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Abstract. In this paper, a Dirichlet-Neumann substructuring domain decomposition method is pre-
sented for a finite element approximation to the nonlinear Navier-Stokes equations. It is shown that
the Dirichlet-Neumann domain decomposition sequence converges geometrically to the true solution
provided the Reynolds number is sufficiently small. In this method, subdomain problems are linear.
Other version where the subdomain problems are linear Stokes problems is also presented.
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1. Introduction

With the development of parallel computers, domain decomposition methods (DDMs) have become increas-
ingly important tools for solving PDEs. In general, there exist two kinds of domain decomposition methods. One
is the overlapping Schwarz method which is often referred to as the Schwarz alternating method [3,12,13,15,18]
and the other is the class of nonoverlapping domain decomposition methods. The distinction is whether the
domain is decomposed into overlapping or nonoverlapping subdomains. In this paper, we shall focus our at-
tention on nonoverlapping domain decomposition methods. These DDMs have been studied extensively for
linear PDEs, see [11, 17, 20] and the references therein. The literature for nonlinear problems is rather sparse.
The efficiency of DDMs for the Navier-Stokes equations has already been demonstrated by many authors. See
[1, 2, 5–7, 10] for just a small sample. Recently, a so-called optimization-based DDM has been proposed in [9].
It is shown that this DDM is convergent, but no convergence rate is given. See the references in the books and
review articles mentioned above and the proceedings of the DDM conferences for many more references.

This paper seems to be the first attempt to give a convergence rate for a nonoverlapping DDM for nonlinear
equations. We shall present a Dirichlet-Neumann (D-N) iterative substructuring algorithm for a finite element
approximation to the Navier-Stokes (N-S) equations. For sufficiently small Reynolds number, we prove that the
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D-N substructuring method is optimal, i.e., the convergence rate of this method is independent of the mesh size.
Because the Reynolds number is small, the N-S equations are just a small perturbation of the Stokes equations.
Our method of proof relies heavily on this fact and we follow the framework developed in [16].

For our method, the subdomain problems are linear equations. We shall also present a linear D-N algorithm
where the subdomain problems are linear Stokes equations. We also discuss a Neumann-Neumann (N-N)
iterative substructuring method for the N-S equations. In [14], some overlapping Schwarz algorithms were
developed for the N-S equations. This paper can be regarded as a continuation of [14] for the nonoverlapping
case.

This paper is organized as follows. In Section 2, we shall introduce the model problem and its corresponding
finite element approximation. A D-N iterative algorithm for this discrete system will be given in Section 3.
Other linear D-N iterative algorithms will be considered in Section 4 followed by a short discussion on a N-N
algorithm in Section 5. In Section 6, we illustrate the behavior of the linear D-N algorithms for a flow in a
square.

2. Model problem

We consider the following N-dimensional, steady, viscous incompressible Navier-Stokes equations:






− 1
Re

�u+ (u · ∇)u + ∇p = f, on Ω,
div u = 0, on Ω,

u = 0, on ∂Ω,
(2.1)

where Ω is a convex polyhedral domain in RN (N ≤ 3), u ∈ (H1
0 (Ω))N , f is a forcing term in (L2(Ω))N , p is

the pressure and Re is the Reynolds number.
Let V = (H1

0 (Ω))N , and

M = L2
0(Ω) = {q ∈ L2(Ω)|

∫

Ω

qdx = 0}.

The variational formula of (2.1) is to find u ∈ V and p ∈M such that

{
1

Re
a(u, v) + b(u, u, v) + c(v, p) = (f, v), ∀v ∈ V,

c(u, q) = 0, ∀q ∈M,
(2.2)

where (·, ·) denotes the usual inner product on (L2(Ω))N and

a(u, v) =
∫

Ω

∇u · ∇vdx,

b(u, v, w) =
1
2




N∑

i,j=1

∫

Ω

ui
∂vj

∂xi
wjdx−

N∑

i,j=1

∫

Ω

ui
∂wj

∂xi
vjdx



 ,

c(v, p) = −
∫

Ω

p div v dx.

It is known [19] that

{
b(u, v, w) = −b(u,w, v), b(u, v, v) = 0, ∀u, v, w ∈ V,
|b(u, v, w)| ≤ C0‖u‖‖v‖‖w‖, ∀u, v, w ∈ V,

(2.3)

where ‖v‖ = a(v, v)
1
2 , ∀v ∈ V. In this paper C with or without subscript denotes a positive constant.
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Under the condition

Re <

√
1

C0‖f‖−1
, (2.4)

equation (2.1) has a unique solution [19]. Here, ‖ · ‖−1 denotes the norm on the dual space H−1(Ω).
We now consider some finite element subspaces of V and M . Let Vh ⊂ V and Mh ⊂ L2(Ω) be a family of

finite element subspaces of V and M , respectively, which satisfy the following LBB (inf-sup) condition:

inf
q∈Mh∩L2

0(Ω)
sup
v∈Vh

c(v, q)
‖v‖‖q‖0

≥ β0 > 0, (2.5)

where β0 is a constant independent of the mesh size h and ‖ · ‖0 is the L2(Ω) norm.
The finite element approximation of (2.2) can be written as:

{
1

Re
a(uh, v) + b(uh, uh, v) + c(v, ph) = (f, v), ∀v ∈ Vh,

c(uh, q) = 0, ∀q ∈Mh ∩ L2
0(Ω),

(2.6)

for some uh ∈ Vh, ph ∈Mh ∩ L2
0(Ω).

It is known [19] that under the assumptions (2.4), (2.5), the finite element equations (2.6) have a unique
solution which satisfies the following estimates

‖uh‖ ≤ Re‖f‖−1, (2.7)

and

‖ph‖0 ≤ 1
β0

‖f‖−1(2 + C0R
2
e‖f‖−1). (2.8)

Remark 2.1. There exist numerous finite element spaces satisfying the above conditions, especially condi-
tion (2.5). Refer to [4, 8] for details.

Remark 2.2. To ensure uniqueness of the pressure in the finite element equations (2.6), we may assume that
the pressure has a zero mean value.

