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AN ASYMPTOTICALLY OPTIMAL MODEL FOR ISOTROPIC
HETEROGENEOUS LINEARLY ELASTIC PLATES ∗

Ferdinando Auricchio1, Carlo Lovadina2 and Alexandre L. Madureira3

Abstract. In this paper, we derive and analyze a Reissner-Mindlin-like model for isotropic heteroge-
neous linearly elastic plates. The modeling procedure is based on a Hellinger-Reissner principle, which
we modify to derive consistent models. Due to the material heterogeneity, the classical polynomial
profiles for the plate shear stress are replaced by more sophisticated choices, that are asymptotically
correct. In the homogeneous case we recover a Reissner-Mindlin model with 5/6 as shear correction
factor. Asymptotic expansions are used to estimate the modeling error. We remark that our derivation
is not based on asymptotic arguments only. Thus, the model obtained is more sophisticated (and
accurate) than simply taking the asymptotic limit of the three dimensional problem. Moreover, we do
not assume periodicity of the heterogeneities.
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Introduction

Laminate slender structures are often adopted in practical applications for the excellent ratio between me-
chanical performances and weight. However, in terms of modeling they present several challenges.

In fact, although occupying a three dimensional domain in space, slender bodies are characterized by having
a one- or two-dimensional “aspect”. Accordingly, dimension reduction models are posed in domains with at least
one dimension less than the original problem, but the model solution should approximate as close as possible
the original three-dimensional domain solution.

The modeling complexity is particularly significant for the case of slender structures made of heterogeneous
materials, also in the case of two dimensional planar plate-like bodies. There have been numerous modeling
attempts trying to incorporate the influence that the heterogeneity has on the solution in such problems (see
for instance [4, 10], and references therein).

In this paper, we derive (and analyze) a version of the Reissner-Mindlin equations for the case of a plate
made by isotropic heterogeneous materials. To reach this goal, we use the approach of [1] for the development
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of a model. Such a technique relies on a variational approach and it is based essentially on two ingredients: the
choice of a variational principle and the choice of proper subspaces.

Due to the material heterogeneity, in the following we need to develop an ad hoc variational principle, which
is different from the ones adopted in [1], effective only for the case of homogeneous materials. Moreover, we
also have to modify the subspaces in which we look for the solution; in fact, the classical polynomial profiles for
the shear stress valid for the case of homogeneous materials are now replaced by more sophisticated choices. In
particular, such new profiles are derived through considerations based on asymptotic expansions.

As a result of our analysis, we obtain equations (25)–(28) defining our candidate for approximating the three
dimensional heterogeneous plate problem solution.

We would like to emphasize that a plate model based on variational principles differs substantially from a
model which results from considering asymptotic limits. Indeed, the former is defined by a system of singularly
perturbed equations, and the corresponding solution presents a complex behavior with respect to the thickness.

On the other hand, models originated by asymptotic considerations are of a different nature. The best
known example is the biharmonic plate model (cf. [6, 7, 9] for homogeneous isotropic plates, and [5, 13] for the
heterogeneous case). The corresponding equations do not depend singularly on the plate thickness, and usually
have limited applicability, as shown in [3, 6].

The outline of the paper is as follows. In the next section, we describe the traditional variational approaches
and why it is not possible to use them. In Section 2, we detail the variational principle upon which we base
our derivation and present a description of the proposed model. Finally, in Section 3, we prove the consistency
of our solution and some other convergence results. We postpone to various appendices most of the details
regarding derivation of the model, asymptotic expansions, and convergence results.

Before proceeding, we introduce and explain some notation. We use one underbar for first order tensors
in three variables, two underbars for second order tensors in three variables, etc. Similar notation holds with
undertildes for tensors in two variables. We can then decompose 3-vectors and 3 × 3 matrices as follows:

u =
(

u∼
u3

)
, σ =

(
σ∼∼ σ∼
σ∼

T σ33

)
.

Moreover, throughout the paper we make use of the following operators that assigns for a given tensor its
moments: 


Ik(h) = ε−k−1

∫ ε

−ε

h(x3)xk
3 dx3, I∼

k(h∼) = ε−k−1

∫ ε

−ε

h∼(x3)xk
3 dx3,

I∼∼
k(h∼∼) = ε−k−1

∫ ε

−ε

h∼∼(x3)xk
3 dx3, I∼∼∼∼

k(h∼∼∼∼
) = ε−k−1

∫ ε

−ε

h∼∼∼∼
(x3)xk

3 dx3.

1. Plate model construction by variational approach

We consider a linearly elastic body occupying the three-dimensional domain P ε = Ω × (−ε, ε), where Ω is a
bounded two-dimensional domain. Clamped on the lateral boundary ∂P ε

L = ∂Ω× (−ε, ε), the body is under the
action of a surface force density gε on its top and bottom ∂P ε

± = Ω × {−ε, ε}, and a volume force density fε.
The equations of linear elasticity state that the displacement uε : P ε → R

3, and the stress σε : P ε → R
3×3
sym

satisfy {
Aσε = e(uε), − div σε = fε in P ε,

uε = 0 on ∂P ε
L, σεn = gε on ∂P ε

±,
(1)

where e(uε) = (∇ uε + ∇T uε)/2 is the symmetric part of the gradient of uε, and A is the compliance tensor.
Limiting the discussion to an isotropic material, the compliance tensor A is defined as

Aτ =
1 + ν

E
τ − ν

E
tr(τ ) δ, (2)
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for every second-order tensor τ , being δ the identity tensor. The Young’s modulus E and the Poisson’s ratio ν
are material parameters, which might depend on the transverse variable x3, being however independent of the
planar variable x∼.

A way to systematically derive two dimensional plate models is the variational approach proposed in [1].
This procedure consists in choosing a variational principle, which corresponds to a weak formulation of (1).
The plate model is then derived restricting the test and trial spaces to suitable subspaces.

In [1] the following two different variational principles were considered to treat the case of isotropic and
homogeneous bodies.

• The couple (uε, σε), solution of Problem (1), is the unique critical point of the functional

J(v, τ ) =
1
2

∫
P ε

Aτ : τ dx +
∫

P ε

v · div τ dx +
∫

P ε

f · v dx (3)

on L2(P ε) × Σgε , where Σgε = { σ : σ ∈ H(div, P ε), σn = gε on ∂P ε
± }.

Following the variational approach of [1], plate models are derived restricting (3) to particular subspaces
of L2(P ε) × Σgε , characterized by having specific polynomial dependences in the transverse direction.
It is interesting to notice that not all choices of subspaces lead to a well-posed PDE system, as well
as some specific choices lead to models that, although well-posed, are divergent in a sense that we
make clear later on. It is also interesting to recall that, starting from functional (3) and adopting two
different subspaces, it is possible to obtain two versions of the Reissner-Mindlin model, both with the
shear correction factor 5/6. By “version”, we mean that the left hand side of the equations are the same
as the standard Reissner-Mindlin ones, up to the shear correction factor, while the right hand side may
differ.

• The couple (uε, σε), solution of Problem (1), is the unique critical point of the functional

J∗(v, τ) =
1
2

∫
P ε

Aτ : τ dx −
∫

P ε

e(v) : τ dx +
∫

P ε

f · v dx +
∫

∂P ε
±

g · v dx∼ (4)

on { v ∈ H1(P ε) : v = 0 on ∂P ε
L } × L2(P ε).

Again, modeling is possible by searching for critical points in subspaces with certain polynomial de-
pendence. It is interesting to notice that the minimum energy models are a particular instance of this
approach, and that the simplest model derived using this approach is not a minimum energy model.
Finally, we recall that starting from the functional (4) and adopting specific subspaces, the resulting
system is a variant of Reissner-Mindlin model, with shear correction factor 1. The other models based
on (4) are either more complicate than Reissner-Mindlin or divergent.

