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CHARACTERIZATION OF THE LIMIT LOAD IN THE CASE
OF AN UNBOUNDED ELASTIC CONVEX

ADNENE ELYACOUBI! AND TAIEB HADHRI!

Abstract. In this work we consider a solid body  C R® constituted by a nonhomogeneous elasto-
plastic material, submitted to a density of body forces Af and a density of forces A\g acting on the
boundary where the real A is the loading parameter. The problem is to determine, in the case of an
unbounded convex of elasticity, the Limit load denoted by X beyond which there is a break of the
structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri, RAIRO: Modél.
Math. Anal. Numér. 29 (1995) 391-419]. Then assuming that the convex of elasticity at the point
x of Q, denoted by K(x), is written in the form of K”(z) 4+ RI, I is the identity of R%s,m, and the
deviatoric component K” is bounded regardless of x € Q, we show under the condition “Rot f # 0 or g
is not colinear to the normal on a part of the boundary of Q”, that the Limit Load A searched is equal
to the inverse of the infimum of the gauge of the Elastic convex translated by stress field equilibrating
the unitary load corresponding to A = 1; moreover we show that this infimum is reached in a suitable
function space.
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1. THE HENCKY’S PROBLEM FOR A NON-HOMOGENEOUS ELASTOPLASTIC STRUCTURE

Using the notations and the operators given in [5], the Hencky’s problem is given by the following system:
find a tensor o and a displacement u such that

dive=Af a.e in
oc-n=Ag on I
u=1uy on I} (1)

o(x) = Ty (A E@)(@))

Here:
(e ) = = <ij<
e(u) = (g45(u)) and e5(u) 5 (&fcj + 8:@-) for 1 <4,5<3
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A1 the inverse matrix of A,, A, defined for n = (1;j)1<; j<3 € R by:

(Az(n))ij = mﬂkk(@% + f@)mﬂ?

Ko(z) = ax) + 2#7(1) where « and p are the Lamé coefficients.

We suppose that:
(Hy) T'1 UTg = 0 the boundary of Q with (I';) # 0 and the interiors of 'y and Ty satisfy TY N T =0
(H3) K () is a closed convex part of R, and Jc > 0 such that:

sym
B(0,¢) C K(z) a.e. in Q.
Here: ngm ={X = (z11, 212, T13, T21, T22, T23, T31, L32, T33),Ti; € Rfor 1 <i<3;1<j<3and zy; =xj}
(Hs) g € (L=(T'1)), f € (L*(€2))* such that:
3§ € (L>®(09Q))*, g=gonT; and /fdx + / gdll =0
Q 0

(Hy) K(z) = KP(x) + RI and 3M > 0 such that:
KP(z) € B(o,M) a.c. in Q.
We define the following set K,q4:

Kaa = {n € (L*())) such that n(z) € K(x) a.e. in Q}. (2)
It is clear that K4 is a closed convex of (L2?(£2))2.

We define now the Quasi-elastic problem:
Find a tensor ¢¢ and a displacement u® satisfying:

dive® =f a.e inQ
c¢-n=g¢g ondf)
of(x) = <A(xl)(5(ue)(:£))> a.e. in Q.

Referring to [3], the above problem has a solution (c¢,u®), which is unique within a rigid body displacement
for u®, since f and g satisfy (H3); moreover, we have the following proposition.

(3)

Proposition 1. We assume that f and g satisfy (Hs), then we have:

o® € L=¥(Q,RY, ).

sym

Proof. According to [3], we have 0¢ € (W14(2))? and according to [1] we conclude that: o¢ € L>(Q,R?, ). O

sym

2. CHARACTERIZATION OF THE LIMIT LOAD 5\

Definition 1. Considering the functional F' defined on Vj:

V= {ne L*(RY ) such that divy=0 ae. in Qandn-n=0onT;} (4)

sym

by:
F(n) = Jr,q(0° —n) (5)
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where, Jg,, is the gauge of K,q defined by:
Jk,, (o) =inf{s > 0 such that «a(z) € s.K(x) a.e. in Q}. (6)

Then we have:

Proposition 2. The functional F is l.s.c (lower semicontinuous) on Vy for the weak topology of LQ(Q,ngm)
and we have: F(n) = F(nP).

