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APPROXIMATION OF THE VIBRATION MODES OF A PLATE COUPLED
WITH A FLUID BY LOW-ORDER ISOPARAMETRIC FINITE ELEMENTS ∗

Erwin Hernández
1

Abstract. We analyze an isoparametric finite element method to compute the vibration modes of
a plate, modeled by Reissner-Mindlin equations, in contact with a compressible fluid, described in
terms of displacement variables. To avoid locking in the plate, we consider a low-order method of
the so called MITC (Mixed Interpolation of Tensorial Component) family on quadrilateral meshes.
To avoid spurious modes in the fluid, we use a low-order hexahedral Raviart-Thomas elements and a
non conforming coupling is used on the fluid-structure interface. Applying a general approximation
theory for spectral problems, under mild assumptions, we obtain optimal order error estimates for the
computed eigenfunctions, as well as a double order for the eigenvalues. These estimates are valid with
constants independent of the plate thickness. Finally, we report several numerical experiments showing
the behavior of the methods.
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1. Introduction

This paper deals with the numerical computation of the vibration modes of a fluid-structure interaction
problem in a 3D-domain. This is a very important engineering problem (e.g. for treatment of noise in cars or
planes). It is well known that a large amount of work has been devoted to this subject (see for example [17]).

We are interested in one of problems of this kind: to compute elastoacoustic vibrations when the structure
is an elastic plate and the fluid is ideal and compressible, both with small displacements.

In the framework of plate theory, we consider the most commonly used model for describe small as well as
moderately thin plates: Reissner-Mindlin equations. It is well known that standard finite element methods
produce unsatisfactory result when applied to this model, even for the plate alone; this phenomenon is due
to numerical locking. To avoid this drawback, some special method based on reduced integration or mixed
interpolation has to be used. One of the most used methods of this type is the MITC (Mixed Interpolation of
Tensorial Component) methods introduced by Bathe and Dvorkin in [4]. A great number of paper dealing with
the mathematical analysis of this method have been published in the context of load problem (see for example
[2, 3, 9, 10, 20]) and for the plate vibration spectral problem (see [11, 13]).
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To determining the vibration modes of the fluid, usually the pressure is chosen as primary variable; however,
for coupled systems, the use of displacement vector fields present some advantageous properties like, for example,
that compatibility and equilibrium through the fluid-structure interface satisfy automatically. Though, it is well
known that the displacement formulation suffers from the presence of zero-frequency spurious modes with no
physical meaning. An alternative approach has been introduced and analyzed in [7] to avoid the spurious modes;
it consists in the use of lowest-order Raviart-Thomas element. Non-existence of spurious modes and optimal
error estimates for two dimensional fluid-structure problem have been proved in [7] and [18].

The problem of a plate coupled with a fluid have been mathematically analyzed in [12], by using DL3
triangular finite element for the plate and tetrahedral Raviart-Thomas element for the fluid. Optimal order
error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter have been
obtained in that reference and no spurious modes are present with this discretization.

In the case of plate alone, recently, in [13] has been proved optimal error estimates in order and regularity
for lowest-order quadrilateral MITC4 finite element under some technical assumption. These result have been
proved for triangular element in [11], however those proofs can not be extended straightforwardly, even for the
case of rectangular meshes.

In this paper we have extended the results in [12] by considering a discretization of the coupled problem
involving the quadrilateral MITC4 finite element for the bending of the plate (the original Bathe and Dvorkin’s
paper deals with this element) and lowest-order hexahedral Raviart-Thomas element (see [21]) for the fluid. On
the fluid-plate interface a non-conforming coupling is used; i.e., equal normal displacement for the fluid and
plate is imposed in a weak sense. Moreover, in order to get error estimates optimal in order and regularity
we assume the hypothesis of convexity of the domain. Let us remark that although the isoparametrical finite
element are the most used element in engineering applications (quadrilateral in 2D and hexahedral in 3D), no
available result seems to exist for this case.

The rest of the paper is organized as follow. In Section 2 we introduce the spectral problem to describe the
free vibration modes for the coupled system. In Section 3, we describe the finite element method to solve the
problem. We prove optimal order error estimates for the approximation. In Section 5 we prove error estimates
for the spectral plate-fluid vibration problem. Finally, in Section 6, we report some numerical experiments.

Throughout the paper we denote by C a positive constant not necessarily the same at each occurrence, but
always independent of the mesh-size and the plate thickness.

