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CHARACTERIZATION OF THE LIMIT LOAD IN THE CASE
OF AN UNBOUNDED ELASTIC CONVEX

Adnene Elyacoubi
1

and Taieb Hadhri
1

Abstract. In this work we consider a solid body Ω ⊂ R
3 constituted by a nonhomogeneous elasto-

plastic material, submitted to a density of body forces λf and a density of forces λg acting on the
boundary where the real λ is the loading parameter. The problem is to determine, in the case of an
unbounded convex of elasticity, the Limit load denoted by λ̄ beyond which there is a break of the
structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri, RAIRO: Modél.
Math. Anal. Numér. 29 (1995) 391–419]. Then assuming that the convex of elasticity at the point
x of Ω, denoted by K(x), is written in the form of KD(x) + RI, I is the identity of R

9
sym, and the

deviatoric component KD is bounded regardless of x ∈ Ω, we show under the condition “Rot f �= 0 or g
is not colinear to the normal on a part of the boundary of Ω”, that the Limit Load λ̄ searched is equal
to the inverse of the infimum of the gauge of the Elastic convex translated by stress field equilibrating
the unitary load corresponding to λ = 1; moreover we show that this infimum is reached in a suitable
function space.
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1. The Hencky’s problem for a non-homogeneous elastoplastic structure

Using the notations and the operators given in [5], the Hencky’s problem is given by the following system:
find a tensor σ and a displacement u such that






div σ = λf a.e. in Ω
σ · n = λg on Γ1

u = u0 on Γ0

σ(x) = ΠK(x)

(
A−1

(x)(ε(u)(x))
)

.

(1)

Here:

ε(u) = (εij(u)) and εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

for 1 ≤ i, j ≤ 3
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A−1
x the inverse matrix of Ax, Ax defined for η = (ηij)1≤i,j≤3 ∈ R

9 by:

(Ax(η))ij =
1

9K0(x)
ηkk(x)δij +

1
2µ(x)

ηD
ij

K0(x) = α(x) + 2µ(x)
3 where α and µ are the Lamé coefficients.

We suppose that:
(H1) Γ1 ∪ Γ0 = ∂Ω: the boundary of Ω with (Γ1) �= 0 and the interiors of Γ1 and Γ0 satisfy Γ0

1 ∩ Γ0
0 = ∅

(H2) K(x) is a closed convex part of R
9
sym and ∃c > 0 such that:

B(0, c) ⊂ K(x) a.e. in Ω.

Here: R
9
sym = {X = (x11, x12, x13, x21, x22, x23, x31, x32, x33), xij ∈ R for 1 ≤ i ≤ 3; 1 ≤ j ≤ 3 and xij = xji}

(H3) g ∈ (L∞(Γ1))3, f ∈ (L4(Ω))3 such that:

∃g̃ ∈ (L∞(∂Ω))3, g̃ = g on Γ1 and
∫

Ω

fdx +
∫

∂Ω

g̃dΓ = 0

(H4) K(x) = KD(x) + RI and ∃M > 0 such that:

KD(x) ⊂ B(o, M) a.e. in Ω.

We define the following set Kad:

Kad = {η ∈ (L2(Ω))9s such that η(x) ∈ K(x) a.e. in Ω}. (2)

It is clear that Kad is a closed convex of (L2(Ω))9s.
We define now the Quasi-elastic problem:

Find a tensor σe and a displacement ue satisfying:





div σe = f a.e. in Ω
σe · n = g̃ on ∂Ω

σe(x) =
(

A−1
(x)(ε(ue)(x))

)

a.e. in Ω.
(3)

Referring to [3], the above problem has a solution (σe, ue), which is unique within a rigid body displacement
for ue, since f and g satisfy (H3); moreover, we have the following proposition.

Proposition 1. We assume that f and g satisfy (H3), then we have:

σe ∈ L∞(Ω, R9
sym).

Proof. According to [3], we have σe ∈ (W 1,4(Ω))9 and according to [1] we conclude that: σe ∈ L∞(Ω, R9
sym). �

2. Characterization of the limit load λ̄

Definition 1. Considering the functional F defined on V1:

V1 = {η ∈ L2(Ω, R9
sym) such that div η = 0 a.e. in Ω and η · n = 0 on Γ1} (4)

by:
F (η) = JKad

(σe − η) (5)
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where, JKad
is the gauge of Kad defined by:

JKad
(α) = inf{s > 0 such that α(x) ∈ s.K(x) a.e. in Ω}. (6)

Then we have:

Proposition 2. The functional F is l.s.c (lower semicontinuous) on V1 for the weak topology of L2(Ω, R9
sym)

and we have: F (η) = F (ηD).

