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Abstract. Tuning the alternating Schwarz method to the exterior problems is the subject of this
paper. We present the original algorithm and we propose a modification of it, so that the solution of
the subproblem involving the condition at infinity has an explicit integral representation formulas while
the solution of the other subproblem, set in a bounded domain, is approximated by classical variational
methods. We investigate many of the advantages of the new Schwarz approach: a geometrical conver-
gence rate, an easy implementation, a substantial economy in computational costs and a satisfactory
accuracy in the numerical results as well as their agreement with the theoretical statements.
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1. Introduction and notations

Formulating the integral equations, which are relevant for the exterior value problems and commonly used in
scientific computing, requires an explicit knowledge of the elementary solution – also called the Green function –
of the model we deal with (see [5, 8, 10, 16, 17, 29, 36, 37, 46]). The point is that these Green functions are
not usually accessible at reasonable costs. Apart from some problems such as, e.g., the Poisson, Helmholtz,
Schrödinger, Maxwell, elastostatic and plates problems, an efficient calculation of these Green kernels is likely
to fail for most differential equations with non-constant coefficients. An alternative solution, to circumvent
these limitations, is to resort to coupling methods between the finite element method and the boundary element
method (FEM/BEM), proposed in [42] (see also [47]) and theoretically studied by Johnson and Nédélec in [25].
It is a hopeful tool to extend the application of the integral equations to a larger class of partial differential
equations.
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The coupling approach consists in truncating the computational domain by the introduction of a fictitious
boundary, on which an artificial condition is derived via a non-local singular integral representation. Many
variational formulations are already applied to the reduced problem. One of them is discussed in [25] and its
good behavior illustrated by some numerical experiments (see also [42,47]). Later work by Jami and Lenoir (see
[20–22, 40, 41]) brings about further improvements to the (FEM/BEM) methodology by suitably considering
an overlapping domain decomposition technique, so as to write down more general formulations of the artificial
condition. The representation of this non-standard condition is based on regular kernels (versus singular kernels
for the Johnson–Nédélec coupling method); the main effect of it is to avoid the special treatment due to the
singularities of the Green function and to improve the conditioning of the stiffness matrix and thus of the system
to be inverted.

The advances achieved in the mathematical ground for the exterior problems arise much interest on the related
practical issues such as finding out performing algorithms in order to solve the discrete problem is the crucial
point. Recall that, for symmetric boundary value problems, the counterpart of the coupling approximation
breaks the symmetry and substantially alters the stiffness matrix sparsity (see [34]). A large number of the
solvers, coming from the tremendous progress in the domain decomposition methods (see [30,31,38,43]), can be
explored and possibly applied to problems set on unbounded domains. Currently, not much work achieved on
the Schwarz algorithm for exterior problems has provided encouraging results (see, for instance, [2, 9, 32, 33]).
The core of this contribution is the new iterative method introduced in [3], for the Poisson model set in open
domains, for which a full analysis is detailed. Naturally, the new algorithm has been filed of the Schwarz methods
(see [39]), since it is an adaptation of the original (Schwarz) procedure to the unboundedness of the domain
which allows to reduce the computational costs, owing to the integral representations. During the iterations,
we modify one of the subproblems, the one where the condition at infinity is taken into account. This enables
us to give an explicit expression of its solution. The other subproblem is set in the bounded sub-domain, for
which a local Dirichlet or Neumann condition results from the previous step solution; it is solved by Lagrangian
finite element methods. The iterative process is stopped when a given tolerance is obtained, and the computed
solution is considered to be a consistent approximation of the exact model.

The outline of the paper1 is as follows. The variational framework of [30] is extended to the unbounded
domains. Afterward, it is worked out to fit our modified Schwarz method. Then, applying the Cauchy fixed
point theory, we exhibit a geometrical convergence of it (the new Schwarz procedure). Reformulating it allows
to underline the possible connections with different (FEM/BEM) methods. Finally, analytical calculations for
separable geometries together with some numerical computations are reported to highlight the reliability of the
new Schwarz algorithm.

Some functional notations – Let Ω be a bounded domain in R
d, d = 2, 3, with a Lipschitz boundary Γ. The

Lebesgue space L2(Ω) of square integrable functions is endowed with the natural norm ‖ · ‖L2(Ω) and we set
L2(Ω) = L2(Ω)d. We need also some Sobolev spaces, H1(Ω) involves all the functions that are in L2(Ω) as
well as their partial derivatives. The set of the traces over Γ of all the functions of H1(Ω) is denoted H

1
2 (Γ)

and H− 1
2 (Γ) is its dual (see [1, 10]). All along this work, for any Γ which separates an external and an

internal regions Ωe and Ωi, the symbol [·] stands for the jump across Γ, i.e. [ϕ] = ϕe|Γ − ϕi|Γ for any function
ϕ = (ϕi = ϕ|Ωi

, ϕe = ϕ|Ωe ).

1 In many places of the manuscript, we refer the reader to the Ph.D. Thesis [24] of the fourth author, in preparation. We do
want to stress that the commonly accepted rule, that is, such a referencing is tolerated only for non-essential details and for some
more extensions, is fully respected.
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2. The Laplace-Neumann problem in R
3

Let Γ be a bounded and closed surface in R
3, delimiting the internal and the external domains ΩiΓ and ΩeΓ.

We assume that it is smooth and we denote by n the unit normal (to Γ) oriented from ΩeΓ toward ΩiΓ. For a
given data g ∈ H− 1

2 (Γ), the Laplace-Neumann problem consists in: finding u such that

−∆u = 0, in ΩeΓ, (1)
∂nu = g, on Γ, (2)

∇u =
(

1
|x|

)
, at infinity. (3)

Due to the unboundedness of the domain ΩeΓ, the variational formulation is based on the weighted Sobolev
space (also known as the Beppo-Levi space) defined by

W 1(ΩeΓ) =

{
v;

v√
1 + |x|2 ∈ L2(ΩeΓ), ∇v ∈ L2(ΩeΓ)

}
.

We refer to [10] for some of its properties. Expressing the problem (1)–(3) in a weak form leads to:
find u ∈W 1(ΩeΓ) such that ∫

Ωe
Γ

∇u∇v dx =
∫

Γ

gv dγ, ∀v ∈W 1(ΩeΓ). (4)

This problem has a unique solution. When an approximation of the problem is aimed, (4) can not be used for
scientific computing. So, a current numerical approach is to resort to the integral equations (see [10,36]). They
are based on a suitable representation of u, picked from the potential theory (see [8])

u(x) =
∫

Γ

u|Γ(·)∂nG(x − ·) dγ −
∫

Γ

g(·)G(x − ·) dγ, ∀x ∈ ΩeΓ, (5)

where G(x) = 1
4π|x| is the Green function.

Remark 2.1. The integral representation (5) needs to be adapted to Γ. To provide the general form of it, we
assume that Γ is a Lipschitzian boundary tolerating corners. Let x be on Γ and denote θ the measure of the
external angle made by Γ around x as shown in Figure 1. Then, identity (5) becomes (see [36])

θ

2π
u(x) =

∫
Γ

u|Γ(·)∂nG(x − ·) dγ −
∫

Γ

g(·)G(x − ·) dγ.

At the vicinity of the regular points, the boundary is flat and thus θ = π. We do not address this situation in
the sequel, and we only consider a smooth boundary Γ (i.e. with no angular points).

