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MOVING MESH FOR THE AXISYMMETRIC HARMONIC MAP FLOW
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Abstract. We build corotational symmetric solutions to the harmonic map flow from the unit disc
into the unit sphere which have constant degree. First, we prove the existence of such solutions,
using a time semi-discrete scheme based on the idea that the harmonic map flow is the L2-gradient of
the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then,
we compute numerically these solutions by a moving-mesh method which allows us to deal with the
singularity at the origin. We show numerical evidence of the convergence of the method.

Mathematics Subject Classification. 35A05, 35K55, 65N30, 65N50, 65N99.

Received: June 10, 2004. Revised: March 2, 2005.

Introduction

Let D be the unit disc in R
2 and let S2 be the two dimensional unit sphere in R

3. In this paper, we compute
solutions u : D × [0, +∞) → S2 to the harmonic map flow:

ut = ∆u + u|∇u|2 in D × (0, +∞), (1)
u = u0 on ∂D × [0, +∞), (2)
u = u0 on D × {0}, (3)

where the initial condition u0 is a map from D to S2. The harmonic map heat flow has been introduced by
Eells and Sampson in [7] as the L2 gradient of the Dirichlet energy:

E(u) =
1
2

∫
D

|∇u|2.

A result of Struwe [15], completed by Chang [6] for domains with boundary, asserts that if u0 belongs to
H1(D,S2) with u0|∂D in H3/2(∂D,S2), then problem (1)–(3) has a weak solution u ∈ H1

loc(D × [0, +∞)),
which is smooth away from finitely many singular points (xi, ti)1≤i≤N ⊂ D × [0, +∞). Its Dirichlet energy

Keywords and phrases. Moving mesh, finite elements, harmonic map flow, axisymmetric.

1 ENS Cachan, Antenne de Bretagne, Avenue Robert Schumann, 35170 Bruz France.
benoit.merlet@bretagne.ens-cachan.fr
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E(u(t)) is non-increasing and Freire [9] showed that this monotonicity guarantees the uniqueness in the class
H1

loc(D × [0, +∞),S2). This solution is usually referred to as the “Struwe solution”.
The behaviour of the Struwe solution near a singularity has been described by Qing [13]. Briefly, at such

a point, the energy E(u(t)) has a jump which corresponds to a concentration phenomenon called bubbling of
spheres. The reverse phenomenon (debubbling) has been used in [3, 16] to build a weak solution to (1)–(3) in
H1

loc(D× [0, +∞)) different from the Struwe solution. The idea is to keep in mind the energy lost at a bubbling
time t1 and to release it at some time t2 > t1 for a debubbling (the energy has an upward jump at time t2).
When a bubbling or a debubbling occurs, the S2-degree of the map u(t), defined by

degS2(u) :=
1
4π

∫
D

(ux × uy) · u (4)

may also jump, because the limit of a H1-weakly converging sequence does not in general have the same degree
as the elements of the sequence [4].

In the following, we only consider corotational symmetric maps, i.e. maps u : D → S2 such that

u(r cosϕ, r sin ϕ) = (cosϕ cos θ(r), sin ϕ cos θ(r), sin θ(r))

for some θ : [0, 1] × [0, +∞) → R. The examples constructed by Bertsch et al. [3] and Topping [16] to prove
the non-uniqueness of weak solution to (1)–(3) were actually corotational symmetric maps. In terms of θ,
equations (1)–(3) are equivalent to

θt = θrr +
1
r
θr +

sin(2θ)
2r2

in (0, 1) × (0, +∞), (5)

θ(1, t) = θ0(1) for t ≥ 0, (6)
θ(r, 0) = θ0(r) for 0 ≤ r ≤ 1, (7)

where θ0 is associated to a corotational initial data u0. The Dirichlet energy is given by

E(θ) := E(u) = π

∫ 1

0

(
cos2 θ

r
+ θ2

rr

)
dr.

Now introduce the set of functions with bounded energy

Sα :=
{

θ ∈ C0([0, 1], R), θ(1) = α,
cos θ√

r
∈ L2(]0, 1[) and

√
rθ′ ∈ L2(]0, 1[)

}
,

where α = θ0(1) ∈ R corresponds to a boundary condition on ∂D. Every θ ∈ Sα satisfies

θ(0) = −π

2
+ kπ, (8)

where k ∈ Z is (up to a factor 2) the winding number of θ, and characterizes the corotational degree of θ defined
in Section 1. In this paper, we build solutions to (5)–(7) with constant corotational degree. We believe these
solutions to be the ones described by Bertsch et al. in the introduction of [3]. This approach seems to be more
accurate for the description of nematic liquid crystals. Unfortunately, at this time, we are not able to give a
rigorous characterization of our solutions and then to ensure uniqueness. However, we shall explain physically
the desired properties for these solutions and compare them to the Struwe solutions.
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Figure 1. Struwe solution.
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Figure 2. Reverse bubbling.

Figure 1 illustrates a Struwe solution θ̄(r, t) at several times 0 = t1 < t2 < t3 < t∞ = +∞. The initial
boundary condition at r = 0 is θ̄(0, t) = −π/2. This solution bubbles at some time t̄ in (t2, t3) and the
boundary condition becomes θ̄(0, t) = +π/2 for t ≥ t̄. The energy E(θ̄(t)) is nonincreasing and is smooth away
from t = t̄, but limt→t̄− E(θ̄(t)) = E(θ̄(t̄)) + 4π.

