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Abstract. This paper is concerned with the numerical approximations of Cauchy problems for one-
dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-
balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate
the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced
by [Toumi, J. Comp. Phys. 102 (1992) 360–373]. Next, this general theory is applied to obtain well-
balanced schemes for solving coupled systems of conservation laws with source terms. Finally, we focus
on applications to shallow water systems: the numerical schemes obtained and their properties are
compared, in the case of one layer flows, with those introduced by [Bermúdez and Vázquez-Cendón,
Comput. Fluids 23 (1994) 1049–1071]; in the case of two layer flows, they are compared with the
numerical scheme presented by [Castro, Maćıas and Parés, ESAIM: M2AN 35 (2001) 107–127].

Mathematics Subject Classification. 65M99, 76B55, 76B70.

Received: November 3, 2003. Revised: June 9, 2004.

1. Introduction

This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional noncon-
servative hyperbolic systems:

∂W

∂t
+ A(W )

∂W

∂x
= 0, x ∈ R, t > 0. (1.1)

A first difficulty related with these systems comes from the presence of nonconservative products in (1.1) which
makes difficult the definition of weak solutions. Dal Masso, LeFloch, and Murat [11] proposed an interpretation
of these products using a family of paths drawn in the phases space.

Some of the usual numerical schemes designed for conservation laws can be adapted to the discretization of
the more general system (1.1). This is the case of numerical schemes based on Approximate Riemann Solvers
and, in particular, Roe schemes (see [16, 23, 29, 32], . . . ): in [35] a general definition of Roe linearizations was
introduced, based again on the use of a family of paths.
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systems.
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822 C. PARÉS AND M. CASTRO

Following an idea introduced in [17, 19, 20], a system of conservation laws with source terms or balance law

∂W

∂t
+

∂F

∂x
(W, σ) = S̃(W, σ)

dσ

dx
, (1.2)

σ(x) being a known function, can be considered as a particular case of (1.1), if the trivial equation:

∂σ

∂t
= 0,

is added to the system. In particular, the hyperbolic shallow water system with source terms due to bed
elevations or breadth variations can be formulated under this form.

It is known that, in the presence of source terms, standard methods can fail in approximating steady or nearly
steady flows (see [25, 30, 33], . . . ). In the context of shallow water equations Bermúdez and Vázquez-Cendón
have shown in [3, 36] that methods based on Approximate Riemann Solvers for the discretization of the flux
terms and upwinding the source terms suitably solve these difficulties. These authors introduced the condition
called conservation property or C-property: a scheme is said to satisfy this condition if it solves, exactly or up to
the second order, the steady state solutions corresponding to water at rest. This idea of constructing numerical
schemes that preserve some equilibria, which are called in general well-balanced schemes, has been extended in
different ways: see [2, 6–9,12, 14, 17–20,24, 26, 27, 34, 37].

A more general type of systems that can be considered as a particular case of (1.1) is the class of coupled
systems of conservation laws with source terms of the form:

∂Wk

∂t
+

∂Fk

∂x
(Wk, σ) =

∑
l �=k

Bk,l(W1, . . . , WK , σ) · ∂Wl

∂x
+ S̃k(W1, . . . , WK , σ)

dσ

dx
, k = 1, . . . , K. (1.3)

The equations governing the flow of a stratified fluid composed by two superposed shallow layers of immiscible
liquids can be formulated under this form (see [4]). In the cited work, some numerical schemes generalizing
those introduced in [3,36] for balance laws, were presented. The well-balance property required to the numerical
schemes was the natural extension of the C-property: equilibria corresponding to water at rest had to be
preserved. Recently, this work has been extended to the more complex system corresponding to 1d bilayer
shallow water flows in symmetric channels with irregular geometries in [5]. In [12] a more general definition
of the well-balance property for numerical schemes solving (1.3) has been introduced, as well as a family of
numerical schemes satisfying this extended property.

Systems with similar characteristics also appear in other flow models such as boiling flows and two-phase
flows (see [13]).

The main goal of this work is to provide a theoretical framework for a general definition of well-balanced
numerical schemes, and a methodology for the construction of well-balanced Roe schemes with special emphasis
on the particular case of coupled systems of conservation laws with source terms.

This paper is organized as follows. In Section 2, we recall briefly the notion of a weak solution of (1.1) and
the general form of a Roe scheme as proposed in [11] and [35], respectively. In Section 3, we introduce a general
definition of well-balanced numerical schemes for solving (1.1) and we give some general results concerning the
well-balance properties of Roe schemes. In particular, we pay attention to Roe schemes based on the simplest
choice of paths: the family of segments. In Section 4, coupled systems of conservations laws with source
terms (1.3) are considered: on the basis of the general results of Section 3, we discuss firstly how to construct
a Roe scheme when Roe matrices are known for each particular conservation law involved. Then, we describe
how these schemes can be adapted to the more difficult case of resonant problems in which the system becomes
nonstrictly hyperbolic.

In Section 5 this general methodology is applied to some systems related to shallow water flows, recovering
some known well-balanced schemes, or resulting in new schemes. In the case of flows through channels with
rectangular cross-section of constant breadth and varying depth, the Q-scheme of Roe introduced in [3, 36] is
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recovered for one-layer flows, and the generalized Q-scheme of Roe presented in [4] for two-layer flows. The
previously known results concerning the well-balanced character of these schemes are easily deduced from the
general theory. In the case of flows through channels with rectangular cross-section of varying breadth and
constant depth, we obtain two different schemes depending on the choice of the family of paths. One of them is
similar to the numerical scheme presented in [14], but the other has not been yet described, in our knowledge.

In view of these results, the methodology developed seems to be useful for designing Roe-type schemes that
are well-balanced for general nonconservative hyperbolic systems, and it can be also a first step for designing
higher order well-balanced schemes for this kind of systems.

2. Roe methods for nonconservative systems

We consider the problem:
∂W

∂t
+ A(W )

∂W

∂x
= 0, x ∈ R, t > 0. (2.4)

We suppose that the unknown function W (x, t) takes its values inside an open convex set Ω included in R
N and

that W ∈ Ω → A(W ) is a smooth locally bounded map. We suppose that system (2.4) is strictly hyperbolic,
that is, for each W ∈ Ω the matrix A(W ) has N real distinct eigenvalues

λ1(W ) < · · · < λN (W ),

and associated eigenvectors Rj(W ), j = 1, . . . , N . Moreover, we suppose that for each integer j ∈ {1, . . . , N}
the jth field is either genuinely nonlinear:

Rj(W ) · ∇λj(W ) �= 0, ∀W ∈ Ω,

or linearly degenerate:
Rj(W ) · ∇λj(W ) = 0, ∀W ∈ Ω.

Observe that the system contains a nonconservative product A(W ) · Wx which, in general, cannot make sense
within the framework of the theory of distributions. After the theory developed by Dal Masso, LeFloch, and
Murat [11], a rigorous definition of weak solutions can be performed using a family of paths in Ω defined as
follows:

Definition 1. A family of paths in Ω ⊂ R
N is a locally Lipschitz map Φ : [0, 1]× Ω × Ω → Ω such that:

• Φ(0; WL, WR) = WL, Φ(1; WL, WR) = WR for any WL, WR in Ω;
• for every bounded set O of Ω there exists k such that:∣∣∣∣∂Φ

∂s
(s; WL, WR)

∣∣∣∣ ≤ k|WL − WR| (2.5)

for any WL, WR ∈ O and s ∈ [0, 1];
• for every bounded set O of Ω there exists K such that:∣∣∣∣∂Φ

∂s
(s; W 1

L, W 1
R) − ∂Φ

∂s
(s; W 2

L, W 2
R)
∣∣∣∣ ≤ K

(
|W 1

L − W 2
L| + |W 1

R − W 2
R|
)

for any W 1
L, W 1

R, W 2
L, W 2

R ∈ O and s ∈ [0, 1].