2. Statement of the problem

We consider the problem of determining the free vibration modes of a three-dimensional cavity enclosing and
ideal inviscid barotropic fluid. The walls of this cavity are considered to be all rigid, except for one of them
which is an elastic plate. Let Ω be the domain occupied by the fluid and Γ×

(
− t

2 ,
t
2

)
, that of the plate, where Γ

is its middle surface of the plate of constant thickness t > 0.
We consider that Ω is a polyhedral convex three-dimensional domain. Its boundary ∂Ω is the union of the

convex surfaces Γ0, Γ1, ..., ΓJ . We assume that Γ0 is in contact with the plate, whereas the remaining surfaces
are assumed to be perfectly rigid walls. We denote by n the unit outward normal vector to ∂Ω.

Throughout this paper we make use of the standard notation for Sobolev spaces Hk(Ω), H1
0 (Γ), H(div,Ω),

H0(rot,Γ), etc. and their respective norms (see for instance [15]). We also denote H := L2(Γ)×L2(Γ)2×L2(Ω)3,
X := H1

0 (Γ) ×H1
0 (Γ)2 ×H(div,Ω) and ‖ · ‖ the product norm of the latter.

In that follows, we introduce the coupled problem. For more details see [12].
In order to describe the deformation of the plate, we consider the Reissner-Mindlin model, which is written

in terms of the rotations β = (β1, β2) of the fibers initially normal to the plate midsurface and the transverse
displacement w (see [8, 10]). The following equations describe the dynamic response of the plate to a pressure
load q exerted on one of its faces with (w, β) ∈ H1

0 (Γ) ×H1
0 (Γ)2 being such that

t3a(β, η) + κt

∫

Γ

(∇w− β) · (∇v − η) + t

∫

Γ

ρPẅv +
t3

12

∫

Γ

ρP β̈ · η =
∫

Γ

qv ∀(v, η) ∈ H1
0 (Γ)×H1

0 (Γ)2 (1)
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(see for instance [16]). In the previous equation, the double dot means second derivatives with respect to time,
ρP is the density of the plate, κ := Ek

2(1+ν) , where E is the Young modulus, ν the Poisson ratio of the plate and k
a correction factor which is usually taken as 5/6 (see [1] for a justification of the use of this coefficient); finally,
a is the bilinear form H1

0 (Γ)2-elliptic defined by

a(β, η) :=
E

12(1 − ν2)

∫

Γ




2∑

i,j=1

(1 − ν)εij(β)εij(η) + ν div β div η



 .

On the other hand, to describe the governing equations for the free small amplitude motions of an inviscid
compressible fluid contained in Ω, we consider the displacement formulation

∫

Ω

ρF ü · φ+
∫

Ω

ρFc
2 div u div φ = −

∫

Γ

p φ · n (2)

where p is the pressure, u the displacement field, ρF the density and c the acoustic speed of the fluid.
Since the fluid is considered inviscid, only the normal component of the displacement vanishes on the rigid

part of the cavity boundary ΓR := Γ1 ∪ · · · ∪ ΓJ :

u · n = 0 on ΓR . (3)

Since the transverse displacement of the plate do not depend on the z-coordinate, it can be considered that Γ
(instead of Γ0) is one of the components of ∂Ω. Then, the interface condition reads

u · n = w on Γ. (4)

Finally, in our coupled problem, the unique load q exerted on the plate is the pressure p of the fluid.
Then, the space of kinematically admissible displacements of the coupled system is

V :=
{
(v, η, φ) ∈ X : φ · n = 0 on ΓR and φ · n = v on Γ

}
,

and, by adding (1) to (2), for all (v, η, φ) ∈ V we have

t3a(β, η) + κt

∫

Γ

(∇w − β) · (∇v − η) +
∫

Ω

ρFc
2 div u divφ = −t

∫

Γ

ρPẅv −
t3

12

∫

Γ

ρP β̈ · η −
∫

Ω

ρF ü · φ. (5)

The free vibration modes of this coupled problem are obtained by seeking harmonic in time solutions of (5). By
so doing we obtain the following spectral problem (see for instance [17]):

Find λ ∈ IR and 0 �= (w, β, u) ∈ V such that

t3a(β, η) + κt

∫

Γ

(∇w − β) · (∇v − η) +
∫

Ω

ρFc
2 div u div φ

= λ

(
t

∫

Γ

ρPwv +
t3

12

∫

Γ

ρPβ · η +
∫

Ω

ρFu · φ
)
∀(v, η, φ) ∈ V , (6)

where λ is the square of the angular vibration frequency.

As usual, when a displacement formulation is used for the fluid, λ = 0 is a solution of this problem with
eigenspace given by

K :=
{
(0, 0, φ) ∈ V : div φ = 0 in Ω and φ · n = 0 on ∂Ω

}
. (7)



1058 E. HERNÁNDEZ

The eigenfunctions corresponding to non-zero eigenvalues belong to the orthogonal complement of K in V with
respect to the symmetric bilinear form in the right hand side of (6). This orthogonal complement consist of the
conservative displacement fields in the fluid, namely

G :=
{
(v, η, φ) ∈ V : φ = ∇q for some q ∈ H1(Ω)

}
, (8)

with
‖φ‖1,Ω ≤ C

(
‖v‖1/2,Γ + ‖ divφ‖0,Ω

)
. (9)

We observe that K and G are also orthogonal with respect to the bilinear form in the left hand side of (6).
Hence, to obtain the eigenpairs corresponding to non-zero eigenvalues we can seek the solution of problem (6)
restricted to G (i.e., with V substituted by G).