For nematic liquid crystals, it is reasonable to expect that the energy and the degree are preserved during
the bubbling. A way to formulate this idea is to consider that every θ ∈ Sα satisfies the prescribed boundary
condition θ(0) = −π/2 at r = 0 even if θ(0+) = limr→0 θ(r) is different from this value. In other words, we add
to the graph of θ in [0, 1] × R the vertical segment joining (0,−π/2) to (0, θ(0+)), which contains the energy
4 |θ(0+) + π/2|. The total energy,

E0(θ) := E(θ) + 4
∣∣θ(0+) + π/2

∣∣ ,

will be defined more generally in Section 1. We seek solutions with nonincreasing energy E0(θ(t)) rather than
nonincreasing E(θ(t)).

Figure 2 represents such a solution θ(r, t), with the same initial data as θ̄. There exists a time t in (t3, t4)
such that θ(r, t) = θ̄(r, t) for 0 ≤ t ≤ t, θr(0, t) = 0, and θ(r, t) < π/2 for r > 0 small. It is possible to decrease
the energy E0(θ(t)) by a debubbling. The energy of the vertical part is released and θ(0, t) = −π/2 for t > t.
The energy E0(θ(t)) is continuous and nonincreasing. In this example, no other bubbling or debubbling occurs,
and limt→+∞ θ(·, t) 	= limt→+∞ θ̄(·, t). Notice that we could have chosen a debubbling time t > t, but we look
for solutions debubbling at the first possible time.

Our construction of solutions to (5)–(7) with prescribed degree θ(0) = −π/2 + kπ is a time semi-discrete
scheme introduced by Bethuel et al. [2] for domains in R

3. It is a backward Euler scheme based on the idea that
the harmonic map flow is the L2-gradient of E0 (replacing E0 with E , we think that we would obtain the Struwe
solution). In addition, the total energy E0(θτ (t)) of the solution θτ to the semi-discrete scheme is nonincreasing.

For the numerical simulation of (5)–(7), in order to deal with the singularity at r = 0, we use a moving-mesh
method based on a piecewise linear (P1) finite element discretization, as introduced in [1] for the stationary
case. Moving-mesh methods consist in moving the nodes of a given initial mesh to new locations, the number
and connectivity of nodes being fixed (see [5] and references therein). For steady-state problems in which the
true solution minimizes a functional, the idea is to look for the nodes that minimize the functional obtained
by a finite element discretization [10, 14] (“moving finite elements”). In our case, the minimization problem
is obtained by the time semi-discrete scheme associated to (5)–(7). As in the steady-state case, the discrete
minimizer exists for a relaxed discrete functional, and its graph may have a vertical part at r = 0.



784 B. MERLET AND M. PIERRE

The paper is organized as follows. In Section 1, we recall the main results concerning the steady-state
case. In Section 2, we obtain the existence of weak solutions to (5)–(7) with prescribed degree by proving the
convergence of the time semi-discrete scheme; we also prove a partial uniqueness result. Section 3 concerns the
space discretization of the time semi-discrete scheme by P1 moving finite elements; we establish a convergence
result. We discuss computational aspects in Section 4; in particular, we explain the difference between the
implemented algorithm, based on a Gaussian quadrature, and the ideal algorithm from Section 3. Before
presenting in Section 6 the numerical results, we show numerical evidence of the convergence in Section 5.

1. Mathematical setting

In this section, we sum up the results in [1] concerning the steady-state problem for corotational symmetric
maps. The concentration phenomenon is necessarily located at r = 0. For a regular corotational map u, the
S2-degree (4) is equal to degS2(u) = −(1/2)

∫ θ(1)

θ(0) cosϕdϕ. We define the corotational S2-degree as

cor degS2(θ) := −1
2

∫ θ(1)

θ(0)

| cosϕ|dϕ,

where θ is associated to the map u. The latter is closely related to the S1-degree θ(1) − θ(0) of u:
if θ(1) − θ(0) = 2kπ, then cor degS2(θ) = −2k where k is the winding number of u|[0,1]. The fundamental
property is that the energy controls the degree:

4π|cor degS2(θ)| ≤ E(θ), (9)

and equality occurs if and only if θ corresponds to a corotational harmonic map [1] (that is a critical point of
the Dirichlet energy).

Relation (8) gives a partition of Sα into homotopy classes Hk,α, where

Hk,α :=

{
θ ∈ C∞([0, 1], R), θ(0) = −π

2
+ kπ, θ(1) = α

}
.

Recall the gap phenomenon [4]: the infimum inf {E(θ) ; θ ∈ Hk,α} is not reached in general. We will say that a
sequence (θn) converges weakly to θ in Sα if supn E(θn) < +∞ and θn ⇀ θ in D′(0, 1). For θ ∈ Sα, the relaxed
energy associated to Hk,α is defined as the natural lower semi-continuous extension of E|Hk,α

in Sα,

Ek(θ) := inf
{

lim inf
i→+∞

E(θi) ; θi ∈ Hk,α, θi →
i→+∞

θ in D′(0, 1)
}

,

= E(θ) + 4

∣∣∣∣∣θ(0+) − kπ +
π

2

∣∣∣∣∣ · (10)

The interest of the relaxed energy is the following:

Theorem 1.1 (Alouges and Pierre [1]). There exists a unique minimizer for Ek in the class Sα, and

inf
θ∈Sα

Ek(θ) = inf
θ∈Hk,α

E(θ).
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2. Time discretization

For the time discretization of problem (5)–(7), we use a backward Euler scheme introduced by Bethuel et al.
[2] for domains in R