1.1. Definition of model consistency

As discussed in the introduction, every plate model is supposed to approximate the 3D solution for the
limiting “thin” plate case. Accordingly, we say that a plate model is consistent, or convergent, if for every
“reasonable” choice of loads it holds

lim
ε→0

‖uε − uM,ε‖H1(P ε)

‖uε‖H1(P ε)
= 0, (5)

where uε are the 3D displacements and uM,ε are the model displacements.
More precisely, let us suppose that there exist ε-independent loads f and g defined as f : Ω × (−1, 1) → R

3,
g : Ω × {−1, 1} → R

3 and such that

{
f∼(x∼, x̂3) = ε−1f∼

ε(x∼, εx̂3), f3(x∼, x̂3) = ε−2fε
3 (x∼, εx̂3),

g∼(x∼, x̂3) = ε−2g∼
ε(x∼, εx̂3), g3(x∼, x̂3) = ε−3gε

3(x∼, εx̂3),
(6)
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for x̂3 ∈ (−1, 1). Also, let us assume that the functions

ν̂(x̂3) = ν(εx̂3), Ê(x̂3) = E(εx̂3) for x̂3 ∈ (−1, 1),

are independent of ε and, since there is no risk of confusion, we still write ν and E, even in the domain (−1, 1).
Under these hypotheses, as detailed in Appendix B, uε converges asymptotically to

uL(x) =
(

εζ∼
1(x∼) − x3 ∇∼ ζ0

3 (x∼)
ζ0
3 (x∼)

)
,

where ζ∼
1 and ζ0

3 solve the following system of equations




ε div∼

[
I∼∼∼∼

0(A∼∼∼∼
−1) e∼∼(ζ∼

1)
]
− ε div∼

[
I∼∼∼∼

1(A∼∼∼∼
−1) e∼∼(∇∼ ζ0

3 )
]

= −I∼
0(f∼

ε) − 2ε−1g∼
ε,e in Ω,

ε div div∼

[
I∼∼∼∼

1(A∼∼∼∼
−1) e∼∼

(ζ∼
1)
]
− ε div div∼

[
I∼∼∼∼

2(A∼∼∼∼
−1) e∼∼

(∇∼ ζ0
3 )
]

= −ε−1I0(fε
3 )

− I1(div f∼
ε) − 2ε−1 div g∼

ε,o − 2ε−2gε,e
3 in Ω,

ζ∼
1 = 0, ζ0

3 =
∂ζ0

3

∂n
= 0 on ∂Ω.

(7)

with A∼∼∼∼
defined as

A∼∼∼∼
τ∼∼

=
(1 + ν)

E
τ∼∼
− ν

E
tr(τ∼∼

)δ∼∼
, (8)

and with the even and odd parts of g defined as

gε,e(x∼) =
1
2
[
gε(x∼, ε) + gε(x∼,−ε)

]
, gε,o(x∼) =

1
2
[
gε(x∼, ε) − gε(x∼,−ε)

]
. (9)

We say that the plate model is consistent, or convergent, if condition (5) is satisfied for all loads such that at
least one of the functions ζ∼

1 and ζ0
3 are nonzero.

Remark 1.1. Note that [12] uses a slightly different definition of consistency.

Remark 1.2. Note that (7) couples the membrane and bending problems. Nevertheless, if ν and E are even
functions (symmetric plates), then it is easy to see that (7) decouples into the membrane equation for ζ∼

1, and
the biharmonic equation for ζ0

3 .

1.2. Problems with the Hellinger-Reissner principle

Taking into account the previous considerations, it would be natural to choose functional (3) as a starting
point to derive a plate model also for the case of heterogeneous materials. Unfortunately, the direct application
of functional (3) is not possible since, due to the heterogeneity, it leads to divergent models, as discussed below.

Let us consider the case where g3 = 0 and ν and E are even functions of x3. Since the three-dimensional
problem (1) decouples in bending and membrane equations, for the sake of simplicity we consider only the
membrane contribution.

The simplest model based on (3) is obtained by assuming that trial/test in-plane displacements and in-plane
stresses are constant along the thickness (cf. [1] for the details)

uM (x) =
(

η∼(x∼)
0

)
, σ∼∼

M (x) = σ∼∼(x∼), σM
33 (x) = 0, σ∼

M (x) = ε−1x3g∼
ε,e(x∼), (10)
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for some η∼ and σ∼∼
. Searching now for critical points, we obtain the following membrane equation

div∼

[
4I∼∼∼∼

0(A∼∼∼∼
)−1 e∼∼

(η∼)
]

= −I∼
0(f∼

ε) − 2ε−1g∼
ε,e in Ω. (11)

On the other hand, for this specific (uncoupled) problem the 3D in-plane displacement field u∼
ε converges

asymptotically to εζ∼
1, solution of (cf. (7))

div∼

[
I∼∼∼∼

0(A∼∼∼∼
−1) e∼∼(εζ∼

1)
]

= −I∼
0(f∼

ε) − 2ε−1g∼
ε,e in Ω. (12)

Hence, the obtained membrane model is divergent since for a general heterogeneous material

4I∼∼∼∼
0(A∼∼∼∼

)−1 �= I∼∼∼∼
0(A∼∼∼∼

−1). (13)

Remark 1.3. Note that for homogeneous plates 4I∼∼∼∼
0(A∼∼∼∼

)−1 = I∼∼∼∼
0(A∼∼∼∼

−1); accordingly, the above membrane model

is consistent, since u∼
M = η∼ = εζ∼

1.

To summarize, the extension of the techniques detailed in [1] to the case of heterogeneous plates leads to the
following two difficulties:

• the variational principle (3) is no longer suitable;
• polynomial profiles in the transverse direction are no more satisfactory.

In particular, the second point is due to the fact that now the profiles for the stress tensor components have
a complicated shape, depending on the material heterogeneities. Accordingly, assuming polynomial profiles for
all the unknowns may lead to a poor representation of the stress tensor in the transverse direction.

In what follows we overcome these difficulties by:
• choosing a different variational principle;
• choosing a subspace for the stress tensor which takes into account the heterogeneity of the plate.

2. A new model

2.1. A new functional

As shown in equation (13), the processes of inverting and homogenizing do not commute in the case of
heterogeneous tensors, yielding an incorrect constitutive relation for the plate planar components. To overcome
this difficulty, we try to impose directly in the model the following planar constitutive equation

σ∼∼
ε = A∼∼∼∼

−1 e∼∼(u∼
ε) +

ν

E
σε

33A∼∼∼∼
−1δ∼∼. (14)

To reach this goal, we first introduce the space Sgε , defined by

Sgε = { s : Bs ∈ Σgε }, where Bs =

(
A∼∼∼∼

−1s∼∼ s∼
s∼

T s33

)
. (15)

We then consider the new functional

J•(v, t) =
∫

P ε

ABt : Bt dx +
∫

P ε

v · div Bt dx +
∫

P ε

v · f dx (16)
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defined on L2(P ε)×Sgε . It is easily seen that (uε, σε) ∈ L2(P ε)×Σgε is the unique critical point of functional (3),
if and only if the couple (uε, sε) = (uε, B−1σε) ∈ L2(P ε) × Sgε is the unique critical point of functional (16).

Since sε = B−1σε, it follows that it holds (cf. (15))

s∼∼
ε = e∼∼

(u∼
ε) +

ν

E
σε

33δ∼∼
= A∼∼∼∼

σ∼∼
ε, s∼

ε = σ∼
ε, sε

33 = σε
33. (17)

Moreover, we have that (uε, sε) ∈ L2(P ε) × Sgε satisfies the weak equations



∫

P ε

ABsε : Bt dx +
∫

P ε

uε · div Bt dx = 0 for all t ∈ S0,

−
∫

P ε

div Bsε · v dx =
∫

P ε

fε · v dx for all v ∈ L2(P ε),
(18)

where S0 = { s : Bs ∈ Σ0 }. The model we are going to derive is based on the weak formulation (18) and,

similarly to [1], it will be obtained by looking for critical points of J• within suitable subspaces L̂
2
(P ε)× Ŝ

gε
⊂

L2(P ε) × Sgε .

Remark 2.1. We notice that Auricchio and Sacco in [4] already used the constitutive equation (14) to develop
their model.