We now describe a domain decomposition procedure. First decompose Ω into two nonoverlapping subdomains
Ω1 and Ω2 such that Ω̄1 ∪ Ω̄2 = Ω̄ and Ω2 is not an interior subdomain (i.e., Ω̄2 �⊂ Ω). We suppose that the
interface Γ = Ω̄1 ∩ Ω̄2 does not cut across any finite element. We also assume that the point mentioned in
Remark 2.2 belongs to Ω1. Define, for k = 1, 2,

Vh,k = {vh|Ωk
: vh ∈ Vh},

V 0
h,k = Vh,k ∩ (H1

0 (Ωk))N ,

Mh,k = {qh|Ωk
: qh ∈Mh},

Φh = {vh|Γ : vh ∈ Vh}.
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We now consider the following two-domain problem: find (uh,k, ph,k) ∈ Vh,k ×Mh,k, k = 1, 2 such that

1
Re

a1(uh,1, v) + b1(uh,1, uh,1, v) + c1(v, ph,1) = (f, v)1, ∀v ∈ V 0
h,1, (2.9)

c1(uh,1, q) = 0, ∀q ∈Mh,1 ∩ L2
0(Ω1), (2.10)

γ0uh,1 = γ0uh,2, on Γ, (2.11)
1
Re

a2(uh,2, v) + b2(uh,2, uh,2, v) + c2(v, ph,2) = (f, v)2 + (f, ρh,1γ0v)1 (2.12)

− 1
Re

a1(uh,1, ρh,1γ0v)

−b1(uh,1, uh,1, ρh,1γ0v)
−c1(ρh,1γ0v, ph,1), ∀v ∈ Vh,2,

c2(uh,2, q) = 0, ∀q ∈Mh,2 (2.13)
∫

Ω1

ph,1dx = −
∫

Ω2

ph,2dx. (2.14)

Here, (·, ·)k denotes the inner product on (L2(Ωk))N , γ0v ∈ Φh is the trace on Γ of the function v ∈ Vh and
ρh,k (k = 1, 2) is an extension operator from Φh to Vh,k. In practical implementations, these extensions can be
taken equal to the finite element interpolant which belongs to Vh,i, equal to γ0v at the nodes on the interface,
and vanishes at the internal nodes in Ωi. For k = 1, 2, let

ak(u, v) =
∫

Ωk

∇u · ∇vdx, ∀u, v ∈ Vh,k,

bk(u, v, w) =
1
2




N∑

i,j=1

∫

Ωk

ui
∂vj

∂xi
wjdx−

N∑

i,j=1

∫

Ωk

ui
∂wj

∂xi
vjdx



 , ∀u, v, w ∈ Vh,k,

ck(v, p) = −
∫

Ωk

p div v dx, ∀v ∈ Vh,k, p ∈Mh,k.

Define
‖v‖k = ak(v, v)

1
2 , ∀v ∈ Vh,k.

Then we have [19]
{
bk(u, v, w) = −bk(u,w, v), bk(u, v, v) = 0, ∀u, v, w ∈ Vh,k,
|bk(u, v, w)| ≤ C‖u‖k‖v‖k‖w‖k, ∀u, v, w ∈ Vh,k.

Lemma 2.1. The function (uh, ph) is the solution of (2.6) if and only if (uh,1, ph,1) and (uh,2, ph,2) satisfy the
split problems (2.9)-(2.14), where uh,k = uh|Ωk

, ph,k = ph|Ωk
, k = 1, 2.

Proof. Let us first check that if (uh, ph) is the solution of (2.6), then (uh,1, ph,1) and (uh,2, ph,2) satisfy (2.9)–(2.14).
For any v ∈ V 0

h,1 , q ∈Mh,1 ∩ L2
0(Ω1), define (ṽ, q̃) as follows,

ṽ = v in Ω1, ṽ = 0 in Ω2;
q̃ = q in Ω1, q̃ = 0 in Ω2.

Then

1
Re

a1(uh,1, v) + b1(uh,1, uh,1, v) + c1(v, ph,1) =
1
Re

a(uh, ṽ) + b(uh, uh, ṽ) + c(ṽ, ph) = (f, ṽ) = (f, v)1,
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and
c1(uh,1, q) = c(uh, q̃) = 0,

which are (2.9), (2.10). Equations (2.11), (2.14) are obviously satisfied because uh ∈ Vh, and ph ∈Mh ∩L2
0(Ω).

On the other hand, for any v ∈ Vh,2, define ṽ ∈ Vh as follows,

ṽ = ρh,1γ0v in Ω1, ṽ = v in Ω2.

Then for any v ∈ Vh,2 , q ∈Mh,2, we have

1
Re

a2(uh,2, v) + b2(uh,2, uh,2, v) + c2(v, ph,2)

=
1
Re

a(uh, ṽ) + b(uh, uh, ṽ) + c(ṽ, ph)

− 1
Re
a1(uh,1, ρh,1γ0v) − b1(uh,1, uh,1, ρh,1γ0v) − c1(ρh,1γ0v, ph,1)

= (f, v)2 + (f, ρh,1γ0v)1

− 1
Re
a1(uh,1, ρh,1γ0v) − b1(uh,1, uh,1, ρh,1γ0v) − c1(ρh,1γ0v, ph,1),

and
c2(uh,2, q) = c(uh, q̃),

where q̃ is defined by
q̃ = 0 in Ω1, q̃ = q in Ω2.

Although q̃ �∈ L2
0(Ω), we still have c2(uh, q̃) = 0, because

c(uh, q) = 0, ∀q ∈Mh,

here Mh is the finite element space which is no the restriction
∫

Ω
qhdx = 0 (cf. [17] for details).

Conversely, suppose (uh,1, ph,1) and (uh,2, ph,2) are the solutions of (2.9)–(2.13). Define (uh, ph) as follows:

uh = uh,1 in Ω1, uh = uh,2 in Ω2;
ph = ph,1 in Ω1, ph = ph,2 in Ω2.

We now prove that (uh, ph) is the solution of (2.6). In fact, for any vh ∈ Vh, define vh,k = v|Ωk
(k = 1, 2) and

v0
h,1 = vh,1 − ρh,1γ0vh,1 = vh,1 − ρh,1γ0vh,2. Then

1
Re

a(uh, vh) + b(uh, uh, vh) + c(vh, ph) =
1
Re
a1(uh,1, vh,1) + b1(uh,1, uh,1, vh,1) + c1(vh,1, ph,1)

+
1
Re
a2(uh,2, vh,2) + b2(uh,2, uh,2, vh,2) + c2(vh,2, ph,2)

=
1
Re

a1(uh,1, v
0
h,1) + b1(uh,1, uh,1, v

0
h,1) + c1(v0

h,1, ph,1)

+
1
Re
a1(uh,1, ρh,1γ0vh,2) + b1(uh,1, uh,1, ρh,1γ0vh,2) + c1(ρh,1γ0vh,2, ph,1)

+
1
Re
a2(uh,2, vh,2) + b2(uh,2, uh,2, vh,2) + c2(vh,2, ph,2)

= (f, v0
h,1)1 + (f, ρh,1γ0vh,2)1 + (f, vh,2)2

= (f, vh).
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On the other hand, for any qh = qh,1 + qh,2 ∈ Mh with qh,k ∈ Mh,k, using the same argument as the Lemma
5.3.9 in [17], we can get

c(uh, qh) = c1(uh,1, qh,1) + c2(uh,2, qh,2) = 0.