3. We adapt it to the corotational case with the condition on the degree k.
More precisely, let τ > 0 denote the time-step, the algorithm is as follows. We set θ0 = θ0 ∈ Sα and we

assume that θn ∈ Sα, n ≥ 0 is known. The next step is obtained by:

θn+1 minimizes Ek(θ) +
π

τ

∫ 1

0

|θ − θn|2rdr in Sα. (11)

From the lower semi-continuity of Ek [1] and the weak compactness of bounded sequences in Sα, we know that
problem (11) has at least one solution θn+1, which satisfies the Euler-Lagrange equation

r

(
θn+1 − θn

τ

)
= (rθn+1

r )r +
sin(2θn+1)

2r
in D′((0, 1)). (12)

The sequence (θn)n may not be uniquely defined. From the discrete values θ0, θ1, . . ., we construct two functions
θτ , θ

τ
: [0, 1] × [0,∞) by setting for all n ∈ N and t ∈ [n, (n + 1)τ):

θτ (·, t) =
(n + 1)τ − t

τ
θn +

t − nτ

τ
θn+1, (13)

θ
τ
(·, t) = θn. (14)

Notice that θτ (·, t) 	∈ Sα in general. Indeed, if θn(0) 	= θn+1(0) then θτ (0, t) 	∈ π

2
+ πZ for almost every

t ∈ (nτ, (n + 1)τ). The definition of θn+1 implies:

Ek(θn+1) +
π

τ

∫ 1

0

|θn+1 − θn|2rdr ≤ Ek(θn). (15)

Summing these inequalities for n = 0 . . . N − 1, we get the following bound:

Ek(θ
τ
(·, Nτ)) + π

∫ Nτ

0

∫ 1

0

|θτ
t |2rdrdt ≤ Ek(θ0). (16)

We now consider every map θ on (0, 1) as an axisymmetric function on D defined by θ(r cosϕ, r sin ϕ) := θ(r).
With this identification, L2(0, 1; rdr) is isomorphic to L2

axi(D), which we define as the closure in L2(D) of
regular axisymmetric functions. Similarly, the Hilbert space {θ ∈ L2(rdr); θr ∈ L2(rdr)}, equipped with the

norm
(
|θ|2L2(rdr) + |θr|2L2(rdr)

)1/2

, is isomorphic to H1
axi(D), that is the closure in H1(D) of the set of regular

axisymmetric functions.
Let τ1, τ2, . . . be a decreasing sequence of positive numbers such that lim ↓ τi = 0. We have the following

existence and convergence result.

Theorem 2.1. There exists an axisymmetric function

θ ∈ L∞([0, +∞), H1
axi(D)) ∩ H1

loc([0, +∞), L2
axi(D)) (17)

such that, up to a subsequence,

θτi −→
i→+∞

θ uniformly in C0([0, T ], L2
axi(D)), ∀T > 0, (18)

θτi(·, t), θτi(·, t) −→
i→+∞

θ(·, t) weakly in H1
axi(D), ∀t ≥ 0. (19)
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Moreover, θ is a solution to (5) in D′((0, 1) × (0, +∞)), which satisfies (6), (7) and the estimate:

Ek(θ(·, t)) + π

∫ t

0

∫ 1

0

|θt|2rdrdt ≤ Ek(θ0), ∀t ≥ 0. (20)

Proof. For the axisymmetric maps, (16) implies

1
2

∫
D×[0,+∞)

|θτi
t |2 dxdt ≤ Ek(θ0) and

1
2

∫
D

|∇θ
τi(·, t)|2dx ≤ Ek(θ0) (t ≥ 0). (21)

Let T > 0. By the first inequality in (21), (θτi) is bounded in H1((0, T ), L2
axi(D)), which is embedded in

C0,1/2([0, T ], L2
axi(D)), so the sequence (θτi)i is uniformly equicontinuous in C0([0, T ], L2

axi(D)). By convexity,
the second inequality in (21) holds if we replace θ

τi by θτi , so (θτi(t))τi,t≥0 is bounded in H1
axi(D), which is

compactly imbedded in L2
axi(D). By Ascoli’s theorem, there exist a subsequence again denoted (θτi) and a

map θ ∈ C0([0, T ], L2
axi(D)) such that θτi −→

i→+∞
θ uniformly in C0([0, T ], L2

axi(D)). By diagonal extraction, we

obtain a subsequence (θτi) and θ ∈ C0
loc([0, +∞), L2

axi(D)) such that (18) holds for every T > 0. Notice that
for this sequence, θτi(·, t) −→

i→+∞
θ(·, t) weakly in H1

axi(D) for all t ≥ 0.

Now, having in mind the definitions of θτi and θ
τi , (15) implies

1
2

∫
D

|θτi(·, t) − θ
τi(·, t)|2dx ≤ π

∫ 1

0

|θn+1 − θn|2rdr ≤ τiEk(θ0) ∀t ∈ [nτi, (n + 1)τi). (22)

Therefore, by letting τi → 0 for fixed t, θτi(·, t) − θ
τi(·, t) −→

i→+∞
0 in L2

axi(D) for all t ≥ 0. This, together with

the left inequality in (21), implies (19). By (21) again, (θτi) is a bounded sequence in H1(D × (0, T )) for every
T > 0. From (19),

θτi −→
i→+∞

θ weakly in H1(D × (0, T )) and a.e. in D × (0, T ), (23)

θτi
t −→

i→+∞
θt weakly in L2(D × (0, T )), ∀T ≥ 0. (24)

Thus, from (16), using in addition (19), (22) and the weak lower semi-continuity of Ek, we get:

Ek(θ(·, t)) + π

∫ t

0

∫ 1

0

|θt|2rdrdt ≤ lim inf
τi

Ek(θ
τi(·, t)) + lim inf

τi

π

∫ t

0

∫ 1

0

|θτ
t |2rdrdt ≤ Ek(θ0) (25)

for all t ≥ 0, and this concludes the convergence part of the theorem. The Euler equation (12) reads

θτi
t = θ

τi

rr +
1
r
θ

τi

r +
sin 2θ

τi

2r2
· (26)

Using (23) and (22), we have θτi , θ
τi → θ in L2

loc((0, 1) × (0, +∞)). Letting i → ∞ in (26) we get (5). �
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The uniqueness of the limit θ in Theorem 2.1 is an open question in general. However, using the uniqueness
of the Struwe solution [8], we can give a partial uniqueness result.