Once a family of paths chosen, given a function W ∈
(
L∞(R × R

+) ∪ BV (R × R
+)
)N it is possible to give a

sense to the nonconservative product as a Borel measure (see [11] for details), which is denoted [A(W ) · Wx]Φ
and weak solutions are the functions satisfying the equality

Wt + [A(W ) · Wx]Φ = 0.
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Across a discontinuity, weak solutions satisfy the generalized Rankine-Hugoniot condition:∫ 1

0

(
ξ · I − A(Φ(s; W−, W+))

)∂Φ
∂s

(s; W−, W+) ds = 0, (2.6)

where ξ denotes the speed of the discontinuity, I the identity matrix, and W−, W+ the limits to the left and
to the right of the solution.

Observe that in the particular case of a conservation law, i.e. if there exists a smooth function F : Ω →
R such that, for any W ∈ Ω, A(W ) is the Jacobian matrix of F , condition (2.6) coincides with the usual
Rankine-Hugoniot conditions for any choice of the family of paths.

Together with this definition of weak solutions, we assume here the Lax’s concept of entropic solution:

Definition 2. A weak solution of (2.4) will be said an entropic solution if, at each discontinuity Σ there exists
k ∈ {1, . . . , N} such that:

λk(W+) < ξ < λk+1(W+); λk−1(W−) < ξ < λk(W−) (2.7)

if the characteristic field is genuinely nonlinear or

λk(W−) = ξ = λk(W+) (2.8)

if the characteristic filed is linearly degenerate.

These definitions of weak and entropic solution allow to extend to systems (2.4) the theory of simple waves
of hyperbolic systems of conservation laws and the results concerning the solutions of Riemann problems (see
[11]).

The choice of the family of paths is important as it determines the propagation speed of shocks. The simplest
choice is given by the family of segments:

Φ(s; WL, WR) = WL + s(WR − WL), (2.9)

that corresponds to the definition of nonconservative product proposed by Volpert [38]. In general, in practical
applications, its selection has to be based on the physical background (see [22, 28] for instance). Nevertheless,
in the particular case in which WL and WR are linked by an integral curve of a linearly degenerate field, the
natural choice of Φ(s; WL, WR) is a parameterization of the arc of the curve delimited by WL and WR. In effect,
this choice ensures that the contact discontinuity:

W (x, t) =
{

WL if x < ξt,
WR if x > ξt,

where ξ is the (constant) value of the corresponding eigenvalue through the integral curve, verifies (2.6) and
thus is a weak solution of (2.4).

In [35] a generalization of Roe methods to systems of the form (2.4) was introduced. These methods are
based on the following general definition of a Roe linearization:

Definition 3. Given a family of paths Ψ, a matrix function AΨ : Ω×Ω → MN(R) is called a Roe linearization
if it satisfies:

• for any WL, WR ∈ Ω, AΨ(WL, WR) has N real distinct eigenvalues;
• AΨ(W, W ) = A(W ), for all W ∈ Ω;
• for any WL, WR ∈ Ω:

AΨ(WL, WR) · (WR − WL) =
∫ 1

0

A
(
Ψ(s; WL, WR)

)∂Ψ
∂s

(s; WL, WR) ds. (2.10)
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Once the linearization chosen, to discretize the system a set of computing cells Ii = [xi−1/2, xi+1/2], i ∈ Z is
chosen. For the sake of simplicity, we assume that these cells have a constant size ∆x, and that

xi+1/2 = i∆x.

xi = (i − 1/2)∆x is the center of the cell Ii. Let ∆t be the time step and tn = n∆t.
As usual, we denote by Wn

i the approximation of the cell averages of the exact solution provided by the
numerical scheme:

Wn
i
∼=

1
∆x

∫ xi+1/2

xi−1/2

W (x, tn) dx.

In order to calculate these approximations, we first introduce the intermediate matrices

Ai+1/2 = AΨ(Wn
i , Wn

i+1). (2.11)

The eigenvalues of this matrix will be denoted by:

λ
i+1/2
1 < λ

i+1/2
2 < · · · < λ

i+1/2
N ,

and a set of associated eigenvectors by {Ri+1/2
l }N

l=1. We will denote by Ki+1/2 the N × N matrix whose
columns are these eigenvectors and by Li+1/2 the diagonal matrix whose coefficients are the eigenvalues. We
also introduce the matrices L+

i+1/2, L
−
i+1/2, A

+
i+1/2, A

−
i+1/2 as usual

L±
i+1/2 =


(λi+1/2

1 )± 0
. . .

0 (λi+1/2
N )±

 , A±
i+1/2 = Ki+1/2L±

i+1/2K
−1
i+1/2. (2.12)

The numerical scheme progresses in time as follows: once the approximations at time tn, Wn
i , have been

calculated, a Linear Riemann problem is considered at each intercell xi+1/2 whose matrix is Ai+1/2 and whose
states to the left and to the right are respectively Wn

i and Wn
i+1. The approximations at the time tn+1, Wn+1

i ,
are obtained by averaging in the cells the solutions of these linear problems. As in the case of systems of
conservation laws, some calculations allow to show that, under the hypothesis:

xi−1/2 + λ
i−1/2
N ∆t ≤ xi ≤ xi+1/2 + λ

i+1/2
1 ∆t, (2.13)

the approximations at time tn+1 can be obtained by the formula:

Wn+1
i = Wn

i − ∆t

∆x

(
A+

i−1/2 · (W
n
i − Wn

i−1) + A−
i+1/2 · (W

n
i+1 − Wn

i )
)

, (2.14)

which is the general expression of a Roe scheme for (2.4).
The best choice of the family of paths Ψ appearing in the definition of the Roe matrix is the family Φ selected

for the definition of weak solutions: this choice assures that, if the states Wn
i and Wn

i+1 can be linked by a
discontinuity satisfying (2.6) that propagates at velocity ξ then:(

Ai+1/2 − ξ · I
)
· (Wn

i+1 − Wn
i ) = 0, (2.15)

that is, the difference of the states is an eigenvector of the intermediate matrix associated to ξ. As a consequence,
the solution of the linear Riemann problem agrees with the exact solution.
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Nevertheless the construction of a Roe linearization based on the family of paths Φ can be difficult in practice,
as we shall see in the applications. Therefore, we are mainly interested in the more general case in which Ψ �= Φ.
In particular, we will pay attention to the simplest choice:

Ψ(s; WL, WR) = WL + s(WR − WL), (2.16)

which coincides with the family of paths used in Volpert’s definition (2.9).
If Φ �= Ψ and the states Wn

i and Wn
i+1 can be linked by a shock or a contact discontinuity that propagates at

velocity ξ, the identity (2.15) doesn’t hold in general. In that case, the following estimate can be easily obtained
from (2.5) and (2.6):

∣∣(Ai+1/2 − ξ · I) · (Wn
i+1 − Wn

i )
∣∣ ≤ K1

∫ 1

0

∣∣∣∣∂Φ
∂s

(s; Wn
i , Wn

i+1) −
∂Ψ
∂s

(s; Wn
i , Wn

i+1)
∣∣∣∣ ds

+ kK2|Wn
i+1 − Wn

i |
∫ 1

0

|Φ(s; Wn
i , Wn

i+1) − Ψ(s; Wn
i , Wn

i+1)| ds, (2.17)

where k is the constant appearing in (2.5) corresponding to a compact set K ⊂ Ω containing both paths; K1 is
given by:

K1 = max
W∈K

||A(W )||, (2.18)

|| · || being the matrix norm associated to the Euclidean norm in R
N , | · |; and finally K2 is the best constant

such that:
||A(W1) −A(W2)|| ≤ K2|W1 − W2|, ∀W1, W2 ∈ K. (2.19)

Therefore, the difference of states can be viewed as an approximate eigenvector associated to ξ whose error
bound depends on the difference between the paths and its derivatives, the distance between the states, and
the matrix A. Observe that, if we let ∆x and ∆t tend to zero assuming that the numerical solutions converge
to a function having discontinuities, and Wn

i , Wn
i+1 converge respectively to the limits W−, W+ at both sides

of a discontinuity, the error bound (2.17) does not converge to zero, unless Ψ = Φ. Therefore, the convergence
of the numerical scheme can fail when the solutions to be approached involve discontinuities linking two states
W−, W+ such that Φ(·; W−, W+) �= Ψ(·; W−, W+).