Proof. The functional F is l.s.c for the strong topology of L2(Ω, R9
sym) and according to [2] we have F is l.s.c

on V1 for the weak topology of L2(Ω, R9
sym).

On the other hand Kad is, according to (H4), unchanged in the direction of the spherical stress, then we
have: F (η) = F (ηD). �

Definition 2. The Limit Load λ̄ is defined in [5] by:

λ̄ = sup{λ > 0 such that Dλ �= ∅} (7)

where

Dλ =





σ ∈ L2(Ω, R9

sym) such that






div σ − λf = 0 a.e. in Ω
σ · n = λg on Γ1

σ(x) ∈ K(x) a.e. in Ω










. (8)

Then we have the following theorems:

Theorem 1. Under the hypotheses (H1), (H2) and (H3) we have:
(i) If inf

η∈V1
F (η) = 0, then λ̄ = +∞.

(ii) If inf
η∈V1

F (η) �= 0, then λ̄ =
1

inf
η∈V1

F (η)
·

Proof.
1. Proof of (i).
We assume that:

inf
η∈V1

F (η) = 0. (9)

Let λ > 0, and let us show that λ̄ > λ.
There exists η ∈ V1 such that F (η) < 1

λ and according to (5) we have:

JKad
(σe − η) <

1
λ
·

Using (6) we obtain:

(σe − η) ∈ 1
λ

Kad·
and then

λ(σe − η)(x) ∈ K(x) a.e. in Ω. (10)
On the other hand, we have: div(λ(σe − η)) = λ(divσe − divη).

Using (3) and (4) we conclude:
div(λ(σe − η)) = λf in Ω, (11)

and
λ(σe − η) · n = λg on Γ1. (12)
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From (10)–(12) we obtain: λ(σe − η) ∈ Dλ, and according to (7) it is clear that:

λ̄ > λ.

We finally conclude that:
λ̄ = +∞.

2. Using the same idea, we prove (ii). �

We now distinguish these two cases:

Theorem 2. Under the hypotheses (H1), (H2), (H3) and (H4) the following statements (i) and (ii) are
equivalent:
(i) ∃η ∈ V1 such that F (η) = 0.
(ii) The following problem (P2) has at least one solution

(P2)






Find α in W 1,2(Ω) satisfying:

∇α = −f in Ω

αn = −g on Γ1.

(13)

Proof.
1. Assume there exists η ∈ V1 such that F (η) = 0, then according to (5) we have

JKad
(σe − η) = 0, (14)

which implies, using (6):

inf{s > 0 such that (σe − η)(x) ∈ sK(x) a.e. in Ω} = 0;

and using (H4) we have:

inf{s > 0 such that (σe − η)D(x) ∈ sKD(x) a.e. in Ω} = 0,

which implies:

∃sn > 0; (sn)n∈N independent of x and such that:






sn −−−−−→
n→+∞ 0

and
(σe − η)D(x) ∈ snKD(x) a.e. in Ω.

Then we can write:
(σe)D(x) = ηD(x) a.e. in Ω, (15)

and then:

η(x) = (σe)D(x) +
1
3

trηI,

and so:

divη = div(σe)D + div
(

1
3

trηI

)

.

But η ∈ V1 , then divη =0, which gives using (3):

∇α = −f, (16)
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where α = 1
3 (trη − trσe).

It is clear that α ∈ L2(Ω) and ∇α ∈ (L2(Ω))3 which implies that α ∈ W 1,2(Ω).
On the other hand, using (4) we obtain:

η · n = 0 on Γ1,

then (

ηD +
1
3

trηI

)

· n = 0 on Γ1,

which can be written using (15) as:

(

(σe)D +
1
3

trηI

)

· n = 0 on Γ1

or (

(σe) +
1
3

(trη − trσe)I
)

· n = 0 on Γ1

and using (3), we have:
(

1
3

(trη − trσe)I
)

· n = −g on Γ1,

that means:
α · n = −g on Γ1

and using (16) we conclude the first implication.
2. Assume now that (P2) has at least one solution in W 1,2(Ω), then there exists α ∈ W 1,2(Ω) such that:






∇α = −f in Ω
and
α · n = −g on Γ1.

