
ESAIM: M2AN ESAIM: Mathematical Modelling and Numerical Analysis
Vol. 39, No 1, 2005, pp. 157–181

DOI: 10.1051/m2an:2005006

A POSTERIORI ERROR BOUNDS FOR REDUCED-BASIS APPROXIMATIONS
OF PARAMETRIZED PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

Martin A. Grepl
1

and Anthony T. Patera
2

Abstract. In this paper, we extend the reduced-basis methods and associated a posteriori error
estimators developed earlier for elliptic partial differential equations to parabolic problems with affine
parameter dependence. The essential new ingredient is the presence of time in the formulation and
solution of the problem – we shall “simply” treat time as an additional, albeit special, parameter. First,
we introduce the reduced-basis recipe – Galerkin projection onto a space WN spanned by solutions of
the governing partial differential equation at N selected points in parameter-time space – and develop
a new greedy adaptive procedure to “optimally” construct the parameter-time sample set. Second, we
propose error estimation and adjoint procedures that provide rigorous and sharp bounds for the error
in specific outputs of interest: the estimates serve a priori to construct our samples, and a posteriori
to confirm fidelity. Third, based on the assumption of affine parameter dependence, we develop offline-
online computational procedures: in the offline stage, we generate the reduced-basis space; in the online
stage, given a new parameter value, we calculate the reduced-basis output and associated error bound.
The operation count for the online stage depends only on N (typically small) and the parametric
complexity of the problem; the method is thus ideally suited for repeated, rapid, reliable evaluation of
input-output relationships in the many-query or real-time contexts.
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1. Introduction

The design, optimization, control, and characterization of engineering components or systems often requires
repeated, reliable, and real-time prediction of performance metrics, or outputs – such as heat fluxes or flowrates.
These outputs are typically functionals of field variables – such as temperatures or velocities – associated with a
parametrized partial differential equation; the parameters, or inputs, serve to identify a particular configuration
of the component. The relevant system behaviour is thus described by an implicit input-output relationship,
evaluation of which demands solution of the underlying partial differential equation (PDE). Our goal is the
development of numerical methods that permit the efficient and reliable evaluation of this PDE-induced input-
output relationship in real-time or in the limit of many queries.
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To achieve this goal we will pursue the reduced-basis method. The reduced-basis method was first introduced
in the late 1970s for the nonlinear analysis of structures [1,27,28] and has subsequently been further investigated
and developed more broadly [3, 7, 13, 31, 32, 37]. In the more recent past the reduced-basis approach and in
particular associated a posteriori error estimation procedures have been successfully developed for (non)linear
and (non)coercive elliptic PDEs with affine parameter dependence [23,34,41–43]; in this paper, we consider the
extension of these methods to certain classes of parabolic PDEs with affine parameter dependence – time is the
essential new ingredient.

Many model-order reduction techniques for time-dependent systems are proposed in the literature: the
most well-known are proper orthogonal decomposition (POD or Karhunen-Loève decomposition) [40], balanced
truncation [26], and various related hybrid [19,45] techniques; see also [20,33] for an application of the reduced-
basis method to initial value problems. However, none of these frameworks accommodate parametric variation
(see [10] for an exception) or a posteriori error estimation. The contributions here are thus (i) the simultaneous
dependence of the field variable (and output) on both time and parameters, and (ii) the introduction of rigorous
a posteriori error estimators.

To motivate our approach we consider an important class of applications – optimal control – which re-
quires repeated and often real-time evaluation of input-output relationships. If the dynamics are described by
PDEs, the cost quickly becomes prohibitively large [11, 15, 21], and hence reduced-order models (e.g., of the
variety described above) are often employed: applications range from fluid flow [16–18, 36] to hyperthermia
treatment [24, 25] to thermal processing of semiconductors [30] and canned foods [4]. To address this class of
problems our approach must be able to rigorously treat (a) control inputs that are not known a priori – often a
problem within the model reduction context, and (b) outputs, functionals of the time-dependent field variable,
that are also (scalar) functions of time.

This paper is organized as follows: in Section 2 we introduce the necessary notation and state the problem.
The reduced-basis approximation and computational considerations are discussed in Section 3. In Section 4
we introduce rigorous and sharp a posteriori error bounds for the primal variable, dual variable, and output of
interest. We propose an adaptive procedure to select the “optimal sampling set” in Section 5, and finally we
present numerical results in Section 6.

2. Problem statement

2.1. Abstract formulation

We first define the Hilbert spaces Y e ≡ H1
0 (Ω) – or, more generally, H1

0 (Ω) ⊂ Y e ⊂ H1(Ω) – and Xe ≡ L2(Ω),
where H1(Ω) = {v | v ∈ L2(Ω),∇v ∈ (L2(Ω))d}, H1

0 (Ω) = {v | v ∈ H1(Ω), v|∂Ω = 0}, and L2(Ω) is the space of
square integrable functions over Ω [35]; here Ω is a bounded domain in IRd with Lipschitz continuous boundary
∂Ω. The inner product and norm associated with Y e (Xe) are given by (·, ·)Y e ((·, ·)Xe) and ‖ · ‖Y e = (·, ·)1/2

Y e

(‖ · ‖Xe = (·, ·)1/2
Xe ), respectively; for example, (w, v)Y e ≡ ∫

Ω
∇w · ∇v +

∫
Ω
w v, ∀w, v ∈ Y e, and (w, v)Xe ≡∫

Ω w v, ∀w, v ∈ Xe.
For simplicity, we directly consider a time-discrete framework associated to the time interval I ≡ ]0, tf ]

(Ī ≡ [0, tf ]). We divide Ī into K subintervals of equal length ∆t = tf

K and define tk ≡ k∆t, 0 ≤ k ≤ K ≡ tf

∆t ,
and I ≡ {t0, . . . , tk}; for notational convenience, we also introduce K ≡ {1, . . . ,K}. We shall consider Euler-
Backward for the time integration; we can also readily treat higher-order schemes such as Crank-Nicolson [14].
Clearly, our results must be stable as ∆t → 0, K → ∞.

We may now introduce the “exact” (superscript e) – more precisely, semi-discrete – problem: given a param-
eter µ ∈ D ⊂ IRP , we evaluate the (here, single) output of interest

se(µ, tk) = �(ye(µ, tk)), ∀k ∈ K, (1)
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where the field variable, ye(µ, tk) ∈ Y e, ∀k ∈ K, satisfies the weak form of the µ-parametrized parabolic PDE [5]

m(ye(µ, tk), v;µ) + ∆t a(ye(µ, tk), v;µ) = m(ye(µ, tk−1), v;µ) + ∆t b(v;µ) u(tk), ∀v ∈ Y e, ∀k ∈ K, (2)

with initial condition (say) ye(µ, t0) = y0(µ) = 0. Here µ and D are the input and input domain; a(·, ·;µ) is a
Y e-continuous bilinear form; m(·, ·;µ) and b(·;µ), �(·) are Xe-continuous bilinear and linear forms, respectively;
and u(tk) denotes the (here, single) control input at time t = tk.

We next introduce a reference finite element approximation space Y ⊂ Y e (⊂ Xe) of very large dimension N ;
we further define X ≡ Xe. Note that Y and X shall inherit the inner product and norm from Y e and Xe, respec-
tively. Our reference (or “truth”) finite element approximation y(µ, tk) ∈ Y to the semi-discrete problem (2) is
then given by

m(y(µ, tk), v;µ) + ∆t a(y(µ, tk), v;µ) = m(y(µ, tk−1), v;µ) + ∆t b(v;µ) u(tk), ∀v ∈ Y, ∀k ∈ K, (3)

with initial condition y(µ, t0) = 0; we then evaluate the output s(µ, tk) ∈ IR from

s(µ, tk) = �(y(µ, tk)), ∀k ∈ K. (4)

We shall assume – hence the appellation “truth” – that the discretization is sufficiently rich such that y(µ, tk)
and ye(µ, tk) and hence s(µ, tk) and se(µ, tk) are indistinguishable. The reduced-basis approximation shall be
built upon our reference finite element approximation, and the reduced-basis error will thus be evaluated with
respect to y(µ, tk) ∈ Y . Clearly, our methods must remain computationally efficient and stable as N → ∞.

We shall make the following assumptions. First, we assume that the bilinear forms a(·, ·;µ) and m(·, ·;µ) are
continuous,

a(w, v;µ) ≤ γ(µ)‖w‖Y ‖v‖Y ≤ γ0‖w‖Y ‖v‖Y , ∀w, v ∈ Y, ∀µ ∈ D, (5)
m(w, v;µ) ≤ ρ(µ)‖w‖X‖v‖X ≤ ρ0‖w‖X‖v‖X , ∀w, v ∈ Y, ∀µ ∈ D; (6)

coercive,

0 < α0 ≤ α(µ) ≡ inf
v∈Y

a(v, v;µ)
‖v‖2

Y

, ∀µ ∈ D, (7)

0 < σ0 ≤ σ(µ) ≡ inf
v∈Y

m(v, v;µ)
‖v‖2

X

, ∀µ ∈ D; (8)

and symmetric, a(v, w;µ) = a(w, v;µ), ∀w, v ∈ Y, ∀µ ∈ D, and m(v, w;µ) = m(w, v;µ), ∀w, v ∈ X, ∀µ ∈ D.
(We (plausibly) suppose that γ0, ρ0, α0, and σ0 may be chosen independent of N .) We also require that the
linear forms b(·;µ) : Y → IR and �(·) : Y → IR be bounded with respect to ‖ · ‖Y and ‖ · ‖X , respectively.