Theorem 2.2. Let θS denote the Struwe solution to (5)–(7) with initial condition θ0 ∈ Sα and let T1 > 0 be the
first singular time for θS. Then, any limit θ obtained as in Theorem 2.1 from the semi-discrete scheme (11),
with the initial condition θ0 and k such that θ0(0+) = −π/2 + kπ, satisfies θ = θS on [0, 1] × [0, T1).

In particular, if Ek(θ0) = E(θ0) < 4π, then T1 = +∞ and the limit is unique.

Proof. First notice that for a corotational symmetric initial condition defined by θ0 ∈ Sα, the Struwe solution
is also by uniqueness a corotational symmetric map: it is more precisely the solution to (5)–(7) in the class (17)
characterized by the fact that E(θ(t)) is nonincreasing. The first singular time T1 can be defined here as the
largest T > 0 such that θ ∈ C∞([0, 1] × (0, T )).

The result of Freire stated in Lemma 2.3 below shows that θ = θS on [0, T ′] for some T ′ < T1 since
Ek(θ(t)) ≤ Ek(θ0) = E(θ0) by (20). The idea is to iterate the argument by showing a strong convergence on
[0, T ′]. Define

T + = sup {T ∈ (0, T1) | θ = θS on [0, T ]} ∈ (0, T1].

Assume by contradiction T + < T1. Then multiplying (5) by θt, an integration on [0, 1] × [0, T +] yields

E(θ(·, T +)) + π

∫ T+

0

∫ 1

0

|θt|2rdrdt = E(θ0).

The integration by parts we use here is valid because of the regularity of the Struwe solution. Together with
(25), this implies

lim inf
τi

Ek(θ
τi(·, T +)) = E(θ(·, T +)) and lim inf

τi

π

∫ T+

0

∫ 1

0

|θτ
t |2rdrdt = π

∫ T+

0

∫ 1

0

|θt|2rdrdt.

Similarly to (25), (16) yields: E(θ0) ≤ lim sup
τi

Ek(θ
τi(·, T +)) + lim inf

τi

π

∫ T+

0

∫ 1

0

|θτ
t |2rdrdt ≤ E(θ0). Thus,

lim sup
τi

Ek(θ
τi(·, T +)) = lim inf

τi

Ek(θ
τi(·, T +)) = E(θ(·, T +)). (27)

Now, summing (15) for n = N+, . . . , N − 1 where N+ is defined by N+τ ≤ T + < (N+ + 1)τ , we get

Ek(θ
τ
(·, Nτ)) + π

∫ Nτ

N+τ

∫ 1

0

|θτ
t |2rdrdt ≤ Ek(θ(·, N+τ)).

In this inequality we can pass to the limit as in (25), and using (27), we obtain Ek(θ(·, t) ≤ E(θ(·, T +) for all
t ≥ T +. Thus by Lemma 2.3, θ = θS on [T +, T + + ε] for some ε > 0. This contradicts the definition of T + and
concludes the proof. �

With the notations of Theorem 2.2, the uniqueness result of Freire is the following:

Lemma 2.3 (Freire [8]). Let θ be a solution to (5), (6), (7) in the class (17) such that E(θ(t)) ≤ E(θ0) for all
t ≥ 0. Then there exists T ′ in (0, T1) such that θ = θS on [0, 1]× [0, T ′].
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3. Time and space discretization

For the space discretization of (11), we use piecewise linear (P1) continuous finite elements and, in order
to deal with the singularity at 0, we allow the nodes of the mesh to move. The unknowns of the discrete
minimization problem are the values of the discrete solution at the nodes and the position of the nodes. Similarly
to the steady-state case, the discrete solution minimizes a relaxed discrete functional, and its graph may have
a vertical part at r = 0.

Let M be a positive integer and let h > 1/M . The (non-empty) set of admissible subdivisions is

DM,h := {(ri)0≤i≤M ∈ R
M+1, r0 = 0 < r1 < · · · < rM = 1 and max

1≤i≤M
|ri − ri−1| ≤ h}. (28)

In the following, we assume that h = h(M) > 1/M is a function of M and we omit the index M . The space of
moving finite elements is

Hh
k,α := {θh ∈ C0([0, 1]), θh(0) = −π

2
+ kπ, θh(1) = α, ∃(ri)0≤i≤M ∈ Dh such that

θh is affine on [ri, ri+1] ∀i ∈ {1, . . . , M}}. (29)

Let k ∈ Z and τ > 0 be fixed. For an initial data θh
0 ∈ Hh

k,α, the full discretized scheme is:

θh
n+1 “minimizes” Fh

k,n(φh) := E(φh) +
π

τ

∫ 1

0

|φh − θh
n|2rdr among φh ∈ Hh

k,α. (30)

However, a minimizer for problem (30) may not exist, because Hh
k,α is not closed. As in the steady-state case [1],

we use the following construction (compare with (10)):

Lemma 3.1. Let Ω ⊂ R
m and let F : Ω → [0, +∞) be continuous on Ω. Then, F : Ω → [0, +∞], defined on

the closure of Ω in R
m by

F(x) := inf{lim inf
p

F(xp) | xp ∈ Ω, xp → x} (x ∈ Ω),

is an extension of F which is lower semi-continuous (l.s.c.) on Ω.

