0 Y € V()

where, by analogy with the previous notations, c%, e} and dj, are defined as

s, af0T s, af3oT

12
Cic(u,v) = e Yap(U)Vor (v) + S pap()por (v),
6;( (Uﬂ/)) = e€7a607aﬁ(’v)aawa
d5c (9, ¢) = d=*P Do Dpt).

3. PERIODIC UNFOLDING OPERATOR

Our aim in this paper is to study the limit of the couple (u®, ¢°) as ¢ — 0. For this purpose, we use the
periodic unfolding method introduced by Cioranescu et al. [7]. The main feature here consists in the presence
of the periodic perforations that determine a more complicated limit constitutive law. The interest is also due
to the fact that the two-dimensional linearized change of metric and curvature tensors present different order
of derivatives of their arguments. We will show that this gives rise to local problems of different nature than
the global one.

For x € R? we denote by [z] the unique integer combination such that x — [z] € Y and set {z} = x — [z] € Y.
In this manner, for any € R? and € > 0, we have:

x x
r==([]+{Z}):
Definition 3.1. The unfolding operator 7° : L'(Q°) — L*(Q x Y*) is given by
€ _ z 10e i OF e
T(w)(x,y) =v (5 [E} + Ey) , for all v € L*(Q2F) extended by zero in Q° \ °,

where z is the so-called “slow variable” and y is the “rapid variable”.

Obviously, 7°¢ is a linear operator and
Te(vw) =T (v)T°(w), for all v,w € L*(QF). (9)
From the definition of QF we get the exact integration formula
/ vde = /~ T¢(v)dzdy, forall ve L'(QF). (10)
Q Qexy*
Let O¢f be the set of all eY™ cells that intersect the boundary 952, that is,

OF = {xeﬁf;(g E} —i—sY) 0897&(2)}.
Then, for all v € L*(Q¢) we have
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For a function u = u(z,y) we denote by Vyu and Vyu the gradient of u with respect to « and y variable
respectively and 0; ,u represents the derivative of u with respect to y;. For k = 1,2 we denote by ngr (Y*) the
set of all functions of H*(Y*) with vanishing mean value, extended by Y-periodicity.

The main properties of the unfolding operator 7¢ are described below.

Proposition 3.2. The following properties hold true:
(i) For any v € L*(Q°), v > 0 we have

/ ’Ta(v)dxdyg/ vdx.
QxY* Qs

(ii) If v € L*(Q) then T¢(v) — v strongly in L*( x Y*).

(i17) Let {v°}e be a uniformly bounded sequence in LP(Q°), p > 1, that is, ||[v°||Lr(qey < C with C > 0
independent on €. Then

lim [v¥|dx = 0.
e—0 O«

(iv) Let {v¢}c be a uniformly bounded sequence in L?(QF). Then, there exists v € L?(Q x Y*) such that, up
to a subsequence, we have

T°(v°) — v weakly in L*(Q x Y*).

(v) Let {v¥}. be a uniformly bounded sequence in H'(QF). Then, there exist v € HY(Q) and a corrector field
v e L3(Q, HL, (Y™")), such that, up to a subsequence, the following convergences hold

per

T¢(v°) — v strongly in L*(Q x Y*),
Te(V,0°) = Vo + VT weakly in L?(Q x Y*;R?).

(vi) Let {v¢}c be a uniformly bounded sequence in H*(QF). Then, there exist v € H%()) and a corrector field

v € L3(Q, ngr(Y*)) such that, up to a subsequence, the following convergences hold

Te(w®) —wv strongly in L*(Q x Y™*),
TE(V,0°) = Vv strongly in L*(Q x Y*;R?),
T°(Vov®) = Vav+Vor  weakly in L*(Q x Y*;R? x R?).

Proof. The statement (i) is a direct consequence of (10) while (i7)—(iv) are proved in [7,9] and (v) in [7,11].
We present here only the proof of (vi). Let {v°}. be an uniformly bounded sequence in H?(Q¢). Since {v} is
uniformly bounded in H'(9°), by (iv) there exist v € H'(Q) and © € L2(, H).(Y*)) such that