For the theorical analysis we consider

‖(v, η, φ)‖• :=
(
‖v‖2

1,Γ + ‖η‖2
1,Γ + ‖ div φ‖2

0,Ω

)1/2

, (10)

which is a norm on G equivalent to ‖ · ‖ (see [12]).
On the other hand, in static problems, the loads are typically assumed to depend adequately on the thickness

in order to obtain a family of problems with uniformly bounded solutions: volumetric forces are supposed to be
proportional to t3 and surface loads to t2 (see for instance [8]). For this reason, we assume that the densities
for both, fluid and solid, are related with the thickness of the plate as follows:

ρF = ρ̂Ft
3, ρP = ρ̂Pt

2.

Hence, we consider the following rescaled problem, for the non-zero eigenvalues of (6):

Find λ ∈ IR and 0 �= (w, β, u) ∈ G such that

st

(
(w, β, u), (v, η, φ)

)
= λrt

(
(w, β, u), (v, η, φ)

)
∀(v, η, φ) ∈ G (11)

with
st

(
(w, β, u), (v, η, φ)

)
:= a(β, η) +

κ

t2

∫

Γ

(∇w − β) · (∇v − η) +
∫

Ω

ρ̂Fc
2 div u divφ

and

rt

(
(w, β, u), (v, η, φ)

)
:=

∫

Γ

ρ̂Pwv +
t2

12

∫

Γ

ρ̂Pβ · η +
∫

Ω

ρ̂Fu · φ.

We consider the operator Tt defined by

Tt : H −→ G
(f, θ, g) 	−→ (w, β, u)

with (w, β, u) ∈ G being the solution of

st

(
(w, β, u), (v, η, φ)

)
= rt

(
(f, θ, g), (v, η, φ)

)
∀(v, η, φ) ∈ G. (12)

This problem is well posed and the operator turns out to be uniformly bounded on t (see [12]). Furthermore,
as a consequence of (9), G is compactly included in H and, therefore, Tt : H −→ H is a compact operator.
Moreover, since st and rt are symmetric and semipositive definite, the spectrum of Tt, apart from µ = 0, consists
of a sequence of positive finite multiplicity eigenvalues converging to zero. Note that λ is an eigenvalue of (11)
if and only if µ = 1

λ is an eigenvalue of Tt with the same multiplicity and corresponding eigenfunctions.
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Figure 1. Trilinear mapping onto an element K ∈ Th.

We will use the following regularity result for the solution of (12) (see [12]):

Theorem 2.1. Let (f, θ, g) ∈ H, (w, β, u) = Tt(f, θ, g) and γ =
κ

t2
(∇w − β). Then, (w, β, u) ∈ H2(Γ) ×

H2(Γ)2 ×H1(div,Ω), γ ∈ L2(Γ) and the following estimate holds

‖w‖2,Γ + ‖β‖2,Γ + ‖u‖H1(div,Ω) + ‖γ‖0,Γ ≤ C|(f, θ, g)|t,

with C > 0 independent of t.

3. Discretization

Let {Th} be a family of partitions in hexahedra of Ω and {T Γ
h } be a family of decomposition of Γ into convex

quadrilaterals. Note that, although each Th induces a decomposition on Γ, we do not assume that T Γ
h is this

induces meshes. That is each pair of meshes Th and T Γ
h do not need to be compatible. Here h stands for the

maximum diameter of the elements in K ∈ T Γ
h or K ∈ Th, respectively.

Let K̂ := [0, 1]3 be the reference element for the partition Th. We denote by Qi,j,k(K̂) the space of polynomials
of degree less than or equal to i in the first variable, to j in the second one, and to k in the third one. Also, we
set Qk(K̂) = Qk,k,k(K̂). Similarly, for K̂ := [0, 1]2 the reference element for the partition T Γ

h , we define Qi,j(K̂)
and Qk(K̂).

Let K ∈ Th. We denote by FK a trilinear mapping of K̂ onto K, with Jacobian matrix and determinant
denoted by DFK and JFK respectively (see Fig. 1). Analogously, let K ∈ T Γ

h , we denote by FK the bilinear
mapping of K̂ onto K, with Jacobian DFK and determinant of the Jacobian JFK (see Fig. 2).

