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MIXED DISCONTINUOUS GALERKIN APPROXIMATION OF THE MAXWELL
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Abstract. We present and analyze an interior penalty method for the numerical discretization of
the indefinite time-harmonic Maxwell equations in mixed form. The method is based on the mixed
discretization of the curl-curl operator developed in [Houston et al., J. Sci. Comp. 22 (2005) 325–356]
and can be understood as a non-stabilized variant of the approach proposed in [Perugia et al., Comput.
Methods Appl. Mech. Engrg. 191 (2002) 4675–4697]. We show the well-posedness of this approach
and derive optimal a priori error estimates in the energy-norm as well as the L2-norm. The theoretical
results are confirmed in a series of numerical experiments.
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1. Introduction

In the series of articles [11–14,21,22], we have been concerned with the design and analysis of interior penalty
discontinuous Galerkin methods for Maxwell’s equations in the frequency-domain; indeed, both the low-frequency
and high-frequency regimes have been considered. In the low-frequency case, we first mention the work [11, 21]
where we introduced and analyzed several hp-version discontinuous Galerkin methods for low-frequency models
where the resulting bilinear forms are coercive. Such models typically arise in conducting materials or after time
discretization of the full time-domain Maxwell equations. In order to incorporate the divergence-free constraint
on the electric field within insulating materials, we then proposed a Lagrange multiplier approach and analyzed
two families of mixed interior penalty methods; see [12, 13]. The scheme in [12] is based on elements of the
same order for the approximation of the electric field and the Lagrange multiplier, and on the introduction of
a normal jump stabilization term for the electric field. However, this stabilization term is unphysical and has
been observed to lead to spurious oscillations in the vicinity of strong singularities in the underlying analytical
solution. Fortunately, this stabilization can be avoided altogether by increasing the approximation degree for
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the Lagrange multiplier by one. The resulting mixed interior penalty method has been studied in [13]; it can
be viewed as a discontinuous version of the natural pairing that is obtained when Nédélec’s second family of
elements of degree � and standard nodal elements of degree �+ 1 are employed; cf. [18, 20].

While the above interior penalty methods can be immediately extended to the time-harmonic Maxwell
equations in the high-frequency regime, their numerical analysis becomes much more involved in this case, due
to the indefiniteness of the underlying problem; a discrepancy that also arises for conforming finite element
methods. In [22], a first error analysis of a stabilized mixed interior penalty method was carried out for the
indefinite Maxwell system. The analysis there heavily relies on the introduction of certain volume stabilization
terms, which have been numerically observed to be unnecessary. In fact, much of the efforts in [12, 13] were
directed towards reducing the stabilization of [22], though in the context of low-frequency models. In the recent
work [14], we developed a new technique for analyzing the interior penalty method for the indefinite Maxwell
system in non-mixed form. The approach there is based on a novel approximation result that allows one to find
a conforming finite element function close to any discontinuous one, very much in the spirit of the techniques
in [15] used for deriving a posteriori estimates for discontinuous Galerkin discretizations of diffusions problems.

In this paper, we revisit the stabilized mixed interior penalty method in [22] and devise and analyze a non-
stabilized variant thereof, by using the mixed approach of [13] for the discretization of the curl-curl operator.
Thus, we propose a new mixed interior penalty method for the indefinite time-harmonic Maxwell equations,
where the stabilization terms of [22] can be avoided altogether (except for the interior penalty terms, of course).
Using the recent techniques of [14], we carry out the error analysis of this approach and derive optimal a priori
error estimates in the energy-norm, as well as in the L2-norm. As in [14], our analysis employs duality techniques
(see [18], Sect. 7.2), and does not cover the case of non-smooth material coefficients. With respect to the direct
formulation in [14], the mixed formulation studied here is equally applicable to both the low-frequency and
high-frequency regimes, since control of the divergence of the electric field is achieved by the introduction of an
appropriate Lagrange multiplier variable. Indeed, the numerical analysis of the corresponding mixed interior
penalty method for the principal operator of the time-harmonic Maxwell equations in a heterogeneous insulating
medium has already been undertaken in the article [13].

The outline of the paper is as follows: in Section 2 we introduce the mixed form of the indefinite time-harmonic
Maxwell equations and, in Section 3, we present their mixed interior penalty discretization and review some
basic properties of the discrete scheme. The a priori error bounds are stated in Section 4; the proofs of these
estimates are carried out in Sections 5–7. The numerical performance of the proposed method is demonstrated
in Section 8. Finally, in Section 9 we summarize the work presented in this paper and draw some conclusions.

2. Model problem

In this section, we introduce the model problem we shall consider in this paper. For comprehensive accounts
of Maxwell’s equations and their finite element discretization, we refer the reader to [10, 18] and the references
cited therein.

2.1. Indefinite time-harmonic Maxwell equations

Let Ω ⊂ R
3 be a lossless isotropic medium with constant magnetic permeability µ, constant electric per-

mittivity ε and a perfectly conducting boundary Γ = ∂Ω. For a given temporal frequency ω > 0, we seek to
determine the time-harmonic electric field E(t,x) = � (exp(−iωt)E(x)) whose spatial component E satisfies the
indefinite equations

∇×∇× E− k2E = j in Ω, (1)

n× E = 0 on Γ. (2)

Here, we take Ω to be an open bounded Lipschitz polyhedron with unit outward normal vector n on Γ. In
order to avoid topological complications, we assume that Ω is simply-connected and that Γ is connected.
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The parameter k > 0 is the wave number given by k = ω
√
εµ. Throughout, we assume that k2 is not an interior

Maxwell eigenvalue, i.e., for any E �= 0, the pair (λ = k2,E) is not an eigensolution of ∇×∇× E = λE in Ω,
n × E = 0 on Γ. Finally, the right-hand side j is a given generic source field in L2(Ω)3 corresponding to a
time-harmonic excitation.

2.2. Function spaces

For a bounded domain D in R
3, we denote by Hs(D) the standard Sobolev space of order s ≥ 0 and by

‖ · ‖s,D the usual Sobolev norm (see, e.g., [16]). When D = Ω, we simply write ‖ · ‖s. For s = 0, we write L2(D)
in lieu of H0(D). We also use ‖ · ‖s,D to denote the norm for the space Hs(D)3. H1

0 (D) is the subspace of
H1(D) of functions with zero trace on ∂D. If Λ is a subset of ∂D, we denote by ‖ · ‖0,Λ the L2-norm in L2(Λ)
and L2(Λ)3. On the computational domain Ω, we introduce the spaces

H(curl; Ω) =
{
v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3

}
,

H0(curl; Ω) = {v ∈ H(curl; Ω) : n× v = 0 on Γ } ,

and endow them with the norm ‖v‖2
curl := ‖v‖2

0 + ‖∇× v‖2
0. Similarly, we set

H(div; Ω) =
{
v ∈ L2(Ω)3 : ∇ · v ∈ L2(Ω)

}
,

H0(div; Ω) = {v ∈ H(div; Ω) : v · n = 0 on Γ} ,
H(div0; Ω) = {v ∈ H(div; Ω) : ∇ · v = 0 in Ω} ,

equipped with the norm ‖v‖2
div := ‖v‖2

0 + ‖∇ · v‖2
0. Finally, we denote by (·, ·) the standard inner product

in L2(Ω)3 given by (u,v) :=
∫
Ω

u · v dx.

2.3. Mixed formulation

The interior penalty method proposed in this article is based on a mixed formulation of (1)–(2) already used
in the hp-approaches of [1, 8], as well as in the mortar approach [6]. To this end, we decompose the field E as

E = u + ∇ϕ, (3)

where ϕ is scalar function in H1
0 (Ω) and u belongs to H0(curl; Ω) ∩ H(div0; Ω). The decomposition (3) is

orthogonal in L2(Ω)3, which implies that

(u,∇q) = 0 ∀q ∈ H1
0 (Ω); (4)

see [9] for details. Thus, upon setting
p = k2ϕ, (5)

we are led to consider the following system: find (u, p) such that

∇×∇× u− k2u −∇p = j in Ω, (6)

∇ · u = 0 in Ω, (7)

n × u = 0 on Γ, (8)

p = 0 on Γ. (9)

Introducing the spaces V = H0(curl; Ω) and Q = H1
0 (Ω), the weak formulation of problem (6)–(9) consists in

finding (u, p) ∈ V ×Q such that

a(u,v) − k2(u,v) + b(v, p) = (j,v),

b(u, q) = 0
(10)
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for all (v, q) ∈ V ×Q, where the forms a and b are defined, respectively, by

a(u,v) = (∇× u,∇× v), b(v, p) = −(v,∇p).

We notice that the form a is bilinear, continuous and coercive on the kernel of b, and b is bilinear, continuous,
and satisfies the inf-sup condition; see, e.g., [8, 18, 24]. Hence, problem (6)–(9) is well-posed (provided that k2

is not an interior Maxwell eigenvalue) and there is a positive constant C, depending on Ω and k2, such that

‖u‖curl + ‖p‖1 ≤ C‖j‖0; (11)

cf. [22], Prop. 1. Moreover, under the foregoing assumptions on Ω, there exists a regularity exponent
σ = σ(Ω) > 1/2, only depending on Ω, such that

u ∈ Hσ(Ω)3, ∇× u ∈ Hσ(Ω)3, and ‖u‖σ + ‖∇× u‖σ ≤ C‖j‖0, (12)

for a constant C depending on Ω and k2; see [22], Prop. 2.