A function θh ∈ Hh
k,α is uniquely defined by the sequence (ri, θi)0≤i≤M , where (ri)0≤i≤M are the nodes and

θi = θh(ri) the values at the nodes. With this identification,

Hh
k,α � Ωh

k,α := Dh ×
(
{−π/2 + kπ} × R

M−1 × {α}
)
⊂ R

2M+2, (31)
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and the functional Fh
k,n is clearly continuous on Ωh

k,α ⊂ R
2M+2. Using Lemma 3.1 with Ω = Ωh

k,α ⊂ R
2M+2 and

F = Fh
k,n, we obtain the extended minimization problem:

θ
h

n+1 � (rn+1
i , θn+1

i )0≤i≤M ∈ Ωh
k,α minimizes Fh

k,n(φ
h
) among φ

h ∈ Ωh
k,α, (32)

where θ
h

0 is chosen in Ωh
k,α. The following estimate:

Fh
k,n(θh) ≥ E(φh) ≥ π

M−1∑
i=0

(θi+1 − θi)2

2

(
ri+1 + ri

ri+1 − ri

)
≥ π

M−1∑
i=0

(θi+1 − θi)2

2
, (33)

extends to Fh
k,n, by continuity of the right-hand side. Thus, a minimizing sequence for problem (32) is bounded;

it converges, up to a subsequence, to some θ
h

n+1 ∈ Ωh
k,α, which is a minimizer since Fh

k,n is l.s.c. In particular,
problem (32) has a solution.

This discrete solution has the same structure as in the steady-state case [1].
More precisely, let θ

h
= (ri, θi)0≤i≤M ∈ Ωh

k,α such that Fh
k,n(θ

h
) < +∞. By definition, there exists a

sequence (θh,p)p =
(
(rp

i , θp
i )0≤i≤M

)
p

in Hh
k,α � Ωh

k,α such that supp E(θh,p) < ∞ and
(
(rp

i , θp
i )0≤i≤M

)
p

converges

to (ri, θi)0≤i≤M in R
2M+2. Necessarily, 0 = r0 ≤ r1 ≤ · · · ≤ rM = 1, and from estimate (33), for every

i ∈ {0, . . . , M −1} such that ri = ri+1 > 0, θi = θi+1. However, we may have ri = ri+1 = 0 and simultaneously,
θi 	= θi+1: this corresponds to a vertical part at r = 0 in the graph of θ. On the other hand, the sequence
(θh,p)p is bounded in H1

axi(D), so it converges, up to a subsequence, weakly in H1
axi(D) to some θh, with

Ek(θh) ≤ lim infp E(θh,p) < ∞. By strong convergence, θh ∈ Sα is a continuous piecewise linear function which
can be identified to (ri, θi)i0≤i≤M , where i0 := max{i : ri = 0}: θh is the regular part of θ

h
. The discrete

energy of the vertical part is equal to

Fh
k,n(θ

h
) − (E(θh) +

π

τ

∫ 1

0

|θh − θh
n|2rdr

) ≥ Ek(θh) − E(θh) = 4
∣∣∣θh(0+) − kπ +

π

2

∣∣∣ ·

In other words, the scheme (32) is a space discretization of (11) which includes the vertical part. We have the
following convergence result, where θh

n ∈ Sα denotes the regular part of θ
h

n ∈ Ωh
k,α.

Theorem 3.2. Let k ∈ Z, τ > 0 and θ0 ∈ Sα. Consider a sequence of initial values θ
h

0 ∈ Ωh
k,α such that

θh
0 −→

h→0
θ0 in L2

axi(D). For every h > 0, let us call θ
h

1 , θ
h

2 , . . . a sequence constructed by (32) with the initial

value θ
h

0 . Then, up to a subsequence,

θh
n −→

h→0
θn in L2

axi(D) (n ∈ N),

where θ1, θ2, . . . is a sequence satisfying (11) with the initial value θ0. Moreover,

Fh
k,n−1(θ

h

n) −→
h→0

Ek(θn) +
π

τ

∫ 1

0

|θn − θn−1|2rdr (n ∈ N
∗).
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Proof. By recursivity, we only have to prove the claim for n = 1. Let φ ∈ Hk,α, and let Ihφ denote the continuous
piecewise linear interpolate of φ on the uniform subdivision ri = ih, 0 ≤ i ≤ M (recall that h = h(M) > 1/M).
Then, Ihφ ∈ Hh

k,α, so

Ek(θh
1 ) +

π

τ

∫ 1

0

|θh
1 − θh

0 |2rdr ≤ Fh
k,0(θ

h

1 ) ≤ E(Ihφ) +
π

τ

∫ 1

0

|Ihφ − θh
0 |2rdr. (34)

First, we let φ be the affine function on [0, 1] such that φ(0) = −π/2 + kπ and φ(1) = α. For this choice,
φ = Ihφ, so the right-hand side of (34) is clearly bounded as h → 0. Hence, the sequence (θh

1 )h is bounded
in H1

axi(D); it converges, up to a subsequence, strongly in L2
axi(D) to some θ1. Passing to the limit in the left

inequality of (34), and using the lower semi-continuity of Ek in Sα, we get

Ek(θ1) +
π

τ

∫ 1

0

|θ1 − θ0|2rdr ≤ lim inf
h

Fh
k,0(θ

h

1 ). (35)

Now let φ be any function in Hh
k,α. By regularity of φ (see [11] for details),

E(Ihφ) −→
h→0

E(Ihφ) and Ihφ −→
h→0

φ strongly in L2
axi(D).