We have proved Lemma 2.1. �

3. The Dirichlet-Neumann iterative algorithm

In order to define our DDM algorithm, we first analyze a property of the trace on Γ of the discrete solution uh.
Note ∫

Γ

uh|Γ · nds =
∫

∂Ω2

uh|Γ · nds =
∫

Ω2

∇ · uhdx = 0,

where n denotes the unit normal vector of the boundary ∂Ω2. Therefore, we introduce the following trace space

Φ̂h = {ηh ∈ Φh|
∫

Γ

ηh · nds = 0}.

We now propose our two-subdomain decomposition method to solve equation (2.6).
For any g0

h ∈ Φ̂h, define the two sequences (un
h,1, p

n
h,1) ∈ Vh,1 ×Mh,1 and (un

h,2, p
n
h,2) ∈ Vh,2 ×Mh,2 as follows:






1
Re
a1(un

h,1, v) + b1(un−1
h,1 , u

n
h,1, v) + c1(v, pn

h,1) = (f, v)1, ∀v ∈ V 0
h,1

c1(un
h,1, q) = 0, ∀q ∈Mh,1 ∩ L2

0(Ω1)
γ0u

n
h,1 = gn−1

h , on Γ,
∫

Ω1
pn

h,1dx = − ∫

Ω2
pn−1

h,2 dx,

(3.1)

and





1
Re
a2(un

h,2, v) + b2(un−1
h,2 , u

n
h,2, v) + c2(v, pn

h,2) = (f, v)2 + (f, ρh,1γ0v)1
− 1

Re
a1(un

h,1, ρh,1γ0v)
−b1(un−1

h,1 , u
n
h,1, ρh,1γ0v)

−c1(ρh,1γ0v, p
n
h,1), ∀v ∈ Vh,2

c2(un
h,2, q) = 0, ∀q ∈Mh,2,

(3.2)

where we have set
gn

h = θnγ0u
n
h,2 + (1 − θn)gn−1

h ,

where θn < 1 are positive numbers to be fixed later on.

Remark 3.1. For each n ≥ 1, (3.1) and (3.2) are finite element approximations to the N-S equations with non-
homogeneous boundary conditions. In this case, the inf-sup condition (2.5) is still satisfied on each subdomain.
This ensures that both subproblems (3.1) and (3.2) have a unique solution.

We now consider the convergence rate of the iterative algorithm (3.1)–(3.2). The main theorem is that the
iterations converge to the exact solution geometrically, with the rate independent of h. We shall develop six
lemmas before stating and proving the main theorem. These lemmas contain the basic estimates which are
needed in the proof of the main theorem. From (3.1)–(3.2), we can derive the following error equations for
ξn
h,k = un

h,k − uh,k ∈ Vh,k and ηn
h,k = pn

h,k − ph,k ∈Mh,k.






1
Re
a1(ξn

h,1, v) + c1(v, ηn
h,1) = −b1(un−1

h,1 , u
n
h,1, v) + b1(uh,1, uh,1, v), ∀v ∈ V 0

h,1

c1(ξn
h,1, q) = 0, ∀q ∈Mh,1 ∩ L2

0(Ω)
γ0ξ

n
h,1 = gn−1

h − uh,2|Γ, on Γ,
∫

Ω1
ηn

h,1dx = − ∫

Ω2
ηn−1

h,2 dx,

(3.3)
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and





1
Re
a2(ξn

h,2, v) + c2(v, ηn
h,2) = −b2(un−1

h,2 , u
n
h,2, v) + b2(uh,2, uh,2, v)

− 1
Re
a1(ξn

h,1, ρh,1γ0v) − c1(ρh,1γ0v, η
n
h,1)

−b1(un−1
h,1 , u

n
h,1, ρh,1γ0v) + b1(uh,1, uh,1, ρh,1γ0v), ∀v ∈ Vh,2

c2(ξn
h,2, q) = 0, ∀q ∈Mh,2.

(3.4)

In addition, we have
γ0ξ

n+1
h,1 = θnγ0ξ

n
h,2 + (1 − θn)γ0ξ

n
h,1. (3.5)

Problem (3.3) can be further split into two subproblems: find ξn
h,1∗ ∈ Vh,1, η

n
h,1∗ ∈Mh,1 such that






1
Re
a1(ξn

h,1∗ , v) + c1(v, ηn
h,1∗) = 0, ∀v ∈ V 0

h,1

c1(ξn
h,1∗ , q) = 0, ∀q ∈Mh,1 ∩ L2

0(Ω1)
γ0ξ

n
h,1∗ = γ0ξ

n
h,1, on Γ,

∫

Ω1
ηn

h,1dx = − ∫

Ω2
ηn−1

h,2 dx,

(3.6)

and find ξn
h,1∗∗ ∈ V 0

h,1, η
n
h,1∗∗ ∈Mh,1 ∩ L2

0(Ω1) such that





1
Re
a1(ξn

h,1∗∗ , v) + c1(v, ηn
h,1∗∗) = −b1(un−1

h,1 , u
n
h,1, v) + b1(uh,1, uh,1, v), ∀v ∈ V 0

h,1

c1(ξn
h,1∗∗ , q) = 0, ∀q ∈Mh,1 ∩ L2

0(Ω1)
γ0ξ

n
h,1∗∗ = 0, on Γ.

(3.7)

It is easy to see that {
ξn
h,1 = ξn

h,1∗ + ξn
h,1∗∗

ηn
h,1 = ηn

h,1∗ + ηn
h,1∗∗ .

We are now ready to state and prove the first lemma.

Lemma 3.1.

(1) ‖ξn
h,1‖2

1 = ‖ξn
h,1∗‖2

1 + ‖ξn
h,1∗∗‖2

1,

(2) ‖ξn
h,1∗∗‖1 ≤ CReG

n
1 ,

where Gn
1 =̂(‖ξn−1

h,1 ‖1 + ‖uh,1‖1)‖ξn
h,1‖1 + ‖uh,1‖1‖ξn−1

h,1 ‖1.

Proof. Because ξn
h,1∗∗ ∈ V 0

h,1, we take v = ξn
h,1∗∗ in (3.6) and obtain

1
Re
a1(ξn

h,1∗ , ξ
n
h,1∗∗) + c1(ξn

h,1∗∗ , η
n
h,1∗) = 0.

Using the fact
c1(ξn

h,1∗∗ , η
n
h,1∗) = 0,

we get
a1(ξn

h,1∗ , ξ
n
h,1∗∗) = 0.