We point out that the regularity exponent σ = σ(Ω) > 1/2 stems from the embeddings

H0(curl; Ω) ∩H(div; Ω) ↪→ Hσ(Ω)3,

H(curl; Ω) ∩H0(div; Ω) ↪→ Hσ(Ω)3; (13)

see [2], Prop. 3.7. The maximal value of σ for which the above embeddings hold is closely related to the elliptic
regularity properties of the Laplacian in polyhedra and only depends on the opening angles at the corners and
edges of the domain, cf. [2]. In particular, for a convex domain, the embeddings in (13) hold with σ = 1.

3. Discretization

In this section, we introduce an interior penalty discretization for the system (6)–(9) and discuss its stability
and consistency properties.

3.1. Preliminaries

We consider conforming, shape-regular partitions Th of Ω into tetrahedra {K}; here, h denotes the granularity
of the mesh Th, i.e., h = maxK∈Th

hK , where hK = diam(K) for all K ∈ Th. We denote by FI
h the set of all

interior faces of Th, by FB
h the set of all boundary faces of Th, and set Fh = FI

h ∪ FB
h .

For piecewise smooth vector- and scalar-valued functions v and q, respectively, we introduce the following
trace operators. Let F ∈ FI

h be an interior face shared by two elements K+ and K− with unit outward
normal vectors n±, respectively. Denoting by v± and q± the traces of v and q on ∂K± taken from within K±,
respectively, we define the jumps across F by

[[v]]T = n+ × v+ + n− × v−, [[q]]N = q+n+ + q−n−,

and the averages by

{{v}} = (v+ + v−)/2, {{q}} = (q+ + q−)/2.

On a boundary face F ∈ FB
h , we set analogously [[v]]T = n × v, [[q]]N = q n, {{v}} = v and {{q}} = q.
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3.2. Interior penalty method

For a given partition Th of Ω and an approximation order � ≥ 1, we wish to approximate (u, p) by (uh, ph)
in the finite element space Vh ×Qh, where

Vh := {v ∈ L2(Ω)3 : v|K ∈ P�(K)3 ∀K ∈ Th},
Qh = {q ∈ L2(Ω) : q|K ∈ P�+1(K) ∀K ∈ Th},

and Pm(K) denotes the space of polynomials of total degree at most m on K. To this end, we consider the
discontinuous Galerkin method: find uh ∈ Vh and ph ∈ Qh such that

ah(uh,v) − k2(uh,v) + bh(v, ph) = (j,v),

bh(uh, q) − ch(ph, q) = 0 (14)

for all (v, q) ∈ Vh ×Qh, with discrete forms ah(·, ·), bh(·, ·) and ch(·, ·) defined by

ah(u,v) = (∇h × u,∇h × v) −
∫

Fh

[[u]]T · {{∇h × v}} ds

−
∫

Fh

[[v]]T · {{∇h × u}} ds+
∫

Fh

a [[u]]T · [[v]]T ds,

bh(v, p) = −(v,∇hp) +
∫

Fh

{{v}} · [[p]]N ds,

ch(p, q) =
∫

Fh

c[[p]]N · [[q]]N ds,

respectively. Here, ∇h is the discrete “nabla” operator defined elementwise (i.e., (∇h × v)|K = ∇ × v|K and
(∇hq)|K = ∇q|K ), and use the convention that

∫

Fh

ψ ds =
∑

F∈Fh

∫

F

ψ ds.

The functions a and c are the so-called interior penalty stabilization functions that are taken as follows:

a = α h−1, c = γ h−1. (15)

Here, h is the mesh size function given by h|F ≡ hF = diam(F ) for all F ∈ Fh. Furthermore, α and γ are
positive parameters independent of the mesh size.

Remark 3.1. The jumps [[v]]T and [[q]]N are well-defined for elements of Vh and Qh, respectively, since the
elements of Vh and Qh are elementwise polynomials, and therefore elementwise arbitrarily smooth. Moreover,
if q ∈ Q, then [[q]]N is well-defined and equal to zero on any F ∈ Fh. Similarly, if v ∈ V, then the jump

condition n+ × v+ + n− × v− = 0 and the boundary condition n× v = 0 hold in H− 1
2

00 (F )3 (for the definition

of H− 1
2

00 (F ), see [16]), and thus also in L2(F )3 for all F ∈ FI
h and for any F ∈ FB

h , respectively; therefore, [[v]]T
is well-defined and equal to zero on any F ∈ Fh.

The well-posedness of the method (14) will be established in Corollary 4.3 below.

Remark 3.2. We note that the formulation (14) is a non-stabilized variant of the one proposed in [22].
Furthermore, we point out that the formulation (14) can be easily modified in order to include non-constant
material coefficients, see [13, 21, 22]. However, while the subsequent analysis, based on employing duality
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arguments, can be immediately extended to the case of smooth material coefficients, problems with non-smooth
coefficients cannot be dealt with using this approach. Indeed, in this latter case, the error analysis of the
proposed interior penalty method remains an open issue.

Remark 3.3. Instead of the interior penalty approach presented here, many other discontinuous Galerkin
methods could be employed for the discretization of the curl-curl operator; see [3] for a presentation of different
discontinuous Galerkin discretizations of second order operators, and [21] for details on the LDG discretization
of the curl-curl operator.

3.3. Auxiliary forms and error equations

In order to study the discretization in (14), we first define how ah and bh should be understood on the
continuous level. To this end, we introduce the spaces V(h) and Q(h) given by

V(h) = V + Vh, Q(h) = Q+Qh,

and endow them with the following DG-norms:

‖v‖2
V(h) = ‖v‖2

0 + ‖∇h × v‖2
0 + ‖h− 1

2 [[v]]T ‖2
0,Fh

,

‖q‖2
Q(h) = ‖∇hq‖2

0 + ‖h− 1
2 [[q]]N‖2

0,Fh
,

respectively. Note that the jumps [[v]]T and [[q]]N are well-defined for elements of V(h) and Q(h), respectively,
and coincide with the jumps of the components of v and q in Vh and Qh, respectively (see Rem. 3.1).

Here, we use the notation

‖ψ‖2
0,Fh

=
∑

F∈Fh

‖ψ‖2
0,F .

Then, for v ∈ V(h), we define the lifted element L(v) ∈ Vh by

(L(v),w) =
∫

Fh

[[v]]T · {{w}} ds ∀w ∈ Vh.

Similarly, for q in Q(h), we define M(q) ∈ Vh by

(M(q),w) =
∫

Fh

{{w}} · [[q]]N ds ∀w ∈ Vh.

The lifting operators L and M are well-defined; see [22], Prop. 12.
Next, we introduce the auxiliary forms

ãh(u,v) = (∇h × u,∇h × v) − (L(u),∇h × v)

−(L(v),∇h × u) +
∫

Fh

a [[u]]T · [[v]]T ds,

b̃h(v, p) = −(v,∇hp−M(p)).

Then, we have
ãh = ah on Vh × Vh, ãh = a on V × V,

as well as
b̃h = bh on Vh ×Qh, b̃h = b on V ×Q.
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Hence, ãh and b̃h can be viewed as extensions of ah and bh, as well as a and b, to the spaces V(h) × V(h) and
V(h) ×Q(h), respectively. With this notation, we may reformulate the discrete problem (14) in the following
equivalent way: find (uh, ph) in Vh ×Qh such that

ãh(uh,v) − k2(uh,v) + b̃h(v, ph) = (j,v),

b̃h(uh, q) − ch(ph, q) = 0
(16)

for all (v, q) ∈ Vh ×Qh.
Let (u, p) be the analytical solution of (6)–(9) and (v, q) ∈ Vh ×Qh. We define

R1(u, p;v) := ãh(u,v) − k2(u,v) + b̃h(v, p) − (j,v),

R2(u; q) := b̃h(u, q) = b̃h(u, q) − ch(p, q),

where we have used that ch(p, q) = 0 for any q ∈ Qh. The functionals R1 and R2 measure how well the analytical
solution (u, p) satisfies the formulation in (16). Owing to the regularity properties in (12), it is possible to show
that

R1(u, p;v) =
∫

Fh

[[v]]T · {{∇ × u − Πh(∇× u)}} ds,

R2(u; q) =
∫

Fh

[[q]]N · {{u− Πhu}} ds, (17)

with Πh denoting the L2-projection onto Vh; see [22], Lem. 24, for details. In particular, we have that R1 is
independent of p, and that R1(u, p;v) = 0 for all v ∈ Vh ∩ V, as well as R2(u; q) = 0 for all q ∈ Qh ∩Q.

With these definitions, it is obvious that the error (u−uh, p− ph) between the analytical solution (u, p) and
the mixed DG approximation (uh, ph) satisfies

ãh(u − uh,v) − k2(u − uh,v) + b̃h(v, p− ph) = R1(u, p;v) ∀v ∈ Vh, (18)

as well as
b̃h(u− uh, q) − ch(p− ph, q) = R2(u; q) ∀q ∈ Qh. (19)

Here, (18) and (19) are referred to as the error equations.

3.4. Continuity and stability properties

Next, let us review the main stability results for the forms ãh and b̃h, as well as some crucial properties of
the discrete solution (uh, ph). To this end, we first note that the following continuity properties hold.