2.2. Subspace choice

Our choices of profiles for displacements and stresses are based on the asymptotic analysis of the three-
dimensional solution. To obtain the simplest possible convergent model, we decided to exclude the profile of
the asymptotic limit of σε

33. As we describe in Appendix B,




uε(x) ∼
(

εζ∼
1(x∼) − x3 ∇∼ ζ0

3 (x∼)
ζ0
3 (x∼)

)
+ · · · ,

σ∼∼
ε(x) ∼ A∼∼∼∼

−1 e∼∼(εζ∼
1(x∼) − x3 ∇∼ ζ0

3 (x∼)) + · · · ,

σ∼
ε(x) ∼ ε2 ∇∼ div ζ∼

1(x∼)pm(x3) + ε2 ∇∼ ∆ ζ0
3 (x∼)pb(x3) + ε2p∼

l(x) + · · · ,

(19)

where ζ∼
1 and ζ0

3 solve (7), and




pm(x3) =
I0
(

Eν
1−ν2

)
I0
(

E
1+ν

) ε−1

∫ x3

−ε

E

1 + ν
dξ − ε−1

∫ x3

−ε

Eν

1 − ν2
dξ,

pb(x3) =
I1
(

E
1−ν2

)
I0
(

E
1+ν

) ε−1

∫ x3

−ε

E

1 + ν
dξ − ε−2

∫ x3

−ε

E

1 − ν2
ξ dξ,

p∼
l(x) =

ε−3

I0
(

E
1+ν

)(∫ ε

−ε

f∼
ε dξ + 2g∼

ε,e

)∫ x3

−ε

E

1 + ν
dξ − ε−2

∫ x3

−ε

f∼
ε dξ − ε−2g∼

ε(x∼,−ε).

(20)

Remark 2.2. Note that pm(±ε) = pb(±ε) = 0. Moreover, ε2p∼
l(x∼, ε) = g∼

ε(x∼, ε) and ε2p∼
l(x∼,−ε) = −g∼

ε(x∼,−ε).
Moreover, p∼

l depends only on the load.
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Remark 2.3. We remark that the leading terms of the variables involved in (20) have the following shapes in
the transverse direction:



a linear polynomial for u∼
ε;

a constant for uε
3;

a linear polynomial for s∼∼
ε = A∼∼∼∼

σ∼∼
ε;

a linear combination of the functions (in general: not polynomials) pm, pb and p∼
l for s∼

ε.

We are now ready to introduce the subspaces L̂
2
(P ε) ⊂ L2(P ε) and Ŝ

gε
⊂ Sgε , respectively for the displacement

and the stress-related unknowns, by setting

L̂
2
(P ε) =

{
uRM =

(
η∼(x∼) − x3φ∼(x∼)

ω(x∼)

) }
, (21)

Ŝ
gε

=

{
sRM =

(
s∼∼

m(x∼) + ε−1x3s∼∼
b(x∼) s∼

RM

s∼
RM T

gε,o
3 (x∼) + ε−1x3g

ε,e
3 (x∼)

) }
, (22)

where η∼, φ∼, ω, s∼∼
m and s∼∼

b are functions defined on Ω.

Moreover, for the shear stress s∼
RM there are two possibilities, since pm and pb can be linearly dependent.

This occurs for instance, if ν is constant, and consequently pm = 0. Hence, we assume that

s∼
RM (x) = ε2p∼

l(x) +

{
s∼

m(x∼)pm(x3) + s∼
b(x∼)pb(x3) if pm, pb are lin. indep.,

s∼
b(x∼)pb(x3) otherwise.

(23)

2.3. Model derivation

Restricting the test and trial spaces as discussed in subsection 2.2, problem (18) reduces to find (uRM , sRM ) ∈
L̂

2
(P ε) × Ŝ

gε
solution of




∫
P ε

ABsRM : Bt dx +
∫

P ε

uRM · div Bt dx = 0 for all t ∈ Ŝ
0
,

−
∫

P ε

div BsRM · v dx =
∫

P ε

fε · v dx for all v ∈ L̂
2
(P ε).

(24)

Due to the structure of L̂
2
(P ε) and Ŝ

gε
, the above system (24) can be seen as a system whose unknowns are

the following functions, all defined on the mid-plane Ω:


the unknowns η∼, φ∼ and ω related to the kinematic fields;

the unknowns s∼∼
m and s∼∼

b related to in-plane stress;

the unknowns s∼
b and s∼

m related to shear stress.

In particular, our approximation to uε is given by

uRM =
(

η∼(x∼) − x3φ∼(x∼)
ω(x∼)

)
. (25)
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From the weak formulation (24) it is possible to show that η∼, φ∼ and ω are uniquely determined by the following
system of partial differential equations on Ω:




ε div∼

[
I∼∼∼∼

0(A∼∼∼∼
−1) e∼∼

(η∼)
]
− ε2 div∼

[
I∼∼∼∼

1(A∼∼∼∼
−1) e∼∼

(φ∼)
]

= ε2 l∼0 + ε4 l∼1 in Ω,

ε2 div∼

[
I∼∼∼∼

1(A∼∼∼∼
−1) e∼∼(η∼)

]
− ε3 div∼

[
I∼∼∼∼

2(A∼∼∼∼
−1) e∼∼(φ∼)

]
+ εCS(φ∼ −∇∼ ω)

= ε3I∼
0(p∼

l) − ε3 l∼5 + ε3 l∼2 + ε5 l∼3 in Ω,

εCS div(φ∼ −∇∼ ω) = ε3 div I∼
0(p∼

l) − ε3 div l∼5 + ε3l4 in Ω,

ω = 0, φ∼ = η∼ = 0 on ∂Ω,

(26)

where

CS =
(
I0(pm) I0(pb)

)
M∼∼

(
I0(pm)
I0(pb)

)
, M∼∼

=




(
d11 d12

d12 d22

)−1

if d11d22 − (d12)2 �= 0,

1
d22

(
0 0
0 1

)
otherwise,

(27)

d11 = I0

(
2(1 + ν)

E

(
pm
)2)

, d12 = I0

(
2(1 + ν)

E
pmpb

)
, d22 = I0

(
2(1 + ν)

E

(
pb
)2)

.

The loads are given by




l∼0 = −ε−1I∼
0(f∼

ε) − 2ε−2g∼
ε,e, l∼1 = −ε−3

[
I0
( ν

1 − ν

)
∇∼ gε,o

3 + I1
( ν

1 − ν

)
∇∼ gε,e

3

]
,

l∼2 = −ε−1I∼
1(f∼

ε) − 2ε−2g∼
ε,o, l∼3 = −ε−3

[
I1
( ν

1 − ν

)
∇∼ gε,o

3 + I2
( ν

1 − ν

)
∇∼ gε,e

3

]
,

l4 = ε−2I0(fε
3 ) + 2ε−3gε,e

3 , l∼5 =
(
I∼

0
( 2(1+ν)

E p∼
lpm
)

I∼
0
( 2(1+ν)

E p∼
lpb
))

M∼∼

(
I0(pm)
I0(pb)

)
.

(28)

Details relative to the computations to go from (24) to (26) can be found in Appendix A.

Remark 2.4. Note that the definitions of the lis are such that they are independent of ε if the scaling (6)
holds.

After η∼, φ∼, and ω have been determined, the computation of s∼∼
RM , s∼

RM , and sRM
33 can be recovered as a

post-processing. In particular the fields s∼∼
m and s∼∼

b are the solution of the algebraic system




I∼∼∼∼
0(A∼∼∼∼

−1)s∼∼
m + I∼∼∼∼

1(A∼∼∼∼
−1)s∼∼

b = I∼∼∼∼
0(A∼∼∼∼

−1) e∼∼
(η∼) − εI∼∼∼∼

1(A∼∼∼∼
−1) e∼∼

(φ∼)

+ I0

(
ν

1 − ν

)
gε,o
3 δ∼∼

+ I1

(
ν

1 − ν

)
gε,e
3 δ∼∼

,

I∼∼∼∼
1(A∼∼∼∼

−1)s∼∼
m + I∼∼∼∼

2(A∼∼∼∼
−1)s∼∼

b = I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(η∼) − εI∼∼∼∼

2(A∼∼∼∼
−1) e∼∼

(φ∼)

+ I1

(
ν

1 − ν

)
gε,o
3 δ∼∼

+ I2

(
ν

1 − ν

)
gε,e
3 δ∼∼

,

(29)
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while the fields s∼
m and s∼

b are computed as

(
s∼

m s∼
b
)

= (−φ∼ + ∇∼ ω)
(
I0(pm) I0(pb)

)
M∼∼

− ε2
(
I∼

0(2(1+ν)
E p∼

lpm) I∼
0(2(1+ν)

E p∼
lpb)

)
M∼∼

. (30)

Finally, the stress components are given by (cf. (17))

σ∼∼
RM = A∼∼∼∼

−1s∼∼
RM +

ν

1 − ν
σRM

33 δ∼∼
, σ∼

RM = s∼
RM , σRM

33 = gε,o
3 (x∼) + ε−1x3g

ε,e
3 (x∼). (31)

Homogeneous materials

When the plate is composed of homogeneous material, the equations (26)–(30) considerably simplify. Since
the material functions ν and E are symmetric, the equations decouple into membrane and bending parts. The
membrane equation reduces to




− 2ε div∼ A∼∼∼∼
−1 e∼∼(η∼) = εI∼

0(f∼
ε) + 2g∼

ε,e + 2ε
ν

1 − ν
∇∼ gε,o

3 in Ω,

η∼ = 0 on ∂Ω.
(32)

Equations (32) are the same as derived in [1], although the two derivations are based on different choices of
spaces.