We consider regular meshes in the sense that there exist constants c and C independent of the elements K
or K such that

ch2
K ≤ JFK ≤ Ch2

K ∀K ∈ T Γ
h

and

ch3
K ≤ JFK ≤ Ch3

K ∀K ∈ Th,

respectively.
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K

K

FK

Figure 2. Bilinear mapping onto an element K ∈ T Γ
h .

Furthermore, according to [13, 14], we assume that the meshes are asymptotically paralelogramic, i.e. the
above mapping verify

|∇̂JFK |
JFK

≤ ChK,

∣∣
∣∇̂(JFKDFK

−1)
∣∣
∣ ≤ Ch3

K,

and ∣
∣
∣∇̂(DF−1

K )
∣
∣
∣ ≤ Ch2

K ,

for all K ∈ Th and K ∈ T Γ
h , respectively. Here, | · | denote the standard Euclidean norm and the corresponding

matrix norm. Moreover, in the plate we assume that the mesh T Γ
h is a refinement of a coarser partition T Γ

2h,
obtained by joining the midpoints of each opposite side in each M ∈ T Γ

2h (called macro-element). In addition,
T Γ

2h is a similar refinement of a still coarser regular partition T Γ
4h (see [8]).

To approximate the fluid displacements, we use lowest order Raviart-Thomas elements (see [21]). Let

RT (K̂) :=
{
q̂ : q̂ ∈ Q1,0,0(K̂) ×Q0,1,0(K̂) ×Q0,0,1(K̂)

}

and, from this space, we define through the contravariant transformation known as the Piola’s transformation,

RT (K) :=
{
q : q ◦ FK = J−1

FK
DFK q̂, q̂ ∈ RT (K̂)

}
.

Note that the Piola transform associated with FK allows to transforming vector fields from the current element
to the reference one (see the definition of the space RT (K̂)), leaving invariant its flux through any surface; i.e.,
for each face S of K = FK(K̂) we have ∫

S

q · n =
∫

Ŝ

q̂ · n̂, (13)

where n is the normal unit vector to S.
Then, we define the lowest-order Raviart-Thomas space (see [19, 21])

Rh :=
{
φh ∈ H(div,Ω) : φh|K ∈ RT (K) ∀K ∈ Th

}
. (14)

We remark that, for Rh ⊂ H(div,Ω), the normal component of a function in Rh must be continuous along
interelement boundaries and vanish on ∂Ω. In fact, the integrals (13) of these normal components are the
degrees of freedom defining an element of Rh.

For the plate we consider a method MITC4, introduced by Bathe and Dvorkin (see [4]) and analyzed
in [3, 10, 13]. It is based on different finite element spaces for the rotations, the transverse displacement and the
shear strain.
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Let
N (K̂) :=

{
p̂ : p̂ ∈ Q0,1(K̂) ×Q1,0(K̂)

}
,

and, from this space, we define through covariant transformation:

N (K) :=
{
p : p ◦ FK = DF−T

K p̂, p̂ ∈ N (K̂)
}
.

Let us remark that the mapping between N (K) and N (K̂) is a kind of Piola transform for the “rot” operator,
rot p := ∂p/∂y − ∂p/∂x and, in this case, there holds

∫

�

p · τ =
∫

�̂

p̂ · τ̂ , (15)

for all edge 
 of the element K = F (K̂), where τ is the unit vector tangential to 
. Then, we define the space
(which will be used to approximate the shear stress γ)

Zh :=
{
ψ ∈ H0(rot,Γ) : ψ|K ∈ N (K) ∀K ∈ T Γ

h

}
,

that corresponds to the lowest-order rotated Raviart-Thomas space [19, 21]. We remark that, for Zh ⊂
H0(rot,Γ), the tangential component of a function in Zh must be continuous along interelement boundaries
and vanish on ∂Γ. In fact, the integrals (15) of these tangential components are the degrees of freedom defining
an element of Zh.

We consider the reduction operator

Π : H1(Γ)2 ∩H0(rot,Γ) −→ Zh,

locally defined for each ψ ∈ H1(Γ)2 by (see [8, 19])
∫

�

Πψ · τ =
∫

�

ψ · τ, (16)

for every edge 
 of the triangulation (τ being a unit tangent vector along 
). It can be shown that this operator
satisfies [8, 19]

‖ψ − Πψ‖0,Γ ≤ Ch‖ψ‖1,Γ. (17)
For the transverse displacements we take standard bilinear isoparametric elements, namely,

Wh :=
{
vh ∈ H1

0 (Γ) : vh|K ∈ Q(K) ∀K ∈ T Γ
h

}
,

where Q(K) := {p ∈ L2(K) : p ◦ FK ∈ Q1(K̂)}, for all K ∈ Th.
Finally, the finite element spaces for the rotations is defined by

Hh :=
{
η ∈ H1

0 (Γ)2 : η|K ∈ Q(K)2 ∀K ∈ T Γ
h

}
.