Proposition 3.4. There are continuity constants CA and CB, independent of the mesh size, such that

|ãh(u,v)| ≤ CA‖u‖V(h)‖v‖V(h) ∀u,v ∈ V(h),

|̃bh(v, q)| ≤ CB‖v‖V(h)‖q‖Q(h) ∀(v, q) ∈ V(h) ×Q(h).

The linear functional on the right-hand side of the first equation in (16) satisfies

|(j,v)| ≤ ‖j‖0‖v‖V(h) ∀v ∈ Vh.

Furthermore, there is a constant CR, independent of the mesh size, such that

|R1(u, p;v)| ≤ CR‖v‖V(h)E1,h(u) ∀v ∈ Vh,

|R2(u; q)| ≤ CR‖q‖Q(h)E2,h(u) ∀q ∈ Qh.



734 P. HOUSTON ET AL.

Here, we have set

E1,h(u)2 :=
∑

K

hK‖∇× u − Πh(∇× u)‖2
0,∂K ,

E2,h(u)2 :=
∑

K

hK‖u− Πhu‖2
0,∂K , (20)

where we recall that Πh denotes the L2-projection onto Vh.

Proof. For the proof of the first three assertions, we refer the reader to [12], Prop. 5.1. The stability bounds
for R1 and R2 in (20) follow immediately from weighted Cauchy-Schwarz inequalities and the definitions of the
norms ‖ · ‖V(h), ‖ · ‖Q(h) and the parameters a, c in (15). �

The form ãh satisfies the following G̊arding-type inequality.

Proposition 3.5. There exists a parameter αmin > 0, independent of the mesh size, such that for α ≥ αmin we
have

ãh(v,v) ≥ CG‖v‖2
V(h) − ‖v‖2

0 ∀v ∈ Vh,

with a constant CG > 0 independent of the mesh size.

Proof. The G̊arding-type inequality readily follows from the fact that there is an αmin > 0, independent of the
mesh size, such that for α ≥ αmin

ãh(v,v) ≥ C
[
‖∇h × v‖2

0 + ‖h−1
2 [[v]]T ‖2

0,Fh

]
;

see [11, 12] for details. �

Next, let us recall a stability property of the form b̃h on the conforming subspaces underlying Vh and Qh.
To this end, we set

Vc
h = Vh ∩ V, Qc

h = Qh ∩Q. (21)

Notice that Vc
h is the Nédélec finite element space of second type (see [20] or [18], Sect. 8.2), with zero tangential

trace prescribed on Γ, and Qc
h is the space of continuous polynomials of degree �+1, with zero trace prescribed

on Γ.
The following inf-sup condition holds on Vc

h ×Qc
h; see [13], Lem. 1, for details.

Lemma 3.6. There is a stability constant CS , independent of the mesh size, such that

inf
q∈Qc

h\{0}
sup

v∈Vc
h\{0}

b̃h(v, q)
‖v‖V(h)‖q‖Q(h)

≥ CS > 0. (22)

Note that, since Vc
h ⊂ Vh, the inf-sup condition (22) in Lemma 3.6 remains valid when Vc

h is replaced by Vh,
with the same inf-sup constant.

Now, define the discrete kernel

Zh = {v ∈ Vh : b̃h(v, q) = 0 ∀q ∈ Qc
h}. (23)

Lemma 3.7. Let u be the vector-valued component of the analytical solution of (6)–(9) and uh its discontinuous
Galerkin approximation obtained in (14). Then,

(i) uh ∈ Zh;
(ii) (u − uh,∇q) = 0 for all q ∈ Qc

h.
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Proof. Since ch(ph, q) = 0 for all q ∈ Qc
h, the first claim follows immediately. Furthermore, in view of (4),

(u − uh,∇q) = −(uh,∇q) for all q ∈ Qc
h. Since −(uh,∇q) = b̃(uh, q), the second claim follows from the first

one. �
Finally, we will make use of a discrete Helmholtz decomposition: the space Vc

h can be written as

Vc
h = Xh ⊕∇Qc

h, (24)

with Xh given by

Xh := {v ∈ Vc
h : (v,∇q) = 0 ∀q ∈ Qc

h}. (25)

By construction, the decomposition (24) is orthogonal in L2(Ω)3; cf. [18], Sect. 8.2.

4. A PRIORI error estimates and well-posedness

In this section, we state optimal a priori error estimates in the DG energy-norm and the L2-norm. We further
show that the energy error estimates imply the well-posedness of the interior penalty formulation (14); see [23].

The following result addresses the error in the energy-norm.

Theorem 4.1. Suppose that the analytical solution (u, p) of (6)–(9) satisfies

u ∈ Hs(Ω)3, ∇× u ∈ Hs(Ω)3, p ∈ Hs+1(Ω), (26)

for a parameter s > 1/2. Let (uh, ph) be the mixed DG approximation obtained by (14) with α ≥ αmin and
γ > 0. Then, there exists a mesh size h0 > 0 such that

‖u− uh‖V(h) + ‖p− ph‖Q(h) ≤ C hmin{s,�}[‖u‖s + ‖∇ × u‖s + ‖p‖s+1

]

for all meshes Th of mesh size h < h0. The constant C > 0 is independent of the mesh size.

Remark 4.2. We observe that the regularity assumption on p in Theorem 4.1 is automatically fulfilled, with
s = σ, in the case when ∇ · j ∈ L2(Ω). Here, σ is the embedding parameter from (13).

By proceeding along the lines of [23], well-posedness of the formulation (14) can be established from the
a priori estimate in Theorem 4.1.

Corollary 4.3. For stabilization parameters α ≥ αmin > 0 and γ > 0, and mesh sizes h < h0, the method (14)
has a unique solution.

Proof. If j = 0, then (u, p) = (0, 0) and the estimate in Theorem 4.1 implies that ‖uh‖V(h) + ‖ph‖Q(h) ≤ 0 for
h < h0. Hence, (uh, ph) = (0, 0) for h < h0. �

Next, we state an a priori bound for the error ‖u−uh‖0 and show that the optimal order O(h�+1) is obtained
for smooth solutions and convex domains.

Theorem 4.4. Suppose the vector-valued component u of the analytical solution (u, p) of (6)–(9) satisfies

u ∈ Hs+σ(Ω)3, ∇× u ∈ Hs(Ω)3,

for a parameter s > 1/2 and the embedding exponent σ ∈ (1/2, 1] from (13). Let uh be the DG approximation
obtained by (14) with α ≥ αmin > 0 and γ > 0. Then there is a mesh size 0 < h1 < 1 such that for all meshes Th

of mesh size 0 < h < h1 we have

‖u− uh‖0 ≤ C hmin{s,�}+σ
[
‖u‖s+σ + ‖∇× u‖s

]
+ C hσ

[
‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
,

where the constant C > 0 is independent of the mesh size.
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We note that the minimal mesh sizes h0 in Theorem 4.1 and h1 in Theorem 4.4 depend on the wave number k
and the regularity exponent σ in (13).
Theorem 4.4 and Theorem 4.1 ensure optimal L2-error estimates for smooth solutions and convex domains.

Corollary 4.5. For a convex domain where σ = 1 and an analytical solution (u, p) ∈ H�+1(Ω)3 ×H�+1(Ω), we
obtain for h < min{h0, h1} the optimal error bound

‖u− uh‖0 ≤ Ch�+1
[
‖u‖�+1 + ‖p‖�+1

]
,

with a constant C > 0 independent of the mesh size.

The proofs of Theorems 4.1 and 4.4 are given in Sections 6 and 7, respectively. Before that, we recall in
Section 5 some crucial approximation results.

5. Approximation results

In this section, we collect several approximation results which will be required in the error analysis of the
method in (14).

5.1. Conforming approximation of discontinuous Galerkin functions

We start by recalling an approximation result that allows us to find a conforming function close to any
discontinuous one.

Theorem 5.1. There exist approximants A : Vh → Vc
h and A : Qh → Qc

h such that

‖v − Av‖2
0 ≤ C

∫

Fh

h|[[v]]T |2 ds,

‖v − Av‖2
V(h) ≤ C

∫

Fh

h−1|[[v]]T |2 ds,

‖q −Aq‖2
Q(h) ≤ C

∫

Fh

h−1|[[q]]N |2 ds

for all v ∈ Vh and q ∈ Qh. The constant C > 0 solely depends on the shape-regularity of the mesh and the
polynomial degree �.

For the space Vh, this result has been proved in [14], Appendix A, whereas the result for Qh can be found
in [15], Sect. 2.1. Theorem 5.1 and the definition of the DG-norms ‖ · ‖V(h) and ‖ · ‖Q(h) immediately imply the
following result.

Corollary 5.2. There is a constant C > 0 independent of the mesh size such that

‖v − Av‖V(h) + ‖Av‖V(h) + h−1‖v − Av‖0 ≤ C‖v‖V(h),

‖q −Aq‖Q(h) + ‖Aq‖Q(h) ≤ C‖q‖Q(h)

for all v ∈ Vh and q ∈ Qh.

We will further need the following consequence of Theorem 5.1, which follows from the fact that [[w]]T = 0
on Fh, for any w ∈ V, and the definition of the DG-norm ‖ · ‖V(h).