Remark 1. Observe that in the deduction of the schemes a CFL-like requirement (2.13) has been imposed.
In practice, the following condition can be used:

max
{∣∣∣λi+1/2

l

∣∣∣ , 1 ≤ l ≤ N, i ∈ Z

} ∆t

∆x
≤ γ (2.20)

with 0 < γ ≤ 1.

Remark 2. As in the case of systems of conservation laws, when sonic rarefaction waves appear it is necessary
to modify the approximate Riemann problem solver in order to obtain entropy-satisfying solutions. The Harten-
Hyman Entropy Fix technique [21, 23], for instance, can be easily adapted to this problem.

3. Well-balancing

Well-balancing is related to the numerical approximation of equilibria, i.e., steady state solutions. Observe
that system (2.4) can only have regular nontrivial steady state solutions if it has linearly degenerate fields: if
W (x) is a regular steady state solution it satisfies

A(W (x)) · W ′(x) = 0, ∀x ∈ R,
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and then 0 is an eigenvalue of A(W (x)) for all x and W ′(x) is an associated eigenvector. Therefore, the solution
can be interpreted as a parameterization of an integral curve of a linearly degenerate characteristic field whose
corresponding eigenvalue takes the value 0 through the curve. In order to define the concept of well-balancing,
let us introduce the set Γ of all the integral curves γ of a linearly degenerate field of A(W ) such that the
corresponding eigenvalue vanishes on Γ. Clearly, if Γ is empty, the well-balance property doesn’t make sense.

Definition 4. Given a curve γ ∈ Γ, a numerical scheme for solving (2.4):

Wn+1
j = Wn

j +
∆t

∆x
H(Wn

j−p, . . . , W
n
j+q) (3.21)

is said to be exactly well-balanced for γ if, given any C1 function x ∈ (α, β) ⊂ R → W (x) ∈ Ω such that

W (x) ∈ γ, ∀x ∈ (α, β), (3.22)

and p + q + 1 points in (α, β) x−p, . . . , xq such that:

x−p < · · · < xq; xi+1 − xi = ∆x, i = −p, . . . , q − 1, (3.23)

then
H(W (x−p), . . . , W (xq)) = 0. (3.24)

The scheme is said to be well-balanced with order k for γ if, given any Ck+1 function W and any set of points
{x−q, . . . , xp} satisfying (3.22), (3.23), then:

|H(W (x−p), . . . , W (xq))| = O
(
∆xk+1

)
. (3.25)

Finally, the scheme is said to be exactly well-balanced or well-balanced with order k if these properties are
satisfied for any curve of Γ.

In the definition above, the constant in the expression O(∆xk) is allowed to depend continuously on x0.
We only consider 1-level schemes and uniform meshes in order to avoid an excess of notation, but the definition

can be easily extended to general schemes.
Well-balanced schemes solve correctly steady state solutions in the following sense: given a smooth steady

state solution x ∈ R → W (x) of (2.4), if we apply a numerical scheme to the initial values {W 0
i }i∈Z given by

W 0
i = W (xi), ∀i ∈ Z, (3.26)

using a time step ∆t = T/N , for some constant T > 0, then:

Wn
i = W (xi), ∀n ∈ N, i ∈ Z,

if the scheme is exactly well-balanced, and

Wn
i = W (xi) + O(∆xk), ∀ i ∈ Z, n = 1, . . . , N,

if the scheme satisfies the approximated well-balance property with order k and the estimate (3.25) is satisfied
uniformly for W .

The well-balance property of Roe schemes is strongly related to its ability for approaching solutions involving
contact discontinuities: again, it depends on how close the paths of the families Φ and Ψ are.

Theorem 1. Consider a Roe scheme (2.14) associated to a family of paths Ψ for solving (2.4) and let γ be a
curve belonging to Γ. If for any two states WL, WR ∈ γ, the path Ψ(s; WL, WR) is a parameterization of the
arc of γ delimited by WL and WR, then the numerical scheme is exactly well-balance for γ.
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Proof. Let W be a C1 function from (α, β) to Ω satisfying (3.22) and {x−1, x0, x1} three points in (α, β)
satisfying (3.23). As Ψ(s; W (xi), W (xi+1)) is a parameterization of an arc of γ which is in Γ we have for almost
every s:

A(Ψ(s; W (xi), W (xi+1)) ·
∂Ψ
∂s

(s; W (xi), W (xi+1)) = 0.

From this equality and (2.10) it can be easily deduced that:

Ai+1/2 · (W (xi+1) − W (xi)) = 0, i = −1, 0.

The exact well-balance property is proved by using the expression of the scheme (2.14) and the matrix equalities:

A±
i+1/2 = P±

i+1/2Ai+1/2, i = −1, 0, (3.27)

where

P±
i+1/2 =

1
2
Ki+1/2

(
I ± sgn(Li+1/2)

)
K−1

i+1/2. �

Corollary 1. If Ψ = Φ, the numerical scheme is exactly well-balanced.

Proof. This result is easily deduced from the theorem, just taking into account that the path Φ(s; WL, WR)
connecting two states belonging to a curve of a linearly degenerate field is a parameterization of the arc delimited
by these states. �

Theorem 2. Let γ be a curve belonging to Γ. Let us suppose that there exists p ∈ N such that the following
estimate holds ∫ 1

0

∣∣∣∣(b − a)W ′(a + s(b − a)) − ∂Ψ
∂s

(s; W (a), W (b))
∣∣∣∣ ds = O

(
(b − a)p+1

)
, (3.28)

for any Cp+1 function x ∈ (α, β) ⊂ R → W (x) ∈ Ω satisfying (3.22), and any a < b in (α, β), then the scheme
is well-balanced with order p for γ.