Finally,

‖ξn
h,1‖2

1 = ‖ξn
h,1∗ + ξn

h,1∗∗‖2
1

= ‖ξn
h,1∗‖2

1 + ‖ξn
h,1∗∗‖2

1 + 2a1(ξn
h,1∗ , ξ

n
h,1∗∗)

= ‖ξn
h,1∗‖2

1 + ‖ξn
h,1∗∗‖2

1,

which is equation (1) in Lemma 3.1.
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We now prove (2) of Lemma 3.1. Taking v = ξn
h,1∗∗ in (3.7), we have

1
Re
a1(ξn

h,1∗∗ , ξ
n
h,1∗∗) = −b1(un−1

h,1 , u
n
h,1, ξ

n
h,1∗∗) + b1(uh,1, uh,1, ξ

n
h,1∗∗)

= −b1(ξn−1
h,1 , ξn

h,1, ξ
n
h,1∗∗) − b1(ξn−1

h,1 , uh,1, ξ
n
h,1∗∗)

−b1(uh,1, ξ
n
h,1, ξ

n
h,1∗∗).

Then we have

‖ξn
h,1∗∗‖2

1 ≤ CRe[(‖ξn−1
h,1 ‖1 + ‖uh,1‖1)‖ξn

h,1‖1 + ‖uh,1‖1‖ξn−1
h,1 ‖1],

which implies (2) of Lemma 3.1. �

Next we introduce two Stokes extension operators which were first proposed in [16]. For any ψ ∈ Φ̂h, define
(Eh,kψ, Ph,kψ) ∈ Vh,k ×Mh,k as follows:






1
Re
ak(Eh,kψ, v) + ck(v, Ph,kψ) = 0, ∀v ∈ V 0

h,k,

ck(Eh,kψ, q) = 0, ∀q ∈Mh,k,
γ0Eh,kψ = ψ.

(3.8)

Remark 3.2. To ensure that the above Stokes subproblem on Ω2 has a unique solution, we assume that the
function q ∈Mh,2 satisfies q̄ = 0, where

q̄ =̂
1

|Ω2|
∫

Ω2

qdx.

Note that for any q ∈Mh,2 which does not satisfy the above property, we still have

c2(Eh,2ψ, q) = c2(Eh,2ψ, q − q̄) + c2(Eh,2ψ, q̄) = −q̄
∫

Γ

ψ · nds = 0,

as ψ ∈ Φ̂h.

Lemma 3.2. [16] For any ψ ∈ Φ̂h,

(1) a1(Eh,1ψ,Eh,1ψ) ≤ σa2(Eh,2ψ,Eh,2ψ),
(2) a2(Eh,2ψ,Eh,2ψ) ≤ τa1(Eh,1ψ,Eh,1ψ),

where σ, τ are constants independent of the mesh size h.

The next lemma shows that the algorithm is independent of the choice of the extension operator ρh,k. While
the trivial extension may be more convenient in practice, Eh,k may be more convenient theoretically. Both
choices lead to the same algorithm.

Lemma 3.3. The first formula in (3.4) is equivalent to

1
Re

a2(ξn
h,2, v) + c2(v, ηn

h,2) = −b2(un−1
h,2 , u

n
h,2, v) + b2(uh,2, uh,2, v)

− 1
Re
a1(ξn

h,1, Eh,1γ0v) − c1(Eh,1γ0v, η
n
h,1) (3.9)

−b1(un−1
h,1 , u

n
h,1, Eh,1γ0v) + b1(uh,1, uh,1, Eh,1γ0v), ∀v ∈ Vh,2.
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Proof. For any v ∈ Vh,2, because Eh,1γ0v − ρh,1γ0v ∈ V 0
h,1, we have, by (3.3),

0 =
1
Re

a1(ξn
h,1, Eh,1γ0v − ρh,1γ0v) + b1(un−1

h,1 , u
n
h,1, Eh,1γ0v − ρh,1γ0v)

−b1(uh,1, uh,1, Eh,1γ0v − ρh,1γ0v) + c1(Eh,1γ0v − ρh,1γ0v, η
n
h,1).

That is,

1
Re

a1(ξn
h,1, ρh,1γ0v) + b1(un−1

h,1 , u
n
h,1, ρh,1γ0v)

− b1(uh,1, uh,1, ρh,1γ0v) + c1(ρh,1γ0v, η
n
h,1)

=
1
Re

a1(ξn
h,1, Eh,1γ0v) + b1(un−1

h,1 , u
n
h,1, Eh,1γ0v)

− b1(uh,1, uh,1, Eh,1γ0v) + c1(Eh,1γ0v, η
n
h,1),

which, together with (3.4), yields Lemma 3.3. �

Lemma 3.4.
‖Eh,2γ0ξ

n
h,2‖2 ≤ ‖ξn

h,2‖2 + CReG
n
2 ,

where Gn
2 = (‖ξn−1

h,2 ‖2 + ‖uh,2‖2)‖ξn
h,2‖2 + ‖uh,2‖2‖ξn−1

h,2 ‖2.

Proof. Taking v ∈ V 0
h,2 in (3.4), we get

1
Re

a2(ξn
h,2, v) + c2(v, ηn

h,2) = −b2(un−1
h,2 , u

n
h,2, v) + b2(uh,2, uh,2, v). (3.10)

On the other hand, based on the definition of the extension operators Eh,2, Ph,2, we have

1
Re

a2(Eh,2γ0ξ
n
h,2, v) + c2(v, Ph,2γ0ξ

n
h,2) = 0, ∀v ∈ V 0

h,2. (3.11)

Combining the above two equalities, we have

1
Re

a2(ξn
h,2 − Eh,2γ0ξ

n
h,2, v) + c2(v, ηn

h,2 − Ph,2γ0ξ
n
h,2) = −b2(un−1

h,2 , u
n
h,2, v) + b2(uh,2, uh,2, v).

Taking v = ξn
h,2 − Eh,2γ0ξ

n
h,2 in the above inequality, and noting the fact

c2(ξn
h,2 − Eh,2γ0ξ

n
h,2, q) = 0, ∀q ∈Mh,2,

we have

‖ξn
h,2 − Eh,2γ0ξ

n
h,2‖2

2 = −Reb2(un−1
h,2 , u

n
h,2, ξ

n
h,2 − Eh,2γ0ξ

n
h,2) +Reb2(uh,2, uh,2, ξ

n
h,2 − Eh,2γ0ξ

n
h,2)

= −Reb2(ξn−1
h,2 , ξn

h,2, ξ
n
h,2 − Eh,2γ0ξ

n
h,2) −Reb2(ξn−1

h,2 , uh,2, ξ
n
h,2 − Eh,2γ0ξ

n
h,2)

−Reb2(uh,2, ξ
n
h,2, ξ

n
h,2 − Eh,2γ0ξ

n
h,2)

≤ CRe[(‖ξn−1
h,2 ‖2 + ‖uh,2‖2)‖ξn

h,2‖2 + ‖uh,2‖2‖ξn−1
h,2 ‖2]‖ξn

h,2 − Eh,2γ0ξ
n
h,2‖2.