For the bending equation, we have




− 2ε3

3
div∼ A∼∼∼∼

−1 e∼∼
(φ∼) + ε

5
6

E

1 + ν
(φ∼ −∇∼ ω) = −ε3 l∼5 − ε2 2ν

3(1 − ν)
∇∼ gε,e

3 in Ω,

ε
5
6

E

1 + ν
div(φ∼ −∇∼ ω) = F + 2gε,e

3 +
ε

3
div g∼

ε,o in Ω,

ω = 0, φ∼ = 0 on ∂Ω.

(33)

The loads are given by 


l∼5 =
5
4
ε−1I∼

1(f∼
ε) − 5

12
ε−1I∼

3(f∼
ε) +

5
3
ε−2g∼

ε,o,

F = −1
4
ε2 div I∼

1(f∼
ε) +

5
12

ε2 div I∼
3(f∼

ε) + εI0(fε
3 ).

(34)

The problem defined by (33)–(34) differs from the bending problem found in [1]. Indeed, the right hand side
of the (33) is new, and it incorporates higher order moments of f∼. Notice also that we recover a model of
Reissner-Mindlin type, with shear correction factor 5/6.

3. Model consistency and some convergence results

3.1. Model consistency

We now study the consistency of our model, by performing an asymptotic expansion with respect to ε for
both the 3D displacement solution and the model displacement solution. The key point for proving that (cf. (5))

lim
ε→0

‖uε − uRM‖H1(P ε)

‖uε‖H1(P ε)
= 0 (35)

is to recognize that the leading terms of both the expansions coincide. More precisely, as shown in Appendix B,
the 3D displacement solution uε(x) admits the following expansion

uε(x) = uL(x) + higher order terms (36)
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where

uL(x) =
(

εζ∼
1(x∼) − x3 ∇∼ ζ0

3 (x∼)
ζ0
3 (x∼)

)
. (37)

On the other hand (cf. Appendix C), the model displacement solution uRM (x) can be written as

uRM (x) = uRM
L (x) + higher order terms (38)

where

uRM
L (x) =

(
εη∼

1(x∼) − x3φ∼
0(x∼)

ω0(x∼)

)
. (39)

We have the following result.

Lemma 3.1. For the leading terms uL and uRM
L defined by (37) and (39), it holds

uL = uRM
L .

Proof. From (59) of Appendix B, we have that the terms ζ∼
1 and ζ0

3 involved in uL(x) (cf. (37)) are uniquely
determined by



div∼

[
I∼∼∼∼

0(A∼∼∼∼
−1) e∼∼

(ζ∼
1)
]
− div∼

[
I∼∼∼

1(A∼∼∼∼
−1) e∼∼

(∇∼ ζ0
3 )
]

= −ε−1I∼
0(f∼

ε) − 2ε−2g∼
ε,e in Ω,

div div∼

[
I∼∼∼∼

1(A∼∼∼∼
−1) e∼∼

(ζ∼
1)
]
− div div∼

[
I∼∼∼∼

2(A∼∼∼∼
−1) e∼∼

(∇∼ ζ0
3 )
]

= −ε−2I0(fε
3 )

− ε−1I1(div f∼
ε) − 2ε−2 div g∼

ε,o − 2ε−3gε,e
3 in Ω,

ζ∼
1 = 0, ζ0

3 =
∂ζ0

3

∂n
= 0 on ∂Ω.

(40)

On the other hand, from (74) of Appendix C, we have that η∼
1, φ∼

0, ω0 ∈ H1
0 (Ω) solve




div∼

[
I∼∼∼∼

0
(
A∼∼∼∼

−1
)

e∼∼
(η∼

1)
]
− div∼

[
I∼∼∼∼

1
(
A∼∼∼∼

−1
)

e∼∼
(φ∼

0)
]

= l∼0,

div div∼

[
I∼∼∼∼

1
(
A∼∼∼∼

−1
)

e∼∼
(η∼

1)
]
− div div∼

[
I∼∼∼∼

2
(
A∼∼∼∼

−1
)

e∼∼
(∇∼ ω0)

]
= div l∼2 − l4,

φ∼
0 −∇∼ ω0 = 0.

(41)

Hence, φ∼
0 = ∇∼ ω0 and ∂ω0/∂n = 0, so that η∼

1 and ω0 are determined by




div∼

[
I∼∼∼∼

0
(
A∼∼∼∼

−1
)

e∼∼(η∼
1)
]
− div∼

[
I∼∼∼∼

1
(
A∼∼∼∼

−1
)

e∼∼(∇∼ ω0)
]

= l∼0,

div div∼

[
I∼∼∼∼

1
(
A∼∼∼∼

−1
)

e∼∼
(η∼

1)
]
− div div∼

[
I∼∼∼∼

2
(
A∼∼∼∼

−1
)

e∼∼
(∇∼ ω0)

]
= div l∼2 − l4,

η∼
1 = 0, ω0 =

∂ω0

∂n
= 0 on ∂Ω.

(42)

Recalling (28), we see that system (40) is the same as (42). It follows that ζ∼
1 = η∼

1 and ζ0
3 = ω0, so that

uL = uRM
L . �
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In the result below, we prove the consistency of our model. To be able to obtain relative convergence estimates,
we shall assume that that either ζ0

3 �= 0 or ζ∼
1 �= 0. We shall actually assume this hypothesis throughout the

paper.

Theorem 3.2. Let uε and uRM be defined by (1), and (25)–(28). Then there exists a constant C = C(Ω, f , g)
independent of ε, such that

‖uε − uRM‖H1(P ε)

‖uε‖H1(P ε)
≤ Cε. (43)

Proof. In this proof, we consider only the case when the third component of uL, i.e. ζ0
3 , is not identically zero.

The case when ζ0
3 = 0 but ζ∼

1 �= 0 can be handled with the same technique. Since uL = uRM
L , from the triangle

inequality it holds

‖uε − uRM‖H1(P ε)

‖uε‖H1(P ε)
≤ ‖uε − uL‖H1(P ε) + ‖uRM

L − uRM‖H1(P ε)

‖uε‖H1(P ε)
· (44)

From Theorem B.1 of Appendix B it follows

‖uε − uL‖H1(P ε) ≤ cε3/2. (45)

On the other hand, since

uRM
L (x) − uRM =

(
(εη∼

1(x∼) − η∼(x∼)) − x3(φ∼
0(x∼) − φ∼(x∼))

ω0(x∼) − ω(x∼),

)
(46)

from Theorem C.1 of Appendix C an integration along x3 leads to

‖uRM
L − uRM‖H1(P ε) ≤ cε3/2. (47)

Collecting (45) and (47) we obtain

‖uε − uL‖H1(P ε) + ‖uRM
L − uRM‖H1(P ε) ≤ cε3/2. (48)

Furthermore, a lower bound for uε easily follows since

‖uε‖H1(P ε) ≥ ‖uε
3‖H1(P ε) ≥ ‖ζ0

3‖H1(P ε) − ‖uε
3 − ζ0

3‖H1(P ε) ≥ cε1/2, (49)

for ε sufficiently small. Hence, from (44), (48) and (49) we have

‖uε − uRM‖H1(P ε)

‖uε‖H1(P ε)
≤ Cε. (50)

�

Remark 3.3. From the proof of Theorem 3.2, it is easily seen that we have indeed

‖u∼ε − u∼
RM‖H1(P ε)

‖u∼ε‖H1(P ε)
≤ Cε,

‖uε
3 − uRM

3 ‖H1(P ε)

‖uε
3‖H1(P ε)

≤ Cε.