Ω Γ
i x

Ω Γ
e

Γ

θ

Figure 1. Example of an angular boundary of the obstacle Γ.
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Notice that (5) permits an easy reconstruction of the solution u, on the whole domain ΩeΓ, from the knowledge
of u|Γ = ϕ. This function ϕ is computed by solving the following integral equation

ϕ

2
(x) −

∫
Γ

ϕ(·)∂nG(x − ·) dγ = −
∫

Γ

g(·)G(x − ·) dγ, ∀x ∈ Γ. (6)

The coerciveness and the symmetry of problem (6) are readily checked. The variational discretization of it by the
boundary finite elements so as the derivation of the associated algebraic system are detailed
in [5, 7, 8, 10, 16–18,36, 37, 45]. We recall two negative consequences of this type of discretization

i. The computation of the stiffness matrix entries requires a particular treatment of the singular kernels
in the integral equation.

ii. This (stiffness) matrix is full with a condition number growing like the inverse of the mesh size. It is not
easy to solve efficiently the problem even thought performing preconditioners (see [7,45]) were recently
introduced.

An alternative to overcome such complexities consists in truncating the unbounded domain ΩeΓ by introducing
a fictitious boundary Σ not intersecting with Γ. Then, we consider the Laplace equation (1) set in ΩcΣ, the
annular domain delimited by Γ and Σ with the Neumann condition (2) on Γ, and an artificial condition on Σ
obtained from formula (5). For commodity, this last condition is rewritten, using the notations VΓ and KΓ for
the simple and the double layer potentials,

u = KΓ(u|Γ) − VΓ(g), on Σ. (7)

It is a non-local condition and generates a coupling between u|Σ and u|Γ; it can be viewed as an absorbing
condition of a non-standard Dirichlet type. To take it into account in a variational form, we denote by RΣ an
arbitrary stable extension of traces on Σ that vanishes on Γ, and we decompose the solution u into the sum
RΣ(KΓ(u|Γ)− VΓg) + u. The new unknown u has the same trace on Γ as u (i.e. u|Γ = u|Γ) and belongs to the
standard Sobolev space

H1
0,Σ(ΩcΣ) =

{
v ∈ H1(ΩcΣ); v|Σ = 0

}
.

The (truncated) variational problem can then be formulated as follows: find u ∈ H1
0,Σ(ΩcΣ) such that∫

Ωc
Σ

∇u∇v dx+
∫

Ωc
Σ

∇RΣ(KΓ(u|Γ))∇v dx =

∫
Γ

gv dγ +
∫

Ωc
Σ

∇RΣ(VΓg)∇v dx, ∀v ∈ H1
0,Σ(ΩcΣ). (8)

The coupling of finite elements method and boundary elements method, denoted henceforth by (FEM/BEM),
consists in the approximation of problem (8) by the Lagrangian finite elements. The resulting stiffness matrix
suffers from the non-symmetry and is also partially full due to a (full) block related to the degrees of freedom
located on Σ and Γ. The (FEM/BEM)–approach is studied in many publications (see, e.g., [22, 26]) and is
implemented in the computing code MELINA used for our computations (see [34]).

Remark 2.2 (General coupling procedures). The artificial boundary condition (7) may be written using an
intermediary boundary surface Σ∗ immersed in the domain ΩcΣ, instead of Γ (Σ∗ has a simple shape). In this
case, it is transformed into

u = KΣ∗(u|Σ∗) − VΣ∗(∂nu|Σ∗), on Σ. (9)
When Σ∗ ∩Σ = ∅, we obtain the Jami-Lenoir method (see [22]) while the limit case Σ∗ = Σ gives the Johnson-
Nédélec procedure (see [25]). Then, the boundary condition is expressed by

u =
(

1
2
IΣ +KΣ

)
(u|Σ) − VΣ(∂nu|Σ), on Σ, (10)

where the symbol IΣ denotes the identity operator on H
1
2 (Σ).
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Figure 2. The geometry features.

2.1. The Schwarz algorithm for the exterior Neumann problem

More geometrical constructions and further notations are helpful for the clarity in the description of the
Schwarz algorithm. Let Σ∗ be any closed smooth surface given in ΩcΣ, then we denote by ΩcΣ∗ the annular
domain bordered by Γ and Σ∗. Noticeably, Σ∗ induces a partition of the space into an interior domain ΩiΣ∗
and an exterior domain ΩeΣ∗ . Unless explicitly contradicted, we assume in the subsequent that Γ ∩ Σ∗ = ∅ and
Σ∗∩Σ = ∅. We have that Ω

e

Γ is the union of both Ω
c

Σ and Ω
e

Σ∗ whose intersection is the annular domain located
between Σ and Σ∗ (see Fig. 2).

The purpose of the Schwarz method is the construction of a sequence (wm)m approximating u. This is
achieved following a recurrence. The terms (wk)0≤k≤2m being known, w2m+1 is computed by solving

−∆w2m+1 = 0, in ΩeΣ∗ , (11)

w2m+1 = w2m, on Σ∗, (12)

∇w2m+1 = o

(
1
|x|

)
, at infinity, (13)

and w2m+2 is the solution of

−∆w2m+2 = 0, in ΩcΣ, (14)

∂nw
2m+2 = g, on Γ, (15)

w2m+2 = w2m+1, on Σ. (16)

Both boundary value problems have variational interpretation in the space W 1(ΩeΣ∗) for the first and in the
space H1(ΩcΣ) for the second. The theory developed by P.-L. Lions in [30] applies as well and yields the estimate

‖u− w2m+1‖W 1(Ωe
Σ∗ ) + ‖u− w2m‖H1(Ωc

Σ) ≤ C(w0)ρm, ∀m ∈ N.

The reduction factor ρ ∈ [0, 1[ depends on the size of the overlapping regions (ΩeΣ∗ ∩ΩcΣ); it is lower for thicker
overlapping region and faster is the convergence of the algorithm (see [43] for a relevant discussion). The
efficiency of the Schwarz algorithm can be significantly increased by some judicious adaptations to the specific
features of the exterior problems (taking profit of the integral representations). The boundary condition (12)
on Σ transmitted from w2m to w2m+1 can be advantageously affected by exploiting the information contained
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in (∂nw
2m) on Σ∗. It follows that, for the modified Schwarz algorithm, the problem (11)–(13) is changed into

−∆w2m+1 = 0, in ΩiΣ∗ and ΩeΣ∗ , (17)

[∂nw
2m+1] = ∂nw

2m, on Σ∗, (18)
[w2m+1] = w2m, on Σ∗, (19)

∇w2m+1 = o

(
1
|x|

)
, at infinity, (20)

while the form of the value problem on w2m+2 remains unchanged, apart from the fact that the Dirichlet
condition (16) is fed by the new w2m+1. Two points can be invoked to illustrate the power of the new approach.
One is related to the time computational gain and the other to its convergence speed. The complexity for the
calculation of w2m+1 is substantially reduced, since it is explicitly obtained by

w2m+1(x) =
(
KΣ∗(w

2m
|Σ∗) − VΣ∗(∂nw

2m
|Σ∗)

)
(x), ∀x ∈ R

3 \ Σ∗. (21)

Compared to the standard Schwarz algorithm, an inversion of the exterior problem (11)–(13) is avoided at each
step. Even more, w2m+1 is eliminated in the practice; indeed plugging (21) into the Dirichlet condition (16)
on w2m+2, we obtain a sequence (um)m = (w2m)m defined by the following induction: um being known, we
solve a Laplace equation in ΩcΣ with Neumann/Dirichlet conditions on Γ/Σ that reads as: find um+1 ∈ H1(ΩcΣ)
such that

−∆um+1 = 0, in ΩcΣ, (22)
∂nu

m+1 = g, on Γ, (23)
um+1 = KΣ∗(u

m
|Σ∗) − VΣ∗(∂nu

m
|Σ∗), on Σ. (24)

Remark 2.3. The implementation of the modified Schwarz algorithm in MELINA is based on the formula-
tion (22–24) (see [24]). As the interface Σ is a closed surface, no restriction needs to be imposed on the initial
function u0 (or on w0); so it can be chosen arbitrarily. Given that in our computation, the limit choice of the
intermediary Σ∗ is provided by Γ, we prefer to start from u0 = VΣ∗(g) and we recommend it.