Then
‖ξn

h,2 − Eh,2γ0ξ
n
h,2‖2 ≤ CRe(‖ξn−1

h,2 ‖2 + ‖uh,2‖2)‖ξn
h,2‖2 + ‖uh,2‖2‖ξn−1

h,2 ‖2,
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which, together with the triangle inequality, yields

‖Eh,2γ0ξ
n
h,2‖2 ≤ ‖ξn

h,2‖2 + ‖ξn
h,2 − Eh,2γ0ξ

n
h,2‖2

≤ ‖ξn
h,2‖2 + CRe[(‖ξn−1

h,2 ‖2 + ‖uh,2‖2)‖ξn
h,2‖2 + ‖uh,2‖2‖ξn−1

h,2 ‖2].

This completes the proof of Lemma 3.4. �

Lemma 3.5. Let ε = CRe, then

−‖ξn
h,2‖2

2 ≤ − 1
3τ

‖ξn
h,1‖2

1 + ε2(Gn
2 )2 +

4
τ
ε2(Gn

1 )2.

Proof. Taking v = Eh,2γ0ξ
n
h,1 in (3.9), we have

1
Re
a2(ξn

h,2, Eh,2γ0ξ
n
h,1) = −b2(un−1

h,2 , u
n
h,2, Eh,2γ0ξ

n
h,1) + b2(uh,2, uh,2, Eh,2γ0ξ

n
h,1) −

1
Re
a1(ξn

h,1, ξ
n
h,1∗)

−b1(un−1
h,1 , u

n
h,1, ξ

n
h,1∗) + b1(uh,1, uh,1, ξ

n
h,1∗).

In the above, we have used the fact
Eh,1γ0ξ

n
h,1 = ξn

h,1∗ .

Then

a1(ξn
h,1, ξ

n
h,1) = a1(ξn

h,1, ξ
n
h,1∗∗) − a2(ξn

h,2, Eh,2γ0ξ
n
h,1)

−Reb2(un−1
h,2 , u

n
h,2, Eh,2γ0ξ

n
h,1) +Reb2(uh,2, uh,2, Eh,2γ0ξ

n
h,1)

−Reb1(un−1
h,1 , u

n
h,1, ξ

n
h,1∗) +Reb1(uh,1, uh,1, ξ

n
h,1∗).

By Lemmas 3.1 and 3.2, we get

‖ξn
h,1‖2

1 ≤ ‖ξn
h,2‖2‖Eh,2γ0ξ

n
h,1‖2 + ‖ξn

h,1‖1‖ξn
h,1∗∗‖1 + εGn

2‖Eh,2γ0ξ
n
h,1‖2 + εGn

1‖ξn
h,1∗‖1

≤ τ
1
2 ‖ξn

h,2‖2‖ξn
h,1∗‖1 + ‖ξn

h,1‖1‖ξn
h,1∗∗‖1 + τ

1
2 εGn

2‖ξn
h,1∗‖1 + εGn

1‖ξn
h,1∗‖1

≤ τ
1
2 ‖ξn

h,2‖2‖ξn
h,1‖1 + τ

1
2 εGn

2‖ξn
h,1‖1 + 2εGn

1‖ξn
h,1‖1.

Then

‖ξn
h,1‖1 ≤ τ

1
2 ‖ξn

h,2‖2 + τ
1
2 εGn

2 + 2εGn
1 .

So

‖ξn
h,1‖2

1 ≤ 3τ‖ξn
h,2‖2

2 + 3τ(Gn
2 )2 + 12ε2(Gn

1 )2,

which implies Lemma 3.5. �

Lemma 3.6. Provided Re is sufficiently small, then for every n ≥ 1,

‖ξn
h,1‖1 ≤M, ‖ξn

h,2‖2 ≤ 2σ
1
2 ‖ξn

h,1‖1 ≤ 2σ
1
2M,

where M = max{‖ξ0h,1‖1, ‖ξ1h,1‖1}.
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Proof. We show this lemma by induction. Assume that ‖ξn
h,1‖1 ≤ M, we now prove that ‖ξn+1

h,1 ‖1 ≤ M. In the
first step, we show that if ‖ξn

h,1‖1 ≤ M , then ‖ξn
h,2‖2 ≤ 2σ

1
2M(n ≥ 1). We will prove this assertion also by

induction.
Taking v = ξn

h,2 in (3.9), we have

a2(ξn
h,2, ξ

n
h,2) = −a1(ξn

h,1, Eh,1γ0ξ
n
h,2) (3.12)

−Reb2(un−1
h,2 , u

n
h,2, ξ

n
h,2) +Reb2(uh,2, uh,2, ξ

n
h,2)

−Reb1(un−1
h,1 , u

n
h,1, Eh,1γ0ξ

n
h,2) +Reb1(uh,1, uh,1, Eh,1γ0ξ

n
h,2).

Then

‖ξn
h,2‖2

2 ≤ ‖ξn
h,1‖1‖Eh,1γ0ξ

n
h,2‖1 + εGn

2‖ξn
h,2‖2 + εGn

1‖Eh,1γ0ξ
n
h,2‖1.

On the other hand, using Lemma 3.4,

‖Eh,1γ0ξ
n
h,2‖1 ≤ σ

1
2 ‖Eh,2γ0ξ

n
h,2‖2 ≤ σ

1
2 ‖ξn

h,2‖2 + σ
1
2 εGn

2 .

So combining the above two inequalities, we get

‖ξn
h,2‖2 ≤ σ

1
2 ‖ξn

h,1‖1‖ξn
h,2‖2 + εσ

1
2Gn

2‖ξn
h,1‖1 + εGn

2‖ξn
h,2‖2 + εσ

1
2Gn

1‖ξn
h,2‖2 + ε2σ

1
2Gn

1G
n
2 . (3.13)

When n = 1, then

‖ξ1h,2‖2
2 ≤ σ

1
2M‖ξ1h,2‖2 + εσ

1
2G1

2M + εG1
2‖ξ1h,2‖2 + εσ

1
2G1‖ξ1h,2‖2 + ε2G1

1G
1
2σ

1
2 .

It is easy to see that

G1
1 ≤ (M + C−1ε‖f‖−1)M +MC−1ε‖f‖−1,

G1
2 ≤ (N + C−1ε‖f‖−1)‖ξ1h,2‖2 +NC−1ε‖f‖−1,

where N = ‖ξ0h,2‖2.

Combining above three inequalities, and by simple manipulation, we can achieve

(1 −O(ε))‖ξ1h,2‖2
2 ≤ (σ

1
2M +O(ε))‖ξ1h,2‖2 +O(ε).

When ε→ 0, simple calculation can yields

‖ξ1h,2‖2 ≤ 2σ
1
2M.