Corollary 5.3. Let v ∈ Vh and w ∈ V. Let A be the conforming approximant from Theorem 5.1.
Then we have

‖v − Av‖V(h) ≤ C‖v − w‖V(h),

‖v − Av‖0 ≤ Ch‖v − w‖V(h),

with a constant C > 0 that is independent of the mesh size.
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5.2. Standard approximation operators

Next, we introduce standard approximation operators for the space V. We start by recalling the properties
of the curl-conforming Nédélec interpolant ΠN of the second kind.

Lemma 5.4. There exists a constant C > 0, independent of the mesh size, such that, for any v ∈ V ∩Ht(Ω)3

with ∇× v ∈ Ht(Ω)3, t > 1
2 ,

‖v − ΠNv‖curl ≤ C hmin{t,�}[‖v‖t + ‖∇× v‖t

]
, (27)

‖∇ × (v − ΠNv)‖0 ≤ C hmin{t,�}‖∇× v‖t. (28)

Moreover, there exists a constant C > 0, independent of the mesh size, such that, for any v ∈ V ∩H1+t(Ω)3

with t > 0,

‖v − ΠNv‖0 ≤ C hmin{t,�}+1‖v‖1+t. (29)

A proof of the first two results in (27) and (28) can be found in [18], Theorem 5.41, Remark 5.42 and Theo-
rem 8.15, whereas (29) has been shown in [14], Lem. 4.1.

Furthermore, for any v ∈ V, we define the Galerkin projection Πcv ∈ Vc
h by

(∇× (v − Πcv),∇× w) + (v − Πcv,w) = 0 ∀w ∈ Vc
h. (30)

An immediate consequence of this definition is that

‖v − Πcv‖curl = inf
w∈Vc

h

‖v − w‖curl.

Thus, from property (27) in Lemma 5.4 we obtain the following approximation result:

Lemma 5.5. There exists a constant C > 0, independent of the mesh size, such that, for any v ∈ V ∩Ht(Ω)3

with ∇× v ∈ Ht(Ω)3, t > 1
2 ,

‖v − Πcv‖curl ≤ C hmin{t,�}[‖v‖t + ‖∇× v‖t

]
.

Next, recalling that Πh denotes the L2-projection onto Vh, we state the following approximation result.

Lemma 5.6. There exists a constant C > 0, independent of the local mesh sizes hK , such that, for any
v ∈ Ht(K)3, K ∈ Th, t > 1

2 ,

‖v − Πhv‖2
0,K + hK‖v − Πhv‖2

0,∂K ≤ C h
2min{t,�+1}
K |v|2t,K .

Proof. The bound on ‖v − Πhv‖0,K for any integer t ≥ 0 is well-known; see [7]. For any fractional t > 0, it
follows from the standard operator-interpolation theory (see, e.g., [5], Chap. 12) applied to the quotient spaces
H�t�(K)/P�(K) and H�t�+1(K)/P�(K) endowed with the corresponding Sobolev seminorms (see [16], Vol. 1,
Prop. 13.2), observing that the interpolation norm inHt(K)/P�(K) scales, with respect to hK , like the standard
Sobolev Ht(K)–seminorm.
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The bound for ‖v − Πhv‖0,∂K , for any t ≥ 1
2 , can be derived by scaling arguments, using the continuity of

the trace operator from Ht(K̂) in L2(∂K̂), and the stability of the L2–projection in the Ht(K̂)–norm, where K̂
denotes the reference element. �

Finally, we recall the following result that allows us to approximate discretely divergence-free functions by
exactly divergence-free ones.

Lemma 5.7. For any function v ∈ Xh, define Hv ∈ V ∩H(div0; Ω) by ∇× Hv = ∇× v. Then, there exists
a constant C > 0, independent of the mesh size, such that

‖v − Hv‖0 ≤ Chσ‖∇× v‖0,

with the parameter σ from (13). Moreover, we have that ‖Hv‖0 ≤ ‖v‖0.

The result in Lemma 5.7 is obtained by proceeding as in [10], Lem. 4.5 and [18], Lem. 7.6, using Nédélec’s
second family of elements. The L2-stability of H is a consequence of the L2-orthogonality of the continuous
Helmholtz decomposition.

6. Proof of Theorem 4.1 (energy norm error estimate)

In this section, we prove the result of Theorem 4.1 by proceeding along the lines of [14], Sect. 5, [19] and [18],
Sect. 7.2. To this end, we define

Dh(u − uh) := sup
0 �=v∈Vh

(u− uh,v)
‖v‖V(h)

· (31)

We start by proving a preliminary energy norm error bound in terms of E1,h(u), E2,h(u) and Dh(u−uh). Then,
we estimate these quantities separately; in particular, a duality argument will be used for bounding Dh(u−uh).

6.1. Preliminary error bound

We first prove the following error bound.

Proposition 6.1. Let (u, p) be the analytical solution of (6)–(9), and let (uh, ph) be the solution of (14) obtained
with α ≥ αmin > 0 and γ > 0. Then we have that

‖u− uh‖V(h) + ‖p− ph‖Q(h) ≤ C
[
‖u− v‖V(h) + ‖p− q‖Q(h)

+ E1,h(u) + E2,h(u) + Dh(u − uh)
]

for all v ∈ Vc
h and all q ∈ Qc

h, with E1,h, E2,h and Dh defined in (20) and (31), respectively. Here, the constant
C > 0 is independent of the mesh size.

Proof. We decompose uh and ph into a conforming part and a remainder by setting

uh = uc
h + u⊥

h , ph = pc
h + p⊥h , (32)

where uc
h = Auh, u⊥

h = uh − Auh, pc
h = Aph, p⊥h = ph − Aph, A and A being the approximants from

Theorem 5.1. We now proceed in three steps.
Step 1. Estimate of ‖p⊥h ‖Q(h) and ‖u− uh‖V(h). We claim that

‖u− uh‖V(h) + ‖p⊥h ‖Q(h) ≤ C
[
‖u− v‖V(h) + ‖p− q‖Q(h)

+ E1,h(u) + E2,h(u) + Dh(u − uh)
]

(33)

for all v ∈ Vc
h and q ∈ Qc

h, with a positive constant C independent of the mesh size.
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We start by showing that (33) holds for any v ∈ Vc
h ∩ Zh and q ∈ Qc

h. To this end, fix v ∈ Vc
h ∩ Zh and

q ∈ Qc
h, then

C‖p⊥h ‖2
Q(h) ≤ ch(p⊥h , p

⊥
h ) = ch(ph − q, ph − q).

This, together with the G̊arding-type inequality in Prop. 3.5, gives the bound

min{CG, C}
[
‖uh − v‖2

V(h) + ‖p⊥h ‖2
Q(h)

]
≤ CG‖uh − v‖2

V(h) + C‖p⊥h ‖2
Q(h)

≤ ãh(uh − v,uh − v) + ch(ph − q, ph − q) + (uh − v,uh − v)
≡ T1 + T2 + T3, (34)

where

T1 = ãh(uh − v,uh − v) − k2(uh − v,uh − v) + b̃h(uh − v, ph − q),

T2 = −b̃h(uh − v, ph − q) + ch(ph − q, ph − q),
T3 = (k2 + 1)(uh − v,uh − v).

We now proceed to bound the three terms T1, T2, and T3.
For T1, the error equation (18) and the continuity properties in Prop. 3.4 yield

T1 = −R1(u, p;uh − v) + ãh(u − v,uh − v)

−k2(u − v,uh − v) + b̃h(uh − v, p− q)
≤ ‖uh − v‖V(h)

[
CRE1,h(u) + (CA + k2)‖u− v‖V(h) + CB‖p− q‖Q(h)

]
. (35)

Similarly, using the error equation in (19), term T2 can be written as

T2 = R2(u; ph − q) − b̃h(u − v, ph − q) + ch(p− q, ph − q)

= R2(u; ph − q) − b̃h(u − v, ph − q),

where we also have used the fact that ch(p− q, ph − q) = 0 (since p− q ∈ Q). Then, we observe that

b̃h(u− v, ph − q) = b̃h(u − v, pc
h − q) + b̃h(u − v, p⊥h ) = b̃h(u − v, p⊥h ),

since u is divergence-free, see (4), and v belongs to the kernel Zh. Furthermore, we conclude from (17) that
R2(u; ph − q) = R2(u; p⊥h ). Hence, we obtain

T2 = R2(u; p⊥h ) − b̃h(u − v, p⊥h ),

and the continuity properties in Prop. 3.4 yield

T2 ≤ ‖p⊥h ‖Q(h)

[
CRE2,h(u) + CB‖u− v‖V(h)

]
. (36)

Term T3 can be estimated in a similar fashion:

T3 = (k2 + 1)(uh − u,uh − v) + (k2 + 1)(u− v,uh − v)
≤ (k2 + 1)‖uh − v‖V(h)

[
Dh(u − uh) + ‖u− v‖V(h)

]
. (37)

By combining (34) with the estimates in (35)–(37), and by dividing the resulting inequality by
(‖uh − v‖2

V(h) + ‖p⊥h ‖2
Q(h))

1
2 , we obtain that

‖uh − v‖V(h) + ‖p⊥h ‖Q(h) ≤ C
[
(2k2 + 1 + CA + CB)‖u− v‖V(h) + CB‖p− q‖Q(h)

+ CRE1,h(u) + CRE2,h(u) + (k2 + 1)Dh(u − uh)
]
.
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This bound and the triangle inequality

‖u− uh‖V(h) ≤ ‖u− v‖V(h) + ‖uh − v‖V(h)

result in

‖u− uh‖V(h) + ‖p⊥h ‖Q(h) ≤ C
[
‖u− v‖V(h) + ‖p− q‖Q(h)

+ E1,h(u) + E2,h(u) + Dh(u− uh)
]
.