Proof. Let W be a Cp+1 function satisfying (3.22), and {x−1, x0, x1} three points in (α, β) satisfying (3.23).
We consider a compact set K containing the graph of the function W : [x−1, x1] → Ω, as well as the paths of
the family Ψ linking W (x−1), W (x0), and W (x0), W (x1). Let k be the constant in (2.5) corresponding to the
bounded set K, and K1, K2 the constants defined by (2.18), (2.19), respectively. The following estimate can be
obtained

|Ai+1/2 · (W (xi+1) − W (xi))| ≤ K1

∫ 1

0

∣∣∣∣∆xW ′(xi + s∆x) − ∂Ψ
∂s

(s; W (xi), W (xi+1))
∣∣∣∣ ds

+ kK2|W (xi+1) − W (xi)|
∫ 1

0

|W (xi + s∆x) − Ψ(s; W (xi), W (xi+1))| ds, i = −1, 0, (3.29)

in the same manner as (2.17). Because of (3.28) the first term on the right-hand side is O
(
∆xp+1

)
. Moreover,

given t ∈ [0, 1] we deduce from (3.28):∫ 1

0

|W (xi + s∆x) − Ψ(s; W (xi), W (xi+1))| ds = O
(
∆xp+1

)
,

and then, the second term is at least O
(
∆xp+2

)
. The proof is concluded by using again (3.27) and the expression

of the scheme (2.14). �
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In the applications, we will be concerned with Roe schemes based on the family of paths (2.16): this is the
natural choice when Volpert’s concept of nonconservative products has been chosen or when it is difficult to
construct a Roe scheme based on the family of paths chosen in the definition of weak solutions. Besides of its
simplicity, the choice (2.16) produces numerical schemes that are well-balanced with order 2:

Theorem 3. A Roe scheme (2.14) based on the family of paths Ψ given by (2.16) for solving (2.4) is well-
balanced with order 2. Moreover, if γ ∈ Γ is a straight line, the numerical scheme is exactly well-balanced
for γ.

Proof. Given a curve γ ∈ Γ and a C3 function W from (α, β) to Ω satisfying (3.22), the well-balance property
with order 1 can be easily shown by applying Theorem 2: using Taylor developments, (3.28) can be easily
proved with p = 1. Nevertheless, this result can be improved as follows: given j, l ∈ {1, . . . , N} we consider the
expression

Aj,l(W (a) + s(W (b) − W (a)))(wl(b) − wl(a)),

where wl(x) denotes the lth component of W (x), and we perform Taylor developments of Aj,l(·) and wl(·)
centered respectively at W (c) and c, with c = (a + b)/2. We obtain:

Aj,l(W (a) + s(W (b) − W (a)))(wl(b) − wl(a)) = (b − a)Aj,l(W (c))w′
l(c)

+ (s − 1/2)(b − a)2
N∑

k=1

∂kAj,l(W (c))w′
k(c)w′

l(c) + O
(
(b − a)3

)
.

Adding up these equalities and integrating, we obtain:∫ 1

0

A(Ψ(s; a, b)) · ∂Ψ
∂s

(s; W (a), W (b)) ds = O
(
(b − a)3

)
. (3.30)

The well-balance property with order 2 is concluded from (3.30) reasoning as in the proof of Theorem 2.
Finally, if γ ∈ Γ is a straight line, the exact well-balance property of the numerical scheme for γ is trivially

deduced from Theorem 1. �

Corollary 2. If Volpert’s definition is assumed for the nonconservative products, that is, if the family of paths Φ
given by (2.9) is chosen in the definition of weak solutions, then a Roe scheme based on the family of paths (2.16)
is exactly well-balanced.

The approximate well-balance property with order 2 of the numerical schemes based on the choice (2.16) is
inherited by those based on paths that are segments for some choice of coordinates in Ω. More precisely, we
have the following result:

Theorem 4. Let us suppose that T : Ω → Ω∗ ⊂ R
N is a C3 one-to-one function with a differentiable inverse

function S. We will use the following notations:

W ∗ = T (W ); A∗(W ∗) = A(S(W )).

Let us suppose that Ψ is the family of paths given by:

Ψ(s; WL, WR) = S(W ∗
L + s(W ∗

R − W ∗
L)). (3.31)

A Roe scheme (2.14) based on the family of paths Ψ given by (3.31) for solving (2.4) is well-balanced with
order 2. Moreover, if γ ∈ Γ is such that T (γ) is a straight line, the numerical scheme is exactly well-balanced
for γ.
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Proof. Given a curve γ ∈ Γ and a C3 function W from (α, β) to Γ satisfying (3.22), let us define the func-
tion W ∗ by:

W ∗(x) = T (W (x)), x ∈ (α, β).

On the one hand, W ∗ satisfies the equation:

B(W ∗) · W ∗
x = 0,

where
B(W ∗) = A∗(W ∗) · DS(W ∗).

On the other hand, given a, b ∈ (α, β), from (2.10) and (3.31) it can be easily deduced that:

AΨ(W (a), W (b)) · (W (b) − W (a)) =
∫ 1

0

B(W ∗(a) + s(W ∗(b) − W ∗(a))) · (W ∗(b) − W ∗(a)) ds.

The approximate well-balance property with order 2 of the numerical scheme is deduced exactly as in the proof
of Theorem 3. The exact well-balance property for curves γ that are straight lines in the coordinates W ∗ is
trivially deduced from Theorem 1. �

4. Coupled systems of conservation laws with source terms

4.1. Equations

In [4] the numerical resolution of an abstract problem consisting of several systems of conservation laws with
source terms coupled to each other by nonconservative products was considered. In this section, we consider a
more general problem that fits into the abstract frame (2.4).

The equations considered are as follows:

∂Wk

∂t
+

∂Fk

∂x
(Wk, σ) =

∑
l �=k

Bk,l(W1, . . . , WK , σ) · ∂Wl

∂x
+ S̃k(W1, . . . , WK , σ)

dσ

dx
, k = 1, . . . , K, (4.32)

where

Wk(x, t) =


wk

1 (x, t)
wk

2 (x, t)
...

wk
Nk

(x, t)

 ∈ R
Nk ,

σ(x) is a known function from R to R; Fk is a regular function from Ωk × R to R
Nk , Ωk being an open convex

subset of R
Nk ; Bk,l is a regular matrix function from Ω = Ω1×. . .ΩK×R ⊂ R

N+1, being N = N1+N2+· · ·+NK ,
to MNk×Nl

, and S̃j a function from Ω to R
Nj . We assume without loss of generality that this function has the

following form:

S̃k(W1, . . . , WK , σ) = Sk(W1, . . . , WK , σ) +
∂Fk

∂σ
(Wk, σ), (4.33)

for a regular function Sk.
In the absence of the right-hand side, the kth equation of (4.32) is a system of conservation laws with flux Fk.

We denote by Jk(Wk, σ) its Jacobian matrix:

Jk(Wk, σ) =
∂Fk

∂Wk
(Wk, σ).
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Notice that, if K = 1, (4.32) is a system of conservation laws with source terms:

∂W

∂t
+

∂F

∂x
(W, σ) = S(W, σ)

dσ

dx
+

∂F

∂σ
(W, σ)

dσ

dx
· (4.34)

System (4.32) can be also written in a more compact form as follows:

Wt + F (W , σ)x = B(W , σ) · Wx + S(W , σ)
dσ

dx
+

∂F

∂σ
(W , σ)

dσ

dx
(4.35)

where

W =


W1

W2

...
WK

 , F (W , σ) =

 F1(W1, σ)
...

FK(WK , σ)

 ,

B represents the N × N matrix with the following block structure:

B(W , σ) =


0 B1,2(W , σ) . . . B1,K(W , σ)

B2,1(W , σ) 0 . . . B2,K(W , σ)
...

...
. . .

...
BK,1(W , σ) BK,2(W , σ) . . . 0

 , (4.36)

and, finally, S(W , σ) is the vector:

S(W , σ) =

 S1(W1, . . . , WK , σ)
...

SK(W1, . . . , WK , σ)

 .

Using these notations, the function F can be viewed as a global flux function whose Jacobian matrix is:

∂F

∂W
= J (W , σ) =


J1(W1, σ) 0 . . . 0

0 J2(W2, σ) . . . 0
...

...
. . .

...
0 0 . . . JK(WK , σ)

 .