T¢(v°) — v strongly in L*(Q x Y*), (12)

and
Te(V,0%) = Vo + V0 weakly in L*(Q x Y*;R?). (13)
On the other hand, {9;v°} is uniformly bounded in H'(Q). Hence, by (iv) there exist w; € H'(Q) and
w; € L*(Q x Y*) such that
T° (0;v°) — w;  strongly in L2(Q x Y*), (14)
and
Te (vx(aivf)> — Vew; + Vyw;  weakly in L*(Q x Y*; R?). (15)
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From (13) and (14) we deduce 0;v + 0; 4,0 = w; in Q x Y*. Since 9;v and w; depend only on z, we obtain
V,0 = 0. This means 9;v = w; in €, that is, v € H*(Q).
By (15) we obtain
T (070°) — 0v+ 0,W; weakly in L*(Q x Y™*). (16)

Interchanging ¢ and j in (16) we also have
T° (02 V) = 8 v+ 0;,W; weakly in L?(Q x V). (17)
Since v € H2(2), from (16) and (17) one obtains
0jyW; = 0; yw; in QXY™ (18)

A classical result states that if w = (w;) satisfies (18) in a simply connected domain, then w is a gradient of a
vector field. This result also holds for perforated domains provided that the set of perforations has a Lipschitz

boundary. Therefore, there exists T € L*(€; HZ,(Y*)) such that @ = V,7. Now (16) yields

Te(V2r°) = VZv+ Voo weakly in L?(Q x YR x R?).
This completes the proof. O

4. HOMOGENIZATION OF PIEZOELECTRIC SHELL

We assume that there exist four tensors cys, cp, d, e which depend only on the microscopic variable y, such
that
T (M) (@, y) = ey M (y),  forall (v,y) € Qx V™,
and similarly for all tensors. Let Vier(Y*) = H) o (V) x H) (V™) x HZ . (Y™).
We first prove the following result.

Theorem 4.1. Let (u,¢®) € V(QF) x V(QF) be the unique solution of (8). Then, there exist (u,p) €
V(Q) x HY(Q) and two corrector fields @ € L*(Q,V per(Y*)), B € L2(9, H}. (Y*)) defined by the following
convergence

T5(u®) — strongly in  L*(Q x Y™),
T (pf) — strongly in  L*(Q x Y™*),
T (Vap(u)) = Vaﬁ( ) + Sap.y (W) weakly in L*(Q x Y*), (19)
T (pap(u®)) = pas(w) + rap,y (W) weakly in L*(Q x Y*),
T5(Vg9®) = Voo + V@ weakly in  L*(2 x Y*;R?),
with sagy(W) = ;((% 408 + 03.yUa) and Tagy(w) = (‘fﬁﬁ,yﬂg + 09,08, Us + b300 4o -

The limit fields (u, ) and (w,®) are the unique solution of the following variational problem posed for all
v EV(Q),T € L*(Q,Vper(Y*)), 0 € HYNQ), % € L2(Q, H . (YH)):

per

/ (27 (o (1) + 505, () (o (0) + 57.4(T))
Q><2Y*
* t3 c?’ﬁUT (paﬁ ('U') + TaB,y (ﬁ))(pcr'r( ) + Tor y( )))\/_dx dy

+ / € (0n(0) + 500, (8)) Orp + Do)V ade dy = [V / p-ovade,
»

QxY* (_eaﬁa(%tﬁ(u) + saﬁ,y(ﬁ))(aaw + (%y@) + daﬁ(aa@ + aa,y@)(aﬁw + aﬁ,ya))\/adw dy = 0.
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We shall prove (see Thm. 4.4) that the last three convergences in (19) are actually strong.

Proof. We divide the proof into three steps.
Step 1. A priori estimates. Taking (v, 1) = (u®, ¢°) in (8) we have

[ ) + it pade = [ pwtvad,
| ekt o) + il ) Vade =0

By summation we obtain

| et + it e = [ pewtvada,

that is,

E,QD0T t2 E,PpoT
/ (CM p Yo (U)Yor (u°) —l—ch’ 4 Pap(u)por(u®) + da"’ﬁaa(peaggoa)\/adx :/ p-uadz. (21)

Using Holder’s inequality and the fact that the membrane, flexural and dielectric tensors are positive definite,
we obtain the estimate