Second, we shall assume that a, m, and b depend affinely on the parameter µ and can be expressed as

a(w, v;µ) =
Qa∑

q=1

Θq
a(µ) aq(w, v), ∀w, v ∈ Y, ∀µ ∈ D, (9)

m(w, v;µ) =
Qm∑

q=1

Θq
m(µ) mq(w, v), ∀w, v ∈ Y, ∀µ ∈ D, (10)

b(v;µ) =
Qb∑

q=1

Θq
b(µ) bq(v), ∀v ∈ Y, ∀µ ∈ D, (11)

for some (preferably) small integers Qa,m,b. Here, the functions Θq
a,m,b(µ) : D → IR depend on µ, but the

continuous forms aq, mq, and bq do not depend on µ. This affine parameter dependence is crucial for the
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computational efficiency of the proposed method; however, see [6, 41] for extensions to the non-affine and
nonlinear case. For simplicity of exposition, we assume that the linear form � does not depend on the parameter;
however, (affine) parameter dependence is readily admitted.

Third, and finally, we require that all linear and bilinear forms are independent of time – the system is thus
linear time-invariant (LTI). This is true for many physical problems governed by parabolic PDEs, with the most
notable exception of deforming domains. We point out that an important application which often satisfies all
of our assumptions is the classical heat equation [35]; we shall provide a detailed example in Section 6.

To ensure rapid convergence of the reduced-basis output approximation we introduce a dual (or adjoint)
problem which shall evolve backward in time [8]. Invoking the LTI property we can express the adjoint for the
output at time tL, 1 ≤ L ≤ K, as ψL(µ, tk) = Ψ(µ, tK−L+k), 1 ≤ k ≤ L, where Ψ(µ, tk) ∈ Y satisfies

m(v,Ψ(µ, tk);µ) + ∆t a(v,Ψ(µ, tk);µ) = m(v,Ψ(µ, tk+1);µ), ∀v ∈ Y, ∀k ∈ K, (12)

with final condition
m(v,Ψ(µ, tK+1);µ) ≡ �(v), ∀v ∈ Y. (13)

Thus, to obtain ψL(µ, tk), 1 ≤ k ≤ L, ∀L ∈ K, we solve once for Ψ(µ, tk), ∀k ∈ K, and then appropriately shift
the result – we do not need to solve K separate dual problems. (Note the issue of “rough” final conditions –
output functionals – is implicitly addressed in our temporal discretization and truth approximation.)

The method presented here easily extends to nonzero initial conditions with affine parameter dependence,
to multiple control inputs and outputs, and also to nonsymmetric problems such as the convection-diffusion
equation. We also note that, given a specific input u(tk), ∀k ∈ K, our results directly carry over to the linear
time-varying (LTV) case; we can no longer, however, invoke the shift property of the dual problem – which
renders the calculation of our output bound more cumbersome.

2.2. Impulse response

The reduced-basis subspace shall be developed as the span of solutions y(µ, tk) of our “truth” approxima-
tion (3) at selected points in parameter-time space. In many cases, however, the input u(tk) will not be known
in advance and thus we cannot solve for y(µ, tk) – one such example is the optimal control problem described
in the Introduction. In such situations, fortunately, we may appeal to the LTI hypothesis to justify an impulse
approach, as we now describe.

We first note that the solution of any LTI system can be written as the convolution of the impulse response
with the control input (Duhamel’s Principle): for any control input u(tk), ∀k ∈ K, we can obtain y(µ, tk),
∀k ∈ K, from

y(µ, tk) =
k∑

j=1

g(µ, tk−j+1)u(tj), ∀k ∈ K, (14)

where the impulse response, g(µ, tk), is the solution of (3) for a unit impulse control input u(tk) = δ1k, ∀k ∈ K.
Equation (14) simply states that y(µ, tk) is a linear combination of the impulse response g(µ, tj), 1 ≤ j ≤ k; it is
thus sufficient that the reduced-basis subspace approximates well the (parameter-dependent) impulse response.
It still remains to select which basis functions to retain, i.e., to determine the “best” sampling points in
parameter-time space for the basis; we will address this issue in Section 5.

3. Reduced-basis method

3.1. Approximation

We first introduce the nested sample sets Spr
Npr

= {µ̃pr
1 ∈ D̃, . . . , µ̃pr

Npr
∈ D̃}, 1 ≤ Npr ≤ Npr,max, and

Sdu
Ndu

= {µ̃du
1 ∈ D̃, . . . , µ̃du

Ndu
∈ D̃}, 1 ≤ Ndu ≤ Ndu,max, where µ̃ ≡ (µ, tk) and D̃ ≡ D × I; note that the samples

must reside in the parameter-time space, D̃. Here, Npr and Ndu are the dimensions of the reduced basis space
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for the primal and dual variables, respectively; in general, Spr
Npr


= Sdu
Ndu

and in fact Npr 
= Ndu. We then define
the associated nested Lagrangian [32] reduced-basis spaces

W pr
Npr

= span{ζpr
n ≡ y(µ̃pr

n ), 1 ≤ n ≤ Npr}, 1 ≤ Npr ≤ Npr,max, (15)

and
W du

Ndu
= span{ζdu

n ≡ Ψ(µ̃du
n ), 1 ≤ n ≤ Ndu}, 1 ≤ Ndu ≤ Ndu,max, (16)

where y(µ̃pr
n ) is the solution of (3) at time t = tk

pr
n for µ = µpr

n and Ψ(µ̃du
n ) is the solution of (12) at time t = tk

du
n

for µ = µdu
n .

Our reduced-basis approximation yN (µ, tk) to y(µ, tk) is then obtained by a standard Galerkin projection:
given µ ∈ D, yN (µ, tk) ∈ W pr

Npr
satisfies

m(yN (µ, tk), v;µ) + ∆t a(yN (µ, tk), v;µ) = m(yN (µ, tk−1), v;µ) + ∆t b(v;µ) u(tk), ∀v ∈ W pr
Npr

, ∀k ∈ K, (17)

with initial condition yN(µ, t0) = 0. Similarly, we obtain the reduced-basis approximation ΨN (µ, tk)∈ W du
Ndu

to
Ψ(µ, tk) as the solution of

m(v,ΨN (µ, tk);µ) + ∆t a(v,ΨN (µ, tk);µ) = m(v,ΨN (µ, tk+1);µ), ∀v ∈W du
Ndu

, ∀k ∈ K, (18)

with final condition
m(v,ΨN (µ, tK+1);µ) ≡ �(v), ∀v ∈W du

Ndu
. (19)

Finally, we evaluate the output estimate, sN (µ, tk), from

sN (µ, tk) ≡ �(yN(µ, tk)) +
k∑

k′=1

Rpr(ΨN (µ, tK−k+k′
);µ, tk

′
) ∆t, ∀k ∈ K, (20)

where

Rpr(v;µ, tk) ≡ b(v;µ) u(tk) − a(yN (µ, tk), v;µ) − 1
∆t

m(yN (µ, tk) − yN(µ, tk−1), v;µ), ∀v ∈ Y, ∀k ∈ K, (21)

is the primal residual. Note that here N ≡ (Npr, Ndu).
The critical observation is that the field variable y(µ, tk), ∀k ∈ K, is not, in fact, some arbitrary member of

the very high dimensional finite element space Y ; rather, it resides, or “evolves,” on a much lower dimensional
manifold – in effect, a P + 1 dimensional manifold – induced by the parametric and temporal dependence.
Thus, by restricting our attention to this manifold, we can adequately approximate the field variable by a
space of dimension Npr, Ndu � N .1 This observation is fundamental to our approach, and is the basis of our
approximation; we confirm the rapid convergence in Section 6.

3.2. Computational procedure

In this section we develop offline-online computational procedures in order to fully exploit the dimension
reduction of the problem [3, 17, 22, 34]. We first express yN(µ, tk) and ΨN(µ, tk) as

yN(µ, tk) =
Npr∑

n=1

yNn(µ, tk) ζpr
n , (22)

1 In general, the field variable will be smooth in µ. This may be deduced from the equations for the sensitivity derivatives;
the stability and continuity properties of the partial differential operator are crucial. Note, however, that the proposed method
does not require great regularity of the field variable in x; hence non-smooth domains (sharp corners) pose no impediment to rapid
convergence.
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and

ΨN (µ, tk) =
Ndu∑

n=1

ΨNn(µ, tk) ζdu
n , (23)

respectively. We then choose as test functions v = ζpr
n , 1 ≤ n ≤ Npr, for the primal problem (17) and

v = ζdu
n , 1 ≤ n ≤ Ndu, for the dual problem (18). (We prefer Galerkin over Petrov-Galerkin for purposes of

stability.)
It then follows from (17) that y

N
(µ, tk) = [yN 1(µ, tk) yN 2(µ, tk) . . . yN Npr(µ, t

k)]T ∈ IRNpr satisfies

(Mpr
N (µ) + ∆t Apr

N (µ)) y
N

(µ, tk) = Mpr
N (µ) y

N
(µ, tk−1) + ∆t Bpr

N (µ) u(tk), ∀k ∈ K, (24)

with initial condition yN n(µ, t0) = 0, 1 ≤ n ≤ Npr. Here, Mpr
N (µ) ∈ IRNpr×Npr and Apr

N (µ) ∈ IRNpr×Npr are SPD
matrices with entries Mpr

N i,j(µ) = m(ζpr
i , ζpr

j ;µ), 1 ≤ i, j ≤ Npr, and Apr
N i,j(µ) = a(ζpr

i , ζpr
j ;µ), 1 ≤ i, j ≤ Npr,

respectively; and Bpr
N (µ) ∈ IRNpr is the control vector with entries Bpr

N i(µ) = b(ζpr
i ;µ), 1 ≤ i ≤ Npr.