Remark 2.4 (Connection with the additive Schwarz method). The additive version of the Schwarz method, in-
troduced in [12] for the bounded domains, is obtained by changing the fictitious condition (16) into
w2m+2

|Σ = w2m−1
|Σ . This choice implies an uncoupling of both problems on w2m+1 and w2m+2. Notice that

the alternating and additive algorithms yield to the same construction of the sequence (um)m. This may be
seen again by the integral representation of w2m+1. In fact, w2m+2 still satisfies equation (22), the Neumann
condition (23) and the following Dirichlet condition:

w2m+2 = KΣ∗

(
w2m−2

|Σ∗

)
− VΣ∗

(
∂nw

2m−2
|Σ∗

)
, on Σ,

from which we deduce that um = w4m. This attests that the alternating Schwarz method converges twice faster
than the additive method for the unbounded domains.

Remark 2.5 (Connection with the Dirichlet-Neumann method). The limit case Σ∗ = Σ does not alter things,
the modified Schwarz algorithm works as well. However, the Dirichlet condition prescribed to w2m+2 on Σ
needs to be precised a little more to avoid ambiguities (because of the discontinuity of w2m+1 on Σ); it should
be understood as w2m+2

|Σ = (w2m+1)e|Σ. The resulting iterative procedure can be considered as a variant of the
Dirichlet-Neumann technique, for which, in addition to the Neumann data (∂nw

2m
|Σ ), the information involved on

w2m
|Σ is transmitted to w2m+1

|Σ on the boundary Σ. The sequence (um)m is constructed by the recurrence (22)–(23)
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while the boundary condition (24) becomes

um+1 =
(

1
2
IΣ +KΣ

)
(um|Σ) − VΣ(∂nu

m
|Σ), on Σ. (25)

Remark 2.6. Remarks 2.4 and 2.5 show that our adaptation of the Schwarz process to the exterior problems
results in a unified approach of several well known domain decomposition methods including both the multi-
plicative, the additive versions of the Schwarz method (see [4, 11, 12, 35]) and the Dirichlet-Neumann iterative
method (see [38]).

As far as the convergence analysis is concerned, the case Σ∗ = Γ plays an important role, since the convergence
proof for an arbitrary Σ∗ is straightly obtained from this particular choice. It also seems a little more attractive,
as the term depending on the simple layer potential has not to be updated during the iterations, inducing a
reduction of the computational costs.

The variational formulation for Σ∗ = Γ, is derived from (8) and relies on the decomposition
um+1 = RΣ(KΓ(um|Γ) − VΓ(um|Γ)) + um+1, where um+1 ∈ H1

0,Σ(ΩcΣ) is solution of

∫
Ωc

Σ

∇um+1∇v dx =
∫

Γ

gv dγ +
∫

Ωc
Σ

∇RΣ(KΓ(um|Γ))∇v dx

−
∫

Ωc
Σ

∇RΣ(VΓ(um|Γ))∇v dx, ∀v ∈ H1
0,Σ(Ωc). (26)

Achieving a finite element discretization, the sparsity and the symmetry of the stiffness matrix are fully restored,
because of the uncoupling of um+1

|Γ and um+1
|Σ , meanwhile the ellipticity is preserved. The algebraic system to

be handled repeatedly, due to the recurrent updating of the Dirichlet data, can be solved efficiently by using
a direct method like the Choleski technique, where the factorization of the matrix is done once for all in the
pre-processing stage.

Before closing this subsection, we resume the case of an arbitrary Σ∗ to discuss the possible limit of the
modified Schwarz method to figure out whether or not it provides the exact solution u of (4). This inspired us
the way to proceed for the proofs, since it gave us the idea of Lemma 2.7. Assume that (w2m, w2m+1) converges
toward (w∗, w∗). Passing formally to the limit in both problems (17)–(20) and (22)–(24), we obtain that:
w∗ is such that

−∆w∗ = 0, in ΩiΣ∗ and ΩeΣ∗ ,

[∂nw
∗] = ∂nw∗, on Σ∗,

[w∗] = w∗, on Σ∗,

∇w∗ = o

(
1
|x|

)
, at infinity,

and: w∗ is solution of

−∆w∗ = 0, in ΩcΣ,
∂nw∗ = g, on Γ,
w∗ = w∗, on Σ.

Two configurations are possible, each one having its own analysis.
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We consider first that Σ∗ ∩ Σ = ∅ (the Jami-Lenoir method [22]).
Define w∗∗ (in ΩiΣ) such that w∗∗ = 0 in ΩiΣ∗ and w∗∗ = w∗ in ΩiΣ \ΩiΣ∗ . Then it is easy to check that (w∗−w∗∗)
is solution of the homogeneous Dirichlet-Poisson problem on ΩiΣ. The trivial function is the unique solution,
thus w∗ = w∗∗. In particular, we have that w∗ = w∗ in ΩiΣ \ ΩiΣ∗ . Setting

w(x) =
{
w∗(x), ∀x ∈ ΩcΣ,
w∗(x), ∀x ∈ ΩeΣ∗ ,

results in a coherent function in ΩeΓ, and it is solution of the problem (1)–(3). Uniqueness produces that w = u.

The case where Σ∗ = Σ (the Johnson-Nédélec method [25]) proceeds as follows.
The Dirichlet condition prescribed to w∗ on Σ says that w∗|Σ = (w∗)e|Σ (see Rem. 2.5). Furthermore, an
argumentation like that of (25) yields that

(w∗)|Σ
2

= KΣ(w∗|Σ) − VΣ(∂nw∗|Σ).

This results in w∗ = 0 in ΩiΣ and therefore, (∂nw
∗)|Σ = (∂nw∗)|Σ. We deduce that w defined by

w(x) =
{
w∗(x), ∀x ∈ ΩcΣ,
w∗(x), ∀x ∈ ΩeΣ,

is solution of the boundary value problem (1)–(3) and consequently w = u.
The final conclusion is that for an arbitrary Σ∗ taken in ΩcΣ, the limits of the alternating sequences allow the

recovering of the exact solution of the exterior Laplace-Neumann problem when the convergence of the Schwarz
algorithm is guaranteed.

2.2. An analytical example

To assess their liability to provide the exact solution, we present an analytical example using the classical
Schwarz, the Dirichlet-Neumann and the modified Schwarz methods.