888 F. AURICCHIO ET AL.

3.2. Other convergence results

In this subsection we collect some results concerning the modeling error for the stress field. Since the proofs
are rather involved, we postpone them to Appendix D, for the sake of readability. We begin by recalling that σε

is the 3D stress solution (cf. (1)), while σRM is the model stress solution recovered by (31).
The next Theorem gives an error estimate for the planar stress components.

Theorem 3.4. There exists a constant C = C(Ω, f , g) independent of ε, such that

‖σ∼∼
ε − σ∼∼

RM‖L2(P ε)

‖σ∼∼
ε‖L2(P ε)

≤ Cε1/2.

Regarding the convergence of the shear stress, we could obtain weaker results. In particular, due to boundary
layer effects, only interior estimates have been developed. Nevertheless, the following theorem shows O(ε)
convergence for the averaged shear stress.

Theorem 3.5. Let Ω0 be a domain such that Ω̄0 ⊂ Ω. Then there exists a constant C = C(Ω, Ω0, f , g)
independent of ε, such that

‖I∼
0(σ∼

ε − σ∼
RM )‖L2(Ω0)

‖I∼
0(σ∼

ε)‖L2(Ω0)
≤ Cε.

Theorem 3.5 can be used to obtain interior convergence estimates for the shear stress (not only for its average)
in two particular situations.

The first one concerns the case of symmetric plates under bending, as displayed by the following corollary.

Corollary 3.6. Assume that ν and E are even functions. Assume also that the loads induce a pure bending
state, i.e.

• f∼
ε is an odd function, and fε

3 is an even function, with respect to x3;
• gε = (g∼

ε,o, gε,e
3 ).

Let Ω0 be a domain such that Ω̄0 ⊂ Ω, and set P ε
0 = Ω0×(−ε, ε). Then there exists a constant C = C(Ω, Ω0, f , g)

independent of ε, such that

‖σ∼ε − σ∼
RM‖L2(P ε

0 )

‖σ∼ε‖L2(P ε
0 )

≤ Cε.

The second case is when the polynomials pm and pb are linearly dependent functions. For instance, this occurs
whenever ν is constant. Indeed, we have the following result.

Corollary 3.7. Assume that pm and pb are linearly dependent functions. Let Ω0 be a domain such that Ω̄0 ⊂ Ω,
and set P ε

0 = Ω × (−ε, ε). Then there exists a constant C = C(Ω, Ω0, f , g) independent of ε, such that

‖σ∼ε − σ∼
RM‖L2(P ε

0 )

‖σ∼ε‖L2(P ε
0 )

≤ Cε.

Appendix A

In this appendix we present the arguments necessary to obtain the model described in Section 2.3. Throughout
this derivation, we assume that (21), (22) and (23) hold. Also, we consider that pm and pb are linearly
independent. When these polynomials are linearly dependent, the computations are analogous and simpler.
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During the computations, we need that

Aτ =


A∼∼∼∼

τ∼∼
− ν

E
τ33δ∼∼

1+ν
E τ∼

1 + ν

E
τ∼

T τ33
E − ν

E tr(τ∼∼)


 , and ABs =


s∼∼

− ν

E
s33δ∼∼

1+ν
E s∼

1 + ν

E
s∼

T s33
E − ν

E tr(A∼∼∼∼
−1s∼∼

)


 . (51)

The equations (29), together with the boundary conditions for η∼ and φ∼ in (26), are obtained from the first
equation of (24), by considering

t(x) =
(

t∼∼
m(x∼) + x3 t∼∼

b(x∼) 0
0 0

)
,

where t∼∼
m, t∼∼

b ∈ H∼∼
1(Ω) are arbitrary.

By considering next

t(x) =

(
0 t∼

m(x∼)pm(x3)

[ t∼
m(x∼)pm(x3)]T 0

)
, t(x) =

(
0 t∼

b(x∼)pb(x3)

[ t∼
b(x∼)pb(x3)]T 0

)
, (52)

in the first equation of (24), we conclude that




∫ ε

−ε

2(1 + ν)
E

(s∼
mpm + s∼

bpb)pm dx3 =
∫ ε

−ε

(−φ∼ + ∇∼ ω)pm dx3 − ε2

∫ ε

−ε

2(1 + ν)
E

p∼
lpm dx3,∫ ε

−ε

2(1 + ν)
E

(s∼
mpm + s∼

bpb)pb dx3 =
∫ ε

−ε

(−φ∼ + ∇∼ ω)pb dx3 − ε2

∫ ε

−ε

2(1 + ν)
E

p∼
lpb dx3.

Equation (30) expresses the solution of the above algebraic system. It follows also that ω = 0 on ∂Ω.
Next, we consider the second equation of (24). By taking variations of test functions of the form v(x) =

(v∼(x∼), 0), we find

div∼

∫ ε

−ε

A∼∼∼∼
−1(s∼∼

m + ε−1x3s∼∼
b) dx3 = −

∫ ε

−ε

f∼
ε dx3 − 2g∼

ε,e.

Using the first equation of (29), we obtain the first equation of (26). By considering v(x) = (x3v∼(x∼), 0) we find

div∼

∫ ε

−ε

x3A∼∼∼∼
−1(s∼∼

m + ε−1x3s∼∼
b) dx3 −

∫ ε

−ε

(
s∼

mpm + s∼
bpb
)
dx3 = −

∫ ε

−ε

x3f∼
ε dx3 − ε2

∫ ε

−ε

x3

∂p∼
l

∂x3
dx3, (53)

where we integrated by parts the second integral above. Using (30) we obtain that

s∼
mI0(pm) + s∼

bI0(pb) = CS(−φ∼ + ∇∼ ω) − ε2 l∼5. (54)

Therefore, the second equation of (26) follows from (53), the second equation of (29) and from (54).
To obtain the final equilibrium equation, we consider v(x) = (0, 0, v3(x∼)). Hence, it follows that

div
∫ ε

−ε

(
s∼

mpm + s∼
bpb
)
dx3 = −ε3l4 − ε2 div

∫ ε

−ε

p∼
l dx3.

Using then (54), we obtain the third equation of (26).
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Appendix B

As we mention in the introduction, to find out the suitable profiles for the shear stress, and also to derive
error estimates, we look at the asymptotic expansion for the exact solution uε. We do not give here a complete
description of the expansion, but we only mention the basic ideas and some final results. This expansion for
heterogeneous plates generalize the work of Dauge and Gruais [8]. See also [11], where the asymptotic for a
general elasticity problem is investigated. The first step to obtain an asymptotic expansion for uε is, as usual,
to introduce the change of variable (x∼, x3) → (x∼, x̂3) = (x∼, ε−1x3), which maps the domain P ε = Ω × (−ε, ε)
onto Ω × (−1, 1). Thus, the 3D elasticity problem




− div A−1 e(uε) = fε in P ε,

uε = 0 on ∂P ε
L,

A−1 e(uε)n = gε on ∂P ε
±,

(55)

can be accordingly transformed into a problem (depending on the parameter ε) defined on the fixed domain
Ω × (−1, 1). By assuming that:

• there exist ε-independent functions f : Ω × (−1, 1) → R
3, and g : Ω × {−1, 1} → R

3 such that

{
f∼(x∼, x̂3) = ε−1f∼

ε(x∼, εx̂3), f3(x∼, x̂3) = ε−2fε
3 (x∼, εx̂3),

g∼(x∼, x̂3) = ε−2g∼
ε(x∼, εx̂3), g3(x∼, x̂3) = ε−3gε

3(x∼, εx̂3),
(56)

for x̂3 ∈ (−1, 1);
• the functions

ν̂(x̂3) = ν(εx̂3), Ê(x̂3) = E(εx̂3) for x̂3 ∈ (−1, 1),

are independent of ε;

an asymptotic expansion for uε reads as follows

uε(x) ∼
(

εζ∼
1(x∼) − x3 ∇∼ ζ0

3 (x∼)
ζ0
3 (x∼)

)
+ ε

(
εζ∼

2(x∼) − x3 ∇∼ ζ1
3 (x∼)

ζ1
3 (x∼)

)
+ ε2

(
0

ů2
3(x∼, ε−1x3)

)

+ ε2w2(x∼, ε−1ρ, ε−1x3) + ε2

(
εζ∼

3(x∼) − x3 ∇∼ ζ2
3 (x∼)

ζ2
3 (x∼)