This shows (33) for all v ∈ Vc
h ∩ Zh and all q ∈ Qc

h.
In order to complete the proof of (33), it remains to show that the estimate (33) is also valid for any v ∈ Vc

h.
To this end, fix v ∈ Vc

h and choose r ∈ Vc
h such that

b̃h(r, s) = b̃h(u − v, s) ∀s ∈ Qc
h,

‖r‖V(h) ≤ C−1
S CB‖u− v‖V(h);

the existence of such a r is guaranteed by the inf-sup condition in Lemma 3.6. We set w := r+v; by construction,
w ∈ Vc

h ∩ Zh. Thereby,

‖u− w‖V(h) ≤ ‖u− v‖V(h) + ‖r‖V(h) ≤ (1 + C−1
S CB)‖u− v‖V(h),

from which (33) follows.

Step 2. Estimate of ‖p−ph‖Q(h). Next, we address the error in the multiplier p and show that, for any q ∈ Qc
h,

‖p− ph‖Q(h) ≤ C
[
‖u− uh‖V(h) + ‖p− q‖Q(h) + ‖p⊥h ‖Q(h) + k2Dh(u − uh)

]
. (38)

To prove (38), fix q ∈ Qc
h. From the triangle inequality and the decomposition ph = pc

h + p⊥h , we have

‖p− ph‖Q(h) ≤ ‖p− q‖Q(h) + ‖q − pc
h‖Q(h) + ‖p⊥h ‖Q(h). (39)

The inf-sup condition (22) in Lemma 3.6 implies that

CS ‖q − pc
h‖Q(h) ≤ sup

0 �=v∈Vc
h

b̃h(v, q − pc
h)

‖v‖V(h)

= sup
0 �=v∈Vc

h

b̃h(v, q − p) + b̃h(v, p− ph) + b̃h(v, p⊥h )
‖v‖V(h)

·

Notice that the error equation (18) yields, for v ∈ Vc
h,

b̃h(v, p− ph) = −ãh(u − uh,v) + k2(u− uh,v),

where we have used the fact that R1(u, p;v) = 0 for v ∈ Vc
h. Hence,

CS ‖q − pc
h‖Q(h) ≤ sup

0 �=v∈Vc
h

b̃h(v, q − p) − ãh(u − uh,v) + k2(u − uh,v) + b̃h(v, p⊥h )
‖v‖V(h)

·

Then, the continuity properties of ãh and b̃h in Prop. 3.4 and (31) yield the bound

CS ‖q − pc
h‖Q(h) ≤ CB ‖p− q‖Q(h) + CA ‖u− uh‖V(h) + CB ‖p⊥h ‖Q(h) + k2Dh(u − uh);
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substituting this estimate into (39), we deduce (38).

Step 3. Conclusion. The statement of the proposition readily follows from (33) and (38) in step 1 and step 2,
respectively. �

6.2. Estimate of Dh(u− uh)

To estimate Dh, we proceed along the same lines as in the proof of [22], Prop. 4.2, and [14], Prop. 5.2; to this
end, the following result holds.

Proposition 6.2. There exists C > 0, independent of the mesh size, such that

Dh(u− uh) ≤ C hσ
[
‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
,

with the parameter σ ∈ (1/2, 1] from (12).

Proof. Fix v ∈ Vh, and let vc = Av ∈ Vc
h be the conforming approximation of v from Theorem 5.1. Employing

the Helmholtz decomposition (24), we decompose vc as

vc = vc
0 + ∇r, (40)

with vc
0 ∈ Xh and r ∈ Qc

h. Employing (40), we obtain

(u − uh,v) = (u − uh,v − vc) + (u − uh,vc)
= (u − uh,v − vc) + (u − uh,vc

0)
= (u − uh,v − vc) + (u − uh,vc

0 − Hvc
0) + (u − uh,Hvc

0)
≡ T1 + T2 + T3,

with Hvc
0 from Lemma 5.7. Here, we have used the orthogonality property of the error u − uh in Lemma 3.7.

We now proceed to estimate each of the terms T1, T2 and T3 below.
Exploiting the Cauchy-Schwarz inequality and the approximation result in Corollary 5.2 yields

|T1| ≤ ‖u− uh‖0‖v − vc‖0 ≤ Ch‖u − uh‖0‖v‖V(h). (41)

Similarly, using the Cauchy-Schwarz inequality and the approximation results stated in Lemma 5.7 and Corol-
lary 5.2, we obtain

|T2| ≤ ‖u− uh‖0‖vc
0 − Hvc

0‖0 ≤ Chσ‖u− uh‖0‖∇ × vc
0‖0

= Chσ‖u− uh‖0‖∇× vc‖0 ≤ Chσ‖u− uh‖0‖vc‖V(h)

≤ Chσ‖u− uh‖0‖v‖V(h). (42)

Next, we prove the bound

|T3| ≤ Chσ‖v‖V(h)

[
‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
, (43)

by employing a duality approach.
To this end, we set w = Hvc

0 and let z denote the solution of the following problem:

∇×∇× z − k2z = w in Ω,
n× z = 0 on Γ. (44)
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Since w ∈ H(div0; Ω), the solution z belongs to H0(curl; Ω) ∩H(div0; Ω). As in [18], Lem. 7.7, we obtain from
the embeddings in (13) that z ∈ Hσ(Ω)3, ∇× z ∈ Hσ(Ω)3 and

‖z‖σ + ‖∇ × z‖σ ≤ C‖w‖0, (45)

for a stability constant C > 0 and the parameter σ ∈ (1/2, 1] in (13).
Hence, multiplying the dual problem (44) with eh := u−uh and integrating by parts, since ∇×z ∈ H(curl; Ω),

we obtain

(eh,w) = (∇h × eh,∇× z) − k2(eh, z) −
∫

Fh

[[eh]]T · {{∇ × z}} ds.

Then, using the definitions of ãh, b̃h, L, M, the properties of the L2–projection Πh, integration by parts and
the fact that z ∈ H0(curl; Ω) ∩H(div0; Ω), we obtain

(eh,w) = ãh(eh, z) − k2(eh, z) + b̃h(z, p− ph) + (z,∇h(p− ph) −M(p− ph))

+(L(eh),∇× z) −
∫

Fh

[[eh]]T · {{∇ × z}} ds

= ãh(eh, z) − k2(eh, z) + b̃h(z, p− ph)

+
∫

Fh

[[p− ph]]N · {{z− Πhz}} ds

−
∫

Fh

[[eh]]T · {{∇ × z − Πh(∇× z)}} ds.

We now define zh = ΠNz ∈ Vc
h to be the Nédélec interpolant of the second kind of z, according to Lemma 5.4.

Owing to the error equation (18) and the fact that R1(u, p; zh) = 0 (since zh ∈ Vc
h), we have

(eh,w) = ãh(eh, z− zh) − k2(eh, z − zh) + b̃h(z − zh, p− ph)

+
∫

Fh

[[p− ph]]N · {{z− Πhz}} ds−
∫

Fh

[[eh]]T · {{∇ × z − Πh(∇× z)}} ds.

Employing the weighted Cauchy-Schwarz inequality, the approximation properties in Lemma 5.6 and the sta-
bility bound (45), we get

∣
∣∣
∣

∫

Fh

[[p− ph]]N · {{z− Πhz}} ds
∣
∣∣
∣ ≤ C

(∫

Fh

h−1|[[p− ph]]N |2 ds
) 1

2
(

∑

K∈Th

hK‖z − Πhz‖2
0,∂K

) 1
2

≤ Chσ‖p− ph‖Q(h)‖z‖σ ≤ Chσ‖p− ph‖Q(h)‖w‖0.

Similarly,

∣
∣
∣
∣

∫

Fh

[[eh]]T · {{∇ × z − Πh(∇× z)}} ds
∣
∣
∣
∣ ≤ C

(∫

Fh

h−1|[[eh]]T |2 ds
) 1

2
(

∑

K∈Th

hK‖∇× z − Πh(∇× z)‖2
0,∂K

) 1
2

≤ Chσ‖eh‖V(h)‖∇× z‖σ ≤ Chσ‖eh‖V(h)‖w‖0.

Furthermore, the continuity of ãh and b̃h in Prop. 3.4, the approximation property (27) in Lemma 5.4 and
the stability estimate (45) give

ãh(eh, z − zh) − k2(eh, z− zh) + b̃h(z − zh, p− ph) ≤ Chσ‖w‖0

[
‖eh‖V(h) + ‖p− ph‖Q(h)

]
.
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Hence, the above bounds yield

(u − uh,w) ≤ Chσ‖w‖0

[
‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
.