We use the spherical coordinates (r, θ, ϕ) in R
3. We Consider that Γ,Σ∗ and Σ are three spheres in R

3

radii 1, R∗ and R respectively (1 ≤ R∗ ≤ R, R > 1). We investigate the Laplace-Neumann problem set in
ΩeΓ = {x ∈ R

3, |x| > 1}. The boundary data g is chosen so that u(r, θ, ϕ) = r−k−1Y nk (θ, ϕ) is the exact
solution, and Y nk , (k ∈ N, |n| ≤ k) is the spherical harmonic of k-th order (see [44] for more details). The case
(k = 0) is special, since both Dirichlet-Neumann and the modified Schwarz algorithms succeed to capture the
exact solution u(r, θ, ϕ) = 1

r in one iteration. Then it is excluded from the study and we assume that k ≥ 1. An
explicit construction of the sequence (wm)m is possible by (22)–(24). From some symmetry considerations, wm

has the following form wm(r, θ, ϕ) = hm(r)Y nk (θ, ϕ) with

h2m(r) = c2mr
k + d2mr

−k−1, h2m+1(r) = b2m+1r
−k−1.

We start by the classical Schwarz algorithm.
To be brief, we restrict the presentation to the analysis of the convergence of w2m+1

|Ωe
Σ∗

. The convergence of
the remaining quantities follows the same trends. Using the boundary conditions and achieving the overall
computations provides

(b2m+3 − 1) =
1 + (1 + k−1)R2k+1

∗
1 + (1 + k−1)R2k+1

(b2m+1 − 1) = ρ(k)(b2m+1 − 1).

Under the mild assumption (R∗ < R), the classical Schwarz algorithm converges geometrically fast toward
the exact solution u. The reducing factor ρ(k) on the error depends on the size of the overlapping region
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{x, R∗ ≤ |x| ≤ R}. The convergence of the Schwarz algorithm is slower for thin annular region. The critical
point is reached when (R∗ = R), for which the convergence is not guaranteed anymore.

For the non-overlapping case (R∗ = R), the Dirichlet-Neumann procedure is recommended.
The corresponding boundary conditions to be exchanged across Σ produce

(b2m+3 − 1) =
1 −R2k+1

1 + (1 + k−1)R2k+1
(b2m+1 − 1) = �(k)(b2m+1 − 1).

Although the convergence toward the exact solution u is obtained, this approach suffers from some weakness.
The reduction factor �(k) comes close to 1 for high values of k (inducing a slowing of the convergence speed).
Yet, these facts are known for bounded domains and that they still hold for the unbounded domains is not
surprising.

Let us, now, skip to the modified Schwarz method for which h2m and h2m+1 have rather the following form:

h2m(r) = c2mr
k + d2mr

−k−1, h2m+1(r) =
{
a2m+1r

k, r ≤ R∗,
b2m+1r

−k−1, r ≥ R∗.
(27)

The computations, based on the transmission and the boundary conditions, show that (b2m+1)m obeys to the
recurrence

(b2m+3 − 1) =
1

1 + (1 + k−1)R2k+1
(b2m+1 − 1) = τ(k)(b2m+1 − 1). (28)

The new version of the Schwarz algorithm is relevant, (w2m+1)m converges toward u in W 1(ΩeΣ∗) and toward
zero in H1(ΩiΣ∗). Moreover, (w2m)m approaches u in H1(ΩeΣ) with the same rate τ(k). In addition to the
economy brought about by the modification of the classical algorithm, another important effect of it is that the
reduction factor does not depend on the location of the intermediary boundary Σ∗ (this is rigorously proved later
in Lem. 2.7). The convergence rate is expected to remain constant, for R∗ ∈ [1, R]. Notice also the strengthening
of the convergence speed, compared to the classical alternating Schwarz method, since τ(k) < ρ(k) except for
R∗ = 1, (i.e. Σ∗ = Γ). Besides, the iterating algorithm still converges when Σ∗ = Σ, and performs in general
better than the Dirichlet-Neumann algorithm apart from a very special situation that is R < 3

√
2 and for the

lowest frequencies k.

2.3. Geometrical convergence of the Schwarz algorithm

We set the functional framework involved in the variational interpretation of the Schwarz algorithm. Let V
be the Hilbert space H1(ΩiΓ) ×W 1(ΩeΓ) endowed with the norm

‖v‖V =
[(

1
|Γ|

∫
Γ

vi dγ
)2

+ ‖∇vi‖2
L2(Ωi

Γ) + ‖∇ve‖2
L2(Ωe

Γ)

] 1
2

,

where vi = v|Ωi
Γ

and ve = v|Ωe
Γ
. The associated semi-norm is

|v|V =
[
‖∇vi‖2

L2(Ωi
Γ) + ‖∇ve‖2

L2(Ωe
Γ)

] 1
2
.

The recurrence algorithm makes a mathematical sense and results in two coherent sequences (w2m+1)m ⊂ V
and (w2m)m ⊂ H1(ΩcΣ). The analysis begins by stating that the sequence (um = w2m)m does not depend on the
intermediary boundary Σ∗. As a consequence, proving the convergence of the Schwarz algorithm for Σ∗ = Γ,
guarantees the convergence for any Σ∗, with the same speed.

Lemma 2.7. The sequence (w2m)m defined by the Schwarz algorithm (11)–(13) and (17)–(20) or, in other
words, the sequence (um)m defined by the recurrence (22)–(24), is independent of Σ∗.
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Proof. We show that the Dirichlet condition (16) of w2m+2 on Σ remains unchanged for arbitrary Σ∗. Let
w̃2m+1 be defined such that

w̃2m+1(x) =
{
w2m+1(x), ∀x ∈ ΩiΓ ∪ ΩeΣ∗ ,
(w2m+1 + w2m)(x), ∀x ∈ ΩiΣ∗ \ ΩiΓ.

We check that ([w̃2m+1], [∂nw̃
2m+1]) = (0, 0) on Σ∗, and we have that ([w̃2m+1], [∂nw̃

2m+1]) = (w2m, g) on Γ.
Therefore w̃2m+1 is the unique solution of the transmission problem across Γ. The integral representation results
in

w̃2m+1(x) = w2m+1(x) = (KΓ(w2m
|Γ ) − VΓ(g))(x), ∀x ∈ Σ.

Plugging this in (16) yields the desired result. �

Likely, it is worth working in the space V for the theoretical issues. Therefore, we extend u ∈ W 1(ΩeΓ) by
zero in ΩiΓ to obtain a function in V . Similarly, w2m is extended by zero in ΩiΓ and by w2m−1 in ΩeΓ \ ΩcΣ.
The resulting function has no jump across Σ and belongs to V as soon as w2m−1 ∈ W 1(ΩeΓ). For the sake of
commodity, both extensions are still denoted u and w2m respectively. Using equations (1)–(3) and (17)–(20),
we have that

−∆(w2m+1 − u) = 0, in ΩiΓ and ΩeΓ,

[∂n(w2m+1 − u)] = 0, on Γ,
[(w2m+1 − u)] = w2m − u, on Γ,

∇(w2m+1 − u) = o

(
1
|x|

)
, at infinity.

We deduce the variational relation (we set V1 = W 1(R3))
∫

R3
∇(w2m+1 − w2m)∇v dx =

∫
Ωi

Γ∪Ωe
Γ

∇(u− w2m)∇v dx, ∀v ∈ V1.