)
+ ε3ů3(x∼, ε−1x3) + · · · . (57)

Above, ζ∼
k : Ω → R

2, ζk
3 : Ω → R and ůk : Ω × (−1, 1) → R

3 are functions independent of ε. Moreover, the
boundary correctors wk, needed to capture the boundary layers of the 3D solution, are functions which decay
exponentially to zero with ε−1ρ, where ρ is the distance of a point x∼ ∈ Ω from the boundary ∂Ω. Inserting the
formal expansion (57) into (55), one recognizes that the functions ζ∼

k+1 and ζk
3 can be determined by solving

2D partial differential equations on Ω. In particular, the functions ζ∼
1 and ζ0

3 entering in the leading term

uL(x) =
(

εζ∼
1(x∼) − x3 ∇∼ ζ0

3 (x∼)
ζ0
3 (x∼)

)
(58)
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of the expansion (57) solve the problem


ε div∼

[
I∼∼∼∼

0(A∼∼∼∼
−1) e∼∼

(ζ∼
1)
]
− ε div∼

[
I∼∼∼∼

1(A∼∼∼∼
−1) e∼∼

(∇∼ ζ0
3 )
]

= −I∼
0(f∼

ε) − 2ε−1g∼
ε,e in Ω,

ε div div∼

[
I∼∼∼∼

1(A∼∼∼∼
−1) e∼∼

(ζ∼
1)
]
− ε div div∼

[
I∼∼∼∼

2(A∼∼∼∼
−1) e∼∼

(∇∼ ζ0
3 )
]

= −ε−1I0(fε
3 )

− I1(div f∼
ε) − 2ε−1 div g∼

ε,o − 2ε−2gε,e
3 in Ω,

ζ∼
1 = 0, ζ0

3 =
∂ζ0

3

∂n
= 0 on ∂Ω.

(59)

Furthermore the functions ůk are defined by solving a Neuman problem in each vertical fiber, i.e., these prob-
lems are posed in the one-dimensional domain (−1, 1), and are parametrized by x∼ ∈ Ω. These functions are
ε-independent and satisfy ∫ 1

−1

ůk(x∼, x̂3) dx̂3 = 0.

The asymptotic expansion for the stress comes from formal substitution of (57) in the constitutive equation
σε = A−1 e(uε). Hence

σε(x) ∼ ε

(
σ∼∼

1 0
0 0

)
(x∼, ε−1x3) + εΞ1(x∼, ε−1ρ, ε−1x3) + ε2

(
σ∼∼

2 σ∼
2

σ∼
2T 0

)
(x∼, ε−1x3)

+ ε2Ξ2(x∼, ε−1ρ, ε−1x3) + ε3

(
σ∼∼

3 σ∼
3

σ∼
3T

σ3
33

)
(x∼, ε−1x3) + · · · ,

where Ξk correspond to boundary layer terms, and σk are defined in Ω × (−1, 1). It can be shown that the
components of σk are determined by




σ∼∼
k(x∼, x̂3) = A∼∼∼∼

−1 e∼∼(̊u∼
k) + A∼∼∼∼

−1 e∼∼(ζ∼
k − x̂3 ∇∼ ζk−1

3 ) +
ν

1 − ν
σk

33,

σ∼
k(x∼, x̂3) =

∫ x̂3

−1

(
− div∼ σ∼∼

k−1 − δk,2f∼

)
dξ − δk,2g∼(x∼,−1),

σk
33(x∼, x̂3) =

∫ x̂3

−1

(
− div σ∼

k−1 − δk,3f3

)
dξ − δk,3g3(x∼,−1),

(60)

where δk,l denotes the Kronecker symbol. In particular, from (60) it follows


σ∼∼
1(x∼, x̂3) = A∼∼∼∼

−1 e∼∼(ζ∼
1 − x̂3 ∇∼ ζ0

3 ),

σ∼
2(x∼, x̂3) =

∫ x̂3

−1

(
− div∼ A∼∼∼∼

−1 e∼∼
(ζ∼

1 − ξ ∇∼ ζ0
3 ) − f∼

)
dξ − g∼(x∼,−1),

σ3
33(x∼, x̂3) =

∫ x̂3

−1

(
− div σ∼

2 − f3

)
dξ − g3(x∼,−1).

(61)

Although the first term of the asymptotic expansion of σ∼
ε is given by (61), the first equation of (59) can be

used to provide an alternative expression of σ∼
2. More precisely, after an easy but cumbersome calculation, we

find that
σ∼

2(x∼, x̂3) = ∇∼ div ζ∼
1(x∼)pm(εx̂3) + ∇∼ ∆ ζ0

3 (x∼)pb(εx̂3) + p∼
l(x∼, εx̂3), (62)
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where (cf. (20))




pm(x3) =
I0
(

Eν
1−ν2

)
I0
(

E
1+ν

) ε−1

∫ x3

−ε

E

1 + ν
dξ − ε−1

∫ x3

−ε

Eν

1 − ν2
dξ,

pb(x3) =
I1
(

E
1−ν2

)
I0
(

E
1+ν

) ε−1

∫ x3

−ε

E

1 + ν
dξ − ε−2

∫ x3

−ε

E

1 − ν2
ξ dξ,

p∼
l(x∼, x3) =

ε−3

I0
(

E
1+ν

)(∫ ε

−ε

f∼
ε dξ + 2g∼

ε,e

)∫ x3

−ε

E

1 + ν
dξ − ε−2

∫ x3

−ε

f∼
ε dξ − ε−2g∼

ε(x∼,−ε).

Even though the expansion (57) is formal, it is possible to derive asymptotic error estimates using the technique
of [8]. Considering the error function (cf. also (58))

uer(x) = uε(x) −
(

εζ∼
1(x∼) − x3 ∇∼ ζ0

3 (x∼)
ζ0
3 (x∼)

)
= uε(x) − uL(x),

σer(x) = σε(x) −
(

εσ∼∼
1 ε2σ∼

2

ε2σ∼
2T

ε3σ3
33

)
(x∼, ε−1x3),

(63)

one has the following result.

Theorem B.1. Given uer and σer as in (63), there exists a constant C = C(Ω, f , g) independent of ε, such
that

∥∥u∼er
∥∥

H1(P ε)
≤ Cε2,

∥∥uer
3

∥∥
H1(P ε)

≤ Cε3/2, (64)∥∥σ∼∼er
∥∥

L2(P ε)
≤ Cε2,

∥∥σ∼er
∥∥

L2(P ε)
≤ Cε2,

∥∥σer
33

∥∥
L2(P ε)

≤ Cε2. (65)

Moreover, let Ω0 be a domain such that Ω̄0 ⊂ Ω, and let P ε
0 = Ω0 × (−ε, ε). Then there exists a constant

C = C(Ω, Ω0, f , g) independent of ε, such that

∥∥u∼er
∥∥

H1(P ε
0 )

≤ Cε5/2,
∥∥σ∼er

∥∥
L2(P ε

0 )
≤ Cε7/2,

∥∥σer
33

∥∥
L2(P ε

0 )
≤ Cε9/2. (66)

Appendix C

In this Appendix we briefly report some results about the asymptotic expansion for the solution of our
Reissner-Mindlin model (cf. (26)–(28)). We closely follow the arguments of Arnold and Falk [2], in which a
detailed asymptotic analysis is provided for the bending problem of an isotropic and homogeneous plate.

The first step is to apply the divergence operator to the second equation of (26) and subtract the third
equation of (26) from the result, to obtain

∆ div φ∼ =
1

I2(D)
[ε−1I1(D)∆div η∼ − div l∼2 + l4 − ε2 div l∼3], (67)

where D = E/(1 − ν2). Applying the Laplace operator to the third equation of (26) and using (67), we get

εI2(D)∆2 ω − I1(D)∆ div η∼ = ε(l4 − div l∼2) − ε3 div l∼3 +
I2(D)
CS

ε3[−∆div I∼
0(p∼

l) + ∆ div l∼5 + ∆ l4]. (68)
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Above, the function p∼
l, the constant CS and the lis are defined by (20), (27) and (28). Next, we assume the

following formal expansions




ω(x∼) ∼ ω0(x∼) + εω1(x∼) + ε2ω2(x∼) + · · · ,

η∼(x∼) ∼ εη∼
1(x∼) + ε2η∼

2(x∼) + · · · ,

φ∼(x∼) ∼ φ∼
0(x∼) + εφ∼

1(x∼) + ε2φ∼
2(x∼) + ε2Φ∼

2(x∼, ε−1ρ) + ε3φ∼
3(x∼) + ε3Φ∼

3(x∼, ε−1ρ) + · · · ,

(69)

where Φ∼
i are boundary corrector terms. Note that there is no boundary layer for ω or η∼.