Thus, passing to the limit in the right inequality of (34), we obtain

lim sup
h

Fh
k,0(θ

h

1 ) ≤ E(φ) +
π

τ

∫ 1

0

|φ − θ0|2rdr.

This is true for every φ ∈ Hα,k, so together with (10) and (35), it shows that θ1 is a solution to (11) for n = 0,
and concludes the proof. �

4. Computational considerations

For the computation of (32), there are two difficulties: first, the energy of regular P1 functions (without
vertical part), which cannot be exact because of the cosine term, and second, the (relaxed) discrete energy
of vertical parts. These difficulties are solved as in the steady-state case [1]: we use a discretization of the
energy by the Gaussian quadrature with two nodes, and a change of variable on the mesh; it happens that the
l.s.c. extension of the discrete energy, which we define as previously by Lemma 3.1, is smooth with respect
to the new unknowns, even at vertical parts. In other words, we discretize problem (30) by a quadrature
formula, and we consider the corresponding extended minimization problem (in the new unknowns), obtained
by Lemma 3.1. It seems reasonable to expect that the minimizer for this problem is close in R

2M+2 to the
minimizer of problem (32) and that their discrete energies are close. With this approach, we also avoid working
with the “jumping” unknown θh(0+).

For θh � (ri, θi)0≤i≤M ∈ Hh
k,α, the approximation of E(θh) by the Gaussian quadrature with two nodes

c1 = 1/2 −√
3/6 and c2 = 1/2 +

√
3/6 yields

Eh
G(θh) := π

M−1∑
i=0

eh
G(ti, θi, θi+1), (36)

where, for every 0 ≤ i ≤ M − 1, ti = ri/ri+1 and

eh
G(ti, θi, θi+1) :=

[
cos2(c2θ + c1θi+1)

c2ti + c1
+

cos2(c1θ + c2θi+1)
c1ti + c2

] (
1 − ti

2

)
+

(θi+1 − θ)2

2

(
1 + ti

1 − ti

)
· (37)
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The fact that eh
G depends only on the ratio ti = ri/ri+1 is related to the conforming invariance of the Dirichlet

energy in two dimensions. For the computation, we use this variable ti, because eh
G is smooth at ti = 0, and this

corresponds to a vertical part. Seeing Dh (28) as a subset of R
M−1 (because r0 = 0 and rM = 1), the change

of variable Φh : Dh � (r1, . . . , rM−1) �→ (t1, . . . , tM−1) ∈ (0, 1)M−1 is a smooth diffeomorphism from Dh onto
Φh(Dh). For every t = (t1, . . . , tM−1) ∈ Φh(Dh), the pre-image r = (r1, . . . , rM−1) can be computed by

{
rM = 1,
ri = tiri+1 for i = M − 1, . . . , 0.

(38)

We also see Ωh
k,α (31) as Dh ×R

M−1 because the values θ0 = −π/2+ kπ and θM = α are fixed. For every Φh ∈
Ωh

k,α � Dh ×R
M−1, let Fh

k,n(φh) := Eh
G(φh) + π

τ

∫ 1

0
|φh − θh

n|2rdr. Using Lemma 3.1 with Ω = Φh(Dh)×R
M−1

and F(φh) = Fh
k,n(φh), where Fh

k,n is seen as a function of (ti, θi)1≤i≤M−1 through Φh, we have coded for every
n the following minimization problem:

θ
h

n+1 � (tn+1
i , θn+1

i )1≤i≤M−1 ∈ Φh(Dh) × R
M−1 minimizes Fh

k,n in Φh(Dh) × R
M−1, (39)

where θ
h

0 is chosen in Φh(Dh) × R
M−1. By the same arguments as in Section 3, this problem has a solution.

Remark 4.1. The meaning of θ
h

n in variables (ri, θi)1≤i≤M−1 is the following: apply Lemma 3.1 with Ω = Ωh
k,α

and F(φh) = Fh
k,n(φh), and consider for every n the following approximation of problem (32):

θ
h

n+1 � (rn+1
i , θn+1

i )0≤i≤M ∈ Ωh
k,α minimizes Fh

k,n(φ
h
) among φ

h ∈ Ωh
k,α. (40)

The infimum for Fh
k,n in Φh(Dh)×R

M−1 is the same as in Ωh
k,α, by Φh. By density, the infimum for problem (40)

is the same as the infimum for problem (39). Moreover, by the same arguments as in Section 3, problem (40)
has a solution, and every θ

h ∈ Ωh
k,α such that Fh

k,n(θ
h
) < +∞ has a regular part θh ∈ H1

axi(D), which is a
continuous piecewise linear function, and a vertical part at r = 0. The constraint θ0 = −π/2 + kπ is still
true, but we may not have θh(0+) ∈ π/2 + πZ: the elements are nonconforming. The numerical simulations in
section 6 show that θh(0+) 	∈ π/2 + πZ indeed, but θh(0+) → π/2 + lπ for some l ∈ Z as h decreases.