> {llpas(@)32(@e) + ap (@) 2i0r) |+ 1065 320y < Crlu ]l 2(00), (22)
a3 a

where C; > 0 is independent on €.
On the other hand, by Korn’s inequality for shells in the case of perforated domains (see Thm. 6.2 in the
Appendix) we have

i1 ey + 05l T ey + U512y < C2 D {Ilpaﬁ(ue)llims) + H’Yaﬁ(“a)”%%m)}a (23)
o,
with Cs independent on €. Combining (22) and (23) and using Poincaré’s inequality we get
luille ey + lluzll ar@e) + 1usl a2 ey + 19" 100 < C

where C' is a positive constant that does not depend on ¢.
Step 2. Weak convergence. In view of Proposition 3.2 (v)—(vi), there exist a piezoelectric field (u,p) €
V() x H}(Q) and two corrector fields @ € L?(Q, Vper(Y*)), 7 € L*(Q, H!,(Y*)) such that

per
T (u®) » u strongly in L*(Q x Y*),
T(¢°) — strongly in L?(Q x Y*),
TE(Vyul) = Vot + Vs weakly in L?(Q x Y*;R?), (24)
T (Vyus) — Vyus strongly in L?(Q x Y*;R?),
T°(Vius) — Viug + V,us weakly in L?(Q2 x Y*;R? x R?),
T(Vap®) = Vap + V5 weakly in L?(Q x Y*;R?).
From (24) we get
{ T°(Yap(u%)) = Yap(w) + sapy(@)  weakly in L*(Q x Y7), (25)
T (pap(u®)) = pap(u) +rap (@)  weakly in L*(Q x V).
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Step 3. Limit coupled problems. Let us first take test functions in (8) of the form (v,) with v = (v;) and
v, € C§°(£2). Then
T°(Yap(v)) = Yap(v) strongly in L*(Q x Y*),
T%(pas(v)) = pap(v) strongly in L*(Q x Y*),
T(Vep) = Vb strongly in L*(Q x Y*;R?).

By (11), Proposition 3.2 (i7i) and (24)—(25) we pass to the limit in order to obtain the following variational
problem for all (v,):

[ {7 mp() + 50 (@) (0) + 5 877 (s () + sy (@) (0) Vadady
QxXY*

+ €37 (D0 + By 7) v (v)Va dz dy = Y] / p-vyads, (26)
QxYy* Q

[ e O () + 505 (@)00 + P (0up + 00 @)t | Vad dy = 0.
XY *

By density, the above relations hold for all (v,1) € V(Q) x H}(Q).
We now take test functions v and ¢ in (8) of the form

with v;, 9 € C§°(Q) and w;, ¢ € Y"). One can easily check that

per(

&w%(m) =cwg ({g}) Oavp(z) + va(z)0ws ({§}> ,
Oapv5 () =c%ws ({g}) Oapus(x) + €0qvs(x)0gws ({g}) + €0pvs(x)0qws ({g}) + v3(2)Oapws ({g}) ;

Ouv(2) =26 ({ }) davi@) + v(@)das ({Z})

Using Proposition 3.2 we obtain

T°(0av3) — v3(7)0a,yws(y) strongly in L?(Q2 x Y*),
T (Dapvs) — v3(2)0ap,yws(y) strongly in L2(Q x Y'*),
T (0at®) = ¥(2) 0,y 9(y) strongly in L*(Q x Y™).

Let us set v;(x,y) = v;(z)w;(y) and ¥(z,y) = ¥(x)d(y), (z,y) € Q x Y. Then

T°(Yap(v®)) — Sa8,4(V) strongly in L*(Q x Y™*),
T%(pap(v®)) = Tap,y (D) strongly in L*(Q x Y™*), (27)
TE(V, ) — Vo strongly in L?(Q x Y*; R?).
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With the same arguments as above we can pass to the limit in (8) to obtain

2
/QMM {COI\fW (Vap(w) + 8ap,y(W))Sor,y (D) + % C%ﬁw (Pap(u) + Taﬁ,y(ﬂ))roﬂy(ﬁ)}\/adx dy

+ eo‘ﬁ"sag,y(ﬁ)(&,go + 05 yP)Vadrdy = 0, (28)
QxY*

7 O () + 505 (@) + 4 (0o +00,2)03. T [ Vadr dy = .
XY *

By density, (28) holds for all (v,v) € L*(Q, Vper(Y*)) x L2(Q, HL..(Y*)). Now, the variational problem (20)
is obtained by summating (26) and (28). We point out that (20) has a unique solution due to the symmetry
and coercivity of the tensors ¢y, cp, d, e.