The approximation of the plate problem by using the spaces Wh, Hh, Zh, and the reduction operator Π,
corresponds to the method MITC4.

We impose weakly the interface condition (4), because doing it strongly (i.e., uh ·n = wh on Γ) is too stringent
(see [5]). Let Ch := {F : F is a face of the fluid meshes lying on Γ}. Then, we take as discrete space for the
coupled problem

Vh :=
{

(vh, ηh, φh) ∈ Wh ×Hh ×Rh : φh · n = 0 on ΓR and
∫

F
φh · n =

∫

F
vh ∀F ∈ Ch

}
.
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The corresponding discrete eigenvalue problem is:

Find λh ∈ IR and 0 �= (wh, βh, uh) ∈ Vh such that





a(βh, ηh) +
κ

t2

∫

Γ

(∇wh − Πβh) · (∇vh − Πηh) +
∫

Ω

ρ̂Fc
2 div uh div φh

= λh

(∫

Γ

ρ̂Pwhvh +
t2

12

∫

Γ

ρ̂Pβh · ηh +
∫

Ω

ρ̂Fuh · φh

)
∀(vh, ηh, φh) ∈ Vh.

(18)

Note that the fact that Vh �⊂ V and the use of the reduction operator Π lead to two variational crimes for our
method.

Analogously to the continuous case, λh = 0 is an eigenvalue of this problem, with corresponding eigenspace

Kh := {(0, 0, φh) ∈ Vh : div φh = 0 in Ω and φh · n = 0 on ∂Ω}.

Hence, for the theoretical analysis, we may restrict the discrete eigenvalue problem to the space Gh given by
the orthogonal complement of Kh in Vh with respect to rt. We write

Find λh ∈ IR and 0 �= (wh, βh, uh) ∈ Gh such that

sth

(
(wh, βh, uh), (vh, ηh, φh)

)
= λhrt

(
(wh, βh, uh), (vh, ηh, φh)

)
∀(vh, ηh, φh) ∈ Gh, (19)

with

sth

(
(wh, βh, uh), (vh, ηh, φh)

)
:= a(βh, ηh) +

κ

t2

∫

Γ

(∇wh − Πβh) · (∇vh − Πηh) +
∫

Ω

ρ̂Fc
2 div uh div φh.

Because φh is not necessarily a gradient, for (vh, ηh, φh) ∈ Gh, we have that Gh �⊂ G, and then a third variational
crime for our methods.

To define the arises discrete analogue of the operator T , we need the following lemma which provides a
Helmholtz decomposition for the discrete fluid displacements.

Lemma 3.1. For any (vh, ηh, φh) ∈ Gh, φh can be written as

φh = ∇ξ + χ,

with ξ and χ satisfying (vh, ηh,∇ξ) ∈ G and divχ = 0. Moreover, there exists a constant C, independent of h,
such that

‖∇ξ‖1,Ω ≤ C
(
‖ divφh‖0,Ω + ‖vh‖1,Γ

)
, (20)

‖χ‖0,Ω ≤ Ch
(
‖ divφh‖0,Ω + ‖vh‖1,Γ

)
. (21)

Proof. We do not include it here since it is essentially identical to those of Theorem 1.6.1 in [14]. �

As a consequence of the previous lemma, ‖ · ‖• and ‖ · ‖ are equivalent on Gh (with equivalence constants not

depending on h). On the other hand, a(βh, ηh) +
κ

t2

∫

Γ

(∇wh − Πβh) · (∇vh − Πηh) is known to be uniformly

coercive on Hh × Wh (see [10]). Then, clearly, the bilinear form sth are coercive on Gh, with coerciveness
constant independent of t and h.
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We introduce the following operator Tth by

Tth : H −→ Gh

(f, θ, g) 	−→ (wh, βh, uh)

with (wh, βh, uh) ∈ Gh being the solution of

sth

(
(wh, βh, uh), (vh, ηh, φh)

)
= rt

(
(f, θ, g), (vh, ηh, φh)

)
∀(vh, ηh, φh) ∈ Gh. (22)

These operators are uniformly bounded in t and h. Moreover, the non-zero eigenvalues µh of Tth are related
with the eigenvalues λh of Problem (19) by µh = 1

λh
.

4. Convergence of the discrete operators

We are going to prove that the operator Tth converge to Tt in norm as h goes to zero, in both ‖ · ‖ and the
norm induced by rt(·, ·). This fact will be used in the next section to prove the spectral convergence.

From now on and throughout this section, we consider (f, θ, g) ∈ H fixed and denote

(w, β, u) := Tt(f, θ, g), (wh, βh, uh) := Tth(f, θ, g),

γ :=
κ

t2
(∇w − β), γh :=

κ

t2
(∇wh − Πβh).