The minimization algorithm for (39) is a Fletcher-Reeves conjugate gradient [12]. The line search is done
with a dichotomie. Working with (ti)i ∈ Φh(Dh) instead of Φh(Dh) ⊂ (0, 1)M−1 implies that the values ti = 0
and ti = 1 are allowed. We deal with the affine inequality constraints ti ∈ [0, 1] as in a projected gradient
method (see [1] for details). The activation of the constraint ti = 0 for some i > 0, which corresponds to a
vertical part, does happen exactly: we call it a numerical bubbling. In this case, if i0 := max{i : ti = 0},
then θh(0+) = θi0 and the corresponding vertical segment is [(0,−π/2 + kπ), (0, θi0)]. The activation of the
constraint ti = 1 also happens: in this case, the points (ti, θi) and (ti+1, θi+1) are equal from (37). This
tangling difficulty is well-known in the context of moving-mesh methods. It can be cured by the introduction of
internodal forces [5]. Here, such methods are not necessary. We introduce a small parameter εt > 0 (typically
εt ∈ [0.005, 0.01]), and whenever ti > 1 − εt, we substract one point (the right one or the left one, whether we
are close to 0 or 1 respectively). Concerning the line search, a maximal step-size λmax is given by the conditions
0 ≤ ti + λmaxdti ≤ 1 − εt/2, where dti is the coordinate of the descent direction corresponding to ti.

As in the stationary case, the minimization algorithm has two phases, as shown in Figure 3. During the
first phase, the energy decreases quickly and we obtain within a relatively few number of iterations (typically
2M , i.e. of the same order than the number of unknowns) the graph of the solution. During the second phase,
the gradient of the energy converges slowly to 0 with an oscillation phenomenon due to the singularity of the
Hessian of the function with respect to the 2(M − 1) variables (ti, θi) (the hessian is close to a singular matrix
of rank M − 1). The second phase corresponds to the points moving tangently along the graph (see [1]) and
possibly tangling. Typically, if a portion of the current solution θn is close to a segment, then the minimization



792 B. MERLET AND M. PIERRE

0 50 100 150 200 250 300 350
10

−3

10
−2

10
−1

10
0

10
1

10
2

C.G. iterations

||∇
E
||

Figure 3. Convergence of the conjugate gradient for M = 80 points (bubbling case, τ = 0.005).

algorithm is badly conditioned [1] and the points tend to flee the region of the segment and disappear; starting
with 20 points we would end up after a few time iterations with a small number of points.

Thus, we stop the minimization at the end of the first phase, by limiting the number of iterations to 3M . This
is a way to prevent undesired tangential movements of the points along the graph, and it allows the condition
|ri+1 − ri| ≤ h in definition (28) to be satisfied (h is not fixed a priori); this guarantees the consistency of the
discretization.

5. Numerical convergence

In this section, we are interested in numerical error estimations concerning the space discretization.
Let (θh

n)n denote (the regular part of) a sequence obtained by the full discretized scheme (40) for a moving-
mesh or for a fixed mesh (in the latter case, Dh is replaced by a single mesh in Dh). We shall denote θτ,h the
(time) continuous piecewise linear interpolate associated to the sequence (θh

n)n as in (13). We first introduce
an error estimator concerning the space discretization, inspired by Theorem 2.1:

eτ (h) := sup
t∈[0,T ]

||θτ,h(t) − θτ,0+
(t)||L2

axi(D),

where we choose the final time T = 0.4 large enough so that θτ,h(T ) is close to the stationary solution. Since
the true solution θτ,0+

= θτ obtained (in part) from Theorem 3.2 by letting h → 0 is unknown, we used instead
the solution θτ,h on a finer space-mesh.

We first computed eτ (h) for a regular case and for fixed uniform meshes with step-size h (h = 10, 20, 40, 80
and 160) and for fixed τ (τ = 0.04, 0.02 and 0.01). We had set α = −π/4, k = 0, and the starting data was given
by θ0(r) = sin(2πr) + (α + π/2)r − π/2 for all r ∈ [0, 1], or more precisely, its P1 interpolate Ihθ0 on the uni-
form mesh. The fine space-mesh for the computation of θτ,0+

was fixed and uniform with step-size h = 1/1280.
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Figure 4. Error of the space discretization for fixed uniform meshes (upper line) and moving
meshes (other lines): bubbling case.

We found that, in agreement with Theorem 3.2, the error decreases as h decreases. More precisely, eτ (h) ≈
C(τ)hγ with γ = −2.00 up to 0.01; the constant C(τ) is very stable as τ decreases. We also found that the
error at the final time T satisfies ||θτ,h(T )−θτ,0+

(T )||L2
axi(D) = C(τ, T )h2, with a smaller constant C(τ, T ). The

exponent γ = 2 is also the same for the steady-state case [1].
The interpretation of γ = 2 is that the error on the space discretization is of the same order as the interpolation

error. That is, for any regular θ ∈ Hk,α, if Ih(θ) denotes the P1 interpolate of θ on a uniform mesh with step-
size h, we have ||Ih(θ) − θ||L2

axi(D) ≤ Ch2 for some constant C depending on θ. Notice that we have such an
interpolation error on the initial condition in our computations, since θh

0 = Ih(θ0).
Figure 4 represents the error eτ (h) of the space discretization as a function of h for fixed uniform meshes

with step-size h = 1/M (upper line) and for moving meshes with M > 1/h nodes (other lines). It concerns a
bubbling situation with α = −π/4, k = 2 and θ0(r) = (α − 3π/2) sin(πr/2) + 3π/2. The fine space-mesh for
the computation of θτ,0+

is a fixed mesh with M = 2000 nodes refined near 0; it was obtained by the moving-
mesh algorithm applied to the steady-state case [1]; its regular part contains approximately 800 nodes. For
the moving-mesh, we have represented eτ (h) for τ = 0.04, τ = 0.02 and τ = 0.01 respectively; for the uniform
mesh, only the error eτ (h) corresponding to τ = 0.02 has been represented, because the lines corresponding to
τ = 0.01, 0.02 and 0.04 respectively almost merge, as in the regular case.