This completes the proof of Theorem 4.1. O

We are now in position to write the local problems. First, in view of problem (28), we express the correc-

tors w and P as a linear combination of basis functions (gA“,ZA“), (EM,?\#), (Z",7") € L*(Q, Vper(Y)) X
L2(Q, HY (Y*)):

per

M, ) + pae(w(@)B ™ (2, y) + 0up(x)Z" (2, ),

_ (29)
2, y) + pap (@)™ (2, ) + 00 ()T (z, ).

From (28) and (29), the three pairs of local functions (go‘ﬁ,zaﬁ), (Eaﬁ,gaﬁ) and (27,77) are given by the

variational problems (30)—(32) below. Remark that the difference between problem (8) and problems (30)—(32)
is that the operators .3 and pap in (8) have been replaced by sap,y and 7as,, respectively:

|, (exa@? D 4@ T = [ s € Vi),

(30)
/ (—ey (@, 0) + dy C",9)) = / e 9y 1, Vip € H} o, (Y7),
—af _ __ —af t2 affoT — — *
[ a0 4 e, @8N == 5 [ e, @), W0 € Viu(r),
v , ; v (31)
| CeBT0) +d, @) =0 Vi € Hy, (Y7),
/ (cxy(2°,0) + (T,7°)) = — / €505 ,(T) VD € Vyer(Y"),
Y* *
(32)
/ (—ey (2°,) + dy(7°, ) = / 07005 7 VE € B (YY),
with the new notations
afot t2 afot
CK,y(ua 'U) = Cp Saﬁ,y(u)soﬂy(”) + gCF ra@y(u)roﬂy(”)v
ey(V, 1) = €505, (0) D 0, (33)

dy(?% V) = daﬁ@aw 95,y Y-

One can easily prove that problems (30)—(32) have a unique solution. We point out that the basis functions
depend upon the macroscopic variable x due to the definition of the operator rog, and cx y.
Concerning the global homogenized problem we have the following result.
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Theorem 4.2. The limit elastic field w € V(Q) and the limit electric potential ¢ € Hg(Q) are the unique
solution of the global homogenized variational problem

/(EK(u,v) +ex(v,p))Vadx :/ p-vyadz, Yo € V (),
Q Q

(34)
[ et + e vads <o v e HY(@)
Q
where Tx, €, dy depend now on siz new tensors given in (43) below.
Proof. By (29) we have
_ — AL —
Sapy(W) = ’Y/\u(u)saﬁ,y(gAl )+ pap(w)sas,y (b ! )+ 0up sapy(Z"),
— A —
Tag,y (W) = Yau(w)rag, y( ")+ pau(w)rasy(h #) + Ouprapy ("),
_ A .
aa,y‘:p = VM (u)aa,yg + Pap (u)aa,ye : + 3u<,030,y77’ .
Using the above relations, the first equation in (26) reads
afor oTA —af oT\ af t2 oTAL
o Y{[CM + ¢ 5y (@77) + €708y (P [as (U)Yer (V) + 3F T, y(g” )’Yaﬁ( )Por (V)
<Y+
oT Tof a a0 t2 afor oT o
L srua(B7) + P08 Joup (@hna() + Sl + ¢ 0 pas(w)por (0) (3)
afBoT t afot —0 *
(€97 4 e PO + 57T () + ST (B )paa (0))000 | Va dady = Y] / povads.
Also, the second equation in (26) takes the form
o o — o —af o —af o —af3
/ {[—60‘5 = M50,y (@) + AN 00y O 11ap ()06t + [N 530y (BT) + 205 4,0 | pap(v) 0oy
QxY* (36)
+ [d*P 4+ d** 0y, T1° — eM sy, (Z )]&X(pagw}\/adxdy =0.
Let us introduce the notations
— oT oT oT —=af
C(Xf (z) = IYl*\ Jy-¢ M((Sa(su + $auy(G” Z)) +e7T 05y C
—afoT oT 7
G (@) = e Jy- i“(é“é,t + g (R)),
A7 (@) = e fye T (@),
—afBoT oT —af oT —af
o7 (x) = IYl*\ Jy- A sauy (R) + 77205,
= g (o8 "o )\ =0
e"f (@) = 757 Sy €05+ OayTT7) + 7 a0 (Z0), (37)
¢ 5 (@) = I;*\ Jy- CFﬁ "y (Z7), ;
—Qapo —a o e
[ = |y1 \ Jy- Mo (d%9y +;>\u,y(g ) - C? IMyC
qaga(m) = IY*\ fy* € WSM,y(ha ) — d)\aa&yea
d (z) = IY*\ fy* AWSM,y(Eﬁ) JFdaA(‘sf + aA,yﬁﬁ))'
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From (35)—(37) we get the following global variational problem