Since (w2m+1 − w2m) belongs to V1, we obtain that

(w2m+1 − w2m) = PV1(u − w2m), (29)

where PV1 is the orthogonal projection on V1 with respect to the semi-norm | · |V (recall that actually, it is a
norm on V1 equivalent to ‖ · ‖V ). The complementary identity, that is (w2m+2 − w2m+1) is the projection of
(u− w2m), relies on the space

V2 =
{
v = (vi, ve) ∈ V, (ve)|Ωe

Σ
= 0

}
.

On one hand side (w2m+2 − w2m+1) belongs to V2, and on the other hand side the following value problem is
derived from (17)–(20) and (14)–(16)

−∆(w2m+2 − w2m+1) = −∆(u− w2m+1), in ΩcΣ ,

∂n(w2m+2 − w2m+1) = ∂n(u − w2m+1), on Γ,
(w2m+2 − w2m+1) = 0, on Σ.

It can be reformulated variationally by
∫

Ωi
Γ∪Ωe

Γ

∇(w2m+2 − w2m+1)∇v dx =
∫

Ωi
Γ∪Ωe

Γ

∇(u− w2m+1)∇v dx, ∀v ∈ V2.
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Taking into account that (w2m+2)i = ui = 0 in Γ, implies that

(w2m+2 − w2m+1) = PV2(u − w2m+1), (30)

PV2 being the orthogonal projection on V2 with respect to the norm ‖ ·‖V . Putting together (29) and (30) yields
the inductions

(u− w2m+2) = (I − PV2)(I − PV1)(u − w2m),
(u− w2m+1) = (I − PV1)(I − PV2)(u − w2m−1).

The proof that the error ‖u− wm‖V decreases toward zero can be obtained after checking that both operators
(I−PV1) and (I−PV2) are contractions. To achieve this, we proceed like P.-L. Lions (see [30]). First we consider
a function α ∈ D(R3) (0 ≤ α ≤ 1), supported in ΩiΓ ∪Ω

c

Σ with α = 1 in ΩiΓ. Then, for any v ∈ V , we have that

v = (1 − α)v + αv = v1 + v2 ∈ V1 + V2,

∫
Γ

vi dγ =
∫

Γ

(v2)i dγ.

As a result, there exists δ ≥ 1, depending only on α, such that

(|v1|2V + |v2|2V )
1
2 ≤ δ|v|V . (31)

Lemma 2.8. For any v ∈ V , we have

|v|V ≤ δ(|PV1v|2V + |PV2v|2V )
1
2 , (32)

where δ is the stability constant given by (31).

Proof. Let v ∈ V , we have that

|v|2V =
∫

Ωi
Γ∪Ωe

Γ

∇v∇v1 dx +
∫

Ωi
Γ∪Ωe

Γ

∇v∇v2 dx.

The definition of PV1 and PV2 leads to

|v|2V =
∫

Ωi
Γ∪Ωe

Γ

∇(PV1v)∇v1 dx +
∫

Ωi
Γ∪Ωe

Γ

∇(PV2v)∇v2 dx.

Cauchy-Schwarz inequality ends to

|v|2V ≤ |PV1v|V |v1|V + |PV2v|V |v2|V ≤ (|PV1v|2V + |PV2v|2V )
1
2 (|v1|2V + |v2|2V )

1
2 .

The stability (31) completes the proof. �
Remark 2.9. Since

∫
Γ(vi − (PV2v)i) dγ = 0, then

‖v‖V ≤ δ′(|PV1v|2V + ‖PV2v‖2
V )

1
2 , (33)

with δ′ = max(1, δ).

Proposition 2.10. The operators (I −PV1)(I −PV2) and (I −PV2)(I −PV1) are contracting with respect to the
semi norm | · |V , i.e. there exists a constant τ ∈ [0, 1[, such that : ∀v ∈ V ,

|(I − PV2)(I − PV1)v|V ≤ τ |v|V , (34)
|(I − PV1)(I − PV2)v|V ≤ τ |v|V . (35)
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Proof. We follow the same proof of Theorem I.1 of [30]. It is reproduced only for self-consistency. Applying (32)
to (I − PV1)v, yields that

|(I − PV1)v|V ≤ δ|PV2(I − PV1)v|V , ∀v ∈ V.

The triangular equality provides

|(I − PV1)v|2V = |(I − PV2)(I − PV1)v|2V + |PV2(I − PV1)v|2V , ∀v ∈ V.

Then

|(I − PV1)v|2V ≥ |(I − PV2)(I − PV1)v|2V +
1
δ2

|(I − PV1)v|2V , ∀v ∈ V,

from which we deduce (34) with τ = (1 − 1
δ2 )

1
2 < 1. Estimate (35) is proved in the same way. �

Remark 2.11. Using, in the previous proof, the estimate (33) instead of (32) shows that the operators of
iterations are also contractions with respect to the full norm ‖ · ‖V , that is

‖(I − PV2)(I − PV1)v‖V ≤ τ ′‖v‖V ,
‖(I − PV1)(I − PV2)v‖V ≤ τ ′‖v‖V ,

with τ ′ = (1 − 1
δ′2 )

1
2 < 1.

The consequence of Proposition 2.10 is that the approximating sequence (um)m converges toward the exact
solution u of the Laplace-Neumann.

Theorem 2.12. The Schwarz algorithm converges with a geometrical rate: there exists τ ∈ [0, 1[ such that

|u− wm|V ≤ C(u0)τm, ∀m ∈ N.

Therefore, it holds that
|u− um|H1(Ωc

Σ) ≤ C(u0)τm, ∀m ∈ N.

Remark 2.13. From Remark 2.11 we have that

‖u− wm‖V ≤ C(u0)(τ ′)m, ∀m ∈ N.

This tells that ‖w2m+1‖H1(Ωi
Γ) decays to zero like C(u0)(τ ′)m which is in agreement with the expectations.

Remark 2.14. Theorem 2.12 indicates that the convergence of the Schwarz algorithm is ensured for a fictitious
boundary Σ arbitrarily chosen provided that Σ ∩ Γ = ∅. The convergence speed depends on the size of the
overlapping region. It should be higher for thicker ΩcΣ. This is already seen for the analytical tests and will be
confirmed by some relevant numerical examples in Section 6.

3. The Laplace-Dirichlet problem in R
3

The Laplace-Dirichlet problem reads in the same words as the Laplace-Neumann equation, excepted for the
boundary condition prescribed on Γ. The data g being given in H

1
2 (Γ), we have to: find u satisfying

−∆u = 0, in ΩeΓ, (36)
u = g, on Γ, (37)

∇u = o

(
1
|x|

)
, at infinity. (38)
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Let us consider the subspace of W 1(ΩeΓ), after incorporating the homogeneous Dirichlet boundary condition

W 1
0 (ΩeΓ) =

{
v ∈ W 1(ΩeΓ), v|Γ = 0

}
,

and let RΓ be a stable extension from H
1
2 (Γ) into W 1(ΩeΓ) (see [10]). The variational formulation is based on

the introduction of an auxiliary unknown by the means of the decomposition u = u+RΓg, so that u ∈ W 1
0 (ΩeΓ)

is solution of ∫
Ωe

Γ

∇u∇v dx = −
∫

Ωe
Γ

∇(RΓg)∇v dx, ∀v ∈W 1
0 (ΩeΓ).