In agreement with Theorem 3.2, the error decreases as h → 0. For the fixed mesh, we find that eτ (h) = C(τ)hγ

with γ = 0.63 up to 0.01; in comparison with the regular case, this exponent is smaller because of the loss of
regularity of the solution. For the moving mesh the convergence is better, although it is not as stable as for
the fixed mesh (oscillations in the convergence graph). In comparison with the moving mesh in the stationary
case [1], where the convergence graph in logarithmic scale was a line, this unstability is due to the L2 term
in the functional Fh

k,n, which increases the interdependency of the nodes. However, we find that in average,
eτ (1/M) ≈ C(τ)M−γ , where the exponent γ, obtained by a least square method, is 1.9, 2.0 and 1.4 for τ = 0.01,
0.02 and 0.04 respectively. For τ = 0.01 and 0.02, this exponent γ is very close to the one found previously in
the regular case with fixed uniform meshes (γ = 2) and also for the moving mesh in the stationary problem [1].
This can be interpreted as the fact that the moving mesh, which is a mesh adapted to the graph of the solution,
does not “see” the singularity.
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Figure 5. Bubbling phenomenon.

6. Numerical results

Figure 5 represents a bubbling case computed for τ = 0.02 by the moving-mesh algorithm (40). Here,
α = −π/4, k = 2, the initial data is the affine function θ0(r) = (α − 3π/2)r + 3π/2 for all r ∈ [0, 1] and the
initial mesh is uniform with step-size h = 1/40. We have represented the computed θτ,h(r, t) as a function of r
in coordinates (t, r, θ) for every t = nτ with n = 0, . . . , 14.

We see the concentration at r = 0 and the preservation of the degree (i.e. of the boundary condition 3π/2 at
r = 0) for the graph of the solution. The numerical bubbling time is t = 0.20 up to τ = 0.02. The distribution
of the points along the singularity is very close to the distribution obtained in the stationary case with the
Gauss formula [1]; it corresponds heuristically to a uniform distribution of the discrete energy. Because of the
consistency error, the lowest θi0 on the singularity is not exactly π/2, as it should be if we used the exact
energy E instead of Eh

G. At bubbling time, it is equal to θi0 = π/2 + 0.0435. This is a little worse than the
consistency error obtained in the stationary case, because of the competition of the L2 term. However the
distribution of the θi along the singularity improves slightly after bubbling time: at t = 0.28 for instance we
have θi0 = π/2 + 0.0190. and for t > 0.40, when the discrete solution is almost stationary, θi0 = π/2 + 0.0157.
The final solution obtained for large t is very close to the solution obtained in the stationary case [1]. In this
example there is no tangling phenomenon: the number of nodes for large t is the same as for t = 0, that is 41.

Figure 6 shows a bubbling and reverse bubbling phenomenon computed by the moving-mesh algorithm. We
have used α = −π/4, k = 0 and the initial data θ0 is the continuous piecewise linear function, relative to the
subdivision 0 < 1/6 < 2/3 < 1 of [0, 1], defined by its values at r = 0, 1/6, 2/3 and 1 which are −π/2, 4, 3
and α respectively. The 41 nodes of the initial mesh are distributed in such a way that the interval [0, 1/6] is
uniformly divided into 13 segments, the interval [1/6, 2/3] into 13 segments and [2/3, 1] into 14 segments. Here,
τ = 0.02 and the computed solution is represented at times t = nτ with n = 0, . . . , 19.

As previously, we see the preservation of the degree (here the boundary condition at r = 0 is −π/2). The
bubbling occurs at the second time iteration t = 0.04, with a concentration at r = 0 and a distribution of the
points along the singularity similar to the previous case. Notice that, although we deal with P1 elements, the
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Figure 6. Reverse bubbling phenomenon - t ∈ [0, 0.12] and t ∈ [0.14, 0.38].

solution at the first time iteration t = 0.02 looks “smoother” than the initial condition θ0: this correspond
to a smoothing phenomenon well-known for the heat equation in general. The energy stays concentrated for
t ∈ [0.04, 0.08] and the debubbling occurs at t = 0.10. The solution for t ≥ 0.10 is smooth and converges to
the stationary harmonic map θ∞ of degree k = 0 corresponding to the boundary values θ∞(0) = −π/2 and
θ∞(1) = −π/4.

In Figure 6, we see an example of the tangling phenomenon related to the moving-mesh approach. Starting
with 41 nodes, we end up with 26 nodes. The nodes tangle between the time iteration 3 to 6. At t = 0.02
we still have 41 nodes, at t = 0.04 we have lost 3 nodes where θτ,h(·, t) reaches its maximum; at t = 0.06 we
lose 5 more nodes at the same place; at t = 0.08 we still have 33 nodes but at t = 0.10 the number of nodes
is 26, and this number will be constant everafter. The tangling phenomenon here is actually rather welcome in
our geometrical point of view, since the length of the graph of the solution θτ,h(·, t) decreases in the same time
as the number of nodes decreases; hence the ratio of these two quantities, which is an estimator of the error
concerning the space discretization, stays close to the initial ratio.
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