Since ‖w‖0 ≤ ‖vc
0‖0 ≤ ‖vc‖0 ≤ C‖v‖V(h), in view of Lemma 5.7, the L2(Ω)3–orthogonality of the Helmholtz

decomposition (40), and Corollary 5.2, we conclude that (43) holds.
By combining (41), (42) and (43), we obtain

|(u − uh,v)| ≤ C hσ‖v‖V(h)

[
‖u− uh‖V(h) + ‖p− ph‖Q(h)

]

for all v ∈ Vh, which immediately implies the desired bound for Dh(u− uh). �

6.3. Conclusion of the Proof of Theorem 4.1

From the abstract estimate in Prop. 6.1 and the bound on Dh(u−uh) in Prop. 6.2, we have that there exists
h0 > 0 such that, for any h < h0,

‖u− uh‖V(h) + ‖p− ph‖Q(h) ≤ C
[
‖u− v‖V(h) + ‖p− q‖Q(h) + E1,h(u) + E2,h(u)

]
(46)

for all v ∈ Vc
h and all q ∈ Qc

h, with a constant C > 0 independent of the mesh size. Notice that h0 also depends
on the wave number and on the regularity exponent σ.

Let us now suppose that the analytical solution (u, p) satisfies (26). First, we use the Nédélec interpolant of
the second kind in Lemma 5.4 to obtain

inf
v∈Vc

h

‖u− v‖V(h) ≤ ‖u− ΠNu‖V(h) ≤ Chmin{s,�} [‖u‖s + ‖∇ × u‖s] .

Then, standard approximation properties for Qc
h give

inf
q∈Qc

h

‖p− q‖Q(h) ≤ Chmin{s,�}‖p‖s+1.

Finally, using Lemma 5.6, we conclude that

E1,h(u) ≤ C hmin{s,�+1}‖∇× u‖s,

E2,h(u) ≤ C hmin{s,�+1}‖u‖s. (47)

Inserting these bounds into (46) completes the proof of Theorem 4.1.

7. Proof of Theorem 4.4 (error estimate in the L2
-norm)

In this section, we present the proof of Theorem 4.4. Our analysis proceeds along the lines of the proof
of [14], Thm. 3.5 which, in turn, relies on the ideas of [17], Sect. 4, where an L2-error estimate is derived for
conforming discretizations of the indefinite time-harmonic Maxwell equations.

7.1. The bound in Theorem 4.4

To derive the bound in Theorem 4.4, we start by splitting uh into uh = uc
h + u⊥

h , where uc
h := Auh ∈ Vc

h

is the conforming approximation from Theorem 5.1 and u⊥
h = uh − Auh. We further recall that ΠNu denotes

the curl-conforming Nédélec interpolant of the second kind, and write

‖u− uh‖2
0 = (u − uh,u− ΠNu) + (u − uh,ΠNu− uc

h) − (u − uh,u⊥
h ).
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By using the triangle inequality, the Cauchy-Schwarz inequality and the result in Corollary 5.3, we have

‖u− uh‖0 ≤ ‖u− ΠNu‖0 + Ch‖u− uh‖V(h) +
|(u− uh,ΠNu − uc

h)|
‖u− uh‖0

, (48)

with C > 0 independent of the mesh size.
Defining

T :=
|(u − uh,ΠNu− uc

h)|
‖u− uh‖0

,

we claim that, for a sufficiently small mesh size,

T ≤ C‖u− ΠNu‖0 + Chσ
[
‖u− ΠNu‖curl + ‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
, (49)

with C > 0 independent of the mesh size, and σ ∈ (1/2, 1] denoting the embedding parameter in (13). Com-
bining (48), (49) and using the approximation property (29) for ΠN in Lemma 5.4 yields

‖u− uh‖0 ≤Chmin{s+σ,�+1}‖u‖s+σ + Chmin{s,�}+σ
[
‖u‖s + ‖∇× u‖s

]

+ Chσ
[
‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
.

Since ‖u‖s ≤ ‖u‖s+σ and min{s + σ, � + 1} ≥ min{s, �} + σ, the error estimate in Theorem 4.4 follows from
Theorem 4.1. It remains to prove the bound in (49); this is undertaken in the following section.

7.2. Proof of the auxiliary bound in (49)

In order to prove (49), we invoke the Helmholtz decomposition in (24) and write

ΠNu− uc
h = wc

0 + ∇ϕ, (50)

with wc
0 ∈ Xh and ϕ ∈ Qc

h.
We then let w = Hwc

0 be the exactly divergence-free approximation of wc
0 from Lemma 5.7. From (50) and

the orthogonality property (ii) in Lemma 3.7, we obtain

(u − uh,ΠNu− uc
h) = (u− uh,wc

0) = (u − uh,wc
0 − w) + (u − uh,w).

Hence,
|(u− uh,ΠNu − uc

h)|
‖u− uh‖0

≤ ‖wc
0 − w‖0 + ‖w‖0. (51)

Therefore, it is sufficient to estimate ‖wc
0 − w‖0 and ‖w‖0.

Step 1. Estimate of ‖wc
0 − w‖0. We claim that

‖wc
0 − w‖0 ≤ Chσ

[
‖u− ΠNu‖curl + ‖u− uh‖V(h)

]
, (52)

with a constant C > 0 independent of the mesh size.
To see this, note that, in view of the definition of H and (50), we have

∇× w = ∇× wc
0 = ∇× (ΠNu− uc

h). (53)

Thus, the result in Lemma 5.7, the triangle inequality and Corollary 5.3 yield

‖wc
0 − w‖0 ≤ Chσ‖∇× (ΠNu − uc

h)‖0

≤ Chσ
[
‖∇× (ΠNu− u)‖0 + ‖∇h × (u − uh)‖0 + ‖∇h × (uh − uc

h)‖0

]

≤ Chσ
[
‖u− ΠNu‖curl + ‖u− uh‖V(h)

]
,
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which proves (52).
Step 2. Estimate of ‖w‖0. Next, we claim that, for a sufficiently small mesh size,

‖w‖0 ≤ C‖u− ΠNu‖0 + Chσ
[
‖u− ΠNu‖curl + ‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
, (54)

with a constant C > 0 independent of the mesh size.
To prove (54) we employ a duality approach. To this end, let z be the solution of the dual problem (44) with

right-hand side w = Hwc
0. Again, w ∈ H(div0; Ω) so that z ∈ Hσ(Ω)3, ∇ × z ∈ Hσ(Ω)3, with σ ∈ (1/2, 1]

in (13), and the bound (45) holds. The dual problem (44) can be written in mixed formulation as

∇×∇× z − k2z + ∇r = w in Ω, (55)

∇ · z = 0 in Ω, (56)

n× z = 0 on Γ, (57)

r = 0 on Γ. (58)

Since w ∈ H(div0; Ω), we actually have r ≡ 0.
Let us denote by (zh, rh) ∈ Vh ×Qh the discontinuous Galerkin approximation of (55)–(58) given by:

Ãh(zh,v) − b̃h(v, rh) = (w,v),
b̃h(zh, q) − ch(rh, q) = 0

(59)

for all (v, q) ∈ Vh ×Qh. Here and in the following, we use the notation

Ãh(z,v) = ãh(z,v) − k2(z,v).

Up to a sign change, the formulation (59) is of the same form as the one in (16). It can be readily seen that
Theorem 4.1 and Corollary 4.3 apply to (59). Hence, for a sufficiently small mesh size, the discrete solution
(zh, rh) exists and is unique. Moreover, the following a priori error bound holds:

‖z − zh‖V(h) + ‖rh‖Q(h) ≤ Chσ
[
‖z‖σ + ‖∇× z‖σ

]
≤ Chσ‖w‖0. (60)

Here, we have taken into account that r ≡ 0 and have also used the stability bound in (45).
After these preliminary considerations, we multiply the equation in (44) by w and integrate by parts. Re-

calling the equivalence of the forms a and ãh on V × V, we obtain

‖w‖2
0 = Ãh(z,w) = Ãh(z − Πcz,w) + Ãh(Πcz,w), (61)

with Πc denoting the Galerkin projection from (30).
By the definition of the projection Πc and the property ∇× w = ∇× wc

0, we conclude that

Ãh(z − Πcz,w) = −(z − Πcz,wc
0) − k2(z − Πcz,w)

= −(z − Πcz,wc
0 − w) − (1 + k2)(z − Πcz,w).

The approximation result for Πc in Lemma 5.5 and the bound in (45) yield

‖z − Πcz‖0 ≤ ‖z − Πcz‖curl ≤ Chσ‖w‖0. (62)

For later use, we further point out that the stability of Πc in the norm ‖ · ‖curl and the bound in (45) give

‖Πcz‖0 ≤ C‖w‖0. (63)
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Hence, by using the Cauchy-Schwarz inequality and the estimates (52) and (62) we conclude that

|Ãh(z − Πcz,w)| ≤ ‖z− Πcz‖0‖w − wc
0‖0 + C‖z − Πcz‖0‖w‖0

≤ Ch2σ‖w‖0

[
‖u− ΠNu‖curl + ‖u− uh‖V(h)

]
+ Chσ‖w‖2

0. (64)

It remains to bound the term Ãh(Πcz,w) in (61). To this end, in view of (53) and (50), we first note that

Ãh(Πcz,w) = (∇× Πcz,∇× w) − k2(Πcz,w)
= (∇× Πcz,∇× (ΠNu − uc

h)) − k2(Πcz,w − wc
0) − k2(Πcz,wc

0)
= (∇× Πcz,∇× (ΠNu − uc

h)) − k2(Πcz,w − wc
0) − k2(Πcz,ΠNu− uc

h)

= Ãh(Πcz,ΠNu− uc
h) − k2(Πcz,w − wc

0).