We also remark that, due to the choice (21), the expansion (69) implies that for the model displacement
solution uRM (x) we are supposing that

uRM (x) = uRM
L (x) + higher order terms (70)

where

uRM
L (x) =

(
εη∼

1(x∼) − x3φ∼
0(x∼)

ω0(x∼)

)
. (71)

Disregarding the boundary correctors for φ∼, formally substituting the above expansions in (26) and matching
the terms with the same power of ε, we find that ωi, η∼

i and φ∼
i solve




div∼

[
I∼∼∼∼

0
(
A∼∼∼∼

−1
)

e∼∼
(η∼

i+1)
]
− div∼

[
I∼∼∼∼

1
(
A∼∼∼∼

−1
)

e∼∼
(φ∼

i)
]

= δi,0 l∼0 + δi,2 l∼1,

I1(D)∆div η∼
i+1 − I2(D)∆2 ωi = δi,0(div l∼2 − l4) + δi,2 div l∼3

− δi,2
I2(D)
CS

[
−∆div I∼

0(p∼
l) + ∆ div l∼5 + ∆ l4

]
,

CS(φ∼
i −∇∼ ωi) = − div∼

[
I∼∼∼∼

1
(
A∼∼∼∼

−1
)

e∼∼(η∼
i−1)

]
+div∼

[
I∼∼∼∼

2
(
A∼∼∼∼

−1
)

e∼∼(φ∼
i−2)

]

+ δi,2

[
I∼

0(p∼
l) − l∼5 + l∼2

]
+ δi,4 l∼3.

(72)

In particular, by taking i = 0 in (72), we have that η∼
1, φ∼

0, and ω0 satisfy




div∼

[
I∼∼∼∼

0
(
A∼∼∼∼

−1
)

e∼∼
(η∼

1)
]
− div∼

[
I∼∼∼∼

1
(
A∼∼∼∼

−1
)

e∼∼
(φ∼

0)
]

= l∼0,

I1(D)∆ div η∼
1 − I2(D)∆2 ω0 = div l∼2 − l4,

φ∼
0 −∇∼ ω0 = 0.

(73)

Recalling that D = E/(1 − ν2) and (cf. (8))

A∼∼∼∼
−1τ∼∼

=
E

1 + ν
τ∼∼

+
Eν

1 − ν2
tr(τ∼∼

)δ∼∼
∀τ∼∼

,
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it is easily seen that (73) can be alternatively written as




div∼

[
I∼∼∼∼

0
(
A∼∼∼∼

−1
)

e∼∼(η∼
1)
]
− div∼

[
I∼∼∼∼

1
(
A∼∼∼∼

−1
)

e∼∼(φ∼
0)
]

= l∼0,

div div∼

[
I∼∼∼∼

1
(
A∼∼∼∼

−1
)

e∼∼
(η∼

1)
]
− div div∼

[
I∼∼∼∼

2
(
A∼∼∼∼

−1
)

e∼∼
(∇∼ ω0)

]
= div l∼2 − l4,

φ∼
0 −∇∼ ω0 = 0.

(74)

It is possible to estimate the difference between the leading terms in (69) and the exact Reissner-Mindlin
solution, as stated in the theorem below. The basic ideas behind such proof is to first use (72) to obtain
regularity estimates for the individual terms in the expansions (69), and then substitute a truncated expansion
in the original system (26). Regularity results for (26) imply that adding more terms in the asymptotic series
leads to smaller errors, by construction of the expansion. This is done in details, albeit for a simpler version of
Reissner-Mindlin system, in [2].

Theorem C.1. Let η∼, φ∼ and ω be the solution of (26). Assume that η∼
1, φ∼

0, and ω0 solve (73). Then, for
every positive integer k, there exists a constant C = C(Ω, f , g, k) independent of ε such that

ε−1‖η∼ − εη∼
1‖Hk(Ω) + ‖ω − ω0‖Hk(Ω) + ‖φ∼ − φ∼

0‖H1(Ω) ≤ Cε. (75)

Appendix D

In this appendix we present proofs of the convergence results of Section 3.2.

Proof of Theorem 3.4. We recall that we wish to prove the estimate ‖σ∼∼
ε − σ∼∼

RM‖L2(P ε) ≤ Cε1/2‖σ∼∼
ε‖L2(P ε). We

also recall that (cf. (14) and (31))

σ∼∼
ε = A∼∼∼∼

−1 e∼∼(u∼
ε) +

ν

1 − ν
σε

33, σ∼∼
RM = A∼∼∼∼

−1s∼∼
RM +

ν

1 − ν
σRM

33 .

Thus, from the triangle inequality, we obtain

‖σ∼∼
ε − σ∼∼

RM‖L2(P ε) ≤ c
(
‖ e∼∼(u∼

ε) − s∼∼
RM‖L2(P ε) + ‖σε

33‖L2(P ε) + ‖σRM
33 ‖L2(P ε)

)
≤ c

(
‖ e∼∼

(u∼
ε) − e∼∼

(εζ∼
1 − x3 ∇∼ ζ0

3 )‖L2(P ε) + ‖s∼∼
RM − e∼∼

(εζ∼
1 − x3 ∇∼ ζ0

3 )‖L2(P ε)

+ ‖σε
33‖L2(P ε) + ‖σRM

33 ‖L2(P ε)

)
. (76)

From the two-dimensional Korn’s inequality in Ω and the first estimate of (65), we have

‖ e∼∼(u∼
ε) − e∼∼(εζ∼

1 − x3 ∇∼ ζ0
3 )‖L2(P ε) ≤ cε2. (77)

From (65) of Theorem B.1, the estimate ‖σ3
33‖L2(P ε) ≤ cε1/2, it follows that

‖σε
33‖L2(P ε) ≤ ‖σε

33 − ε3σ3
33‖L2(P ε) + ε3‖σ3

33‖L2(P ε) ≤ cε2. (78)

Next, from the definition of σRM
33 in (31), (9), and the scaling assumption (6), we have

‖σRM
33 ‖L2(P ε) ≤ cε2. (79)
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To bound the term ‖s∼∼
RM − e∼∼

(εη∼
1 − x3 ∇∼ ζ0

3 )‖L2(P ε), we first recall that (cf. (22)) s∼∼
RM = s∼∼

m + ε−1x3 s∼∼
b, where

(s∼∼
m, s∼∼

b) is the solution of system (29). Therefore, since Lemma 3.1 implies ζ∼
1 = η∼

1 and ∇∼ ζ0
3 = φ∼

0, we get

‖s∼∼
RM − e∼∼(εζ∼

1 − x3 ∇∼ ζ0
3 )‖L2(P ε) = ‖s∼∼

RM − e∼∼(εη∼
1 − x3φ∼

0)‖L2(P ε)

≤ ‖s∼∼
m − ε e∼∼

(η∼
1)‖L2(P ε) + ‖ε−1x3(s∼∼

b + ε e∼∼
(φ∼

0))‖L2(P ε). (80)

Defining s∼∼
er,m := s∼∼

m − ε e∼∼
(η∼

1) and s∼∼
er,b := s∼∼

b + ε e∼∼
(φ∼

0), we see from (29) that the couple (s∼∼
er,m, s∼∼

er,b) solves




I∼∼∼∼
0(A∼∼∼∼

−1)s∼∼
er,m + I∼∼∼∼

1(A∼∼∼∼
−1)s∼∼

er,b = I∼∼∼∼
0(A∼∼∼∼

−1) e∼∼(η∼ − εη∼
1) − εI∼∼∼∼

1(A∼∼∼∼
−1) e∼∼(φ∼ − φ∼

0)

+ I0

(
ν

1 − ν

)
gε,o
3 δ∼∼

+ I1

(
ν

1 − ν

)
gε,e
3 δ∼∼

,

I∼∼∼∼
1(A∼∼∼∼

−1)s∼∼
er,m + I∼∼∼∼

2(A∼∼∼∼
−1)s∼∼

er,b = I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼(η∼ − εη∼
1) − εI∼∼∼∼

2(A∼∼∼∼
−1) e∼∼(φ∼ − φ∼

0)

+ I1

(
ν

1 − ν

)
gε,o
3 δ∼∼ + I2

(
ν

1 − ν

)
gε,e
3 δ∼∼.