Writing down the Schwarz algorithm is realized as for the Neumann problem. The only difference is concerned
with the fictitious boundary condition imposed on Σ; which is expressed by a Neumann condition. Let
w0 ∈ H1(ΩcΣ) be an initial guess, then w2m+1 solves the transmission problem (17)–(20) and w2m+2 is such that

−∆w2m+2 = 0, in ΩcΣ, (39)

w2m+2 = g, on Γ, (40)
∂nw

2m+2 = ∂nw
2m+1, on Σ. (41)

After eliminating w2m+1, the Schwarz algorithm comes out with the construction of the sequence
(um)m = (w2m)m: find um+1 ∈ H1(ΩcΣ) such that

−∆um+1 = 0, in ΩcΣ, (42)
um+1 = g, on Γ, (43)

∂nu
m+1 = ∂n[KΣ∗(u

m
|Σ∗)] − ∂n[VΣ∗(∂nu

m
|Σ∗)], on Σ. (44)

The sequence (um)m being independent of the location of Σ∗ explains plainly why we restrict ourselves to the
case Σ∗ = Γ, for which the variational problem reads as: find um+1 = um+1 + RΓg ∈ H1(ΩcΣ) satisfying

∫
Ωc

Σ

∇um+1∇v dx = −
∫

Ωc
Γ

∇(RΓg)∇v dx

+
∫

Ωc
Γ

∇[KΣ∗(u
m
|Σ∗) − VΣ∗(∂nu

m
|Σ∗)]∇v dx, ∀v ∈ H1

0 (ΩcΣ).

Remark 3.1. Why not a Dirichlet condition on Σ?
There is a case which justifies why we do not impose a fictitious Dirichlet condition w2m+2 = w2m+1 on Σ. The
reason is based on an analytical example, for which the Dirichlet and the Neumann conditions are compared.
We resume the geometrical description of Section 2.2. We choose g = Y nk (θ, ϕ) so that the exact solution is still
u(r, θ, ϕ) = r−k−1Y nk (θ, ϕ). When a Dirichlet condition w2m+2

|Σ = w2m+1
|Σ is taken, the radial functions h2m and

h2m+1 have the form of (27) with the following recurrence formula

(b2m+3 − 1) =
1

1 −R2k+1
(b2m+1 − 1) = τ ′(k)(b2m+1 − 1).

The convergence of the sequence (b2m+1)m toward 1 is not guaranteed, unless R > 2k+1
√

2. Actually, for arbitrary
Dirichlet data, the iterative process converges to the solution u when the annular domain ΩcΣ has a minimal
thickness (R > 3

√
2).

Let us now turn to the case where w2m+2 is subjected to a Neumann condition ∂nw
2m+2
|Σ = ∂nw

2m+1
|Σ , the

relations allowing the full computation of the sequence (wm)m are exactly the same as (28). They conclude to
the geometrical convergence of the Schwarz algorithm without any assumption on the size of ΩcΣ.
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Again the convergence of the iterating Schwarz procedure (the convergence of (um)m toward u|Ωc
Σ

with respect
to the H1(ΩcΣ) norm) for the Laplace-Dirichlet problem comes under the variational theory by P.-L. Lions (see
[30]). Since they are close to the developments exposed for the Laplace-Neumann problem we do not reproduce
them. The readers can find the details of the geometrical convergence study in the thesis of F. Jelassi (see [24]).

Theorem 3.2. The sequence (um)m defined by the Schwarz algorithm converges geometrically fast toward u|Ωc
Σ
:

there exists a real number τ ∈ [0, 1[ such that

‖u− um‖H1(Ωc
Σ) ≤ C(u0)τm, ∀m ∈ N.

4. The Laplace problem in R
2

We give some hints about the modifications to be added to the Laplace problem as well as to the integral
representation formulas, in the two-dimensional case. First of all, the boundary condition at infinity expresses
that only the boundedness is enforced (see [13, 23, 44])

u = O(1) at infinity. (45)

That recalled, the functional framework should be reset. The appropriate Sobolev space of work is determined
by a two-dimensional specific weight

W 1(ΩeΓ) =

{
v;

v√
1 + |x|2 log(2 + |x|2) ∈ L2(ΩeΓ), ∇v ∈ L2(ΩeΓ)

}
.

The fundamental difference with the three-dimensional case is that all constant-functions belong to W 1(ΩeΓ);
the immediate consequence is that the semi-norm | · |W 1(Ωe

Γ) is not a norm any longer. The well posedness of
the Neumann-Laplace problem (1)–(2) and (45) requires the assumption

∫
Γ g dΓ = 0 for the existence, and the

spurious modes elimination for the uniqueness. We work, therefore, in the quotiented subspace

W 1
Γ(ΩeΓ) =

{
v ∈ W 1(ΩeΓ);

∫
Γ

v dΓ = 0
}
,

endowed with the semi-norm | · |W 1(Ωe
Γ) which becomes again a norm owing to the Hardy inequality (see [27,28]).

The associated weak problem reads in the same terms as (4). The integral representation, fitting to the two
dimensions, is given by

u(x) = C +
∫

Γ

ϕ(·)∂nG(x − ·) dγ −
∫

Γ

g(·)G(x − ·) dγ, ∀x ∈ ΩeΓ. (46)

The Green function is given by G(x) = − 1
2π log |x|. Notice that the condition

∫
Γ
g dΓ = 0, makes the constant C

in (46) to be the limit of the solution u at infinity, meaning that C = lim|x|→∞ u(x).
The description of the Schwarz method is restricted to the case where Σ∗ coincides with Γ. General config-

urations are handled by Lemma 2.7. The first subproblem on w2m+1, is composed of equations (17)–(19) and
the condition (45) at infinity. The second one on w2m+2, is provided by equations (14)–(16). The variational
interpretation is considered on the space V = H1(ΩiΓ) ×W 1(ΩeΓ) endowed with the norm

‖v‖V =

[(
1
|Γ|

∫
Γ

vi dγ

)2

+ ‖∇vi‖2
L2(Ωi

Γ) +

(
1
|Γ|

∫
Γ

ve dγ

)2

+ ‖∇ve‖2
L2(Ωe

Γ)

] 1
2

.

At each step with odd iteration number, we solve the variational problem corresponding to (17)–(19) and (45) to
obtain a unique solution w2m+1 ∈ H1(ΩiΓ) ×W 1

Γ(ΩeΓ). For the step with even iteration number, the weak form
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of equations (14)–(16) is still well posed in H1(ΩcΣ) and has only one solution w2m+2 ∈ H1(ΩcΣ). Also, we need
to split the space V into the sum V1 + V2 for the convergence study issues. Compared to the three-dimensions,
the space V1 is changed to

V1 =

{
v ∈W 1(R2);

∫
Γ

v dγ = 0

}
,

while V2 is kept as it is defined in three dimensions. We observe the basic facts that

‖v‖V1 =

[
‖∇v‖2

L2(R2) +

(
1
|Γ|

∫
Γ

ve dγ

)2] 1
2

is a norm on V1 which is equivalent to ‖ · ‖V and that

‖v‖V2 =

[(
1
|Γ|

∫
Γ

vi dγ

)2

+ ‖∇vi‖2
L2(Ωi

Γ) + ‖∇ve‖2
L2(Ωe

Γ)

] 1
2

determines a norm on V2, equivalent to ‖ · ‖V . The corresponding inner products allows us to define the
orthogonal projections PV1 and PV2 on V1 and V2. That (29) and (30) still hold is verified by checking that the
same methodology still works. In consequence, all the results proved in the three dimensional case are valid.
We refer to [24] for exhaustive details.