Here, we have used that
(Πcz,∇ϕ) = (z,∇ϕ) = 0, (65)

which follows readily from the definition of Πc and the fact that z ∈ H(div0; Ω). Employing (63) and (52) gives

|Ãh(Πcz,w)| ≤ |Ãh(Πcz,ΠNu − uc
h)| + C‖Πcz‖0‖w − wc

0‖0

≤ |Ãh(Πcz,ΠNu − uc
h)| + Chσ‖w‖0

[
‖u− ΠNu‖curl + ‖u− uh‖V(h)

]
. (66)

In order to estimate |Ãh(Πcz,ΠNu − uc
h)|, we consider the expansion

Ãh(Πcz,ΠNu− uc
h) = Ãh(Πcz,ΠNu− u) + Ãh(Πcz,u − uh) + Ãh(Πcz,uh − uc

h)
≡ T1 + T2 + T3,

and estimate the terms T1, T2, and T3 individually.
By further expanding T1, we have

T1 = Ãh(Πcz − z,ΠNu − u) + Ãh(z,ΠNu − u).

Employing the variational formulation of the dual problem (44), we bound the second term as follows:

Ãh(z,ΠNu − u) = (w,ΠNu − u) ≤ ‖w‖0‖ΠNu− u‖0.

Hence, by Lemma 5.5 and (45), T1 can be estimated by

|T1| ≤ C‖ΠNu− u‖curl‖Πcz − z‖curl + ‖w‖0‖ΠNu− u‖0

≤ Chσ‖w‖0‖ΠNu − u‖curl + ‖w‖0‖ΠNu− u‖0. (67)

For T2, we claim that
|T2| = |̃bh(Πcz, p− ph)| ≤ Chσ‖w‖0‖p− ph‖Q(h). (68)

Indeed, using the symmetry of Ãh and the error equation (18), together with the fact that by (17) the residual
R1(u, p;Πcz) vanishes, we have

|Ãh(Πcz,u − uh)| = |̃bh(Πcz, p− ph)| ≤ |̃bh(Πcz − z, p− ph)| + |̃bh(z, p− ph)|.

The continuity of b̃ from Prop. 3.4 and (62) then yield

|̃bh(Πcz − z, p− ph)| ≤ C‖Πcz − z‖curl‖ph − ph‖Q(h) ≤ Chσ‖w‖0‖p− ph‖Q(h).
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Estimating the residual R2(z; q) of the dual problem as in Prop. 3.4 and (47) and using the bound in (45),
results in

|̃bh(z, p− ph)| = |R2(z; p− ph)| ≤ CRE2,h(z)‖p− ph‖Q(h)

≤ Chσ‖z‖σ‖p− ph‖Q(h) ≤ Chσ‖w‖0‖p− ph‖Q(h),

which completes the proof of the bound (68) for T2.
Finally, to bound T3, we use the continuity property in Prop. 3.4, the discrete formulation (59) and the

Cauchy-Schwarz inequality:

|T3| ≤ |Ãh(Πcz − z,uh − uc
h)| + |Ãh(z − zh,uh − uc

h)| + |Ãh(zh,uh − uc
h)|

≤ C‖uh − uc
h‖V(h)

[
‖Πcz − z‖curl + ‖z− zh‖V(h)

]
+ ‖w‖0‖uh − uc

h‖0 + |̃bh(uh − uc
h, rh)|, (69)

with zh denoting the first component of the approximation in (59). From Corollary 5.3 we have

‖uh − uc
h‖V(h) ≤ C‖u − uh‖V(h), ‖uh − uc

h‖0 ≤ Ch‖u− uh‖V(h).

This, combined with the continuity of b̃h from Prop. 3.4, the fact that r ≡ 0, the energy estimate from
Theorem 4.1 applied to (59), and the stability bound in (45), yields the following estimate for the last term
in (69):

|̃bh(uh − uc
h, rh)| ≤ C‖u− uh‖V(h)‖r − rh‖Q(h)

≤ Chσ
[
‖z‖σ + ‖∇× z‖σ + ‖r‖σ+1

]
‖u− uh‖V(h)

≤ Chσ‖w‖0‖u− uh‖V(h).

Therefore, again by applying Corollary 5.3 and Theorem 4.1 to (59), the stability estimate (45), and equation (62)
we conclude that

|T3| ≤ hσ‖w‖0‖u− uh‖V(h). (70)

Gathering the estimates (66)–(68), and (70) gives

|Ã(Πcz,w)| ≤ Chσ‖w‖0

[
‖u− ΠNu‖curl + ‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
+ ‖w‖0‖u− ΠNu‖0. (71)

Inserting (64) and (71) into (61) then shows that

‖w‖0 ≤ Chσ‖w‖0 + C‖u− ΠNu‖0 + Chσ
[
‖u− ΠNu‖curl + ‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
. (72)

Hence, for a sufficiently small mesh size, we obtain the result in (54).
Step 3. Conclusion. The bound (49) now follows from (51), (52) and (54). �
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Table 1. Example 1. Convergence of ‖u− uh‖V(h) with k = 1.

� = 1 � = 2 � = 3
Elements ‖u− uh‖V(h) r ‖u− uh‖V(h) r ‖u− uh‖V(h) r

26 1.876e-1 - 2.009e-2 - 5.045e-4 -
104 9.135e-2 1.04 5.004e-3 2.01 6.471e-5 2.96
416 4.456e-2 1.04 1.250e-3 2.00 8.131e-6 2.99
1664 2.194e-2 1.02 3.123e-4 2.00 1.017e-6 3.00

Table 2. Example 1. Convergence of ‖p− ph‖Q(h) with k = 1.

� = 1 � = 2 � = 3
Elements ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r

26 9.226e-2 - 1.213e-2 - 2.728e-4 -
104 2.715e-2 1.76 1.332e-3 3.19 1.489e-5 4.19
416 6.774e-3 2.00 1.551e-4 3.10 8.132e-7 4.19
1664 1.609e-3 2.07 1.867e-5 3.05 4.638e-8 4.13

Table 3. Example 1. Convergence of ‖u− uh‖V(h) with k = 2.

� = 1 � = 2 � = 3
Elements ‖u− uh‖V(h) r ‖u− uh‖V(h) r ‖u− uh‖V(h) r

26 1.131 - 1.265e-1 - 1.243e-2 -
104 5.405e-1 1.06 3.217e-2 1.98 1.582e-3 2.97
416 2.635e-1 1.04 8.078e-3 1.99 1.985e-4 2.99
1664 1.302e-1 1.02 2.022e-3 2.00 2.483e-5 3.00

8. Numerical experiments

In this section we present a series of numerical experiments to highlight the practical performance of the
mixed DG method introduced and analyzed in this article for the numerical approximation of the indefinite time-
harmonic Maxwell equations (6)–(9). For simplicity, we restrict ourselves to two-dimensional model problems;
additionally, we note that throughout this section we select the constants appearing in the interior penalty
stabilization functions defined in (15) as follows:

α = 10 �2 and γ = 1.

The dependence of α on the polynomial degree � has been chosen in order to guarantee the G̊arding-type
inequality stated in Prop. 3.5 holds independently of �, cf. [11], for example.

8.1. Example 1

In this first example we select Ω ⊂ R
2 to be the square domain (−1, 1)2. Furthermore, we set j = 0 and

select suitable non-homogeneous boundary conditions for u, i.e., n×u = g, where g is a given tangential trace,
so that the analytical solution to the two-dimensional analogue of (6)–(9) is given by the smooth field

u(x, y) = (sin(ky), sin(kx))T
, p = 0.
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Table 4. Example 1. Convergence of ‖p− ph‖Q(h) with k = 2.

� = 1 � = 2 � = 3
Elements ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r

26 5.745e-1 - 7.298e-2 - 6.752e-3 -
104 1.700e-1 1.76 8.377e-3 3.12 3.652e-4 4.21
416 4.232e-2 2.01 9.933e-4 3.08 2.026e-5 4.17
1664 1.002e-2 2.08 1.209e-4 3.04 1.174e-6 4.11

Table 5. Example 1. Convergence of ‖u− uh‖V(h) with k = 4.

� = 1 � = 2 � = 3
Elements ‖u− uh‖V(h) r ‖u− uh‖V(h) r ‖u− uh‖V(h) r

26 3.902 - 1.276 - 1.429e-1 -
104 2.017 0.95 2.971e-1 2.10 2.289e-2 2.64
416 9.871e-1 1.03 7.401e-2 2.01 2.952e-3 2.96
1664 4.864e-1 1.02 1.849e-2 2.00 3.715e-4 2.99

Table 6. Example 1. Convergence of ‖p− ph‖Q(h) with k = 4.