From (22) and the definition of st we have

a(β − βh, ηh) +
∫

Γ

(γ − γh) · (∇vh − Πηh) +
∫

Ω

ρ̂Fc
2 div (u− uh) div φh

=
∫

Γ

γ · (ηh − Πηh) +Mh(vh, ηh, φh) ∀(vh, ηh, φh) ∈ Gh, (23)

where
Mh(vh, ηh, φh) := st

(
(w, β, u), (vh, ηh, φh)

)
− rt

(
(f, θ, g), (vh, ηh, φh)

)
.

Note that, two consistency terms appear in the error equation. The first one due of the use of the reduction
operator Π in sth and the last one because the space Gh �⊂ G).

The argument to prove that the consistency terms are bounded and the corresponding convergence of the
operators, have been used in [12] for similar methods on triangular and tetrahedral meshes. The proof are
essentially identical to those of that reference. However, for the sake of completeness, we include some of these.

By using (17), we can easily estimate the term
∫

Γ

γ · (ηh − Πηh) in the equation above. For the second

consistency term we have:

Lemma 4.1. There holds

|Mh(vh, ηh, φh)| ≤ Ch ‖g‖0,Ω‖(vh, ηh, φh)‖• ∀(vh, ηh, φh) ∈ Gh.

Proof. See Lemma 5.1 in [12]. �
Now, we prove that the spaces Gh provide suitable approximations for (w, β, u):

Lemma 4.2. There exists (ŵ, β̂, û) ∈ Gh such that

‖(ŵ, β̂, û) − (w, β, u)‖ ≤ Ch |(f, θ, g)|t.
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Moreover, if γ̂ :=
κ

t2
(∇ŵ − Πβ̂), the following estimate also holds

t ‖γ̂ − γ‖0,Γ ≤ Ch |(f, θ, g)|t.

Proof. According with Theorems 3.7 and 3.1 in [13], there exist β̂ ∈ Hh and an operator Π̃ : H0(rot,Γ) ∪
H1(Γ)2 −→ Zh such that

‖β̂ − β‖1,Γ ≤ Ch‖β‖2.Γ

and

rot
(

Πβ̂ − t2

κ
Π̃γ

)
= 0.

By virtue of the last equality and Lemma 2.1 in that paper, there exist ŵ ∈ Wh such that ∇ŵ = t2

κ Π̃γ − Πβ̂.
Then for γ̂ = Π̃γ = κ

t2 (∇ŵ − Πβ̂) we have ‖γ̂ − γ‖0,Γ ≤ Ch‖γ‖1,Γ.
On the other hand, because

∇(w − ŵ) =
t2

κ
(γ − γ̂) + Πβ̂ − β =

t2

κ
(γ − γ̂) + Π(β̂ − β) + (Πβ − β)

by using (17) and the previous estimates we have ‖ŵ − w‖1,Γ ≤ Ch (‖γ‖1,Γ + ‖β‖2,Γ).
Arguing as in Theorem 5.2 of [7] we can find uI ∈ Rh such that (ŵ, β̂, uI) ∈ Vh and ‖uI − u‖H(div,Ω) ≤

Ch
[
‖w‖2,Γ + ‖u‖H1(div,Ω)

]
.

Now, let (0, 0, uKh
) be the rt projection of (ŵ, β̂, uI) onto Kh. Hence, for û := uI − uKh

, (ŵ, β̂, û) ∈ Gh.
Moreover, since uKh

and (û− u) are orthogonal in H(div,Ω), we have

‖û− u‖H(div,Ω) ≤ ‖(û− u) + uKh
‖H(div,Ω) = ‖uI − u‖H(div,Ω).

Therefore, by applying the a priori estimate in Theorem 2.1 we conclude the proof. �

The following lemma establishes convergence for the discrete operators in ‖ · ‖• . As a byproduct we obtain
convergence for the shear strains, which will be used in the next section.

Lemma 4.3. There holds

‖w − wh‖1,Γ + ‖β − βh‖1,Γ + t ‖γ − γh‖0,Γ + ‖ div (u − uh)‖0,Ω ≤ Ch |(f, θ, g)|t.

Proof. See Lemma 5.3 in [12]. �

Now, we may prove the claimed convergence:

Theorem 4.4. There exists a constant C such that, for any (f, θ, g) ∈ H, there holds

‖(Tt − Tth)(f, θ, g)‖ ≤ Ch |(f, θ, g)|t. (24)

Proof. The theorem is an immediate consequence of Lemma 4.3 and Lemma 5.4 in [12]. �
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Finally, we obtain the following estimate:

Theorem 4.5. There exists a constant C such that, for any (f, θ, g) ∈ H, there holds
∣
∣
∣rt

(
(Tt − Tth)(f, θ, g), (f, θ, g)

)∣
∣
∣ ≤ Ch2 |(f, θ, g)|t. (25)

Proof. We consider a decomposition of uh according to lemma 3.1; i.e., uh = ∇ξ+χ. Recalling the equation (6.2)
in [12] we have

rt

(
(Tt − Tth)(f, θ, g), (f, θ, g)

)
= a(β − βh, β − βh) +

t2

κ

∫

Γ

|γ − γh|2 +
∫

Ω

ρ̂Fc
2( div u− div uh)2

− 2
∫

Ω

ρ̂Fg · χ− 2
∫

Γ

γ · (βh − Πβh). (26)

Because of continuity of a(·, ·) and Lemma 4.3, there only remains to estimate the two last terms in the right
hand side of the equation above.