Switching to the practical aspects, we discuss how the algorithm is implemented. The recurrence formula on
(um = w2m)m is exhibited by eliminating w2m+1 from the process by using the integral representation

w2m+1(x) = cm +KΓ(w2m
|Γ )(x) − VΓg(x), ∀x �∈ Γ.

The constant cm ensures that
∫
Γ
w2m+1
e dγ = 0. This results in the following construction of (um)m; um satisfies

the Laplace equation (22), the Neumann condition (23) on Γ, and the artificial Dirichlet condition

um+1 = cm +KΓ(um|Γ)(x) − VΓg(x), on Σ.

Actually, in our programming we proceed in a slight different way. At each iteration, the constant cm is ignored,
then an intermediary solution of the Neumann-Dirichlet-Laplace problem is computed, say ũm. At convergence,
we obtain um by subtracting a constant from ũm in order to enforce

∫
Γ
um+1 dγ = 0.

5. Some extensions

The Schwarz algorithm can be successfully extended to handle many exterior problems, such as the viscous
fluid flow around an obstacle governed by the Stokes and/or the Navier-Stokes equations (see [14,40]). Deriving
a relevant outflow condition on the fictitious boundary of the truncated computational domain is an up-to-date
question. Our algorithm may help to clarify such a point, at least for some special geometries. It may, also, be
a performing computational tool of the displacement, stress and strain tensors for linear elastostatical problems
in unbounded structures. We can go forth in the enumeration of interesting examples of physical systems, but
we stop it here and we refer to the Ph.D. work of F. Jelassi for further developments, in particular for the eddy
currents in electro-technical models (see [24]). Because of the lack of space, we only describe how to apply the
Schwarz method for the Laplace problem with a source term and how to rewrite it in a half space.

5.1. How to handle the source terms?

In the theory detailed above, we did not take into account possible volume sources. Their presence in many
physical models may cause some trouble in the statement of the Schwarz algorithm, and need to be clarified.
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The variable u may describe an electrostatic potential created, in part, by volume charges. These sources lay,
most often, in a located region and are represented by a function f ∈ L2(ΩeΓ), compactly supported. The partial
differential equation (1) is modified to

−∆u = f, in ΩeΓ,
the Neumann condition and the infinity condition are not changed. The sequence (um)m provided by the
Schwarz procedure, is calculated by recurrently solving the Poisson problem on the truncated domain: find
um+1 ∈ H1(ΩcΣ) such that

−∆um+1 = f, in ΩcΣ,
∂nu

m+1 = g, on Γ,
um+1 = fΣ∗ � G+KΣ∗(u

m
|Σ∗) − VΣ∗(∂nu

m
|Σ∗), on Σ.

The symbol � stands for the convolution operator. A particular care should be paid to the determination of the
function fΣ∗ = χΩe

Σ∗
f , which is the trivial extension of f|Ωe

Σ∗
to the whole space. Interpreting the algorithm

as a domain decomposition iterative solver can be realized in the same spirit as when f = 0. This allows us to
establish the convergence of (um)m toward u ∈ H1(ΩcΣ) geometrically fast.

5.2. How to express the Schwarz method in the half space?

We continue with the Poisson problem set in an unbounded domain which is assumed to be a part of the half
space. The purpose is to explain how, by the means of the method of images (also called the reflexion method,
see [19, 23]), we can formulate the Schwarz scheme in a form liable to scientific implementations. Let then Ωe

and Ωi be a partition of the upper half space R
3
+ = {x ∈ R

3; x3 > 0}, Ωi is bounded and Γ stands for the
common boundary to both sub-domains. We denote by Γ0 the portion of the boundary ∂Ωe located in the plan
x3 = 0. The problem we are concerned with consists in: finding u such that

−∆u = 0, in Ωe, (47)
∂nu = g, on Γ, (48)
u = 0, on Γ0, (49)

∇u = o

(
1
|x|

)
, at infinity. (50)

Notice that, the method of images is based on symmetrization techniques, odd or even according to the nature
of the boundary condition on Γ0, allows to derive some integral representation formulas adapted to the half
space. The solution u may be expressed as follows

u(x) =
∫

Γ

u|Γ(·)∂nGD(x, ·) dγ −
∫

Γ

g(·)GD(x, ·) dγ, ∀x ∈ Ωe. (51)

The Green function GD is defined to be (see [23])

GD(x,y) =
1

4π|x − y| −
1

4π|x − y−|
, ∀x,y ∈ R

3
+, x �= y,

where y− = (y1, y2,−y3) is the point found by reflecting y = (y1, y2, y3) across the (x1, x2)-plan, y− is said to
be the image of y. Writing down the Schwarz algorithm is based on a fictitious boundary Σ surrounding the
obstacle Γ. The Poisson equation, to be solved repeatedly, is set on the bounded domain Ωc (the truncated
domain delimited by Γ, Σ and Γ0 ∩ Ωc); it is composed of equations (47)–(49) and the artificial Dirichlet
condition,

um+1(x) =
∫

Γ

um|Γ(·)∂nGD(x, ·) dγ −
∫

Γ

g(·)GD(x, ·) dγ, ∀x ∈ Σ.
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The convergence of the algorithm, with a geometrical rate, can be stated following the lines exposed above (see
[24], for details).

Remark 5.1. The Dirichlet condition on the boundary Γ0 may be replaced by the Neumann condition
(∂nu = 0). Only some minor modifications have to be introduced. Among them, a suitable adaptation of
the Green function should be considered

GN (x,y) =
1

4π|x − y| +
1

4π|x − y−|
, ∀x,y ∈ R

3
+, x �= y.

6. A brief numerical discussion

The observations made, after the analytical calculations presented above, need to be validated by a numerical
investigation. We consider some examples to check the reliability of our approach, (combined with a finite
element procedure) and to illustrate the geometrical convergence rate of the Schwarz algorithm in the discrete
context. A more systematic study of the Schwarz approach for additional models can be found in [24]. Let
us mention that the overall finite element calculations use the Code MELINA (developed by the team of
D. Martin at the University of Rennes I, see [34]) in which F. Jelassi added the specific procedures necessary
to the Schwarz algorithm. All the numerical tests are realized in a simple precision calculations and we start
up the Schwarz algorithm from the initial datum u0 as indicated in Remark 2.3.

Before discussions, we indicate that the overall curves, plotted below, depict the variation of the relative gap
between two consecutive iterates (computed by the Schwarz algorithm) with respect to the iterations number.
Studying these curves so as to draw some informative conclusions about the reliability of the iterative method
has become a classical methodology. To illustrate the accuracy of the Schwarz solution uSc = um

∗
(the one

obtained after the convergence has been established, at iteration m∗), we give the measure of the error (u−uSc)
for all the tests addressed here. When the exact solution u is not available to us, we compare uSc to the coupled
solution uCo, obtained by solving the (FEM/BEM) problem (8), which is well known to be a satisfactory
approximation of the exact solution.