Assume the assertion holds for n− 1, we then have

Gn
1 ≤ (M + C−1ε‖f‖−1)M +MC−1ε‖f‖−1,

Gn
2 ≤ (2σ

1
2M + C−1ε‖f‖−1)‖ξ1h,2‖2 + 2σ

1
2MC−1ε‖f‖−1,

By (3.13), we have

(1 −O(ε))‖ξn
h,2‖2

2 ≤ (σ
1
2M +O(ε))‖ξn

h,2‖2 +O(ε).
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When ε→ 0, simple calculation can yields

‖ξn
h,2‖2 ≤ 2σ

1
2M.

We now prove that if ‖ξn
h,1‖1 ≤M , then ‖ξn+1

h,1 ‖1 ≤M . From (3.5), we have

‖ξn+1
h,1∗‖2

1 = θ2n‖Eh,1γ0ξ
n
h,2‖2

1 + (1 − θn)2‖ξn
h,1∗‖2

1 + 2θn(1 − θn)a1(Eh,1γ0ξ
n
h,2, ξ

n
h,1∗).

Note that θn(1 − θn) ≤ 1
4 . On the other hand, by Lemma 3.4,

‖Eh,1γ0ξ
n
h,2‖2

1 ≤ σ‖Eh,2γ0ξ
n
h,2‖2

2

≤ σ‖ξn
h,2‖2

2 + ε2σ(Gn
2 )2 + 2εσGn

2 .

By (3.12), we know that

a1(ξn
h,1∗ , Eh,1γ0ξ

n
h,2) = −a2(ξn

h,2, ξ
n
h,2) − a1(ξn

h,1∗∗ , Eh,1γ0ξ
n
h,2)

−Reb2(un−1
h,2 , u

n
h,2, ξ

n
h,2) +Reb2(uh,2, uh,2, ξ

n
h,2)

−Reb1(un−1
h,2 , u

n
h,1, Eh,1γ0ξ

n
h,2) +Reb1(uh,1, uh,1, Eh,1γ0ξ

n
h,2).

Combining above three results, we can derive that

‖ξn+1
h,1∗‖2

1 ≤ σ θ2n‖ξn
h,2‖2

2 + (1 − θn)2‖ξn
h,1∗‖2

1 − 2θn(1 − θn)‖ξn
h,2‖2

2

+ε2θ2nσ(Gn
2 )2 + 2εσθ2nG

n
2‖ξn

h,2‖2

−2θn(1 − θn)[a1(ξn
h,1∗∗ , Eh,1γ0ξ

n
h,2)

+Reb2(un−1
h,2 , u

n
h,2, ξ

n
h,2) −Reb2(uh,2, uh,2, ξ

n
h,2)

+Reb1(un−1
h,1 , u

n
h,1, Eh,1γ0ξ

n
h,2) −Reb1(uh,1, uh,1, Eh,1γ0ξ

n
h,2)]

≤
(

4σ2 θ2n + (1 − θn)2 − 2θn(1 − θn)
3τ

)

‖ξn
h,1‖2

1

+
1
2
‖ξn

h,1∗∗‖1‖Eh,1γ0ξ
n
h,2‖1

+εGn
2‖ξn

h,2‖2 + εGn
1‖Eh,1γ0ξ

n
h,2‖1.

Using Lemmas 3.1, 3.2, 3.4 and 3.5 and the induction assumption, by elementary manipulation, we can obtain

‖ξn+1
h,1∗‖1 ≤ K(θn)‖ξn

h,1‖1 +O(ε),

where K(θn) = (4σ2 θ2n + (1 − θn)2 − 2θn(1−θn)
3τ )

1
2 .

By an elementary calculation, if

3τ + 2
12σ2τ + 3τ + 2

=̂ θ∗ ≤ θn < θ∗ =̂ min
{

6τ + 2
12σ2τ + 3τ + 2

, 1
}

,

then
0 < K(θn) ≤ d < 1.

So by Lemma 3.1, we finally get

‖ξn+1
h,1 ‖1 ≤ dM +O(ε)‖ξn+1

h,1 ‖1 +O(ε).
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Then
‖ξn+1

h,1 ‖1 ≤ d

1 −O(ε)
M +O(ε).

When ε→ 0, we have
‖ξn+1

h,1 ‖1 ≤M.

We have proved Lemma 3.6. �
Theorem 3.1. Assume that Re is sufficiently small and θn ∈ (θ∗, θ∗), then the D-N velocity sequence {un

h,1, u
n
h,2}

converges geometrically to the true solution uh = (uh,1, uh,2).

Proof. From the proof of Lemma 3.6, we know that if Re is sufficiently small, then

‖ξn
h,2‖2 ≤ 2σ

1
2 ‖ξn

h,1‖1. (3.14)

Using the above inequality and the same arguments as in the proof of Lemma 3.6, we can prove that

‖ξn+1
h,1 ‖1 ≤ d‖ξn

h,1‖1 +O(ε) + ε(M + 2C−1ε‖f‖−1)‖ξn+1
h,1 ‖1

≤ (d+O(ε))‖ξn
h,1‖1 +O(ε)‖ξn+1

h,1 ‖1.

Then

‖ξn+1
h,1 ‖1 ≤ d+O(ε)

1 −O(ε)
‖ξn

h,1‖1.

Based on the above inequality, we can easily see that if Re is sufficiently small, then ξn
h,1 converges geometrically

to zero. On the other hand, because of (3.13), we know that ξn
h,2 also converges geometrically to zero. �

Theorem 3.2. Assume that Re is sufficiently small and θn ∈ (θ∗, θ∗), then the D-N pressure sequence {pn
h,1, p

n
h,2}

converges to the true solution (ph,1, ph,2).

Proof. Let βk (k = 1, 2) be the constant in the inf-sup condition (2.5) restricted to Ωk. Using (3.3),

‖ηn
h,1‖0 ≤ β1 sup

v∈Vh,1

c1(v, ηn
h,1)

‖v‖1

≤ β1 sup
v∈Vh,1

| − 1
Re
a1(ξn

h,1, v) − b1(un−1
h,1 , u

n
h,1, v) + b1(uh,1, uh,1, v)|

‖v‖1

≤ β1[R−1
e ‖ξn

h,1‖1 + (‖ξn−1
h,1 ‖1 + ‖uh‖)‖ξn

h,1‖1 + ‖ξn−1
h,1 ‖1‖uh‖]

≤ β1[(R−1
e M + C−1ε‖f‖−1)‖ξn

h,1‖1 + C−1ε‖f‖−1‖ξn−1
h,1 ‖1]

which means that ηn
h,1 converges to zero.