Following the idea developed in [17, 18] for conservation laws with source terms, if we add to (4.32) the trivial
equation:

∂σ

∂t
= 0,

the problem can be written under the form (2.4):

W̃t + Ã(W̃ ) · W̃x = 0, (4.37)

where W̃ is the augmented vector:

W̃ =
[

W
σ

]
,

and the block structure of the (N + 1) × (N + 1) matrix Ã is given by

Ã(W̃ ) =
[A(W̃ ) −S̃(W̃ , σ)

0 0

]
· (4.38)
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Here A(W̃ ) represents the N × N matrix:

A(W̃ ) = J (W , σ) − B(W , σ).

We assume that the matrix A(W̃ ) has N real distinct eigenvalues

λ1(W̃ ) < · · · < λN (W̃ ),

and associated eigenvectors Rj(W̃ ), j = 1, . . . , N . If these eigenvalues do not vanish, (4.37) is a strictly
hyperbolic system: Ã(W̃ ) has N + 1 distinct real eigenvalues:

λ1(W̃ ), . . . , λN (W̃ ), 0,

with associated eigenvectors:
R̃1(W̃ ), . . . , R̃N+1(W̃ )

given by

R̃i(W̃ ) =
[

Ri(W̃ )
0

]
, i = 1, . . . , N ; R̃N+1(W̃ ) =

[A(W̃ )−1 · S(W̃ )
1

]
.

Clearly, the (N + 1)-th field is linearly degenerate and, for the sake of simplicity, we will suppose that it is the
only one. The integral curves of the linearly degenerate field are given by those of the o.d.e. system:

dW̃

ds
= R̃N+1(W̃ ). (4.39)

When one of the eigenvalues of A(W̃ ) vanishes, (4.37) becomes nonstrictly hyperbolic. Problems where this
situation arises are called resonant (see [15]). The definition and the analysis of weak solutions are much
more difficult in that case: in particular, Riemann Problems may have more than one entropic solution [1]. In
the following two subsections we only consider the strictly hyperbolic case: we discuss the definition of weak
solutions and the construction of Roe schemes, respectively. We will only consider the nonstrictly hyperbolic
case in the third subsection, when the adaptation of Roe schemes to resonant problems is discussed.

4.2. Weak solutions

In order to define the weak solutions of (4.37), first of all a family of paths Φ̃(s; W̃L, W̃R) has to be chosen.
Given two states W̃L, W̃R the following notations will be used:

W̃L =
[

WL

σL

]
, W̃R =

[
WR

σR

]

[W̃ ] = W̃R − W̃L =
[

[W ]
[σ]

]
.

Let us denote by Φj(s; WL, WR) the jth component of a path Φ̃(s; WL, WR). The following notation will be
also used:

Φ̃(s; W̃L, W̃R) =

[
Φ(s; W̃L, W̃R)

ΦN+1(s; W̃L, W̃R)

]
=


Φ1(s; W̃L, W̃R)

...
ΦN (s; W̃L, W̃R)

ΦN+1(s; W̃L, W̃R)

 .
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Using these notations, some straightforward calculations show that, once the family of paths is chosen, the
generalized Rankine-Hugoniot condition (2.6) can be rewritten as follows: ξ[W ] = F (WR, σR) − F (WL, σL) − BΦ̃(W̃L, W̃R) − S̃Φ̃(W̃L, W̃R);

ξ[σ] = 0;
(4.40)

where:

BΦ̃(W̃L, W̃R) =
∫ 1

0

B(Φ̃(s; W̃L, W̃R)
)
· ∂Φ

∂s
(s; W̃L, W̃R) ds, (4.41)

S̃Φ̃(W̃L, W̃R) =
∫ 1

0

(
S +

∂F

∂σ

)
(Φ̃(s; W̃L, W̃R)) · ∂ΦN+1

∂s
(s; W̃L, W̃R) ds. (4.42)

Notice that, accordingly to the second condition in (4.40), the discontinuities appearing in weak solutions have
to be either stationary or they develop in regions where σ is continuous.

When the function σ is constant, σ(x) = σ̃, (4.32) reduces to the homogeneous problem:

∂Wk

∂t
+

∂Fk

∂x
(Wk, σ̃) =

∑
l �=k

Bk,l(W1, . . . , WK , σ̃) · ∂Wl

∂x
k = 1, . . . , K. (4.43)

Therefore, the definitions of weak solution of systems (4.43) and (4.32) have to be consistent in the following
sense: if (W1, . . . , WN ) solves (4.43), then (W1, . . . , WN , σ̃) has to be a solution of (4.32). This is achieved if
the family of paths are constructed as follows: first, for any given value of σ, say σ̃, a family of paths Φσ̃ is
chosen in order to define the weak solutions of the system (4.43). Then, the family of paths Φ̃ is constructed,
if possible, in such a way that:

Φ(s; W̃L, W̃R) = Φσ̃(s; WL, WR); (4.44)

ΦN+1(s; W̃L, W̃R) = σ̃; (4.45)

when the states W̃L, W̃R are such that σL = σR = σ̃.
Another natural requirement in choosing the family of paths is that, if W̃L and W̃R lie on an integral curve

of (4.39), the contact discontinuity connecting both states has to be a weak solution of (4.32). This is achieved
by choosing Φ̃(s; WL, WR) as a parameterization of the arc of this curve linking the states. More precisely, the
path has to satisfy:

dΦ̃
ds

= α(s)R̃N+1(Φ̃(s)), Φ̃(0) = W̃L, Φ̃(1) = W̃R; (4.46)

for some non-vanishing scalar function α(s).
In the particular case K = 1 the above requirements completely determine the family of paths: notice firstly

that, in this case, the homogeneous system (4.43) is a pure conservation law and thus the definition of weak
solutions is independent of the family of paths: we can choose, for instance the family of segments:

Φσ̃(s; WL, WR) = WL + s(WR − WL).

This choice, together with (4.44) and (4.45), determines the path connecting two states such that σR = σL = σ̃,
which is again the segment:

Φ̃(s; W̃L, W̃R) = W̃L + s(W̃R − W̃L). (4.47)
On the other hand, the path connecting two states that lie on the same integral curve of the (N+1)-characteristic
field is given by (4.46). In general, the path connecting two arbitrary states has to be composed of segments (4.47)
lying on hyperplanes σ = cte and arcs of integral curves of (4.39). The difficulty comes from the calculation of
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the intermediate points linking these segments and arcs. In fact, in order to calculate these points, the exact
Riemann problem associated to equation (4.37) with initial conditions given by W̃L and W̃R, has to be solved,
and this is in general a difficult task.

In the case K > 1, some extra information is needed in order to define the family of paths, that may come
from physical consideration (see [10]) or by taking the limit of viscous profiles (see [28]). Nevertheless, in the
particular case where the matrices Bk,l satisfy:

Bk,l = Bk,l(Wk, σ) and Bk,l(0, σ) = 0, (4.48)

another natural requirement can be imposed to weak solutions of (4.32). In this case, it can be easily verified
that, if Wk is a classical solution of the conservation law:

∂Wk

∂t
+

∂Fk

∂x
(Wk, σ̃) = 0, (4.49)

for a given σ̃, then (0, . . . , Wk, . . . , 0, σ̃) is a classical solution of (4.32). Therefore, it is natural to define the
weak solutions so that this relationship remains valid. This is achieved by choosing a family of paths satisfying
also:

Φj(s; W̃L, W̃R) = 0, ∀j �= i, (4.50)

when the states to link are of the form:

W̃L =



0
...

Wi,L

...
0
σ̃


, W̃R =



0
...