We start by the numerical simulation of the complex valued function

f(z) = log
(
z − 0.2
z + 0.2

)
,

where the canonical form of the complex z is given by z = x1 + ix2, log is the principal determination of the
complex Logarithmic function and f is the complex potential of the Rankine irrotational flow around the source
(0.2, 0) and the sink point (−0.2, 0) (see [6, 15]). The real part ϕ(x1, x2) = 
f(z) is the velocity potential
and is computed as the solution of a Poisson-Neumann problem set in ΩeΓ (the complementary of the obstacle
ΩiΓ =] − 0.25, 0.25[×] − 0.05, 0.05[), the imaginary part ψ(x1, x2) = �f(z) represents the stream-function of
the flow and satisfies a Poisson-Dirichlet equation. The boundary condition in both cases is written using the
integral representation on the obstacle boundary Γ = ∂ΩiΓ. All two-dimensional computations are realized by
linear triangular finite elements.

The first computations on ΩcΣ which is constantly symmetric with respect to both x1- and x2-axis are involved
in the potential ϕ for different rectangular choices. The fictitious boundary Σ is thus perfectly characterized
by its length and width (�, w). In the left panel of Figure 3, are depicted in a semi-logarithmic scale, the linear
regression of the curves, indicating the behavior of the gap (with the discrete �2-norm) between two consecutive
computed potentials (‖ϕm+1 − ϕm‖�2) with respect to the iterations number (m). Their structures seem in
agreement with the theoretical predictions; indeed a geometrical convergence rate is shown. Furthermore, we
observe that the convergence is faster for larger domains of computation.

Now, we investigate the reduced simulations as described in Section 5.2 where we exploit the symmetries of
the problem. The function ϕ is oddly and evenly symmetric with respect to the x1- and x2-axis. A relevant
choice is to achieve the calculations only in a quarter part of the domain ΩcΣ. We enforce a Dirichlet condition
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Figure 3. The convergence curves of the potential ϕ (the left panel) and for the stream-
function ψ (the right panel).

Table 1. Relative gaps between (ϕ, ψ), the exact solutions and (ϕSc, ψSc) computed by the
Schwarz method using both symmetries (corresponding to (NE)–panels in Figs. 4 and 5).

(�, w) (0.6, 0.2) (1, 0.5) (2, 1) (3, 1.5)

‖ϕ−ϕSc‖�2

‖ϕ‖�2
0.0107 0.0093 0.0081 0.0075

‖ϕ−ϕSc‖�∞
‖ϕ‖�∞

0.0168 0.0145 0.0135 0.0131

‖ψ−ψSc‖�2

‖ψ‖�2
0.0014 0.0008 0.0003 0.0003

‖ψ−ψSc‖�∞
‖ψ‖�∞

0.0060 0.0033 0.0014 0.0017

on the x1–axis and a Neumann condition on the x2–axis. In Figure 4, are drawn the isolines of ϕ that are
obtained by four different computations (when (�, w) = (1, 0.5)). The (SW)2 panel represents ϕ in the quarter
of ΩcΣ located in R−×R−, resulting from a simulation in the whole domain. The (SE) panel plots ϕ, calculated
by using the odd-symmetry, the computations are then realized for the domain ΩcΣ∩(R×R−). The (NW) panel
depicts ϕ in the quarter of ΩcΣ located in R− × R+, provided by a simulation exploiting the even–symmetry.
The final (NE) panel is obtained by calculations that take into account both symmetries. The regularity of the
isolines distribution and the apparently perfect even and odd symmetries, readily confirmed by the evaluation of
some relevant indicators reported in Table 1 and are encouraging to carry out reduced computations whenever
it is possible.

The simulation of the stream-function ψ is obtained by solving the Poisson-Dirichlet equation in ΩeΓ keeping
unchanged the meshes used in the previous calculations. The observations that can be drawn from the Figures 3
and 5 are very similar to those made for the Neumann condition on the obstacle. In fact, the error curves depicted
in the right diagram of Figure 3 illustrates a geometrical convergence of the Schwarz method. Moreover, Figure 5
and the two last rows of Table 1 show that the use of the symmetries to solve reduced problems benefits to the
computational complexity.

2 For South–West panel.
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Figure 4. Isolines of the Rankine potential function ϕ. Each quarter is simulated by a different
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used, for the panel (NW) the x2-symmetry is used, for the panel (SW) none of the symmetries
is used and for the panel (SE) the x1-symmetry is used.
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Figure 5. Isolines of the Rankine stream-function ψ obtained by reduced computations. The sym-
metries of ψ are dual to those of ϕ (see Fig. 4).

For an additional checking of the Schwarz approach, we conduct two elementary numerical experiments for
the three-dimensional Poisson-Neumann problem. Our ultimate goal is to put emphasize on the geometrical
convergence of it.
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Figure 6. The Schwarz convergence curves for uSc and vSc in three-dimensions. Reduced
computations are achieved in the quarter of the spheroid owing to the symmetries.

Table 2. Relative errors (u − uSc) and (vCo − vSc) with respect to the �2- and �∞-norms.

‖u−uSc‖�2

‖u‖�2

‖u−uSc‖�∞
‖u‖�∞

‖vCo−vSc‖�2

‖vCo‖�2

‖vCo−vSc‖�∞
‖vCo‖�∞

Full computations 0.0024 0.0092 0.45 × 10−6 0.14 × 10−5

Reduced computations 0.0028 0.0071 0.52 × 10−6 0.18 × 10−5

One corresponds to the exact solution

u(x) = u(x1, x2, x3) =
1√

(x1 − 0.5)2 + x2
2 + x2

3

,

and the solution of the other, denoted by v, is specified by the Neumann condition

∂v

∂n
= (cos(2π(x1 − 0.5)), sin(2πx2),−x3) · n.

Notice that we have not a closed form of v; we then consider vco as the reference solution to which vSc is to be
compared. The exterior domain is the complementary part of the unit ball. The fictitious Dirichlet condition is
applied on the sphere centered at the origin and of radius 1.2. The computational domain is then the spheroid
of double radii 1 and 1.2. Moreover, in both cases, the even symmetries with respect to the plans x2 = 0 and
x3 = 0 may be taken into account to run the calculations only in a quarter of the spheroid (the one located
in the quarter-space x2 ≥ 0 and x3 ≤ 0). The approximated solutions uSc, vSc and vCo are obtained by using
quadratic prismatic finite elements. In Figure 6 are plotted, for both tests, the convergence historic for reduced
and full computations. Table 2 displays the accuracy of the solutions uSc and vSc compared to u and vCo

respectively. The curves illustrate again the geometrical convergence rate of the Schwarz approach in both
examples and can be exempted from any further comments.
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7. Conclusion

The adaptation made on the original Schwarz method, to fit the particular features of the exterior problems,
does improve its capabilities. It enables us to resort to suitable integral representations for solving the sub-
problems containing the condition at infinity. The analysis and the numerical discussion in this contribution
increase the efficiency of the Schwarz approach while saving valuable computational time. The main advantage
of the new method is that any scientific program, dealing with boundary value problems in bounded domains,
can be transformed to take into account exterior problems, by simply adding some elementary procedures of
regular integral representations. The remaining challenge is to assess the ability of this tool to approximate
more relevant models, such as the eddy current equation or the Maxwell system. For further details in many
formulations of the (Schwarz) algorithm and numerical discussion in the case of the electro-technical problems,
we refer to F. Jelassi’s Ph.D. thesis [24].

Acknowledgements. We are indebted to Dr D. Martin, from the Université de Rennes, to whom we address our special
thanks, for his valuable help and for providing us with his Computing Code MELINA.
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