Similarly, based on (3.9), we have

‖ηn
h,2‖0 ≤ β2 sup

v∈Vh,2

c2(v, ηn
h,2)

‖v‖2

≤ β2 sup
v∈Vh,2

[R−1
e a2(ξn

h,2, v) − b2(un−1
h,2 , u

n
h,2, v) + b2(uh,2, uh,2, v)

−R−1
e a1(ξn

h,1, Eh,1γ0v) − b1(un−1
h,1 , u

n
h,1, Eh,1γ0v)

+b1(uh,1, uh,1, Eh,1γ0v)]/‖v‖2

≤ β2 sup
v∈Vh,2

[R−1
e ‖ξn

h,2‖2‖v‖2 + CGn
2 ‖v‖2

+R−1
e ‖ξn

h,1‖1‖Eh,1γ0v‖1 + CGn
1‖Eh,1γ0v‖1]/‖v‖2.
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Using a result in [16] and a trace inequality, we have

‖Eh,1γ0v‖1 ≤ C3‖γ0v‖
H

1
2
00(Γ)

≤ C3C4‖v‖2.

Combining the above two inequalities, we obtain

‖ηn
h,2‖0 ≤ β2[(Re−1 + 2σ

1
2M + C−1ε‖f‖−1)‖ξn

h,2‖2 + 2σ
1
2MC−1ε‖f‖−1‖ξn−1

h,2 ‖2

+(R−1
e M + C−1ε‖f‖−1)‖ξn

h,1‖1 + C−1ε‖f‖−1‖ξn−1
h,1 ‖1].

Again, this implies that ηn
h,2 converges geometrically to zero. �

4. Other Dirichlet-Neumann iterative algorithms

In this section, we give other version of the D-N iterative algorithm where only linear Stokes need to be
solved in each subdomain. Such kind of algorithm is obviously easier to implement.

Algorithm 4.1. For any g0
h ∈ Φ̂h and u0

h,k ∈ Vh,k, k = 1, 2, define the two sequences (un
h,1, p

n
h,1) ∈ Vh,1 ×Mh,1

and (un
h,2, p

n
h,2) ∈ Vh,2 ×Mh,2 as follows:






1
Re
a1(un

h,1, v) + c1(v, pn
h,1) = (f, v)1 − b1(un−1

h,1 , u
n−1
h,1 , v), ∀v ∈ V 0

h,1

c1(un
h,1, q) = 0, ∀q ∈Mh,1 ∩ L2

0(Ω)
γ0u

n
h,1 = gn−1

h , on Γ,
∫

Ω1
ph,1dx =

∫

Ω2
ph,2dx

and





1
Re
a2(un

h,2, v) + c2(v, pn
h,2) = (f, v)2 + (f, ρh,1γ0v)1 − b2(un−1

h,2 , u
n−1
h,2 , v)

− 1
Re
a1(un

h,1, ρh,1γ0v) − b1(un−1
h,1 , u

n−1
h,1 , ρh,1γ0v)

−c1(ρh,1γ0v, p
n
h,1), ∀v ∈ Vh,2

c2(un
h,2, q) = 0, ∀q ∈Mh,2,

where we have set
gn

h = θnγ0u
n
h,2 + (1 − θn)gn−1

h .

Similar to the previous section, we can prove

Lemma 4.1. Provided Re is sufficiently small, then for every n ≥ 1,

‖ξn
h,1‖1 ≤M, ‖ξn

h,2‖2 ≤ 3σ
1
2M,

where M = ‖ξ1h,1‖1.

Theorem 4.1. Assume that Re and θn are sufficiently small, then the linear D-N velocity sequence in Algorithm
4.1 {un

h,1, u
n
h,2} converges to the true solution uh = (uh,1, uh,2).

Proof. The proof is similar to before, we only give a skeleton of the proof.
Using a similar argument as in the proof of Lemma 3.6, we have

‖ξn+1
h,1∗‖2

1 ≤ σθ2n‖ξn
h,2‖2

2 + (1 − θn)2‖ξn
h,1∗‖2

1 −
2θ(1 − θn)

3τ
‖ξn

h,1‖2
1 +O(ε).
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So

‖ξn+1
h,1 ‖2

1 = ‖ξn+1
h,1∗‖2

1 + ‖ξn+1
h,1∗∗‖2

1

≤ σθ2n‖ξn
h,2‖2

1 + δ‖ξn
h,1‖2

1 +O(ε),

where δ =̂ (1 − θn)2 − 2θ(1−θn)
3τ .

On the other hand,

‖ξn+1
h,2 ‖2

2 ≤ ‖ξn+1
h,1 ‖1‖Eh,1γ0ξ

n+1
h,2 ‖1 +O(ε)

≤ σ
1
2 ‖ξn+1

h,1 ‖1‖ξn+1
h,2 ‖2 +O(ε)

≤ σ

2
‖ξn+1

h,1 ‖2
1 +

1
2
‖ξn+1

h,2 ‖2
2 +O(ε).

Then,

‖ξn+1
h,2 ‖2

2 ≤ σ‖ξn+1
h,1 ‖2

1 +O(ε)

≤ σ2θ2n‖ξn
h,2‖2

1 + σ δ‖ξn
h,1‖2

1 +O(ε).

Finally,
[ ‖ξn+1

h,1 ‖2
1

‖ξn+1
h,2 ‖2

2

]

≤
[

δ θ2nσ
σ δ σ2θ2n

] [ ‖ξn
h,1‖2

1

‖ξn
h,2‖2

2

]

+O(ε)
[

1
1

]

.

Now ρ(A) = δ + σ2θ2n + o(1), as ε→ 0 where

A =
[

δ θ2nσ
σ δ σ2θ2n

]

and ρ(A) is the spectral radius ofA. By selecting the approximate (ε=0) optimal value θn = 3τ+1
3τσ2+3τ+2 , ρ(A) < 1.

So we know that the linear D-N velocity sequence {un
h,1, u

n
h,2} converges to the true solution (uh,1, uh,2). �

Based on Theorem 4.1 and a similar argument as before, we have

Theorem 4.2. Assume that Re and θn are sufficiently small, then the linear D-N pressure sequence in Algorithm
4.1 {pn

h,1, p
n
h,2} converges to the true solution (ph,1, ph,2).

5. The Neumann-Neumann iterative algorithm

Let us consider now another well-known nonoverlapping DDM, the Neumann-Neumann (N-N) iterative al-
gorithm, for solving (2.6). We make an additional assumption that Ω1 is also not an interior subdomain.

Similar to the above section, let Vh ⊂ V and Mh ⊂ M be finite element spaces. We also assume that the
pressure space Mh consists of functions which are discontinuous across inter-element boundaries. Moreover, we
assume that the pressure has a zero mean value. Similar to Section 3, we can also define the corresponding
subspaces Vh,k, Mh,k, k = 1, 2. However, we don’t assume that functions in Mh,1 vanish at a point in Ω1.