(17)

Then, let
η = σe + αI. (18)

So, we get:
η ∈ L2(Ω, R9

sym) and divη = divσe + ∇α. (19)

According to (17) and (3) we obtain:
divη = 0 in Ω. (20)

Let us show now that η · n = 0 on Γ1.
Let φ ∈ W 1,2(Ω) be such that φ/((∂Ω)\Γ1) = 0, we have for i ∈ {1, 2, 3}

∫

Ω

ηi∇φdx = −
∫

Ω

divηiφdx +
∫

Γ1

ηi.n.φdΓ

where ηi is the vector line of η.
Using (18) and (20) we obtain:

∫

Γ1

ηi.n.φdΓ =
∫

Ω

(σe)i.∇φdx +
∫

Ω

(α.I)i∇φdx.
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Then since φ/((∂Ω)\Γ1) = 0,

∫

Γ1

ηi.n.φdΓ = −
∫

Ω

(divσe)iφdx +
∫

Γ1

(σe)i.n.φdΓ −
∫

Ω

(∇α)iφdx +
∫

Γ1

(α.ni)φdΓ.

And then according to (3) and (17) we have:
∫

Γ1

(η.n)φdΓ = 0. (21)

The statements (19)–(21) prove that η ∈ V1; moreover, we have:

F (η) = F (ηD) = F ((σe)D)) = F (σe) = 0.

Then
η ∈ V1 and F (η) = 0. �

Moreover, we have the following theorem:

Theorem 3. Under the hypotheses of Theorem 2, we have:

If Rotf �= 0, then inf
η∈V1

F (η) �= 0.

Proof. Assume that there exists a sequence (ηn)n ∈ V1 such that F (ηn) −−−−−→
n→+∞ 0.

Then, according to (5) we have:
JKad

(σe − ηn) −−−−−→
n→+∞ 0

and then ∃αn > 0 (αn independent of x) such that:






αn −−−−−→
n→+∞ 0

and
(σe − ηn)D(x) ∈ αnKD(x) a.e. in Ω.

This gives, according to (H4):
ηD

n −−−−−→
n→+∞ (σe)D a.e. in Ω

and
ηD

n −−−−−→
n→+∞ (σe)D in D′(Ω).

Then:
divηD

n −−−−−→
n→+∞ div(σe)D in D′(Ω),

which can be written:

div
(

ηn − 1
3

trηn.I

)

−→ [n → +∞]div(σe)D in D′(Ω);

but according to (4) we have div(ηn) = 0, then:

div
(

−1
3

trηn.I

)

−−−−−→
n→+∞ div(σe)D in D′(Ω),

or also

∇
(

−1
3

(tr(ηn − trσe)
)

−→ [n → +∞]div(σe) in D′(Ω),
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which implies:

Rot∇
(

−1
3

(tr(ηn − trσe)
)

−→ [n → +∞]Rot(div(σe)) in D′(Ω).

Using Rot∇δ = 0 ∀δ ∈ in D′(Ω) we obtain Rotf = 0, which concludes the proof. �

Corollary 1. Under the hypotheses (H1), (H2), (H3) and (H4) we have:

If Rotf �= 0, then λ̄ =
1

inf
η∈V1

F (η)
·

Proof. Results from Theorems 1 and 3. �

In Theorem 3 we have characterized the Limit load λ̄; and we have shown that Rotf �= 0 is a sufficient
condition to prove that λ̄ = 1

infη∈V1 F (η) ; but this condition is not always satisfied by the volumic force f. In
the case where Rotf = 0, we introduce in the following a condition on the boundary force g to show the same
characterization of the Limit load.

Theorem 4. Under the hypotheses (H1), (H2), (H3), (H4) and if we assume that Rot f �= 0 or g satisfies:

Cg : ∃B ⊂ Γ1, meas(B) �= 0 such that g ∧ n �= 0 on B (22)

(which means that g is not colinear to the normal on B).
Then, we have:

F (η) �= 0 ∀η ∈ V1.