Invoking the affine decomposition (9)–(11) we obtain

Mpr
N i,j(µ) = m(ζpr

i , ζpr
j ;µ) =

Qm∑

q=1

Θq
m(µ) mq(ζpr

i , ζpr
j ), (25)

Apr
N i,j(µ) = a(ζpr

i , ζpr
j ;µ) =

Qa∑

q=1

Θq
a(µ) aq(ζpr

i , ζpr
j ), (26)

Bpr
N i(µ) = bq(ζpr

i ;µ) =
Qb∑

q=1

Θq
b(µ) bq(ζpr

i ), (27)

which can be written as

Mpr
N (µ) =

Qm∑

q=1

Θq
m(µ) Mpr q

N , Apr
N (µ) =

Qa∑

q=1

Θq
a(µ) Apr q

N , Bpr
N (µ) =

Qb∑

q=1

Θq
b(µ) Bpr q

N , (28)

where the parameter independent quantities Mpr q
N ∈ IRNpr×Npr , Apr q

N ∈ IRNpr×Npr , and Bpr q
N ∈ IRNpr are given

by
Mpr q

N i,j = mq(ζpr
i , ζpr

j ), 1 ≤ i, j ≤ Npr,max, 1 ≤ q ≤ Qm,

Apr q
N i,j = aq(ζpr

i , ζpr
j ), 1 ≤ i, j ≤ Npr,max, 1 ≤ q ≤ Qa,

Bpr q
N i = bq(ζpr

i ), 1 ≤ i ≤ Npr,max, 1 ≤ q ≤ Qb,

(29)

respectively.
A similar computational procedure for the dual problem (18)–(19) and the residual correction term in (20) can

also be developed. The details of this derivation and the definitions of the necessary quantities are summarized
in Appendix A.1.

The offline-online decomposition is now clear. In the offline stage – performed only once – we first solve
for the ζpr

n , 1 ≤ n ≤ Npr,max and ζdu
n , 1 ≤ n ≤ Ndu,max; we then compute and store the µ-independent

quantities in (29) for the primal problem, (91) for the dual problem, and (94) for the output estimate. The
computational cost is therefore O(K(Npr,max + Ndu,max)) solutions of the underlying N -dimensional “truth”
finite element approximation and O((N2

pr,max + N2
du,max + Npr,maxNdu,max)(Qa + Qm)) N -inner products; the

storage requirements are also O((N2
pr,max +N2

du,max +Npr,maxNdu,max)(Qa +Qm)).
In the online stage – performed many times, for each new parameter value µ – we first assemble the reduced-

basis matrices (28), (90), and (93); this requires O((N2
pr + N2

du + NprNdu)(Qa + Qm)) operations. We then
solve the primal and dual problem for y

N
(µ, tk) and ΨN (µ, tk), respectively; since the reduced-basis matrices
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are in general full, the operation count (based on LU factorization and our LTI assumption) is O(N3
pr +N3

du +
K(N2

pr +N2
du)). Finally, given y

N
(µ, tk) and ΨN (µ, tk) we evaluate the output estimate sN(µ, tk) from (92) at a

cost of O(2kNprNdu); note that the calculation of all outputs sN (µ, tk), ∀k ∈ K, requires O(K(K + 1)NprNdu)
operations.

Thus, as required in the many-query or real-time contexts, the online complexity is independent of N , the
dimension of the underlying “truth” finite element approximation space. Since Npr, Ndu � N we expect
significant computational savings in the online stage relative to classical discretization and solution approaches.

Finally, we note that classical model-order reduction techniques, such as modal decomposition [12] and
POD [2], require the evaluation of a new set of eigenmodes or basis functions – and thus a return to the (very
fine) “truth” approximation – for each new parameter value encountered. In contrast, reduced-basis methods
do not need to return to the “truth” approximation in the online stage, and are therefore far more efficient in
evaluating input-output relationships for many different parameter values.

4. A POSTERIORI error estimation

From Section 3 we know that we can efficiently obtain the output estimate, sN (µ, tk), for the output of
interest, s(µ, tk): the online complexity depends only on Npr and Ndu, the dimensions of the reduced-basis
spaces for the primal and dual variable, respectively. However, we do not yet know if sN(µ, tk) is indeed a good
approximation to s(µ, tk), i.e., is |s(µ, tk) − sN (µ, tk)| ≤ εstol, where εstol is a maximum acceptable error? Or
conversely, is our approximation “too good,” i.e., is |s(µ, tk)−sN(µ, tk)| � εstol – that is, is Npr or Ndu too large,
with associated detriment to the online efficiency? It should also be evident that the approximation properties
do not only depend on the size of Npr and Ndu, but also on the choice of the sampling sets Spr

Npr
and Sdu

Ndu
and

associated reduced-basis spaces W pr
Npr

and W du
Ndu

.
We thus need to develop rigorous a posteriori error estimators which will help us to (i) assess the error

introduced by our reduced-basis approximation (relative to the “truth” finite element approximation); and
(ii) devise an “optimal” and efficient procedure for selecting the sample sets Spr

Npr
and Sdu

Ndu
. Surprisingly,

a posteriori error estimation for reduced-basis approximations has received very little attention in the past. A
family of rigorous error estimators for reduced-basis approximations of a wide class of elliptic PDEs is introduced
in [22, 34, 41–43]; we will now extend these ideas to time-dependent (parabolic) partial differential equations.
Our approach here is a simplification and generalization of earlier efforts in this direction [39].2

We remark that the development of the error bounds presented below is not limited to the reduced-basis
approximation described in this paper: with suitable hypotheses, we may consider “any” stable ODE or PDE
system and associated reduced-order model.

4.1. Error bounds

4.1.1. Preliminaries

To begin, we assume that we are given positive lower bounds for the coercivity constants, α(µ) and σ(µ):
α̂(µ) : D → IR+ satisfies

α(µ) ≥ α̂(µ) ≥ α̂0 > 0, ∀µ ∈ D, (30)
and σ̂(µ) : D → IR+ satisfies

σ(µ) ≥ σ̂(µ) ≥ σ̂0 > 0, ∀µ ∈ D; (31)

2 Concurrently with our submission, Rovas, Machiels, and Maday submitted a manuscript [38] summarizing the earlier work [39].
Although our paper here and [38] address common issues, the two approaches differ significantly in the class of problems treated
(known [38] vs. unknown temporal forcing/controls here), in the output families considered (scalars [38] vs. functions of (discrete)
time here), in the temporal treatment (continuous in time or arbitrary-order Discontinuous-Galerkin discretization [38] vs. low-
order finite-difference here), in the sampling procedures (log-random [38] vs. greedy [9] here), and also in the emphasis on a priori
convergence results (rigorous [38] vs. empirical here). As a result, the a posteriori error estimators and associated computational
procedures (e.g., for the necessary adjoints) are quite different, as are the families of possible applications.
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various recipes for this construction can be found in [34, 44]. We next introduce the dual norm of the primal
residual

εpr
Npr

(µ, tk) ≡ sup
v∈Y

Rpr(v;µ, tk)
‖v‖Y

, ∀k ∈ K, (32)

and the dual norm of the dual residual

εdu
Ndu

(µ, tk) ≡ sup
v∈Y

Rdu(v;µ, tk)
‖v‖Y

, ∀k ∈ K, (33)

where
Rdu(v;µ, tk) ≡ −a(v,ΨN (µ, tk);µ) − 1

∆t
m(v,ΨN (µ, tk) − Ψk+1

N (µ);µ), ∀v ∈ Y, ∀k ∈ K, (34)

is the dual residual. We also specify the inner products

(v, w)Y ≡ a(v, w;µref(s)), ∀v, w ∈ Y, (35)

and
(v, w)X ≡ m(v, w;µref(s)), ∀v, w ∈ Y, (36)

for some constant reference value(s) µref(s), and recall that ‖ · ‖Y = (·, ·)1/2
Y , ‖ · ‖X = (·, ·)1/2

X .
We now present and prove the bounding properties for the errors in the primal variable, the dual variable,

and the output estimate. Throughout this section we assume that the “truth” solutions y(µ, tk) and Ψ(µ, tk)
satisfy (3) and (12), respectively, and the corresponding reduced-basis approximations yN (µ, tk) and ΨN(µ, tk)
satisfy (17) and (18), respectively. We emphasize that our error bounds are very classical, based entirely on
standard stability results invoked in a priori analyses [35]; the critical new ingredient – tailored to the reduced-
basis context – is the offline-online computational procedure of Section 4.2.

4.1.2. Primal variable

We obtain the following result for the error in the primal variable.