The proof in Lemmas 4.2 and 4.3 in [13] can be easily adapted to prove the estimate for the last term. In
fact, this term has been analyzed in that paper in order to obtain optimal L2 error estimate for the MITC4
methods for a clamped plate.

On the other hand, since (f, θ, g) ∈ G, then g = ∇q and, because of (9), q ∈ H2(Ω)2 with

‖q‖2,Ω ≤ C
(
‖f‖1/2,Γ + ‖ div g‖0,Ω

)
≤ C‖(f, θ, g)‖.

Now, since divχ = 0 and χ = uh −∇ξ, we have
∫

Ω

ρ̂Fg · χ =
∫

∂Ω

ρ̂Fq (uh −∇ξ) · n =
∫

Γ

ρ̂Fq (uh · n− wh) ,

the latter because of (wh, βh,∇ξ) ∈ G. Since (wh, βh, uh) ∈ Gh, then P (uh · n) = P (wh), with P being the
L2(Γ)-projection onto the piecewise constant functions on Ch. Hence,

∣
∣
∣
∣

∫

Ω

ρ̂Fg · χ
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

Γ

ρ̂F [q − P (q)] [uh · n− P (uh · n) + P (wh) − wh]
∣
∣
∣
∣

≤ ‖q − P (q)‖0,Γ(‖uh · n− P (uh · n)‖0,Γ + ‖P (wh) − wh‖0,Γ)
≤ Ch‖q‖1,Γ(‖uh · n− P (uh · n)‖0,Γ + ‖P (wh) − wh‖0,Γ),

and ‖q‖1,Γ ≤ C‖q‖2,Ω ≤ C‖(f, θ, g)‖. Then, we estimates the remainder two terms. The proof of Lemma 1.6.8
in [14] can be easily adapted to prove that

‖uh · n− P (uh · n)‖0,Γ ≤ Ch‖(f, θ, g)‖.

For the last term, we have

‖P (wh) − wh‖0,Γ ≤ ‖P (wh − w)‖0,Γ + ‖Pw − w‖0,Γ + ‖w − wh‖0,Γ

≤ ‖Pw − w‖0,Γ + C‖w − wh‖0,Γ

≤ Ch‖w‖1,Γ + Ch‖(f, θ, g)‖
≤ Ch‖(f, θ, g)‖,

where we have used Lemmas 2.1 and 4.3. Thus, we conclude proof. �
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Remark 4.6. According to [13], the macroelement assumption on the mesh T Γ
h for the MITC4 method is only

used to prove an optimal order estimate for the last terms in the right hand side of the equation (26) in the
proof of the theorem above. However, a modification of this method is introduced in this reference.It consists
of enriching the discrete space Hh by means of a rotation of a space used for the approximation of the Stokes
problem. For this methods, which is called DL4, the macroelement assumption is not necessary.

5. Spectral approximation

It is shown in [12], that as the thickness t → 0, each eigenvalue µ of problem (6) converge to some limit µ0.
Indeed, µ0 are the eigenvalues of the operator associated with the classical Kirchhoff model of the same plate
coupled with the fluid (see Th. 3.2 in [12]). From now on, for simplicity, we assume that µ is an eigenvalue
of Tt which converges to a simple eigenvalue µ0 as t goes to zero (see Sect. 3 in [12] for further discussions).

As a consequence of Theorem 4.4, for each simple eigenvalue µ of Tt, there is exactly one eigenvalue µh of Tth

converging to µ as h goes to zero (see for instance [12]). The following theorem shows optimal t-independent
error estimates:

Theorem 5.1. Let µ and µh be simple eigenvalues of Tt and Tth, respectively, such that µh → µ as h→ 0. Let
(w, β, u) and (wh, βh, uh) be the eigenfunctions corresponding to µ and µh, respectively, both normalized in the
same manner. Then, there exists C > 0 such that, for t and h small enough, there holds

‖(w, β, u) − (wh, βh, uh)‖ ≤ Ch, (27)

and
|µt − µth| ≤ Ch2. (28)

Proof. The proof, which relies on Theorems 4.4 and 4.5, are essentially the same as those of Theorems 6.2
and 6.3 in [12]. �

6. Numerical experiments

In this section we present numerical results obtained with a implementation of the method.
We have tested the methods by reproducing the experiments in [12]. In that paper, the problem is approxi-

mated by using triangular and tetrahedral finite elements; more precisely, using DL3 for plate and hexahedral
Raviart-Thomas elements for the fluid.