Proof. The result is deduced from Theorem 2. �

In the following part, we will prove, by adding a condition on the open set Ω, that λ̄ = 1
infη∈V1 F (η) under

hypothesis Rot f �= 0 or g satisfying Cg given above and that infη∈V1 F (η) is reached on V1.

3. An existence result obtained by extension of Ω

3.1. Problem obtained by extension of Ω

We assume that Ω satisfies:





There exists an open set Ω0 ⊂ R
3 such that:

Ω ⊂ Ω0

Ω0 is convex ; Ω0\Ω is connex

∂Ω ∩ (∂(Ω0\Ω)) = Γ1

and

∀φ ∈ W1,2(Ω), ∃φ1 ∈ W1,2(Ω0\Ω) such that: φ = φ1 on Γ1.

(23)

Let now (ηn)n be a minimizing sequence of F (η) on V1 and let η̃n be defined by:

η̃n =

{
ηn in Ω

0 in Ω0\Ω.
(24)
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Then we have the following results:

Lemma 1. We assume that (23) is satisfied, then we have:

div η̃n = 0 in Ω0.

Proof. Let φ ∈ D(Ω0), we have:
∫

Ω0

(divη̃i
n)φdx = −

∫

Ω0

η̃i
n∇φdx.

This means: ∫

Ω0

(div η̃i
n)φdx = −

∫

Ω

η̃i
n∇φdx −

∫

Ω0\Ω
η̃i

n∇φdx

and according to (24) we obtain:

∫

Ω0

(divη̃i
n)φdx =

∫

Ω

divηn
iφdx −

∫

∂Ω

(ηn
i.n)φdΓ.

But φ belongs to D(Ω0) then φ = 0 on ∂Ω\Γ1 and (ηn)n ∈ V1, and we get:

∫

Ω0

divη̃i
nφdx = 0, for all φ ∈ D(Ω0) and for all 1 ≤ i ≤ 3,

which allows us to conclude:
divη̃n = 0 in Ω0. �

Remark 1. Let (ηn)n∈N be a minimizing sequence of F (η) on V1, then we have:

JKad
(σe − ηn) ≤ Const.

Using Proposition 2 and the property (H4), we obtain:

|| ηD
n ||L∞(Ω,R9

sym)≤ Cte for all n ∈ N. (25)

Then, let:

(η̃n)D =

{
ηD

n in Ω

0 in Ω0\Ω.
(26)

We obtain:

(η̃D
n )n is bounded in L∞(Ω0, R

9
sym), then there exists a subsequence of (η̃D

n )n (denoted also (η̃D
n )n) and there

exists σ0 ∈ L2(Ω0, R
9
sym) such that:

(η̃D
n ) −→ σ0 weakly in �L2(Ω0, R

9
sym). (27)

Lemma 2. Under the hypotheses (H1), (H2), (H3), (H4) and assuming that Ω satisfies (23), we have:

Rot(divσ0) = 0 in Ω0,

where σ0 is the element of L2(Ω0, R
9
sym) given by (27).
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Proof. Using (27) we get:
(η̃n)D σ−−−−−→

n→+∞ 0
in D′(Ω0),

which implies:
div(η̃n)D −−−−−→

n→+∞ divσ0 in D′(Ω0)

and
Rot(div(η̃n)D) −−−−−→

n→+∞ Rot(divσ0) in D′(Ω0), (28)

but we have:
div(η̃n)D = divη̃n − 1

3
∇(trη̃n).

Then according to Lemma 1.1, we obtain:

Rotdiv(η̃n)D = −1
3

rot∇(trη̃n) ∀n ∈ N.

Finally, we conclude from (28) that:
Rot(divσ0) = 0 in D′(Ω0). �

3.2. An existence result

Firstly, we begin by the following result:

Lemma 3. Let Ω0 be an open convex set of R
n and let v ∈ (H−1(Ω0))3 satisfying:

Rot v = 0 in Ω0.

Then there exists a unique q ∈ L2(Ω0)/R such that:

∇q = v.

Proof. See [5]. �

Remark 2. We remark that divσ0 cannot always be equal to 0 and on the other hand we search a stress σ
which achieves inf

η∈V1
F (η), so we will change the spherical component to have a stress σ satisfying divσ = 0.

That is the purpose of the following paragraph.