Therefore, for every x∼ ∈ Ω, we have

|s∼∼
er,m| + |s∼∼

er,b| ≤ c
(
| e∼∼(η∼ − εη∼

1)| + ε| e∼∼(φ∼ − φ∼
0)| + |gε,o

3 | + |gε,e
3 |
)

,

where | · | denotes the usual algebraic norm for tensors. Hence, using (6) and Theorem C.1 we get

‖s∼∼
er,m‖L2(P ε) + ‖s∼∼

er,b‖L2(P ε) ≤ ε5/2. (81)

Collecting (76)–(81) we obtain
‖σ∼∼

ε − σ∼∼
RM‖L2(P ε) ≤ ε2. (82)

Moreover, proceeding as in (49) we find the following lower bound for σ∼∼
ε

‖σ∼∼
ε‖L2(P ε) ≥ ε‖σ∼∼

1‖L2(P ε) − ‖σ∼∼
ε − εσ∼∼

1‖L2(P ε) ≥ cε3/2, (83)

for ε sufficiently small. The theorem now follows from (82) and (83). �

Proof of Theorem 3.5. We wish to obtain ‖I∼
0(σ∼

ε − σ∼
RM )‖L2(Ω0) ≤ Cε‖I∼

0(σ∼
ε)‖L2(Ω0). We first recall that

(cf. (31) and (23))
σ∼

RM = ε2p∼
l(x) + s∼

m(x∼)pm(x3) + s∼
b(x∼)pb(x3).

We focus on the more difficult case of pm and pb linearly independent (otherwise the computations are easier).
From the triangle inequality it follows that

∥∥I∼
0(σ∼

ε − σ∼
RM )

∥∥
L2(Ω0)

≤ ∥∥I∼
0(σ∼

er)
∥∥

L2(Ω0)
+
∥∥I∼

0(σ∼
RM − ε2σ̄∼

2)
∥∥

L2(Ω0)
,

where σ∼
er is defined in (63) and σ̄∼

2(x) = σ∼
2(x∼, ε−1x3). Using Cauchy-Schwarz inequality, we find that

∥∥εI∼
0(σ∼

er)
∥∥

L2(Ω0)
≤ (2ε)1/2

∥∥∥∥
(∫ ε

−ε

|σ∼
er|2 dx3

)1/2∥∥∥∥
L2(Ω0)

= (2ε)1/2
∥∥σ∼er

∥∥
L2(P ε

0 )
≤ cε4, (84)
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where Theorem B.1 is used to obtain the last inequality (cf. (66)). Using (53) and (29), we have that

I∼
0(σ∼

RM ) = ε div∼ I∼
1(A∼∼∼∼

−1)s∼∼
m + εI∼

2(A∼∼∼∼
−1)s∼∼

b + εI∼
1(f∼

ε) + 2g∼
ε,o

= ε div∼ I∼
1(A∼∼∼∼

−1) e∼∼
(η∼) − ε2 div∼ I∼

2(A∼∼∼∼
−1) e∼∼

(φ∼) + εI1

(
ν

1 − ν

)
∇∼ gε,o

3

+ εI2

(
ν

1 − ν

)
∇∼ gε,e

3 + εI∼
1(f∼

ε) + 2g∼
ε,o. (85)

Using (61) and integrating by parts, we gather that

∫ ε

−ε

σ∼
2(·, ε−1x3) dx3 =

∫ ε

−ε

(
x′

3

∫ ε−1x3

−1

(
− div∼ A∼∼∼∼

−1 e∼∼
(ζ∼

1 − ξ ∇∼ ζ0
3 ) − f∼

)
dξ − g∼(x∼,−1)

)
dx3

=
∫ ε

−ε

ε−1x3

[
div∼ A∼∼∼∼

−1 e∼∼(ζ∼
1 − ε−1x3 ∇∼ ζ0

3 ) + f∼(·, ε−1x3)
]
dx3 − 2εg∼(x∼,−1)

+ ε

∫ 1

−1

(
− div∼ A∼∼∼∼

−1 e∼∼
(ζ∼

1 − ξ ∇∼ ζ0
3 ) − f∼

)
dξ. (86)

Substituting the first equation of (7) in (86), we obtain

I∼
0(σ̄∼

2) = div∼ I∼∼∼∼
1(A∼∼∼∼

−1) e∼∼
(ζ∼

1) + div∼ I∼∼∼∼
2(A∼∼∼∼

−1) e∼∼
(∇∼ ζ0

3 ) + I∼
1(f∼) + 2ε−2g∼

ε,o. (87)

Therefore, from (85) and (87) we get
∥∥I∼

0(σ∼
RM − ε2σ̄∼

2)
∥∥

L2(Ω0)
≤ ∥∥ε div∼ I∼∼∼∼

1(A∼∼∼∼
−1) e∼∼

(η∼ − εζ∼
1) − ε2 div∼ I∼∼∼∼

2(A∼∼∼∼
−1) e∼∼

(φ∼ −∇∼ ζ0
3 )
∥∥

L2(Ω0)
+ cε‖gε

3‖H1(Ω0)

≤ cε
∥∥η∼ − εζ∼

1‖H2(Ω0) + cε2
∥∥φ∼ −∇∼ ζ0

3

∥∥
H2(Ω0)

+ cε‖gε
3‖H1(Ω0) ≤ cε3, (88)

where the final inequality follows from Theorem C.1 and Hypothesis (6). Combining estimates (84) and (88),
we conclude that ∥∥I∼0(σ∼

ε − σ∼
RM )

∥∥
L2(Ω0)

≤ cε3.

The result follows since from Theorem B.1 and the definition of σ∼
2, it holds

∥∥I∼
0(σ∼

ε)
∥∥

L2(Ω0)
≥ cε2. �

Proof of Corollary 3.6. Our aim is to prove that

‖σ∼ε − σ∼
RM‖L2(P ε

0 )

‖σ∼ε‖L2(P ε
0 )

≤ Cε.

As before, let σ̄∼
2(x) = σ∼

2(x∼, ε−1x3). From the triangle inequality and Theorem B.1, we have

‖σ∼
ε − σ∼

RM‖L2(P ε
0 ) ≤ ‖σ∼

ε − ε2σ̄∼
2‖L2(P ε

0 ) + ‖σ∼
RM − ε2σ̄∼

2‖L2(P ε
0 ) ≤ ‖σ∼

RM − ε2σ̄∼
2‖L2(P ε

0 ) + cε7/2.

In the pure bending case, σ∼
RM simplifies as

σ∼
RM = s∼

bpb + ε2p∼
l.



AN ASYMPTOTICALLY OPTIMAL MODEL FOR PLATES 897

Hence, from the definition of σ̄∼
2 and (62), we obtain

∥∥I∼
0(σ∼

RM − ε2σ̄∼
2)
∥∥

L2(Ω0)
=
∥∥(s∼b − ε2 ∇∼ ∆ ζ0

3 )I∼
0(pb)

∥∥
L2(Ω0)

= ‖s∼
b − ε2 ∇∼ ∆ ζ0

3‖L2(Ω0)

∣∣I∼0(pb)
∣∣.

Using (88) we get
‖s∼

b − ε2 ∇∼ ∆ ζ0
3‖L2(Ω0) ≤ cε3.

Thus, it follows that

‖σ∼
RM − ε2σ̄∼

2‖L2(P ε
0 ) = ‖pb‖L2(−ε,ε)‖s∼

b − ε2 ∇∼ ∆ ζ0
3‖L2(Ω0) ≤ cε7/2,

and the result is a consequence of ‖σ∼ε‖L2(P ε
0 ) ≥ cε5/2. �

Proof of Corollary 3.7. We recall that we are considering the case of pm and pb linearly dependent. Therefore,
let a ∈ R such that pm = apb. Then, using the same notation of the proof of Theorem 3.6, we have that

σ̄∼
2 = (a∇∼ div ζ∼

1 + ∇∼ ∆ ζ0
3 )pb.

It is enough now to proceed as in the proof of Theorem 3.6. �
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