We remark that it is well know that, from the point of view of efficiency, for the same number of degrees of
freedom, hexahedral element approach the exact solution better than tetrahedral ones for structural problems
(see for instance [6]). In fact, using Raviart-Thomas elements, the number of faces (degree of freedom for this
element) for hexahedral approximation is about one quarter that for tetrahedrical ones, on meshes with same
vertices (see [6]).

We have considered a steel 3D cavity completely filled with water with all of its walls being perfectly rigid,
except for one of them which is an elastic plate. The geometric data are given in Figure 3. The physical
parameters of plate and fluid are the following ones:

• density of the plate: ρP = 7700kg/m3;
• Young modulus: E = 1.44 × 1011 Pa;
• Poisson coefficient: ν = 0.35;
• density of the fluid: ρF = 1000kg/m3;
• sound speed: c = 1430m/s.

The method have been used on several successively refinements of the initial mesh (see Fig. 4). The refinement
parameter N stand for the number of layer of element for the fluid domain in the vertical direction. The number
of layers in the other two direction being 2N and 3N , as show the Figure 4.
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t=0.5m

Rigid walls

Plate

1m

6m

4m

Figure 3. Cavity filled with fluid.

O 

X 
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Z 

Figure 4. Fluid mesh with N = 2.

Table 1. Angular vibration frequencies of a moderately thick steel plate in contact with water.

Mode N = 4 N = 5 N = 6 α ωm

ωh
1 703.4418 701.3463 700.1963 1.95 697.5025809

ωh
2 1046.7326 1035.0140 1028.7364 2.07 1015.0498050

ωh
3 1096.3214 1091.2521 1088.4428 1.90 1081.6537906

ωh
4 1329.5584 1325.0901 1322.6234 1.92 1316.7369551

ωh
5 1513.5155 1492.4589 1481.2156 2.08 1456.8201771

We have computed approximations of the free vibration angular frequencies corresponding to the lowest-
frequency vibration modes of the coupled system.

Table 1 shows the five lowest vibration frequencies computed by our method for the plate coupled with water.
The table includes also the value of the vibration frequencies obtained by extrapolating the computed ones (ωh

m)
as well as the estimated order of convergence α. Such values have been obtained by means of a least square
fitting of the model

ωh
m ≈ ωm (1 + Cmh

α)
for the frequencies calculated on three different meshes (N = 4, 5, 6).

The obtained result compare perfectly well with those in [6, 12].
Figures 5 to 9 show the deformed plate and the fluid pressure for each of these five vibration modes.
According to [12], we also check the stability of the method as the thickness becomes small. Tables 2 and 3

show the results obtained for the first and second frequency vibration modes, for plates with different thicknesses.
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Table 2. First vibration frequency ωh
1 for plates of different thickness coupled with fluid.

t N = 4 N = 5 N = 6 α ω1

0.5 703.4418 701.3463 700.1963 1.95 697.5025809

0.05 747.5121 746.6361 746.1595 1.99 745.0693080

0.005 747.5326 746.6569 746.1806 1.99 745.0908998

0.0005 747.5328 746.6571 746.1808 1.99 745.0911159

Table 3. Second vibration frequency ωh
2 for plates of different thickness coupled with fluid.

t N = 4 N = 5 N = 6 α ω1

0.5 1046.7326 1035.0140 1028.7364 2.07 1015.0498050

0.05 1128.5113 1125.7410 1124.2345 1.99 1120.7874465

0.005 1128.5296 1125.7600 1124.2539 1.99 1120.8077413

0.0005 1128.5298 1125.7602 1124.2541 1.99 1120.8079442
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Figure 5. Deformed plate and fluid pressure for the mode ω1.

To allow for comparison we scale the frequencies by using the assumption made in Section 2 on the densities of
the plate and fluid (namely, ρF = ρ̂F t

3 and ρP = ρ̂Pt
2). Note that the convergence behavior does not depend

on the thickness.



APPROXIMATIONS OF THE VIBRATIONS OF A FLUID-PLATE PROBLEM 1069

0 1 2 3 4 5 6

0
1

2
3

4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

X
Y

O 

X 

Y 

Z 

Figure 6. Deformed plate and fluid pressure for the mode ω2.
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Figure 7. Deformed plate and fluid pressure for the mode ω3.
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Figure 8. Deformed plate and fluid pressure for the mode ω4.
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Figure 9. Deformed plate and fluid pressure for the mode ω5.
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