� = 1 � = 2 � = 3
Elements ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r

26 2.077 - 6.953e-1 - 5.923e-2 -
104 5.961e-1 1.80 6.828e-2 3.35 4.982e-3 3.57
416 1.541e-1 1.95 7.722e-3 3.14 3.105e-4 4.00
1664 3.796e-2 2.02 9.207e-4 3.07 1.909e-5 4.02

Here, the boundary conditions for u are enforced in the usual DG manner by adding boundary terms into
the formulation (14); more precisely, the right–hand side of the first equation in (14) is replaced by the term

fh(v) = (j,v) −
∫

FB
h

g · ∇h × v ds+
∫

FB
h

a g · (n × v) ds,

see [11, 12] for details.
We investigate the asymptotic convergence of the mixed DG method on a sequence of successively finer

(quasi-uniform) unstructured triangular meshes for � = 1, 2, 3 as the wave number k increases. To this end, in
Tables 1 and 2, Tables 3 and 4, and Tables 5 and 6 we present numerical experiments for k = 1, 2, 4, respectively.
For each wave number k we show the number of elements in the computational mesh, the corresponding DG-
norms of the error in the numerical approximation to both u and p, and the numerical rate of convergence r.
Here, we observe that (asymptotically) ‖u−uh‖V(h) converges to zero at the optimal rate O(h�), for each fixed �
and each k, as h tends to zero, as predicted by Theorem 4.1. On the other hand, for this mixed–order method,
‖p − ph‖Q(h) converges to zero at the rate O(h�+1), for each � and k, as h tends to zero; this rate is indeed
optimal, though this is not reflected by Theorem 4.1, cf. [13]. In particular, we make two key observations:
firstly, we note that for a given fixed mesh and fixed polynomial degree, an increase in the wave number k leads
to an increase in the DG-norm of the error in the approximation to both u and p. Indeed, as pointed out in [14]
and [1], where interior penalty and curl-conforming finite element methods, respectively, were employed for the
numerical approximation of (1)–(2), the pre-asymptotic region increases as k increases. Secondly, we observe
that the DG-norm of the error decreases when either the mesh is refined, or the polynomial degree is increased
as we would expect for this smooth problem.
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Figure 1. Example 1. Convergence of ‖u− uh‖0 for: (a) k = 1; (b) k = 2; (c) k = 4.

Finally, in Figure 1 we present a comparison of the L2(Ω)2-norm of the error in the approximation to u,
with the square root of the number of degrees of freedom in the finite element space Vh. Here, we observe that
(asymptotically) ‖u−uh‖0 converges to zero at the rate O(h�+1), for each fixed � and each k, as h tends to zero.
This is in full agreement with the optimal rate predicted by Corollary 4.5. Numerical experiments also indicate
that the L2(Ω)-norm of the error in the approximation to p converges to zero at the optimal rate O(h�+2), for
each fixed � and each k, as h tends to zero; for brevity, these results have been omitted.

8.2. Example 2

In this second example, we investigate the performance of the mixed DG method (14) for a problem with
a non-smooth solution. To this end, let Ω be the L-shaped domain (−1, 1)2 \ [0, 1) × (−1, 0] and select j
(and suitable non-homogeneous boundary conditions for u) so that the analytical solution (u, p) to the two-
dimensional analogue of (6)–(9) is given, in terms of the polar coordinates (r, ϑ), by

u(x, y) = ∇S(r, ϑ), p = 0, (73)

where
S(r, ϑ) = (kr)2/3 sin(2ϑ/3).

The analytical solution given by (73) then contains a singularity at the re-entrant corner located at the origin
of Ω; in particular, we note that u lies in the Sobolev space H2/3−ε(Ω)2, ε > 0.
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Table 7. Example 2. Convergence of ‖u− uh‖V(h) with k = 1.

� = 1 � = 2 � = 3
Elements ‖u− uh‖V(h) r ‖u− uh‖V(h) r ‖u− uh‖V(h) r

24 7.871e-1 - 7.339e-1 - 6.536e-1 -
96 5.073e-1 0.63 4.144e-1 0.83 3.504e-1 0.90
384 2.613e-1 0.96 1.980e-1 1.07 1.620e-1 1.11
1536 1.187e-1 1.14 8.652e-2 1.19 6.945e-2 1.22
6144 5.188e-2 1.19 3.504e-2 1.30 2.495e-2 1.48

Table 8. Example 2. Convergence of ‖p− ph‖Q(h) with k = 1.

� = 1 � = 2 � = 3
Elements ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r

24 1.460 - 1.918 - 2.337 -
96 1.408 0.05 1.713 0.16 1.982 0.24
384 1.127 0.32 1.291 0.41 1.446 0.46
1536 7.938e-1 0.51 8.807e-1 0.55 9.718e-1 0.57
6144 5.241e-1 0.60 5.744e-1 0.62 6.305e-1 0.62

Table 9. Example 2. Convergence of ‖u− uh‖V(h) with k = 4.

� = 1 � = 2 � = 3
Elements ‖u− uh‖V(h) r ‖u− uh‖V(h) r ‖u− uh‖V(h) r

24 8.206e-1 - 7.812e-1 - 7.175e-1 -
96 3.611e-1 1.18 3.429e-1 1.19 3.011e-1 1.25
384 1.830e-1 0.98 1.525e-1 1.17 1.289e-1 1.22
1536 1.059e-1 0.79 7.225e-2 1.08 5.741e-2 1.17
6144 6.808e-2 0.64 5.129e-2 0.49 3.827e-2 0.59

In this example we again consider the convergence of the mixed DG method (14) on a sequence of successively
finer (quasi-uniform) unstructured triangular meshes for � = 1, 2, 3 as the wave number k increases. To this
end, in Tables 7 and 8 and Tables 9 and 10 we present numerical experiments for k = 1, 4, respectively. Here,
we observe that for k = 1, the error ‖u−uh‖V(h) converges to zero at a slightly superior rate than the optimal
one of O(h2/3), for each �, as h tends to zero, predicted by Theorem 4.1, cf. Table 7. We remark that analogous
behavior is also observed when the interior penalty mixed DG method is applied to the low-frequency problem
studied in [13]. However, for the higher wave number of k = 4, we now see that the rate of convergence of
‖u−uh‖V(h) does seem to be slowly tending towards the optimal predicted one, cf. Table 9. On the other hand,
from Tables 8 and 10 we see that ‖p− ph‖Q(h) converges to zero at the optimal rate of O(h2/3), for each � and
each k, as h tends to zero, predicted by Theorem 4.1, though now, the rate of convergence tends to the optimal
one from below at the smaller wave number of k = 1. As in the previous example, we see that the DG-norm
of the error in the approximation to both u and p increases as the wave number k increases for a fixed mesh
size and polynomial degree. However, for a fixed mesh and wave number, while an increase in the polynomial
degree leads to a decrease in ‖u−uh‖V(h), the opposite behavior is observed for the error in the approximation
to p; indeed, we observe that for both k = 1, 4, an increase in � leads to an increase of ‖p− ph‖Q(h) on a given
(fixed) mesh.



752 P. HOUSTON ET AL.

Table 10. Example 2. Convergence of ‖p− ph‖Q(h) with k = 4.

� = 1 � = 2 � = 3
Elements ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r

24 7.661 - 9.056 - 10.00 -
96 5.293 0.53 5.847 0.63 6.404 0.64
384 3.410 0.63 3.715 0.65 4.058 0.66
1536 2.156 0.66 2.336 0.67 2.559 0.67
6144 1.364 0.66 1.475 0.66 1.607 0.67

Table 11. Example 2. Convergence of ‖u− uh‖0 with k = 1.

� = 1 � = 2 � = 3
Elements ‖u− uh‖0 r ‖u− uh‖0 r ‖u− uh‖0 r

24 5.091e-1 - 4.651e-1 - 4.137e-1 -
96 3.248e-1 0.65 2.634e-1 0.82 2.223e-1 0.90
384 1.687e-1 0.95 1.270e-1 1.05 1.035e-1 1.10
1536 7.867e-2 1.10 5.667e-2 1.16 4.512e-2 1.20
6144 3.631e-2 1.12 2.421e-2 1.23 1.719e-2 1.39

Table 12. Example 2. Convergence of ‖u− uh‖0 with k = 4.

� = 1 � = 2 � = 3
Elements ‖u− uh‖0 r ‖u− uh‖0 r ‖u− uh‖0 r

24 3.606e-1 - 2.725e-1 - 2.213e-1 -
96 2.180e-1 0.73 1.506e-1 0.86 1.144e-1 0.95
384 1.351e-1 0.69 8.801e-2 0.78 6.426e-2 0.83
1536 8.411e-2 0.68 5.294e-2 0.73 3.797e-2 0.76
6144 5.339e-2 0.66 3.423e-2 0.63 2.469e-2 0.62

Finally, we end this section by considering the rate of convergence of the error in the approximation to u
measured in terms of the L2(Ω)2-norm. To this end, in Tables 11 and 12 we present numerical experiments for
k = 1, 4, respectively. The regularity assumptions required in the statement of Theorem 4.4 do not hold; as
a consequence, the only proven result is ‖u − uh‖0 ≤ ‖u − uh‖V(h) = O(h2/3), for each � and k, as h tends
to zero. The results obtained for the wave number k = 4 indicate that the convergence rate is asymptotically
optimal in this case, whereas the results for k = 1 point to a convergence rate like O(h2×2/3).

9. Concluding remarks

In this paper, we have introduced and analyzed a new interior penalty method for the indefinite time–
harmonic Maxwell equations written in mixed form. The proposed scheme can be viewed as a non-stabilized
variant of the mixed DG method proposed in [22]; in particular, except for the standard interior penalty
stabilization terms, here we exclude all the additional stabilization terms introduced in the DG formulation
analyzed in [22]. Employing the recent techniques developed in [14], we have derived optimal a priori estimates
for the error measured in terms of both the energy-norm, as well as the L2-norm. The current analysis relies
on exploiting duality techniques, and thereby only holds in the case of smooth material coefficients. The
extension of this work to problems with non-smooth coefficients, by extending more general analysis approaches
for conforming methods (such as the ones in [4] or [10]) to the discontinuous Galerkin context, is currently
under investigation.
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