Proposition 4.1. Let epr(µ, tk) ≡ y(µ, tk)−yN(µ, tk) be the error in the primal variable and define the “spatio-
temporal” energy norm

|||v(µ, tk)|||pr ≡
(

m(v(µ, tk), v(µ, tk);µ) +
k∑

k′=1

a(v(µ, tk
′
), v(µ, tk

′
);µ) ∆t

) 1
2

, ∀v ∈ Y. (37)

The error in the primal variable is then bounded by

|||epr(µ, tk)|||pr ≤ ∆pr
Npr

(µ, tk), ∀µ ∈ D, ∀k ∈ K, (38)

where the error bound ∆pr
Npr

(µ, tk) is defined as

∆pr
Npr

(µ, tk) ≡
(

∆t
α̂(µ)

k∑

k′=1

εpr
Npr

(µ, tk
′
)
2

) 1
2

, (39)

and εpr
Npr

(µ, tk) is the dual norm of the primal residual defined in (32).

Proof. We immediately derive from (3) and (21) that epr(µ, tk) = y(µ, tk) − yN (µ, tk) satisfies

m(epr(µ, tk), v;µ) + ∆t a(epr(µ, tk), v;µ) = m(epr(µ, tk−1), v;µ) + ∆t Rpr(v;µ, tk), ∀v ∈ Y, ∀k ∈ K, (40)
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where epr(µ, t0) = 0 since y(µ, t0) = yN (µ, t0) = 0 by assumption. We now choose v = epr(µ, tk), invoke the
Cauchy-Schwarz inequality for the cross term m(epr(µ, tk−1), epr(µ, tk);µ), and apply (32) to obtain

m(epr(µ, tk), epr(µ, tk);µ) + ∆t a(epr(µ, tk), epr(µ, tk);µ)

≤ m
1
2 (epr(µ, tk), epr(µ, tk);µ) m

1
2 (epr(µ, tk−1), epr(µ, tk−1);µ)

+ ∆t εpr
Npr

(µ, tk) ‖epr(µ, tk)‖Y , ∀k ∈ K. (41)

We now recall the identity (for c ∈ R, d ∈ R, ρ ∈ R+)

2 |c| |d| ≤ 1
ρ2
c2 + ρ2 d2, (42)

which we apply twice: first, choosing c = m
1
2 (epr(µ, tk), epr(µ, tk);µ), d = m

1
2 (epr(µ, tk−1), epr(µ, tk−1);µ), and

ρ = 1, we obtain

2 m
1
2 (epr(µ, tk), epr(µ, tk);µ) m

1
2 (epr(µ, tk−1), epr(µ, tk−1);µ)

≤ m(epr(µ, tk−1), epr(µ, tk−1);µ) +m(epr(µ, tk), epr(µ, tk);µ); (43)

and second, choosing c = εpr
Npr

(µ, tk), d = ‖epr(µ, tk)‖Y , and ρ = α̂(µ)
1
2 we have

2 εpr
Npr

(µ, tk) ‖epr(µ, tk)‖Y ≤ 1
α̂(µ)

εpr
Npr

(µ, tk)
2

+ α̂(µ) ‖epr(µ, tk)‖2
Y . (44)

Combining (41), (43), and (44), and invoking (7) and (30), we obtain

m(epr(µ, tk), epr(µ, tk);µ) −m(epr(µ, tk−1), epr(µ, tk−1);µ)

+ ∆t a(epr(µ, tk), epr(µ, tk);µ) ≤ ∆t
α̂(µ)

εpr
Npr

(µ, tk)
2
, ∀k ∈ K. (45)

We now perform the sum from k′ = 1 to k and recall that epr(µ, t0) = 0, leading to

m(epr(µ, tk), epr(µ, tk);µ) +
k∑

k′=1

∆t a(epr(µ, tk
′
), epr(µ, tk

′
);µ) ≤ ∆t

α̂(µ)

k∑

k′=1

εpr
Npr

(µ, tk
′
)
2
, ∀k ∈ K, (46)

which is the result stated in Proposition 4.1. �
4.1.3. Dual variable

Before proceeding with the error bounds for the dual variable we have to pay special attention to the final
condition of the dual problem. The primal error at time zero, epr(µ, t0), vanishes (for our zero initial conditions)
and therefore does not contribute to the error bound. For the dual problem, however, the error at the final
time tK+1, edu(µ, tK+1) ≡ Ψ(µ, tK+1)−ΨN(µ, tK+1) is – in general – nonzero since Ψ(µ, tK+1) is not necessarily
a member of W du

Ndu
. Instead, we obtain from (13) that edu(µ, tK+1) satisfies

m(v, edu(µ, tK+1);µ) = RΨf (v;µ), ∀v ∈ Y, (47)

where
RΨf (v;µ) ≡ �(v) −m(v,ΨN (µ, tK+1);µ), ∀v ∈ Y, (48)

is the residual associated to the final condition. It can be shown that edu(µ, tK+1) satisfies the following
bound [34, 43].
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Lemma 4.2. The error edu(µ, tK+1) ≡ Ψ(µ, tK+1) − ΨN (µ, tK+1) is bounded by

‖edu(µ, tK+1)‖X ≤ ∆Ψf

Ndu
(µ) ≡ ε

Ψf

Ndu
(µ)

σ̂(µ)
, (49)

where

ε
Ψf

Ndu
(µ) ≡ sup

v∈Y

RΨf (v;µ)
‖v‖X

(50)

is the dual norm of the residual associated to the final condition. �

It directly follows from Lemma 4.2 and (47) that

m(edu(µ, tK+1), edu(µ, tK+1);µ) = RΨf (edu(µ, tK+1);µ) ≤ ε
Ψf

Ndu
(µ) ‖edu(µ, tK+1)‖X

≤ σ̂(µ)∆Ψf

Ndu
(µ)

2
. (51)

Note that for the special case in which the bilinear form m is parameter-independent, we can guarantee
that Ψ(µ, tK+1) is a member of W du

Ndu
and thus edu(µ, tK+1) is identically zero.

We are now ready to prove the bounding property for the dual problem.

Proposition 4.3. Let edu(µ, tk) ≡ Ψ(µ, tk) − ΨN (µ, tk) be the error in the dual variable and define

|||v(µ, tk)|||du ≡
(

m(v(µ, tk), v(µ, tk);µ) +
K∑

k′=k

a(v(µ, tk
′
), v(µ, tk

′
);µ) ∆t

) 1
2

. (52)

The error in the dual variable is then bounded by

|||edu(µ, tk)|||du ≤ ∆du
Ndu

(µ, tk), ∀µ ∈ D, ∀k ∈ K, (53)

where the error bound ∆du
Ndu

(µ, tk) is defined as

∆du
Ndu

(µ, tk) ≡
(

∆t
α̂(µ)

K∑

k′=k

εdu
Ndu

(µ, tk
′
)
2

+ σ̂(µ)∆Ψf

Ndu
(µ)

2

) 1
2

, (54)

and εdu
Ndu

(µ, tk) is the dual norm of the dual residual defined in (33).

Proof. We immediately derive from (12) and (34) that edu(µ, tk) = Ψ(µ, tk) − ΨN (µ, tk) satisfies

m(v, edu(µ, tk);µ) + ∆t a(v, edu(µ, tk);µ) = m(v, edu(µ, tk+1);µ) + ∆t Rdu(v;µ, tk), ∀v ∈ Y, ∀k ∈ K, (55)

with final condition m(v, edu(µ, tK+1);µ) = RΨf (v;µ), ∀v ∈ Y . Choosing v = edu(µ, tk), invoking the Cauchy-
Schwarz inequality, and applying (33) we obtain

m(edu(µ, tk), edu(µ, tk);µ) + ∆t a(edu(µ, tk), edu(µ, tk);µ)

≤ m
1
2 (edu(µ, tk+1), edu(µ, tk+1);µ) m

1
2 (edu(µ, tk), edu(µ, tk);µ)

+ ∆t εdu
Ndu

(µ, tk) ‖edu(µ, tk)‖Y , ∀k ∈ K. (56)
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We now apply (42) twice: first, with c = m
1
2 (edu(µ, tk+1), edu(µ, tk+1);µ), d = m

1
2 (edu(µ, tk), edu(µ, tk);µ), and

ρ = 1; and second, with c = εdu
Ndu

(µ, tk), d = ‖edu(µ, tk)‖Y , and ρ = α̂(µ)
1
2 . Invoking (7) and (30), we arrive at

m(edu(µ, tk), edu(µ, tk);µ) −m(edu(µ, tk+1), edu(µ, tk+1);µ)

+ ∆t a(edu(µ, tk), edu(µ, tk);µ) ≤ ∆t
α̂(µ)

εdu
Ndu

(µ, tk)
2
, ∀k ∈ K, (57)

We now perform the sum from k′ = k to K and invoke (51) to obtain

m(edu(µ, tk), edu(µ, tk);µ) +
K∑

k′=k

∆t a(edu(µ, tk
′
), edu(µ, tk

′
);µ)

≤ ∆t
α̂(µ)

K∑

k′=k

εdu
Ndu

(µ, tk
′
)
2

+ σ̂(µ)∆Ψf

Ndu
(µ)

2
, ∀k ∈ K, (58)

which is the result stated in Proposition 4.3. �

4.1.4. Output bounds

Finally, the error bound for the output estimate is given in the following proposition.