Proof. The functional F' is Ls.c for the strong topology of L*(€,R?,,,) and according to [2] we have F is Ls.c
on V; for the weak topology of L*(Q,RJ, ).
On the other hand K,4 is, according to (Hy), unchanged in the direction of the spherical stress, then we

have: F(n) = F(nP). O
Definition 2. The Limit Load X is defined in [5] by:

A = sup{\ > 0 such that Dy # 0} (7)

where
diveo—Af =0 a.e in Q
Dy=<(o€ LQ(Q,ngm) such that o-n =Ag on Iy . (8)
o(z) € K(x) a.e. in Q

Then we have the following theorems:

Theorem 1. Under the hypotheses (Hy),(Hz) and (Hs) we have:

(i) If inf F(n) =0, then = 4o0.
nevy
1

inf F(n)
Inf. (n)

(ii) If inf F(n) #0, then =
nevi

Proof.
1. Proof of (i).
We assume that:

nf F(n) = 0. (9)

Let A > 0, and let us show that X\ > ).
There exists n € V4 such that F(n) < 1 and according to (5) we have:

>| =

JKad (Ue - 77) <

Using (6) we obtain:

1
(c¢—n) e XKad-

and then
Mo® —n)(z) € K(z) a.e. in Q. (10)
On the other hand, we have: div(A(c® —n)) = A(dive® — divn).
Using (3) and (4) we conclude:
diviA(e® = 1)) =Af in Q, (11)
and
Ao®—=mn)-n=2Ag on I (12)



640 A. ELYACOUBI AND T. HADHRI

From (10)—(12) we obtain: A\(6® —n) € Dy, and according to (7) it is clear that:

A> A

We finally conclude that:

2. Using the same idea, we prove (ii). (]
We now distinguish these two cases:

Theorem 2. Under the hypotheses (H1),(Hsz),(Hs) and (Ha) the following statements (i) and (ii) are
equivalent:

(i) In € V1 such that F(n) =0.

(ii) The following problem (Py) has at least one solution

Find o in W12(Q) satisfying:
(P)S Va =—f in Q (13)

an=—g on I'.

Proof.
1. Assume there exists n € V5 such that F'(n) = 0, then according to (5) we have

Ik (0 = 1) =0, (14)
which implies, using (6):
inf{s > 0 such that (0¢—n)(z) € sK(z) a.e. in Q} =0;
and using (H,) we have:
inf{s > 0 such that (¢°—n)?(z) € sKP(x) a.e. in Q} =0,
which implies:

Sp — 0
n—-+o0o

sy, > 0; (Sn)nen independent of z and such that: < and
(0¢ —n)P(z) € 8, KP(x) a.e. in Q.
Then we can write:
(09)P(z) =nP(z) a.e. in Q, (15)
and then: ,
n(x) = ()7 (x) + el
and so:
. . D (1
divny = div(c®)” + div (gtrnl) .
But n € V1, then divy =0, which gives using (3):

Va = 7f7 (16)
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— 1 e
where a = 3(trn — tro®).

It is clear that o € L?(Q) and Va € (L?(Q2))? which implies that o € W12(Q).
On the other hand, using (4) we obtain:

n-n=0 only,
then
1
(nD + gtrnI> -n=0 only,

which can be written using (15) as:

1
((O'e)D + gtrnI) n=0 on Iy

or
1
((06) + g(t”? - trae)I) ‘n=0 on Iy
and using (3), we have:

1
<§(trn — trae)I) -n=—g only,

that means:
a-n=-—g onl;

and using (16) we conclude the first implication.

2. Assume now that (P) has at least one solution in W2(Q), then there exists o € W2(Q) such that:

Va = —f inQ

and
a-n=—g onlj.
Then, let
n=oc°+al.
So, we get:

ne L*(Q,RY,,) and divy = dive® 4 Va.
According to (17) and (3) we obtain:
divp =0 in .

Let us show now that n-n=0onT}.
Let ¢ € W12(Q2) be such that ¢/((9Q)\I'1) = 0, we have for i € {1,2,3}

/T}ngf)d:L':*/ divniqbd:ch/ n'.n.¢dl’
Q Q Iy

where 1’ is the vector line of 7.
Using (18) and (20) we obtain:

/Fl n'.n.¢pdl = /Q(Ue)i-v¢dx+/9(al)iv¢dx.

641

(17)
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Then since ¢/((O)\I'1) =0,

/n ni.n.cz)df‘:—/Q(divae)iqﬁdx+/F1(ae)i.n.¢>df‘—/Q(Va)iqbdx—i—/r (c.n;)edT.

1

And then according to (3) and (17) we have:

jﬁfn40¢dfzza

The statements (19)—(21) prove that n € V;; moreover, we have:

Then
neVy and F(n) =0.