Wi,R

...
0
σ̃


. (4.51)

For instance, the segment linking the states can be chosen in this case.
Once Φσ̃ chosen, the family of paths Φ̃ is completely determined. On the one hand, the paths linking two

states satisfying σL = σR is given by (4.44), (4.45), and if they lie on the same integral curve, by (4.46). As in
the case K = 1, the path linking two arbitrary states has to be composed by pieces of these types the curves,
and the calculation of the intermediate points requires in general the resolution of a Riemann problem.

4.3. Roe schemes

In the description of the numerical schemes we will use the following notations: the approximation of the
solution in the cell Ii at time n∆t will be represented by

W̃ n
i =

[
W n

i

σi

]
=


Wn

i,1
...

Wn
i,K

σi

 .
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On the other hand, we will denote by Ψ̃ the family of paths chosen in order to construct the Roe linearization.
We will use the notation:

Ψ̃(s; W̃ n
i , W̃ n

i+1) =

[
Ψ(s; W̃ n

i , W̃ n
i+1)

ΨN+1(s; W̃ n
i , W̃ n

i+1)

]
=


Ψ1(s; W̃ n

i , W̃ n
i+1)

...
ΨN(s; W̃ n

i , W̃ n
i+1)

ΨN+1(s; W̃ n
i , W̃ n

i+1)

 .

It is natural to look for Roe matrices with the same structure (4.38) of Ã(W̃ ):

Ãi+1/2 =

[
Ai+1/2 −Si+1/2

0 0

]
. (4.52)

For Roe matrices with this structure (2.10) can be rewritten as follows:

Ai+1/2 · (W n
i+1 − W n

i ) − Si+1/2(σi+1 − σi) =

F (W n
i+1, σi+1) − F (W n

i , σi) − BΨ̃(W̃ n
i , W̃ n

i+1) − S̃Ψ̃(W̃ n
i , W̃ n

i+1); (4.53)

where BΨ̃ and SΨ̃ are defined by (4.41), (4.42) substituting Φ̃ by Ψ̃ and (W̃L, W̃R) by (W̃ n
i , W̃ n

i+1).
Let us suppose that, for any fixed value of σ, Roe matrices can be calculated for each pure system of

conservation laws:

∂Wk

∂t
+

∂Fk

∂x
(Wk, σ) = 0. (4.54)

That is, we suppose that, given W n
i , W n

i+1, σ, we can calculate for each k a Nk ×Nk matrix J σ
i+1/2,k such that:

J σ
i+1/2,k · (Wn

i+1,k − Wn
i,k) = Fk(Wn

i+1,k, σ) − Fk(Wn
i,k, σ), 1 ≤ k ≤ K.

Let us suppose also that it is possible to calculate a value of σ, σi+1/2, a N×N matrix Bi+1/2, and a vector Si+1/2

such that the following identities hold:

F (W n
i+1, σi+1) − F (W n

i+1, σi+1/2) + F (W n
i , σi+1/2) − F (W n

i , σi)

=
∫ 1

0

∂F

∂σ

(
Ψ̃(s; W̃ n

i , W̃ n
i+1)

)
· ∂ΨN+1

∂s

(
s; W̃ n

i , W̃ n
i+1

)
ds; (4.55)

Bi+1/2 · (W n
i+1 − W n

i ) =
∫ 1

0

B
(
Ψ̃(s; W̃ n

i , W̃ n
i+1)

)
· ∂Ψ

∂s

(
s; W̃ n

i , W̃ n
i+1

)
ds; (4.56)

Si+1/2(σi+1 − σi) =
∫ 1

0

S
(
Ψ̃(s; W̃ n

i , W̃ n
i+1)

)
· ∂ΨN+1

∂s

(
s; W̃ n

i , W̃ n
i+1

)
ds. (4.57)
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Then, if we define the matrices:

J i+1/2 =



J σi+1/2

i+1/2,1 0 . . . 0

0 J σi+1/2

i+1/2,2 . . . 0

...
...

. . .
...

0 0 . . . J σi+1/2

i+1/2,K


, (4.58)

Ai+1/2 = J i+1/2 − Bi+1/2, (4.59)

an easy calculation shows that the corresponding matrix (4.52) satisfies (4.53). Therefore, if this matrix has
N + 1 real distinct eigenvalues, it provides a Roe linearization for (4.37).

Observe that the condition concerning the eigenvalues is satisfied if Ai+1/2 has N real distinct eigenvalues

λi+1/2,1 < · · · < λi+1/2,N ,

and associated eigenvectors Ri+1/2,j , j = 1, . . . , N : in this case, Ãi+1/2 has N + 1 distinct real eigenvalues:

λi+1/2,1, . . . , λi+1/2,N , 0,

with associated eigenvectors:
R̃i+1/2,1, . . . , R̃i+1/2,N+1

given by

R̃i+1/2,j =
[

Ri+1/2,j

0

]
, j = 1, . . . , N ; R̃i+1/2,N+1 =

[A−1
i+1/2 · Si+1/2

1

]
. (4.60)

In this case, some algebraic manipulations allow to show the following identities:

Ã±
i+1/2 =

[A±
i+1/2 −A±

i+1/2A−1
i+1/2Si+1/2

0 0

]
, (4.61)

∣∣∣Ãi+1/2

∣∣∣ =
[ ∣∣Ai+1/2

∣∣ − ∣∣Ai+1/2

∣∣A−1
i+1/2Si+1/2

0 0

]
. (4.62)

Using these equalities, the numerical scheme (2.14) can be rewritten under the equivalent form:

W n+1
i = W n

i +
∆t

∆x

(
Fi−1/2 − Fi+1/2

)
+

∆t

2∆x

(Bi−1/2 · (W n
i − W n

i−1) + Bi+1/2 · (W n
i+1 − W n

i )
)

+
∆t

∆x

(
P+

i−1/2Si−1/2(σi − σi−1) + P−
i+1/2Si+1/2(σi+1 − σi)

)
+

∆t

2∆x

(
Vi−1/2 + Vi+1/2

)
(4.63)

where
Fi+1/2 =

1
2
(
F (W n

i , σi) + F (W n
i+1, σi+1)

)
− 1

2

∣∣Ai+1/2

∣∣ · (W n
i+1 − W n

i ), (4.64)

P±
i+1/2 =

1
2

(
I ±

∣∣Ai+1/2

∣∣A−1
i+1/2

)
. (4.65)
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These latter matrices can be also be written under the form:

P±
i+1/2 =

1
2
Ki+1/2

(I ± sgn(L)i+1/2

)K−1
i+1/2, (4.66)

where Ki+1/2 is the N ×N matrix whose columns are the eigenvectors Ri+1/2,1, . . . , Ri+1/2,N and sgn(L)i+1/2

is the diagonal matrix whose coefficients are the signs of the eigenvalues λi+1/2,1,. . . , λi+1/2,N . Finally

Vi+1/2 = F (W n
i+1, σi+1) − F (W n

i+1, σi+1/2) + F (W n
i , σi+1/2) − F (W n

i , σi),

or, equivalently (see (4.55)):

Vi+1/2 =
∫ 1

0

∂F

∂σ

(
Ψ̃(s; W̃ n

i , W̃ n
i+1)

)
· ∂ΨN+1

∂s

(
s; W̃ n

i , W̃ n
i+1

)
ds.