Proposition 4.4. Let the output of interest, s(µ, tk), and the reduced-basis output estimate, sN(µ, tk), be
given by

s(µ, tk) = �(y(µ, tk)), ∀µ ∈ D, ∀k ∈ K, (59)

and

sN (µ, tk) = �(yN (µ, tk)) +
k∑

k′=1

Rpr(ΨN (µ, tK−k+k′
);µ, tk

′
)∆t, ∀µ ∈ D, ∀k ∈ K, (60)

respectively. The error in the output of interest is then bounded by

|s(µ, tk) − sN(µ, tk)| ≤ ∆s(µ, tk), ∀µ ∈ D, ∀k ∈ K, (61)

where the output bound ∆s(µ, tk) is defined as

∆s(µ, tk) ≡ ∆pr
Npr

(µ, tk) ∆du
Ndu

(µ, tK−k+1), (62)

and ∆pr
Npr

(µ, tk) and ∆du
Ndu

(µ, tk) are defined in Propositions 4.1 and 4.3, respectively.

Proof. To begin, we recall the definition of the dual problem for the output at time tL, L ∈ K, given by

m(v, ψL(µ, tk);µ) + ∆t a(v, ψL(µ, tk);µ) = m(v, ψL(µ, tk+1);µ), ∀v ∈ Y, (K ≥)L ≥ k ≥ 1, (63)

with final condition m(v, ψL(µ, tL+1);µ) ≡ �(v), ∀v ∈ Y . We now choose v = epr(µ, tk) = y(µ, tk) − yN(µ, tk)
in (63) and sum from k = 1 to L, to obtain

L∑

k′=1

m(epr(µ, tk
′
), ψL(µ, tk

′
) − ψL(µ, tk

′+1);µ) +
L∑

k′=1

∆t a(epr(µ, tk
′
), ψL(µ, tk

′
);µ) = 0. (64)
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This equation can be rewritten in the form

L∑

k′=1

m(epr(µ, tk
′
) − epr(µ, tk

′−1), ψL(µ, tk
′
);µ) −m(epr(µ, tL), ψL(µ, tL+1);µ)

+
L∑

k′=1

∆t a(epr(µ, tk
′
), ψL(µ, tk

′
);µ) = 0, (65)

where we used the fact that epr(µ, t0) = 0. We now note from the final condition of the dual problem that
m(epr(µ, tL), ψL(µ, tL+1);µ) = �(epr(µ, tL)) to obtain

�(epr(µ, tL)) =
L∑

k′=1

m(epr(µ, tk
′
) − epr(µ, tk

′−1), ψL(µ, tk
′
);µ) +

L∑

k′=1

∆t a(epr(µ, tk
′
), ψL(µ, tk

′
);µ). (66)

We next choose v = ψL(µ, tk) in the error equation for the primal variable, (40), and sum from k = 1 to L, to
find

L∑

k′=1

m(epr(µ, tk
′
) − epr(µ, tk

′−1), ψL(µ, tk
′
);µ) +

L∑

k′=1

∆t a(epr(µ, tk
′
), ψL(µ, tk

′
);µ)

=
L∑

k′=1

Rpr(ψL(µ, tk
′
);µ, tk

′
) ∆t. (67)

From (66) and (67) we thus obtain

�(epr(µ, tL)) =
L∑

k′=1

Rpr(ψL(µ, tk
′
);µ, tk

′
) ∆t. (68)

=
L∑

k′=1

Rpr(Ψ(µ, tK−L+k′
);µ, tk

′
) ∆t. (69)

From the definition of s(µ, tk) and sN (µ, tk), and (69) we now obtain

s(µ, tk) − sN (µ, tk) = �(epr(µ, tk)) −
k∑

k′=1

Rpr(ΨN (µ, tK−k+k′
);µ, tk

′
) ∆t (70)

=
k∑

k′=1

Rpr(Ψ(µ, tK−k+k′
) − ΨN(µ, tK−k+k′

);µ, tk
′
) ∆t (71)

=
k∑

k′=1

Rpr(edu(µ, tK−k+k′
);µ, tk

′
) ∆t. (72)
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Invoking (32) and the Cauchy-Schwarz inequality we arrive at

|s(µ, tk) − sN (µ, tk)| ≤
k∑

k′=1

εpr
Npr

(µ, tk
′
) ‖edu(µ, tK−k+k′

)‖Y ∆t (73)

≤
(

k∑

k′=1

εpr
Npr

(µ, tk
′
)2 ∆t

) 1
2
(

k∑

k′=1

‖edu(µ, tK−k+k′
)‖2

Y ∆t

) 1
2

. (74)

Let us first bound the second term on the right hand side. From (7) and the fact that α̂(µ) ≤ α(µ), ∀µ ∈ D,
we obtain

‖edu(µ, tK−k+k′
)‖2

Y ≤ 1
α̂(µ)

a(edu(µ, tK−k+k′
), edu(µ, tK−k+k′

);µ), ∀µ ∈ D. (75)

Performing the sum from k′ = 1 to k leads to

k∑

k′=1

‖edu(µ, tK−k+k′
)‖2

Y ∆t ≤ 1
α̂(µ)

k∑

k′=1

a(edu(µ, tK−k+k′
), edu(µ, tK−k+k′

);µ) ∆t (76)

=
1

α̂(µ)

K∑

k′=K−k+1

a(edu(µ, tk
′
), edu(µ, tk

′
);µ) ∆t (77)

≤ 1
α̂(µ)

(
K∑

k′=K−k+1

a(edu(µ, tk
′
), edu(µ, tk

′
);µ) ∆t (78)

+m(edu(µ, tK−k+1), edu(µ, tK−k+1);µ)

)

(79)

=
1

α̂(µ)
(|||edu(µ, tK−k+1)|||du

)2
, (80)

where the second inequality follows from the coercivity of m(·, ·;µ) and the last equality from the definition (52)
of the ||| · |||du-norm. Finally, inserting (80) into (74) and invoking (53) and (39), we obtain

|s(µ, tk) − sN (µ, tk)| ≤ ∆pr
Npr

(µ, tk) ∆du
Ndu

(µ, tK−k+1), (81)

which is the result stated in Proposition 4.4. �

4.2. Computational procedure

We now turn to the development of offline-online computational procedures for the calculation of ∆pr
Npr

(µ, tk),
∆du

Ndu
(µ, tk), and ∆s(µ, tk). The necessary computations for the offline and online stages – by construction rather

similar to the elliptic case [34] – are detailed in Appendix A.2. Here, we only summarize the computational
costs involved.

The computational cost in the offline stage is (to leading order) O((Npr,max +Ndu,max)(Qa +Qm)) solutions
of the underlying “truth” finite element approximation and O((N2

pr,max +N2
du,max)(Q

2
a +QaQm +Q2

m)) N -inner
products; the storage requirement is O((N2

pr,max+N2
du,max)(Q

2
a+QaQm+Q2

m)). In the online stage – given a new
parameter value µ and associated reduced-basis solutions y

N
(µ, tk) and ΨN (µ, tk), ∀k ∈ K – the computational

cost to evaluate ∆s(µ, tk), ∀k ∈ K, is O(K(N2
pr +N

2
du)(Q

2
a +QaQm +Q2

m)). Thus, all online calculations needed
are independent of N .
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5. Adaptive sampling procedure

Our error estimation procedures not only allow us to determine the accuracy of the output estimate but
also to pursue a more rational construction of the sampling set Spr

Npr
(and Sdu

Ndu
) and associated reduced-basis

space W pr
Npr

(and W du
Ndu

). The crucial point is that the error bound ∆pr
Npr

(µ, tk) (respectively, ∆du
Ndu

(µ, tk)) is an
accurate surrogate for the true error |||y(µ, tk)−yN(µ, tk)|||pr (respectively, |||Ψ(µ, tk)−ΨN(µ, tk)|||du) that can
be very efficiently calculated in the limit of many queries. We may thus perform an exhaustive search over the
parameter-time space to find the best sample sets Spr

Npr
(and Sdu

Ndu
): in essence, a snapshot procedure in which

only the snapshots retained must actually be evaluated.
The sampling procedure for the primal and dual problem is very similar; we thus focus only on the primal

problem. Also recall that the control input sequence u(tk) is assumed to be known – either a prescribed function
or the impulse (see Sect. 2.2).

5.1. Greedy algorithm

To begin, we assume that we are given a sample set Spr
Npr

and associated reduced-basis space W pr
Npr

. We then
choose the next sampling point based on the following two steps: first, we search in parameter space and select
the parameter value µ∗ for which ∆pr

Npr
(µ, tK) is maximized,3

µ∗ = arg max
µ∈ΞF

∆pr
Npr

(µ, tK); (82)

we then select the timestep tk
∗

for which the temporal rate of change of ∆pr
Npr

(µ, tk) is largest,

tk
∗

= arg max
tk∈I

(∆pr
Npr

(µ, tk) − ∆pr
Npr

(µ, tk−1)). (83)

Here, ΞF ⊂ (D)nF is a random parameter test sample of size nF ; since the marginal cost to evaluate ∆pr
Npr

(µ, tK)
is small, the random sample can be very large, i.e., nF 
 1. We then append µ̃∗ = (µ∗, tk

∗
) to Spr

Npr
to

form Spr
Npr+1, and hence W pr

Npr+1, and update the reduced-basis approximation and error estimation procedure
accordingly. We repeat this process until the maximum error bound at the final time tK over ΞF is less than a
desired (most stringent anticipated) error tolerance εtol,min: this determines Npr,max.