Moreover, we have the following theorem:

Theorem 3. Under the hypotheses of Theorem 2, we have:

If Rotf #0, then inf F(n) #0.
nevy

Proof. Assume that there exists a sequence (1), € Vi such that F(n,) —— 0.

n—-+o0o
Then, according to (5) we have:

JKoa(0® = 0n) ——— 0
n—-+o0o

oy — 0
and then 3o, > 0 (o, independent of x) such that: andnHJroo
(0¢ —nu)P(2) € anKP(z) a.e. in Q.
This gives, according to (Hy):
nP ——— (6°)P  a.e inQ

n——+oo
and
7;5 4? (ae)D in D’(Q).
Then:

divn? e div(e®)?  in D'(Q),
n—-+0oo

which can be written:

1
div (nn - §t1"77n-[> — [n — +ooldiv(c®)?  in D'(Q);

but according to (4) we have div(n,) = 0, then:

1
div <§trnn.1) ——div(e®)?  in D'(Q),

n—-+4oo

or also
v <§<tr(nn - trae)> — [n— +ocldiv(e®) in D(€),

(21)
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which implies:

RotV <%(tr(nn - trae)> — [n — +oc]Rot(div(e®))  in D'(Q).
Using RotVé =0 V4§ € in D'(Q) we obtain Rotf = 0, which concludes the proof. O
Corollary 1. Under the hypotheses (H1), (Hz), (H3) and (Hy) we have:

- 1
I = - .
f Rotf# 0, then A ot F(n)
nevi

Proof. Results from Theorems 1 and 3. O

In Theorem 3 we have characterized the Limit load A; and we have shown that Rotf # 0 is a sufficient

condition to prove that A = m; but this condition is not always satisfied by the volumic force f. In
n 1

the case where Rotf = 0, we introduce in the following a condition on the boundary force g to show the same

characterization of the Limit load.

Theorem 4. Under the hypotheses (H1), (Hz), (Hs), (Hy) and if we assume that Rot f# 0 or g satisfies:
Cy, : 3dBCTy, meas(B)#0 such that gAn#0 on B (22)

(which means that g is not colinear to the normal on B).
Then, we have:

F(n)#0 Vne V1.

Proof. The result is deduced from Theorem 2. O
In the following part, we will prove, by adding a condition on the open set €, that A\ = m under
hypothesis Rot f # 0 or g satisfying Cy given above and that inf,cyv, F'(n) is reached on V;.
3. AN EXISTENCE RESULT OBTAINED BY EXTENSION OF ()
3.1. Problem obtained by extension of (2
We assume that ) satisfies:
There exists an open set €y C R? such that:
QCQ
Qo is convex ; Qp\ is connex
(23)

22N (0(2\Q2)) =Ty
and

Vo € WH2(Q),3p; € WH2(Q0\Q) such that: ¢ = ¢1 on Ty,

Let now (1), be a minimizing sequence of F(n) on V; and let 7},, be defined by:

~ Mn in Q
Tn = . (24)
0 in Q\Q.
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Then we have the following results:

Lemma 1. We assume that (23) is satisfied, then we have:
div g, =0 mn Q.
Proof. Let ¢ € D(Qp), we have:

/Q 0 (diviit )pdx = — / it Vda.

Qo
This means:

[ v iiyods = [ givots— [ ot
Qo Q Qo\Q2

and according to (24) we obtain:
/ (divij ) pda = / divy, pdx — / (Nn'.n)pdT .
Q0 Q a0
But ¢ belongs to D(€p) then ¢ =0 on 9Q\I'y and (n,), € Vi, and we get:
/ divii’, ¢dx = 0, for all ¢ € D(€Qp) and for all 1 < i < 3,
Qo

which allows us to conclude:
diviy, =0 in Q. O

Remark 1. Let (9,)nen be a minimizing sequence of F(n) on V;, then we have:
Jk,,(0¢ —n,) < Const.

Using Proposition 2 and the property (Hy), we obtain:

| ny L (o,rs,,,)< Cte for all n € N. (25)
Then, let:
D .
M in Q
- \D
- 26
(7n) {0 in Qp\Q. (26)
We obtain:
(72 )n is bounded in L>(Qo,RY,,,), then there exists a subsequence of (732),, (denoted also (73}),) and there
exists o9 € L?(Q0,RY,,,) such that:
(7)) — o0 weakly in L*(Q0,R3,,)- (27)

Lemma 2. Under the hypotheses (Hy), (Ha2), (H3), (Hy) and assuming that §) satisfies (23), we have:
Rot(diveg) =0 in o,

where aq is the element of L*(Qo,RY,,.) given by (27).

sym
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Proof. Using (27) we get:
—U°—> in D/(Qo),
n—+oo
which implies:
div(ij,)? ——— diveg  in D’(Q)

n——+oo
and
Rot(div(ﬁn)D)

Rot(divag) in D'(Q),

n—-+o0o

but we have: )
div(i,)? = divij, — 3V (trijn).