/(EK(u,v) +ex(v,p))Vadr = / p-vyadz, Yv e V(Q),
Q Q (38)

/Q(—?K(u, ¥) +di (p,9)Vade =0, Ve € HE(Q),

where
2 2

= —afoTt t oT 13 ot oT
CK(ua”)icoAl/IB Yap(W)Vor (V) + — 3 aﬁ Pap(u )pcr'r(”)+§c(1w Yap (W) por (V) + aﬁ Pap(W)YVor (V),

2—0( g
e (0,9) = P 705(0)5 + =1 o ()00,
[0, 9) = ?aﬁgmxﬁ(”)aow + qaﬁapaﬁ(”)aowa

A (p,0) = A B D1,

The following result asserts the symmetry of the tensors ¢/, ¢, d.

Lemma 4.3. We have
(Z) ﬁ_aﬁar o EgTaﬁ.

( Bo ﬁaa:_a Bo

i) f € and qP7 =gl =
( l) —ozﬁm‘ _ —ﬂ—aﬁ and caﬁar _ E;‘TCEB'
(iv) d

Proof. The main idea is to choose particular test functions (¥,) in the variational problems (30)-(32).
(i) Letting (0,%) = (gaﬁfaﬁ) in (31) we obtain

125000
23

—or t? AL _
/ (CKy(h g )+€ ( of 9 )) -9 Cp A r)\u,y(gaﬁ);

3 Y
/;*<—ey<ﬁ?776“6>+—dy<5“772“5>>=:o.

By subtraction, the above relations yield

t2 OTAL —a —0oT o —oT —<af3 —oT —af
S @) == [ oG e @) (BT - d, @),

Hence

ﬁéaﬁa'r: 12 CUT/\MT)\ (gaﬁ)
3 1 3|Y*| - F 3y

1 =0T _q —aB 7OT —
qugmah,g%+%@ﬁo>+%m

(o)

oT oT

—af — —af
) C ) - dy (9 ) C )
Taking (7,¢9) = (h°",6°") in (30) and then subtracting, we find

. 1 A —af A —af3
Cgﬁw = ' C(X/; Psauy(h ) + €770y 40

1 —aB TOT —0T —af —aB 7°T —aff o7
=—Wqﬁcmwﬁm>+%m T 4@ 0 - 4, (€0,

(40)
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From (39) and (40) we get 5 £ cabor — gobor,
(i1) Let us take (1) = (_aﬁ, ¢ ) as test functions in (32). We get

[ (e g) + e, @ ) = = [ s (e,
| ezt v a,m ) = - [ 20a,e
Subtracting the above equalities we obtain
- / M (52,00 (@) = 02,C) = /Y crey(@7 ) + ey (@0,7°) + ey (27.C7) — dy (7. T,
Furthermore, by (37) we deduce

—af _ — Faf
fa =P 4 / e)\ﬂg(sm,y(gaﬁ) - aA,y<a )
v

e - [ @) e @) + e (7 T =y )
Hence faﬁg = fﬁaa. Taking (v,v) = (2°,7°) in (30), by combination we have
- / T (Sory () + 00y77) = / exa(@F) + e, @7 7) + 0,20 — 4, (7. 0.
By (37), (41) and the above equality we obtain

gPo=gh 4 / / 7 (Sor.y(Z7) + Ory7")
—afBo — =0 — —0 —o 7B —o b
=g — IY*I/Y cky(@7,27) + ey (@7 17) + ey(Z7,C) — dy (77,C).

—afo
We have proved that f fﬁag =27 In the same manner we obtain g*?7 = g’ %ng
(41) First, from (37) we have
_aﬁm-( ) _ <I)\¢/IBUT |Y*| / aﬁ/\usz\u,y 07—) + eaﬁx\a/\7yz‘77—

We choose (T,9) = (g°7,C ) as test functions in (30). We get

[ (cxa@.a) + @ T = - [ @@,
};*(_ey(gaﬁaEUT) + dy(zaﬁ7zm—)) 0.