Under the formulation (4.63) the numerical scheme has the form of a Q-scheme of Roe upwinding the source
term in the sense defined in [3] for balance laws or in [4] for coupled systems of conservation laws with source
term. Nevertheless, there is a slight difference: in the cited articles, it was assumed that the Roe matrices
could be calculated by evaluating the Jacobians at an intermediate state, and Bi+1/2, Si+1/2 were obtained
by evaluating B and S at these intermediate states. Nevertheless, in the particular case of the one-layer or
the two-layer shallow water system studied below, these choices of Bi+1/2, Si+1/2 satisfy (4.56), (4.57) and,
therefore, the numerical schemes presented in the cited works are particular cases of the Roe schemes studied
here.

Concerning the family of paths Ψ̃, the optimal choice would be Ψ̃ = Φ̃ as it gives exactly well-balanced
schemes that can handle correctly with shocks and contact discontinuities, but the construction of Roe lin-
earizations based on Ψ̃ can be in practice a very difficult and expensive task. Therefore, in the applications
below, we will consider Roe linearizations based on families of paths that are segments for a convenient choice
of coordinates. Theorems 3 and 4 assure that the numerical schemes obtained are well-balanced with order 2.

Due to this choice of paths, the resulting numerical schemes cannot be expected to give good numerical
solutions when they are applied to problems where σ present discontinuities. Nevertheless, they are expected
to handle correctly with shocks, in the sense discussed above: if W̃ n

i and W̃ n
i+1 can be linked by a shock whose

speed is ξ, the matrix Ãi+1/2 is expected to have ξ as an eigenvalue and the difference of the states as an
associated eigenvector. Clearly, this is achieved if the paths Φ̃(s; W̃ n

i , W̃ n
i+1) and Ψ̃(s; W̃ n

i , W̃ n
i+1) coincide,

but this is not a necessary condition: if (4.40) and (4.53) are compared, it can be easily shown that this property
is satisfied if the following equality holds:

BΦ̃(W̃ n
i , W̃ n

i+1) + S̃Φ̃(W̃ n
i , W̃ n

i+1) = BΨ̃(W̃ n
i , W̃ n

i+1) + S̃Ψ̃(W̃ n
i , W̃ n

i+1). (4.67)

In the particular case K = 1, when two states W̃ n
i and W̃ n

i+1 can be linked by a shock, then σi = σi+1 and (4.67)
reduces to:

S̃Ψ̃(W̃ n
i , W̃ n

i+1) = 0, (4.68)

which is therefore a sufficient condition to assure that the shock is correctly treated. This equality is trivially
satisfied if the path Ψ̃(s; W̃ n

i , W̃ n
i+1) is such that:

ΨN+1(s; W̃ n
i , W̃ n

i+1) = σi = σi+1, ∀s. (4.69)

Again, this is not a necessary condition: in Section 5.2 a numerical scheme satisfying (4.68) but not (4.69) will
be described.
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Remark 3. Let us suppose that there is a discontinuity of σ placed at the intercell xi+1/2 and that W̃ n
i , W̃ n

i+1

can be linked by a contact discontinuity. If there exists s̄ ∈ [0, 1] such that:

W̃ n
i+1 − W̃ n

i = Φ̃(1; W̃ n
i , W̃ n

i+1) − Φ̃(0; W̃ n
i , W̃ n

i+1) =
∂Φ̃
∂s

(s̄; W̃ n
i , W̃ n

i+1),

then
Ãi+1/2 = Ã(Φ̃(s̄; W̃ n

i , W̃ n
i+1))

would be a good choice for the intermediate matrix, as W̃ n
i+1 − W̃ n

i is an eigenvector associated to the eigen-
value 0. As a consequence, the solution of the Linear Riemann Problem is a stationary shock placed at the
intercell. Unfortunately, even if such a value of s̄ can be calculated, it is not easy to construct a suitable
numerical scheme combining this choice of intermediate matrix with a Roe linearization, as we shall see in the
applications.

4.4. The nonstrictly hyperbolic case

In [12, 36] the numerical treatment of resonant problems was performed by introducing some corrections in
numerical schemes of the form (4.63): the projection matrices (4.66) were defined so that for every vanishing
eigenvalue of the Jacobian matrix, no upwinding of the source term was performed in the corresponding char-
acteristic direction. The goal of this subsection is to give a mathematical deduction of these corrected schemes
by considering some resonant Linear Riemann Problems at intercells where this situation arises.

Let us suppose that we have chosen Roe matrices Ãi+1/2 of the form (4.52) and that λi+1/2,j = 0 for some
i ∈ Z, j ∈ {1, . . . , N}. In this case, 0 is a double eigenvalue for Ãi+1/2 and the Linear Riemann Problem to
solve at the intercell xi+1/2 is nonstrictly hyperbolic.

Two different situations may arise: let us suppose firstly that there exists a vector Ti+1/2 ∈ R
N such that

Ai+1/2 · Ti+1/2 = Si+1/2.

In this case Ãi+1/2 still has a complete set of eigenvectors

R̃i+1/2,1, . . . , R̃i+1/2,N+1

whose first N components are given by (4.60) and

R̃i+1/2,N+1 =
[

Ti+1/2

1

]
. (4.70)

The solution of the Linear Riemann Problem is self-similar, Ũ(x−xi+1/2

t ), and, setting

W̃ n
i =

N+1∑
k=1

αi
kR̃k; W̃ n

i+1 =
N+1∑
k=1

αi+1
k R̃k,

it satisfies:

Ũ(0)− =
j−1∑
k=1

αi+1
k R̃k +

N+1∑
k=j

αi
kR̃k, (4.71)

Ũ(0)+ =
j∑

k=1

αi+1
k R̃k +

N∑
k=j+1

αi
kR̃k + αi+1

N+1R̃N+1. (4.72)
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Using these expressions, the following equalities can be easily verified:

Ãi+1/2 · (Ũ (0)+ − Ũ(0)−) = 0; (4.73)

Ãi+1/2 ·
(
W̃ n

i+1 − Ũ(0)+
)

= Ã+

i+1/2 ·
(
W̃ n

i+1 − W̃ n
i

)
, (4.74)

Ãi+1/2 ·
(
Ũ(0)− − W̃ n

i

)
= Ã−

i+1/2 ·
(
W̃ n

i+1 − W̃ n
i

)
. (4.75)

As a consequence, the expression of the numerical scheme coincides with the corresponding to the strictly
hyperbolic case. It can be easily shown that the matrices Ã±

i+1/2 and
∣∣∣Ãi+1/2

∣∣∣ are now as follows:

Ã±
i+1/2 =

[A±
i+1/2 −A±

i+1/2Ti+1/2

0 0

]
, (4.76)

∣∣∣Ãi+1/2

∣∣∣ =
[ ∣∣Ai+1/2

∣∣ − ∣∣Ai+1/2

∣∣Ti+1/2

0 0

]
. (4.77)

Moreover, if Ti+1/2 is chosen as follows:

Ti+1/2 = Ki+1/2 · Di+1/2 · K−1
i+1/2 · Si+1/2 (4.78)

where Di+1/2 is the N × N diagonal matrix with coefficients

λ−1
i+1/2,1, . . . , λ

−1
i+1/2,j−1, 0, λ−1

i+1/2,j+1, . . . , λ
−1
i+1/2,N ,

we obtain:
−
∣∣Ai+1/2

∣∣Ti+1/2 = Ki+1/2 · sgn(L)i+1/2K−1
i+1/2 · Si+1/2, (4.79)

where sgn(L)i+1/2 is defined as in the previous subsection, assuming that the sign of 0 is 0. Therefore, the
scheme can also be written under the form (4.63) using (4.66) for upwinding the source terms.