Lemma 4. Under the hypotheses of Lemma 2 we have:

∃σ ∈ L2(Ω0, R
9
sym) such that






div σ = 0 in Ω0

σD = σD
0 in Ω0

σ = 0 in Ω0\Ω.
(29)

Proof. Using Lemmas 2 and 3 we get: ∃q ∈ L2(Ω0)/R such that :

divσ0 = −∇q in D′(Ω0). (30)

And according to (24) and (27), we deduce:

σ0 = 0 on Ω0\Ω, (31)

then
divσ0 = 0 on Ω0\Ω.
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This proves that:
∇q = 0 on Ω0\Ω.

We have, using (23), Ω0\Ω is connex, and then:

q = C1 on Ω0\Ω (C1 ∈ R),

so we can choose C1 = 0.
Then, let σ ∈ L2(Ω0, R

9
sym) be defined by:

σ = σ0 + qI; (32)

we have
σ = 0 on Ω0\Ω. (33)

From (30), (32) and (33) we conclude the result. �

We can now prove the main theorem:

Theorem 5. Under the hypotheses (H1), (H2), (H3), (H4) and assuming that Ω satisfies (23),
there exists σ1 ∈ V1 such that

F (σ1) = inf
η∈V1

F (η),

so the infimum of F is achieved on V1.

Proof. Let (ηn)n∈N be a minimizing sequence of F on V1, σ0 given in the Remark 1.
Let σ1 = σ/Ω where σ is given by (29); we have:

σ1 ∈ (L2(Ω))9s, (34)

and:
divσ1 = (divσ)/Ω = 0 in Ω.

So,
divσ1 = 0 in Ω. (35)

Let us prove that σ1.n = 0 in Γ1, it is equivalent to prove:
∫

Γ1

(σ1.n)φdΓ = 0 ∀φ ∈ W 1,2(Ω) be such that φ/(∂Ω\Γ1) = 0. (36)

Then let φ1 ∈ W 1,2(Ω0\Ω) be such that φ1/Γ1 = φ/Γ1, and let φ̃ be defined by:

φ̃ =
{

φ in Ω
φ1 in Ω0\Ω.

We have, due to the trace theorem for φ̃ on the two sides of Γ1 = ∂Ω ∩ (∂(Ω0\Ω)):

φ̃ ∈ W 1,2(Ω0).

On the other hand, we have:
∫

Ω0

σ.ε(φ̃)dx =
∫

Ω

σ.ε(φ)dx +
∫

Ω0\Ω
σ.ε(φ̃)dx,
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which implies, according to (33):

∫

Ω0

σ.ε(φ̃)dx =
∫

Ω

σ.ε(φ)dx

= −
∫

Ω

(divσ).φdx +
∫

∂Ω

(σ1.n)φdΓ.

Using divσ = 0 in Ω0, we obtain:
∫

Ω0

σ.ε(φ̃)dx =
∫

∂Ω

(σ1.n)φdΓ.

This means according to (36) that:
∫

Ω0

σ.ε(φ̃)dx =
∫

Γ1

(σ1.n)φdΓ. (37)

We have on the other hand:
∫

Ω0

σ.ε(φ̃)dx =
∫

Ω0

(divσ).φ̃dx +
∫

∂Ω0

(σ.n)φ̃dΓ.

So, using properties (29) and (36), we deduce that:

∫

Ω0

σ.ε(φ̃)dx = 0. (38)

From (37) and (38), we conclude that:

∫

Γ1

(σ1.n)φdΓ = 0 ∀φ ∈ W 1,2(Ω) such that φ/(∂Ω\Γ1) = 0.

This proves that:
σ1.n = 0 on Γ1. (39)

We conclude from (34), (35) and (39) that:
σ1 ∈ V1. (40)

Using Proposition 2 and (ηn
D)n converge to σ0

D weakly in L2(Ω, R9
sym), we have:

F (σ1) ≤ limF (ηD
n ),

or also:
F (σ1) ≤ inf

η∈V1
F (η).

We finally conclude from (40):
F (σ1) = inf

η∈V1
F (η). �

Corollary 2. Under the hypotheses of Theorem 5 we have:

If Rotf �= 0 in Ω or (22) is satisfied by g
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then
∃σ1 ∈ V1 such that: λ̄ =

1
inf

η∈V1
F (η)

=
1

F (σ1)
·

Proof. The result is deduced from Theorems 4 and 5. �
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