We note that our sample selection process is not truly optimal: given the prescribed error tolerance εtol,min,
there are undoubtedly parameter samples with fewer than Npr,max points that suffice. Unfortunately, the latter
can only be identified by prohibitively (combinatorially) expensive calculation, and thus we must resort to
heuristic approaches. Our particular heuristic, described above, is of the “greedy” [9] variety: we focus on just
the next sample point and just the currently largest error with no regard to more global objectives. In actual
practice, as we shall see in Section 6, this carpe diem philosophy indeed leads to good samples; but we are not
able to characterize the degree of sub-optimality relative to truly optimal samples.

We elaborate on three refinements. First, we invoke a normalized error bound for the sampling procedure to
avoid dependence on the magnitude of the forcing term (the control input): in particular, we normalize with
respect to |||yN (µ, tK)|||pr, which can be calculated online in only O(KN2

pr) operations. Second, we are careful
to orthonormalize the basis functions ζpr

n with respect to the (·, ·)Y inner product by (say) Gram-Schmidt: this
guarantees, for example, that the condition number of the reduced-basis matrix AN (µ) is bounded from above
by γ0

α0
for all N . Third, as regards initialization, we simply set µ1 = µmin and choose ζpr

1 = y(µ1, t
k) 
= 0 for

some small k, i.e., we select ζpr
1 = y(µ1, t

1) for u(t1) 
= 0. This choice has a simple justification: the adaptive
sampling procedure is likely to select samples corresponding to transient behaviour which, in most cases – and
certainly for the impulse input – occurs during the first few timesteps (also see the numerical results in Fig. 4).

3 Note that ∆pr
Npr

(µ, tk) is a nondecreasing sequence in k and the maximum therefore always occurs at k = K.
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5.2. Extensions

The extension of the adaptive procedure to the case of multiple control inputs is straightforward. If the
control inputs are given, the sampling algorithm can directly be applied; however, if the control inputs are
unknown, e.g., in the optimal control context, we can simply adjust the impulse approach. We begin with
an impulse in the first control input – all other control inputs are set to zero – and generate the basis using
the standard algorithm. When the adaptive procedure terminates, we set the first control input to zero and
the second control input to the impulse and restart the adaptive sampling – initialized to the already existing
sample set Spr

Npr
and associated reduced-basis space W pr

Npr
. In effect, the multiple control input scenario simply

adds an “outer loop” to the standard algorithm.
We may also consider nonzero initial conditions. In the case of a parameter-independent nonzero initial

condition, we simply set ζpr
1 = y0 and apply the standard algorithm. For (affinely) parameter-dependent initial

conditions y0(µ) we may write

y0(µ) =
Qy∑

q=1

Θq
y(µ) yq

0, ∀µ ∈ D, (84)

where the yq
0 ∈ Y , 1 ≤ q ≤ Qy, are given members of Y ; only the functions Θq

y(µ) : D → IR, 1 ≤ q ≤ Qy depend
on µ. In this case we initialize W pr

Npr
to span1≤q≤Qy

{yq
0}, and then apply the standard sampling algorithm of

Section 5.1 (with initial condition y0(µ)). In both these cases we retain the condition epr(µ, t0) = 0.
Note that the case of multiple control inputs with nonzero initial conditions is a straightforward combination

of the previous two cases. We first generate a reduced-basis for the nonzero initial condition (with zero control
input); given this basis, we then further adapt to the control inputs using the impulse approach (for zero initial
condition).

6. Numerical results

We now turn to a particular numerical example related to transient heat conduction. We consider the design
of a heat shield, one segment of which is shown in Figure 1. The domain Ω, a typical point of which is (x1, x2),
is thus given by Ω ≡ {[0, 10]× [0, 4]}\{(]1, 3[×]1, 3[)∪ (]4, 6[×]1, 3[) ∪ (]7, 9[×]1, 3[)}. The left boundary, ∂Ωout

(x1 = 0), is exposed to a hot temperature (here normalized to unity) for t ∈]0, tf ]; the right boundary as well
as the top and bottom boundaries are insulated. The internal boundaries ∂Ωin – corresponding to the surfaces
of the three square cooling channels ]1, 3[×]1, 3[ , ]4, 6[×]1, 3[ , and ]7, 9[×]1, 3[ – are exposed to a (normalized)
zero-temperature air flow. The (non-dimensionalized) heat transfer coefficients for the non-insulated boundaries
∂Ωout and ∂Ωin are given by the Biot numbers Biout and Biin, respectively. Our input parameter is hence
µ ≡ (µ(1), µ(2)) ≡ (Biout,Biin) ∈ D ≡ [0.01, 0.5]× [0.001, 0.1] ⊂ IRP=2. Our output is the average temperature
of the structure, which serves as a surrogate for the maximum possible temperature of the (to-be-protected)
right boundary for t ∈ [0,∞[.

The underlying partial differential equation is the heat (diffusion) equation. The (appropriately
non-dimensionalized) governing equation for the temperature y(µ, tk) ∈ Y is thus (3), where Y ⊂ Y e ≡ H1(Ω)
is a linear finite element truth approximation subspace of dimension (exploiting symmetry) N = 1396. The bi-
linear and linear forms are given by m(w, v;µ) ≡ ∫

Ω
w v, a(w, v;µ) ≡ ∫

Ω
∇w∇v+µ(1)

∫
∂Ωout

w v+µ(2)

∫
∂Ωin

w v,
and b(v;µ) ≡ µ(1)

∫
∂Ωout

v; these forms admit obvious affine representations (9)-(11) with Qm = 1, Qa = 3, and
Qb = 14. We also define the inner product (w, v)Y ≡ ∫

Ω
∇w∇v+0.01

∫
∂Ωout

w v+0.001
∫
∂Ωin

w v, corresponding
to (35) for µref = (0.01, 0.001); we may hence choose α̂(µ) = 1 in (30). The output can be written in the
form (4), s(µ, tk) = �(y(µ, tk)), ∀k ∈ K, where �(v) = |Ω|−1

∫
Ω
v is clearly a very smooth functional. We shall

consider the time interval Ī = [0, 20] and a timestep ∆t = 0.2; we thus have K = 100.

4 Note that the bilinear form m happens to be parameter-independent in this example, and thus edu(µ, tK+1) = 0 here. We
thus have no (computational) need for (·, ·)X .
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Figure 1. One segment of the heat shield.

In Figures 2 and 3 we show the temperature variation over the heat shield at different points in time and
for different parameter combinations. We first note that for larger values of µ(1) the temperature is, overall,
much higher than for smaller values of µ(1). Also, for larger values of µ(2) more heat is removed through the
first cooling channel; for smaller values of µ(2), however, the heat penetrates deeper into the structure and the
temperature tends to be higher and more uniform over the heat shield.

Before discussing the convergence properties we present numerical results for our adaptive sampling proce-
dure. For purposes of illustration, we construct a reduced-basis space for the (one-)parameter set D1 ≡ [0.01]×
[0.001, 0.1], i.e., we assume µ(1) = 0.01 is fixed. We initialize the procedure with Spr

1 = (µ(2),min = 0.001, t1)
and set the desired error tolerance (for the primal energy norm) to εtol,min = 1 E – 3. We plot and tabulate
the resulting sample set Spr

Npr
in µ(2)-tk space in Figure 4 – we need Npr = 15 basis functions to obtain the

desired accuracy. We note that for this problem the adaptive sampling procedure selects all the samples on the
µ(2) = 0.001 axis before selecting any other samples. Also, samples taken from only near the extreme parameter
values (minimum and maximum) in D1 are sufficient to guarantee the desired tolerance everywhere in D1; in
general, this is not the case.

We now present convergence results for the full two-parameter numerical example. The primal and dual
samples in D̃ = D × I are constructed according to the adaptive sampling procedure in Section 5; we obtain
Npr,max = 22 and Ndu,max = 21 for εtol,min = 1 E – 3. (We do not consider here optimization of the primal and
dual effort given desired output accuracies.) We first define the effectivity associated to the primal and dual
error bounds as

ηpr(µ, tk) ≡
∆pr

Npr
(µ, tk)

|||epr(µ, tk)|||pr
(85)

and

ηdu(µ, tk) ≡ ∆du
Ndu

(µ, tk)
|||edu(µ, tk)|||du

, (86)

respectively. Similarly, the effectivity for the output bound is defined as

ηs(µ, tk) ≡ ∆s(µ, tk)
|s(µ, tk) − sN (µ, tk)| · (87)

The effectivity serves as a measure of rigour and sharpness of the error bounds: we have ηpr(µ, tk) ≥ 1, ∀µ ∈ D,
since ∆pr(µ, tk) is a true upper bound to the error in the ||| · |||pr-norm; and ideally we would like ηpr(µ, tk) ≈ 1,
∀µ ∈ D, so as to obtain a sharp bound for the error. (Similar arguments apply to the dual and to the output.)