Following [17], we may define the N-N iterative algorithm as follows: For any λ0
h ∈ Φ̂h and p0

h,k ∈ Mh,k ∩
L2

0(Ωk), k = 1, 2, the sequences (un
h,k, p

n
h,k) ∈ Vh,k ×Mh,k ∩ L2

0(Ωk) are defined by






1
Re
a1(un

h,1, v) + b1(un
h,1, u

n
h,1, v) + c1(v, pn

h,1) = (f, v)1, ∀v ∈ V 0
h,1

c1(un
h,1, q) = 0, ∀q ∈Mh,1 ∩ L2

0(Ω1)
γ0u

n
h,1 = λn−1

h , on Γ,
∫

Ω1
pn

h,1dx = − ∫

Ω2
pn−1

h,2 dx,



1266 X. XU ET AL

and





1
Re
a2(un

h,2, v) + b2(un
h,2, u

n
h,2, v) + c2(v, pn

h,2) = (f, v)2, ∀v ∈ V 0
h,2

c2(un
h,2, q) = 0, ∀q ∈Mh,2 ∩ L2

0(Ω2)
γ0u

n
h,2 = λn−1

h , on Γ,
∫

Ω2
pn

h,2dx = − ∫

Ω1
pn−1

h,1 dx,

and (ψn
h,k, π

n
h,k) ∈ Vh,k ×Mh,k, for k = 1, 2, are defined by






1
Re
ak(ψn

h,k, v) + bk(ψn
h,k, ψ

n
h,k, v) + ck(v, πn

h,k) =
∑2

j=1(f, ρh,jγ0v)j

−aj(un
h,j , ρh,jγ0v)

−bj(un
h,j, u

n
h,j, ρh,jγ0v)

−cj(ρh,jγ0v, u
n
h,j), ∀v ∈ Vh,k

ck(ψn
h,k, q) = 0, ∀q ∈Mh,k.

Set
λn

h = λn−1
h + θ(γ0ψ

n
h,1 + γ0ψ

n
h,2).

Using a similar argument as before, we can prove

Theorem 5.1. Assume that Re is sufficiently small and θ is suitably chosen, then the N-N velocity iterates
{un

h,1, u
n
h,2} converge geometrically to the true solution (uh,1, uh,2).

and

Theorem 5.2. Assume that Re is sufficiently small and θ is suitably chosen, then the N-N pressure iterates
{pn

h,1, p
n
h,2} converge geometrically to the true solution (ph,1, ph,2).

6. Numerical results

For a small Reynolds’ number, the steady Navier-Stokes equations can be considered as a Stokes problem
perturbed by the nonlinear convection term. In this section, we shall illustrate the behavior of the linear D-N
Algorithm 4.1 developed in Section 4. In this situation, the computer implementation is simply one for the
Stokes problem on each subdomains, for which several finite element methods are available.

Our choice of method is the Taylor-Hood P2-P1 triangular elements. More precisely, we discretize the
velocities by piecewise quadratic basis functions, and the pressure by piecewise linear basis functions. The
nodes for the velocities are the vertices and the midpoints of edges of the triangles; those for the pressure are
the vertices of triangles.

On each subdomains, the finite element discretization of the Stokes problem in Algorithm 4.1 leads to the
saddle point problem

(
Ah BT

h

Bh 0

) (
uh

ph

)

=
(
Gh

0

)

,

where Ah = (a(φj , φk)), Bh = (c(φj , ψk)), and Gh = ((g, φj)), φj and ψk being the piecewise quadratic and
piecewise linear nodal bases, respectively. The solution to the above saddle point problem can be obtained by
a straightforward elimination procedure:

ph = (BhA
−1
h BT

h )−1BhA
−1
h Gh,

uh = A−1
h (Gh −BT

h ph).

Our assumption that the inf-sup condition (2.5) be satisfied ensures the invertibility of BhA
−1
h BT

h . Thus, the
above elimination procedure makes sense.
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Figure 6.1. Flow field (uh, vh). Figure 6.2. Pressure contours.

Now for the two-subdomain problem with Ω = Ω1 ∪ Ω2, denote by Ah,i, Bh,i, and Gn
h,i the corresponding

quantities for the subdomain i, i = 1, 2. The linear Dirichlet-Neumann iterative algorithm then becomes the
iteration of the following sequence of steps:

(
Ah,1 BT

h,1

Bh,1 0

) (
un

h,1

pn
h,1

)

=
(
Gn

h,1

0

)

,

where un
h,1|∂Ω1\Γ = 0, un

h,1|Γ = gn−1
h ,

(
Ah,2 BT

h,2

Bh,2 0

) (
un

h,2

pn
h,2

)

=
(
Gn

h,2

0

)

,

where un
h,2|∂Ω2\Γ = 0, and

gn
h = θnu

n
h,2|Γ + (1 − θn)gn−1

h ,

where Gn
h,1, G

n
h,2 are associated with the right hand side terms of the first and fifth equalities in the Algo-

rithm 4.1.
To get the iterations started, we set u0

h,1 = u0
h,2 = 0 and g0

h = 0. The Dirichlet boundary conditions for
un

h,1 and un
h,2 are easily enforced by explicit elimination, which results in a reduced saddle point problem with

a modified right hand side to which the elimination procedure discussed above applies.
Since only ∇p appears in the Navier-Stokes equations, the pressure p is determined up to an additive constant.

For pressure continuous across the interface Γ, we choose a point P on Γ and enforce that p(P ) = 0.
It is convenient to express the flow field in terms of a stream function ψ = ψ(x, y), which determines the

velocities (u, v) = (ψy,−ψx). In the test cases presented below, a uniform grid with 20 triangles in each
spatial direction was used. The unit square Ω = (0, 1)2 was divided into two non-overlapping subdomains
Ω1 = (0, 1

2 ) × (0, 1) and Ω2 = (1
2 , 1) × (0, 1), with the interface Γ = { 1

2} × [0, 1]. The point P at which p = 0
was chosen to be (1

2 ,
1
2 ). We took θn = 0.2.

Test case 1: The forcing term f was chosen so that ψ = x2(1−x)2y4(1−y)4 and p = x4(1−x)4y2(1−y)2−2−12

at Re = 100. See Figures 6.1 and 6.2.
Test case 2: ψ = x4y4(1 − x)2(1 − y)2 and p = (x− 1

2 )2 − (y − 1
2 )2, Re = 100. See Figures 6.3 and 6.4.

The H1 and L2 norms of the error un
h − uh are given by

‖un
h − uh‖H1 =

√
‖un

h,1 − uh,1‖2
H1 + ‖un

h,2 − uh,2‖2
H1 ,
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Figure 6.3. Flow field (uh, vh). Figure 6.4. Pressure contours.

Figure 6.5. Plots of errors for test
case 1.

Figure 6.6. Plots of errors for test
case 2.

and
‖un

h − uh‖L2 =
√
‖un

h,1 − uh,1‖2
L2 + ‖un

h,2 − uh,2‖2
L2 .

Plots of these errors versus n for test cases 1 and 2 are given in Figures 6.5 and 6.6, respectively. It is clear
that the convergence (un

h,1, u
n
h,2) → uh = (uh,1, uh,2), as established in Theorem 4.1, is honored.
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