Hence

—afoT oT —or TP _ —oT —af —oT
C(Xf :Col\f _|Y*|/ ck,y(g a67 ") +ey(g C )_’_ey(gaﬁ,g )_dy(cavc )-
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It follows that Eif” = Eﬂaﬁ. In the same manner, by taking (T,¢) = (h° ,8° ) in (31), we deduce C%ﬁm =
AR _
(iv) With the same idea as above, we consider (v,v) = (27,77) in (32) in order to get

a*’ = dof -

1 o = o = =B —=a =0 = =6
|Y*|/ cry (2, 2%) + ¢, (Z0°) + ¢y (20 %) — d, (0%, 77) = d "
Y*
The proof of Lemma 4.3 is now complete. (|

From (37) we obtain the following expressions of homogenized tensors car, cr, €, d and of the new flezural
coupling tensors ¢, [:

_aﬁar (I aﬁku 5057— + Sxjuy (gar)) + eaﬁ)\ak7yza7—

_aﬁar (1’ aﬁ)\p, 5;\,5; + Py (HUT))’

_aﬁm ()= TM v(@77),

—aﬁa _ aﬁz\ o aBAp =0 (42)
(x) = (0 4 OayT7) + i) sany (Z7),

_aﬁa(x) _ 7’)\# y(za)’

(@) = sy (2) 4 465 + 00,7

Remark also that, by virtue of Lemma 4.3, problem (38) rewrites

/Q(EK(U,'U) +ex(v,p))Vadr = /Qp ‘vyadz Vv € V(Q),
| (o) + (o, w)ads =0 v € HY(©),

where

— oT t2 oT t2— oT t2 oT
ok (u,v) =5 Yap(u )%T(v)+§C%ﬁ paﬁ(U)paT(v)Jrgcaﬁ Yoo (W)por (v)+5C P pas (W) Yor (),

_ —aBo t -affo
eK('Ua Y)=c¢ h %ﬁ(v)&ﬂb + gl paﬁ(v)aaw7

— —af
dr (p, ) =d  Oatp Op1p.
(43)
It remains only to prove the existence and the uniqueness of the solution corresponding to the limit prob-

lem (34). This follows via Lax-Milgram theorem by showing the coercivity of the tensors (57°7), (¢27°7) and

(Eaﬁ). Note that by virtue of Lemma 4.3 all these tensors are symmetric. Let us first prove the coercivity of
(E?‘f”). To this aim, consider a symmetric tensor X = (X,g). Then, from (42) we have

_ 1 . _
COI\fUTXaﬁXJT = Cif”XaﬁX” g [Y*| COI\fAHSAu,y(QJTXaﬁ)XJT + eaﬁ/\a/\,y(CMXar)Xaﬁ
Y*

Moreover, by (30) we deduce that (@,€) = (§7" Xor,( Xor) is solution of the variational problem
/ (cky (W, D) + €,(T,€)) = — 01(/16 Psauy(@)Xag, V0 € Viper(Y7),
* Y*

(a4)
[ Ca@D+d@0)= [ 0T Ve L)
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Therefore (w, ) is a saddle point associated to the functional

I:Vpu(Y*) x H (V) - R,

per

— 1 afBoT — — t2 aBoT — —
16.9) =5 [ 7 (5000(8) + Xap) 5o (®) + XpeWady+ G [ 77 v @y (B)ady

_ — I
+/ eaﬁa(saﬁ,y(v)+Xag)ax,yl/1\/ady— 5/ d 58a7y1/;857yw\/5dy.

*

This yields
1(@,7) < 1(@,8) < 1(8,9), forall (8,5) € Vyer(Y™) x Hly(V").

per

Consequently, for 1) = 0 we get

I(w,§) = I(w,0)

1 i — — t2 oT — —
=3 / COI\l/IB/\l (8a8,y (W) + Xap)(Sxuy (W) + X,\M)\/ady + 6 C%ﬁ Taﬁ,y(w)raﬂy(w)\/ady
* Y*

> 0.
Moreover, taking (T, ) = (W, ) in (44) we obtain
P X 5 Xy = 21(w, €) > 0.
Set B={X = (Xqa3);X is symmetric and X,3Xa3 = 1} and consider ¥ : B — R defined by
U(Xap) = 7% XopX o

It is easy to see that U is continuous on B endowed with the standard topology defined by the norm || X|| =
(XagXag)%. Since ® attains its minimum on B and ¥ > 0, we conclude that there exists aps > 0 such that

X
L4 (| ;B”) > ap,  for all symmetric tensor X = (Xo3) # 0.