In Table 1 we present, as a function of Npr (= Ndu), ∆pr
max,rel, η

pr, ∆s
max,rel, and ηs: ∆pr

max,rel is the max-
imum over ΞTest of ∆pr

Npr
(µ, tK)/|||yN(µy, t

K)|||, ηpr is the average over ΞTest × I of ∆pr
Npr

(µ, tk)/|||y(µ, tk) −
yN (µ, tk)|||, ∆s

max,rel is the maximum over ΞTest of ∆s(µ, tK)/|sN (µs, t
K)|, and ηs is the average over ΞTest
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(a) (b)

Figure 2. Temperature in the heat shield at t = t10 = 2 and t = t100 = 20 over the domain Ω
for (a) µ = (0.5, 0.001) and (b) µ = (0.5, 0.1).

of ∆s(µ, tη(µ))/|s(µ, tη(µ)) − sN (µ, tη(µ))|. Here ΞTest ∈ (D)400 is a random input sample of size 400; µy ≡
argmaxµ∈ΞTest |||yNmax(µ, tK)|||, µs ≡ arg maxµ∈ΞTest |sNmax(µ, tK)| (note the output grows with time), and
tη(µ) ≡ arg maxtk∈I |s(µ, tk) − sN (µ, tk)|. We observe very rapid convergence of the reduced-basis approxima-
tion. Furthermore, as we may expect, ∆s(µ, tk) converges roughly as the square of ∆pr

Npr
(µ, tk); we see that for

only Npr = Ndu = 8 the error in the output is less than one percent. Also, the effectivities are very good: O(1)
for the primal error bound, and O(10) for the output bound; note the latter are worse than the former as our
bound cannot take into account any correlation between the primal and dual error. (We do not at present have
good a priori upper bounds for the effectivities; see [34] for treatment of the elliptic case.)

In Table 2 we present, as a function of Npr(= Ndu), the online computational times to calculate sN (µ, tk) and
∆s(µ, tk), ∀k ∈ K. The values are normalized with respect to the computational time for the direct calculation
of the truth approximation output s(µ, tk) = �(u(µ, tk)), ∀k ∈ K. We note that even for the largest value
of Npr(= Ndu) the calculation of sN(µ, tk) and ∆s(µ, tk) is approximately 100 times faster than the direct
calculation of s(µ, tk). (The growth with Npr is less than expected due to memory-access issues.) We emphasize
that the reduced-basis entry does not include the extensive offline computations – and is thus only meaningful
in the real-time or many-query contexts.
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(a) (b)

Figure 3. Temperature in the heat shield at t = t10 = 2 and t = t100 = 20 over the domain Ω
for (a) µ = (0.01, 0.001) and (b) µ = (0.01, 0.1).

We can now define lower and upper output bounds

s−N (µ, tk) ≡ sN (µ, tk) − ∆s(µ, tk) ≤ s(µ, tk) ≤ sN(µ, tk) + ∆s(µ, tk) ≡ s+N (µ, tk). (88)

We know that s+N (µ, tk) (respectively, s−N (µ, tk)) are certifiably upper (respectively, lower) bounds for the true
output s(µ, tk) – see Proposition 4.4; that these bounds are accurate – see Table 1; and that these bounds may
be evaluated very fast online – see Table 2. The bounds may thus serve to ensure a feasible design5, a “good”
design, and a fast design process or real-time decision [29].

5For example, to honor an optimal-control constraint of the form s(µ, tk) ≤ Tmax we may conservatively impose s+
N (µ, tk) ≤

Tmax.
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n µpr
n kpr

n

1 0.001 1
2 0.001 2
3 0.001 3
4 0.001 4
5 0.001 7
6 0.001 12
7 0.001 24
8 0.001 40
9 0.001 82
10 0.100 1
11 0.100 3
12 0.100 10
13 0.100 22
14 0.090 5
15 0.091 47

Figure 4. Sample set Spr
Npr

for D1 ≡ [0.01]× [0.001, 0.1] and Npr = 15.

Table 1. Convergence rate and effectivities: Npr = Ndu.

Npr ∆pr
max,rel ηpr ∆s

max,rel ηs

4 1.6 E – 00 5.44 1.6 E – 00 95.63
8 6.3 E – 02 1.55 6.7 E – 03 30.92

12 1.0 E – 02 1.03 2.6 E – 04 8.43
16 3.2 E – 03 1.02 1.5 E – 05 11.45
20 8.8 E – 04 1.01 1.1 E – 06 17.43
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Table 2. Online computational times (normalized with respect to the time to solve for
s(µ, tk), ∀k ∈ K).

Npr sN (µ, tk), ∀k ∈ K ∆s(µ, tk), ∀k ∈ K s(µ, tk), ∀k ∈ K

4 3.3 E – 03 3.2 E – 03 1
8 4.1 E – 03 3.3 E – 03 1

12 4.9 E – 03 3.4 E – 03 1
16 5.6 E – 03 3.5 E – 03 1
20 6.5 E – 03 3.6 E – 03 1

A. Appendix: Offline-online computational procedure

A.1. Reduced-basis approximation

We summarize here the reduced-basis approximations and necessary quantities for the dual problem and the
output estimate (for the primal problem, see Section 3.2).

For the dual problem we define ΨN (µ, tk) = [ΨN 1(µ, tk) ΨN 2(µ, tk) . . . ΨN Ndu(µ, t
k)]T and obtain from (18)

that (
Mdu

N (µ) + ∆t Adu
N (µ)

)
ΨN (µ, tk) = Mdu

N (µ) ΨN (µ, tk+1), ∀k ∈ K, (89)
where

Mdu
N (µ) =

Qm∑

q=1

Θq
m(µ) Mdu q

N , and Adu
N (µ) =

Qa∑

q=1

Θq
a(µ) Adu q

N , (90)

with entries
Mdu q

N i,j = mq(ζdu
i , ζdu

j ), 1 ≤ i, j ≤ Ndu,max, 1 ≤ q ≤ Qm;

Adu q
N i,j = aq(ζdu

i , ζdu
j ), 1 ≤ i, j ≤ Ndu,max, 1 ≤ q ≤ Qa; and

Ldu
N i = �(ζdu

i ), 1 ≤ i ≤ Ndu,max.

(91)

Note that ΨN (µ, tK+1) is calculated from Mdu
N (µ) ΨN (µ, tK+1) = Ldu

N .
Finally, we evaluate the output estimate, ∀k ∈ K, from

sN (µ, tk) = LprT
N y

N
(µ, tk) +

k∑

k′=1

ΨT
N(µ, tK−k+k′

)

{

Bdu
N (µ)u(tk

′
) −Apr,du

N (µ) y
N

(µ, tk
′
) − 1

∆t
Mpr,du

N (µ)
(
y

N
(µ, tk

′
) − y

N
(µ, tk

′−1)
)}

(92)

where

Mpr,du
N (µ) =

Qm∑

q=1

Θq
m(µ) Mpr,du q

N , Apr,du
N (µ) =

Qa∑

q=1

Θq
a(µ) Apr,du q

N , and Bdu
N (µ) =

Qb∑

q=1

Θq
b(µ) Bdu q

N , (93)

with entries
Mpr,du q

N i,j = mq(ζdu
i , ζpr

j ), 1 ≤ i ≤ Ndu,max, 1 ≤ j ≤ Npr,max, 1 ≤ q ≤ Qm;

Apr,du q
N i,j = aq(ζdu

i , ζpr
j ), 1 ≤ i ≤ Ndu,max, 1 ≤ j ≤ Npr,max, 1 ≤ q ≤ Qa;

Bdu q
N i = bq(ζdu

i ), 1 ≤ i ≤ Ndu,max, 1 ≤ q ≤ Qb; and

Lpr
N i = �(ζpr

i ), 1 ≤ i ≤ Npr,max.

(94)
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The offline-online procedure is described in Section 3.2.

A.2. A Posteriori error estimation

In this section we discuss the calculation of the primal and dual error bound. For the primal error bound,
we first note from standard duality arguments that

εpr
Npr

(µ, tk) ≡ sup
v∈Y

Rpr(v;µ, tk)
‖v‖Y

(95)

= ‖êpr(µ, tk)‖Y , (96)

where êpr(µ, tk) ∈ Y is given by

(êpr(µ, tk), v)Y = Rpr(v;µ, tk), ∀v ∈ Y ; (97)

(97) is effectively a Poisson problem for each tk ∈ I.
From (21) and the affine assumptions (9)–(11) it thus follows that êpr(µ, tk) satisfies

(êpr(µ, tk), v)Y =
Qb∑

q=1

Θq
b(µ) bq(v)u(tk) −

Npr∑

n=1

{
Qa∑

q=1

Θq
a(µ) yNn(µ, tk) aq(ζpr

n , v)

+
Qm∑

q=1

1
∆t

Θq
m(µ)

(
yNn(µ, tk) − yNn(µ, tk−1)

)
mq(ζpr

n , v)

}

, ∀v ∈ Y. (98)

It is clear from linear superposition that we can express ê(µ, tk) as

êpr(µ) =
Qb∑

q=1

Θq
b(µ)u(tk)Bpr

q −
Npr∑

n=1

{
Qa∑

q=1

Θq
a(µ) yNn(µ, tk)Apr

q,n

+
Qm∑

q=1

1
∆t

Θq
m(µ)

(
yNn(µ, tk) − yNn(µ, tk−1)