Then according to Lemma 1.1, we obtain:
. - \D 1 -
Rotdiv(7,)" = —grotV(trnn) Vn € N.

Finally, we conclude from (28) that:
ROt(diVO'()) =0 in D/(Qo)

3.2. An existence result
Firstly, we begin by the following result:
Lemma 3. Let Qg be an open convex set of R™ and let v € (H~1(Q0))? satisfying:

Rot v=0 in .
Then there exists a unique ¢ € L*(Q0)/R such that:
Vg =v.

Proof. See [5].

645

(28)

O

Remark 2. We remark that divoy cannot always be equal to 0 and on the other hand we search a stress o
which achieves in‘ﬁ F(n), so we will change the spherical component to have a stress o satisfying dive = 0.
nevi

That is the purpose of the following paragraph.
Lemma 4. Under the hypotheses of Lemma 2 we have:
dive = 0 mn Qo

HUGLQ(QO,ngm) such that ol = oF in Qo
o 0 in Qo\Q.

Proof. Using Lemmas 2 and 3 we get: 3¢ € L?(£)/R such that :
diveg = —Vq in D'(Qo).
And according to (24) and (27), we deduce:
oo =0o0n Q\Q,

then
diVO’O =0on Qo\Q
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This proves that:
Vg=0 on Q\Q.
We have, using (23), 2\ is connex, and then:

q= C1 on Qo\Q (Cl c R),

so we can choose C; = 0.
Then, let o € L?(2,RY, ) be defined by:

sym
o =00+ ql;

we have
oc=0on Q\Q.
From (30), (32) and (33) we conclude the result.

We can now prove the main theorem:

Theorem 5. Under the hypotheses (H1), (Hz), (Hs), (Hs) and assuming that Q@ satisfies (23),
there exists o1 € V1 such that

Flo) = inf F(n).

so the infimum of F' is achieved on Vj.

Proof. Let (0 )nen be a minimizing sequence of F on Vi, o given in the Remark 1.
Let 01 = 0/ where o is given by (29); we have:

o1 € (LX(Q)5,

and:
dive; = (dive)/Q2=0 in Q.
So,
diver =0 in €.

Let us prove that 0y.n =0 in I'y, it is equivalent to prove:
/ (o1.n)¢dT = 0 Y € WH2(Q) be such that ¢/(OQ\I';) = 0.
I'y
Then let ¢ € WH2(Q0\Q) be such that ¢;/T; = ¢/I'1, and let 6 be defined by:
Tl in Qo\Q.
We have, due to the trace theorem for ¢ on the two sides of 'y = dQ N (9(Q\Q)):

b € WH2(Qp).

On the other hand, we have:

(34)
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which implies, according to (33):

/Q osld)r = /Q o.2(¢)de
_ /Q (dive).ode + / (01.1)dT.

o0

Using dive = 0 in )y, we obtain:

/QO o.e(¢)dx = /m(al.n)qbdr.

/Q osd)dr = /F (o1 m)or

This means according to (36) that:

‘We have on the other hand:

| et~ [ aivo)as+ [ @maar.

0Q0

So, using properties (29) and (36), we deduce that:

/ o.e(¢p)dx = 0.
Qo
From (37) and (38), we conclude that:
/ (01.n)pdl’ = 0 Yo € WH2(Q) such that ¢/(9Q\I';) = 0.
Iy

This proves that:
or.m=0 onl;y.
We conclude from (34), (35) and (39) that:
o, € V.

Using Proposition 2 and (n,,”),, converge to oo” weakly in L*(Q,R%,,,), we have:
F(o1) < imF (1),

or also:

<i .
Fow) < inf F(n)

We finally conclude from (40):

F(o1) = "Iiél‘f/‘l F(n).

Corollary 2. Under the hypotheses of Theorem 5 we have:

If Rotf #0 in Q or (22) is satisfied by g

647
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then ) )
3 h that: X = = ~
o1 € V1 suc a f F(n) F(O’l)
nevi
Proof. The result is deduced from Theorems 4 and 5. O
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