From the above inequality we deduce

EﬁngaﬁXpa Z aMXaﬁXaB-

This means that the tensor (€57°7) is coercive. In a similar way we obtain that the tensors (5°°7) and (Eaﬁ)
are coercive. Hence, by Lax-Milgram theorem we deduce that the global problem (34) has a unique solution.
This completes the proof of Theorem 4.2. (I
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Theorem 4.4. We have the following strong convergence for the gradients

T (Yap(u®)) = Yap(u) + sapy (W) strongly in L*( x Y*),
T (pap(u®)) = pas(u) + ragy (@) strongly in L*(Q x Y*), (45)
T(Ve9®) = Voo +V, 0 strongly in  L*(Q x Y*;R?).

Proof. Let us take v = u, ¢ = ¢ and ¥ = U, 1 = P in (20). By summation we obtain

/ (07 (Yo (1) + S0 () (Y (1) + 50 (1)
QxY*

+%c%ﬁ07 (Pap(1) +Tapy(@))(por (W) + Tory (H)))\/E dz dy (46)

[ A0+ 00,000+ 05, D)Vadedy = V] [ p-ovade
XY *

From (24) and (25), the left hand side in (46) is smaller than

lim inf / {cif‘”T “(Yap(u)) T (Yor (u))
QXYE

e—0

T T (g (W) T (s () + AT (0ap”) T (9) } T (V) dy,

which reads

QPOT g g t2 QpooT € g (03 g £
liIEni(I‘)lf/ TE<{cMﬁ Yo (U )Vor (u )+§cFﬁ D (U) por (UF) +dP Do sy }ﬁ)dmdy.
Y Jaxy*

By virtue of Proposition 3.2 (i) and (21), we have

t2
liminf [ 7° {cif”tyag(ug)vﬁ(ug) + =P ap (U por (uF) +do‘68a<pa@g<p€}\/a dz dy
e—0 QOxYy=* 3

E—>

t2
< liminf / (c"Af"Tvag(uE)%T(ua) + gciﬁ TPap(u)por (u®) +d*° 0a9050ﬁ908>\/5 da

t2
< lim Sup/ (COI\Z/[ﬁUtYaﬁ (ua )'707' (ua) + gC%ﬁngaﬁ (ua )pa-r (ua) + daﬁaa 806 aﬁ SD€>\/E dz

e—0

:limsup/ p-usvadr =lim | p-uvadz.
Qs =0 Jq-

e—0

Using (11), Proposition 3.2 (#i¢) and the fact that 7¢(u®) — u, we have

lim [ p-u®Vadr =lim T¢(u) - T¢(pya)dedy = |Y*|/p-u\/adx. (47)
e=0 Jq- e=0 Jgexy Q

From (46) and (47) we deduce that all the above inequalities become equalities. This also implies the strong
convergences (45). The proof of Theorem 4.4 is now complete. O

5. CONCLUSIONS

We have obtained in this paper the limit constitutive law of a piezoelectric material with periodically perfo-
rated microstructure and whose reference configuration is a thin shell with fixed thickness. The main difficulty
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comes from the geometry of the reference cell which presents holes. Furthermore, the local problems for the
shells are of different nature than the global one, due to the different orders of derivatives in the linearized
change of metric and curvature tensors v and p. An interesting direction for further research is to determine the
asymptotic behavior of the displacement elastic field and of the electric potential when both & and the thickness

€
of the shell 2t goes to zero. In this case the ratio n plays an important role as it was analyzed in Caillerie and

Sanchez-Palencia [6].

6. APPENDIX. KORN’S INEQUALITY FOR SHELLS IN PERFORATED DOMAINS

In this section we prove the Korn’s inequality for perforated domains. Let D =10, L[ x R, L > 0.

Lemma 6.1. Let V € HY(D) be such that V(0,-) = V(L,:) = 0. We extend V by zero outside D and let
A :Z? — (0,+00) with the property

IVVIIZ2(cervyme) < AE) +ellVIEa ety (48)

for all € € Z2, where ¢ > 0 is a positive constant that does not depend on e and satisfies ceL < 1/2. Then,
there exists C' > 0 not depending on € such that

IVIIZp) < C D A9 (49)

£ez?