) Mpr
q,n

}

, (99)

where we calculate

Bpr
q ∈ Y from (Bpr

q , v)Y = bq(v), ∀v ∈ Y for 1 ≤ q ≤ Qb,

Apr
q,n ∈ Y from (Apr

q,n, v)Y = aq(ζpr
n , v), ∀v ∈ Y for 1 ≤ n ≤ Npr,max, 1 ≤ q ≤ Qa,

Mpr
q,n ∈ Y from (Mpr

q,n, v)Y = mq(ζpr
n , v), ∀v ∈ Y for 1 ≤ n ≤ Npr,max, 1 ≤ q ≤ Qm;

(100)

note B, A, and M are parameter independent.
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From (96) and (99) it follows that

εpr
Npr

(µ, tk)
2

=
Qb∑

q,q′=1

Θq
b(µ)Θq′

b (µ)u(tk)u(tk) Λpr,bb
qq′

+
Qb∑

q=1

Npr∑

n=1

Θq
b(µ)u(tk)

(
Qa∑

q′=1

Θq′
a (µ) yNn(µ, tk) Λpr,ab

qq′n

+
Qm∑

q′=1

Θq′
m(µ)

(
yNn(µ, tk) − yNn(µ, tk−1)

)
Λpr,mb

qq′n

)

+
Npr∑

n,n′=1

{
Qa∑

q,q′=1

Θq
a(µ)Θq′

a (µ) yNn(µ, tk) yNn′(µ, tk) Λpr,aa
qnq′n′

+
Qm∑

q,q′=1

Θq
m(µ)Θq′

m(µ)
(
yNn(µ, tk) − yNn(µ, tk−1)

) (
yNn′(µ, tk) − yNn′(µ, tk−1)

)
Λpr,mm

qnq′n′

+
Qa∑

q=1

Qm∑

q′=1

Θq
a(µ)Θq′

m(µ) yNn(µ, tk)
(
yNn′(µ, tk) − yNn′(µ, tk−1)

)
Λpr,am

qnq′n′

}

, (101)

where the parameter-independent quantities Λpr are defined as

Λpr,bb
qq′ = (Bpr

q ,Bpr
q′ )Y , 1 ≤ q, q′ ≤ Qb;

Λpr,ab
qq′n = −2 (Bpr

q ,Apr
q′,n)Y , 1 ≤ q ≤ Qb, 1 ≤ q′ ≤ Qa, 1 ≤ n ≤ Npr,max;

Λpr,mb
qq′n = − 2

∆t (Bpr
q ,Mpr

q′,n)Y , 1 ≤ q ≤ Qb, 1 ≤ q′ ≤ Qm, 1 ≤ n ≤ Npr,max;

Λpr,aa
qnq′n′ = (Apr

q,n,Apr
q′,n′)Y , 1 ≤ q, q′ ≤ Qa, 1 ≤ n, n′ ≤ Npr,max;

Λpr,am
qnq′n′ = 2

∆t (Apr
q,n,Mpr

q′,n′)Y , 1 ≤ q ≤ Qa, 1 ≤ q′ ≤ Qm, 1 ≤ n, n′ ≤ Npr,max;

Λpr,mm
qnq′n′ = 1

∆t2 (Mpr
q,n,Mpr

q′,n′)Y , 1 ≤ q, q′ ≤ Qm, 1 ≤ n, n′ ≤ Npr,max.

(102)

The computational procedure for the dual error bound follows arguments similar to the primal error bound
presented in (95)–(99). Thus, we first solve for

Adu
q,n ∈ Y from (Adu

q,n, v)Y = aq(ζdu
n , v), ∀v ∈ Y for 1 ≤ n ≤ Ndu,max, 1 ≤ q ≤ Qa,

Mdu
q,n ∈ Y from (Mdu

q,n, v)Y = mq(ζdu
n , v), ∀v ∈ Y for 1 ≤ n ≤ Ndu,max, 1 ≤ q ≤ Qm; (103)

and then evaluate the dual norm from

εdu
Ndu

(µ, tk)
2

=
Ndu∑

n,n′=1

{
Qa∑

q,q′=1

Θq
a(µ)Θq′

a (µ)ΨNn(µ, tk)ΨNn′(µ, tk) Λdu,aa
qnq′n′

+
Qm∑

q,q′=1

Θq
m(µ)Θq′

m(µ)
(
ΨNn(µ, tk) − ΨNn(µ, tk+1)

) (
ΨNn′(µ, tk) − ΨNn′(µ, tk+1)

)
Λdu,mm

qnq′n′

+
Qa∑

q=1

Qm∑

q′=1

Θq
a(µ)Θq′

m(µ)ΨNn(µ, tk)
(
ΨNn′(µ, tk) − ΨNn′(µ, tk+1)

)
Λdu,am

qnq′n′

}

, (104)
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where the parameter-independent quantities Λdu are defined as

Λdu,aa
qnq′n′ = (Adu

q,n,Adu
q′,n′)Y , 1 ≤ q, q′ ≤ Qa, 1 ≤ n, n′ ≤ Ndu,max;

Λdu,am
qnq′n′ = 2

∆t (Adu
q,n,Mdu

q′,n′)Y , 1 ≤ q ≤ Qa, 1 ≤ q′ ≤ Qm, 1 ≤ n, n′ ≤ Ndu,max;

Λdu,mm
qnq′n′ = 1

∆t2 (Mdu
q,n,Mdu

q′,n′)Y , 1 ≤ q, q′ ≤ Qm, 1 ≤ n, n′ ≤ Ndu,max.

(105)

Finally, for the contribution due to the error of the dual problem at the final time we first solve for

LΨf ∈ Y from (LΨf , v)X = �(v), ∀v ∈ Y,

MΨf
q,n ∈ Y from (MΨf

q,n, v)X = mq(ζdu
n , v), ∀v ∈ Y for 1 ≤ n ≤ Ndu,max, 1 ≤ q ≤ Qm;

(106)

we then evaluate the dual norm from

ε
Ψf

Ndu
(µ)

2
= ΛΨf ,�� +

Ndu∑

n=1

Qm∑

q=1

Θq
m(µ)ΨNn(µ, tK+1)

{

ΛΨf ,�m
qn +

Ndu∑

n′=1

Qm∑

q′=1

Θq′
m(µ)ΨNn′(µ, tK+1)ΛΨf ,mm

qnq′n′

}

, (107)

where the parameter-independent quantities ΛΨf are defined as

ΛΨf ,�� = (LΨf ,LΨ)X ;

ΛΨf ,�m
qn = −2 (MΨf

q,n,LΨf )X , 1 ≤ q ≤ Qm, 1 ≤ n ≤ Ndu,max;

ΛΨf ,mm
qnq′n′ = (MΨf

q,n,MΨf

q′,n′)X , 1 ≤ q, q′ ≤ Qm, 1 ≤ n, n′ ≤ Ndu,max.

(108)

The offline-online decomposition is now clear. In the offline stage we first compute the quantities Bpr, LΨf ,
Apr,du, and Mpr,du,Ψf from (100), (103), and (106) and then evaluate the Λpr,du,Ψf from (102), (105), and (108);
this requires (to leading order) O((Npr,max + Ndu,max)(Qa + Qm)) expensive “truth” finite element solutions,
and O((N2

pr,max +N2
du,max)(Q

2
a +QaQm +Q2

m)) N -inner products. In the online stage, given a new parameter
value µ and associated reduced-basis solutions y

N
(µ, tk) and ΨN (µ, tk), we perform the sums (101), (104),

and (107) and evaluate the error bound from

∆s(µ, tk) =

(
∆t
α̂(µ)

k∑

k′=1

εpr
Npr

(µ, tk
′
)
2

) 1
2


 ∆t
α̂(µ)

K∑

k′=K−k+1

εdu
Ndu

(µ, tk
′
)
2

+
ε
Ψf

Ndu
(µ)

2

σ̂(µ)





1
2

, ∀k ∈ K; (109)

it directly follows that the online operation count for ∆s(µ, tk), ∀k ∈ K, is O(K(N2
pr+N

2
du)(Q

2
a +QaQm+Q2

m)).
Thus, all requisite online calculations are independent of the dimension of the underlying “truth” finite element
space, N .
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[17] K. Ito and S.S. Ravindran, A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143 (1998)

403–425.
[18] K. Ito and S.S. Ravindran, Reduced basis method for optimal control of unsteady viscous flows. Int. J. Comput. Fluid Dyn.

15 (2001) 97–113.
[19] S. Lall, J.E. Marsden and S. Glavaski, A subspace approach to balanced truncation for model reduction of nonlinear control

systems. Int. J. Robust Nonlinear Control 12 (2002) 519–535.
[20] M. Lin Lee, Estimation of the error in the reduced basis method solution of differential algebraic equation systems. SIAM J.

Numer. Anal. 28 (1991) 512–528.
[21] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer (1971).
[22] L. Machiels, Y. Maday, I.B. Oliveira, A.T. Patera and D.V. Rovas, Output bounds for reduced-basis approximations of

symmetric positive definite eigenvalue problems. C. R. Acad. Sci. Paris, Sér. I 331 (2000) 153–158.
[23] Y. Maday, A.T. Patera and D.V. Rovas, A blackbox reduced-basis output bound method for noncoercive linear problems, in

Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar Volume XIV, D. Cioranescu and
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