Proof. Since V(0,-) =0, for all k € Z, k > 0 we have

k
VI (ks < €LY IVVIRa (e +vyime)- (50)
p=0
We fix g € Z, ¢ > 0 and set
k
v =D IVV Iy e
p=0

From (48) and (50) it follows that

and
Yer1 — Yk < Ak +1,q) + cLeypqr.
Since 2ceL < 1, the last inequality yields

Yer1 — Yk < 2A(k + 1,q) + 2cLeyy. (52)
Let K, = [%] For all p > K. + 1 we have V = 0 in L?(¢((p,q) + Y)), hence one can assume that k < K. + 1.
Summating in (52) we obtain
k
yk < (1+2ceL)F Y " A(p, q)(1+ 2ceL) ™ + yo(1 + 2ceL)*.
p=1

Using (51) we deduce

k k
e < 2(1+2ceL)* > A(p,q)(1+ 2ceL) ™ < 2(1+ 2ceL)* > A(p
p=0 p=0
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Since k < [%] + 1 we also have (1 + 2ceL)k < e2¢eLk < 2¢L2+1 This yields
k
2cL2+1
ye < 2e*EN A (p, q).
p=0

Summating over ¢ in the above inequality we get

IVV|Z2(pgey < C Z A(p, q)-

(p.9)ez?
Now, (49) follows from the last relation and Poincaré’s inequality. This concludes the proof. O
On V (Q¢) we define the seminorm
1/2
Holll. := | D_{llPas@)liz () + M0s@)i2@e} | forall ve V(Q).
B

The following result asserts that |||-|||_ is equivalent to the standard norm in H!(Q¢) x H'(Q°) x H?(Q°).

Theorem 6.2 (Korn’s inequality). On V' (QF), the seminorm |||-|||. is equivalent to the usual norm in H'(2°) x
HY(QF) x H?(QF). More precisely, there exist two positive constants ci,co > 0 depending only on Q, Y* and on
the mapping 6 (but not depending on ) such that

culllvllle < llorllae) + llvallaey + llvsllazey < ealllvllle,  for allv € V(7). (53)
Proof. The existence of the constant ¢; > 0 in (53) is obvious.

Since OY* has a Lipschitz boundary, there exists a linear and continuous operator P : H(Y*) — H(Y)
such that for all ¢ € HY(Y*) we have P(1)) =+ in Y* and

IP@) 2y < Clldllzerys  IVyP@)r2vee) < ClIVyllar- 22, (54)
for some constant C' > 0 that depends only on Y *. Hence, for all u € V(9°) extended by zero on Qs \ QF, there
exists a function U € H}(Q°) such that U = v in Q° and ||VmU||L2(§E,R2) < O Vaul L2 r2), where C' > 0
does not depend on €.

For v € V(QF), let V; and W, be the extensions to HOI(SNF) of v; and 0,v3 defined as above. Set X =
(Vi, Va, V3, W1, W) € HE(QF;R?). In each cell e(§ +Y*) C QF, € € Z2, we have

Z vabvi”%2(e(£+Y*);R2) <C Z H’Yaﬁ(”)||%2(s(g+y*)) + ||”H%2(e(g+y*);R3) )
i a,3

Z ||Vw(8av3)||%2(s(g+y*);u@2) SCZ ||Paﬁ(”)||%2(s(g+y*)) + C(Hvx’l)ll%?(e(ngY*);H@><]R3) + Hv||%2(s(§+Y*);R3))’
a a,B
where C' > 0 does not depend on e. This implies

HV:cXH%?(E(ngy*);wa) <Cy Z {HPaB(”)H%?(E(gJFY*)) + ||7aﬁ(”)||%2(s(g+y*))} + Cl||X||%2(e(£+Y*);R5)'
a,B
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By virtue of (54) we deduce

||VGL‘X||%2(5(§+Y);R5><]R5) <Cs Z {||Pa6(”)||%2(s(g+y*)) + ||7aﬁ(”)||%2(s(g+y*))} + CQHX”%?(E(EJrY);RS)’
a,B

for some C5 > 0 independent on ¢. B
Since € is bounded, without loosing the generality, one can assume that Q° C {z € R%;0 < 21 < L}, for
some L > 0. In view of Lemma 6.1 it follows that

1X 13 amey < Cs D {Ipap(@)320e) + 1as(®)l32(ae) }- (55)
a,B

Moreover, since V; = v; and W, = d,v3 in QF, from (55) we deduce

lonls ey + N2l ey + Iosllrzcasy < Co D {Ilpas(®)3z(e) + 7ap(@)F2a |-
a,f

This completes the proof. O
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