Let us consider now the case in which Si+1/2 does not belong to the image of Ai+1/2. A vector Ti+1/2 can
be chosen such that:

Ai+1/2Ti+1/2 − Si+1/2 = αRi+1/2,j , (4.80)

for some α ∈ R. If we consider the basis

R̃i+1/2,1, . . . , R̃i+1/2,N+1,

whose first N components are given again by (4.60) and R̃i+1/2,N+1 by (4.70), the expression of Ãi+1/2 in this
basis has the Jordan structure: [Li+1/2 αej

0 0

]
,

where Li+1/2 is the diagonal matrix whose coefficients are λi+1/2,1, . . . , λi+1/2,N and ej represents the jth
element of the canonical basis of R

N .
The Linear Riemann Problem is not hyperbolic, but it can be easily solved in the characteristic coordinates.

The solution is again self-similar and it satisfies (4.71), (4.72). Nevertheless, the equality (4.73) does not hold
in this case. In order to define the numerical scheme, the solution of the Linear Riemann problem at x = 0 can
be approached by:

Ũ(0) ∼= Ũ0 =
1
2

(
Ũ(0)+ + Ũ(0)−

)
.
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With this approximation, the following equalities similar to (4.74), (4.75) hold:

Ãi+1/2 ·
(
W̃ n

i+1 − Ũ0

)
= Ã+

i+1/2 ·
(
W̃ n

i+1 − W̃ n
i

)
,

Ãi+1/2 ·
(
Ũ0 − W̃ n

i

)
= Ã−

i+1/2 ·
(
W̃ n

i+1 − W̃ n
i

)
,

if the matrices Ã±
i+1/2 are defined as follows:

Ã±
i+1/2 = K̃i+1/2 ·

[L±
i+1/2

α
2 ej

0 0

]
· K̃−1

i+1/2, (4.81)

being K̃i+1/2 the (N +1)× (N +1) matrix whose columns are the eigenvectors R̃k, k = 1, . . . , N +1. The block
structure of these matrices are:

Ã±
i+1/2 =

[A±
i+1/2 −A±

i+1/2Ti+1/2 + α
2 Rj

0 0

]
. (4.82)

With these definitions, the equality
Ã+

i+1/2 + Ã−
i+1/2 = Ãi+1/2

still holds, and we can define: ∣∣∣Ãi+1/2

∣∣∣ = Ã+

i+1/2 − Ã−
i+1/2,

whose expression is given again by (4.77).
Choosing again the vector Ti+1/2 given by (4.78), (4.80) is satisfied for a convenient value of α. Therefore,

this vector satisfies (4.79) and the scheme can also be written under the form (4.63) using (4.66) for upwinding
the source terms.

5. Applications

5.1. Shallow water equations with depth variations

We consider the one-dimensional shallow water system:
∂h

∂t
+

∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
q2

h
+

g

2
h2

)
= gh

dH

dx
,

(5.83)

which are the equations governing the flow of a shallow layer of fluid through a straight channel with a constant
rectangular cross-section. The coordinate x refers to the axis of the channel and t is time; q(x, t) and h(x, t)
represent the mass-flow and the thickness; g is gravity and H(x) the depth function measured from a fixed level
of reference. The fluid is supposed to be homogeneous and inviscid.

System (5.83) is a problem of the form (4.34) with N = N1 = 2, W = [h, q]T , σ = H , and

F (W ) =

 q
q2

h
+

g

2
h2

 , (5.84)

S(W ) =

 0

gh

 .
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The system can be written under the form (2.4) with

W̃ =

 h
q
H

 ,

and

Ã(W̃ ) =

 0 1 0
−u2 + c2 2u −c2

0 0 0

 , (5.85)

where u = q/h represents the averaged velocity and c =
√

gh.
The eigenvalues of this matrix are:

λ1 = u − c, λ2 = u + c, 0.

If λi �= 0, i = 1, 2, the system is strictly hyperbolic and a complete set of eigenvectors is given by:

R̃i(W ) =

 1
λi

0

 , i = 1, 2; R̃3(W ) =

 1
0

1 − Fr2

 ;

where
Fr =

u

c
(5.86)

is the Froude number. This problem can also lose its strictly hyperbolic character when λ1 = λ2. This situation
arises only when the thickness of the layer h vanishes, i.e. in wet/dry fronts. These situations will not be
considered here.

The integral curves of the 3rd-field are given by:

q = ct., h +
q2

2gh2
− H = ct. (5.87)

Observe that in the particular case q = 0, these curves are straight lines in the q, h, H-space:

q = 0, h − H = ct.

Accordingly to Section 4.2, two kind of discontinuities may appear in the weak solutions of the system: on the
one hand, 1 or 2-shocks satisfying the usual Rankine-Hugoniot conditions and linking two states W̃L and W̃R

such that HL = HR. On the other hand, contact discontinuities standing at points where the bottom presents a
jump. Two states W̃L and W̃R can be connected by such a discontinuity if they lie on a curve of the family (5.87).
If we define:

ηL = hL − HL, ηR = hR − HR,

that can be interpreted as the elevation of the free surface over the level of reference at both sides of the
discontinuity, W̃L and W̃R can be connected by a contact discontinuity if they verify:

qL = qR, gηL +
u2

L

2
= gηR +

u2
R

2
·

The second equality can be interpreted in terms of energy: the total mechanical energy is preserved through a
contact discontinuity, while there is always a loss of energy across entropic 1 or 2-shock waves (see [31]).

Given a bottom function H(x), steady states solutions of (5.83) can be calculated by parameterizing the
curves (5.87) with x. In particular, if q = 0 we obtain the solutions:

h(x) = H(x) + ct., q = 0, (5.88)
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representing water at rest. Another steady state solution is given by:

h = 0, q = 0. (5.89)

which corresponds to vacuum.
It is easy to construct a Roe scheme based on the family of paths (2.16) for (5.83), following the indications

of Section 4.3. First we consider the Roe matrices for the homogeneous shallow water system:

Ji+1/2 =
[

0 1
−(un

i+1/2)
2 + (cn

i+1/2)
2 2un

i+1/2

]
(5.90)

where

un
i+1/2 =

√
hn

i un
i +

√
hn

i+1u
n
i+1√

hn
i +

√
hn

i+1

, cn
i+1/2 =

√
g
hn

i + hn
i+1

2
· (5.91)

Then, we calculate:

Si+1/2 =
∫ 1

0

S(W̃n
i + s(W̃n

i+1 − W̃n
i )) ds =

[
0

g
hn

i + hn
i+1

2

]
.

The Roe matrices are thus as follows:

Ai+1/2 =

 1 0 0
−(un

i+1/2)
2 + (cn

i+1/2)
2 2un

i+1/2 −(cn
i+1/2)

2

0 0 0

 . (5.92)

As it was pointed out in [18], the formulation of this scheme under the form (4.63) coincides with the Q-scheme
of Roe scheme upwinding the source term presented in [36].

Accordingly to Theorem 2, this numerical scheme is well-balanced with order 2. Moreover, it is exactly
well-balanced for the integral curves of the linearly degenerate field of equations

q = 0, h − H = cte,

or
q = 0, h = 0.

In other terms: the scheme approximates the steady state solutions with order 2, and it solves exactly those
corresponding to water at rest or vacuum situations. In fact, these well-balance properties of the scheme under
its formulation (4.63) were known yet: the exactly well-balance property for solutions corresponding to water
at rest were proved in [36] (where this property was called C-property), and the well-balance property with
order 2 for general steady state solutions in [12].

With this scheme, contact discontinuities related to bottom jumps can not be expected to be well captured.
To illustrate this, let us consider the following example: we consider a straight channel whose depth function is
given by:

H(x) =
{

0 if x < 0;
1 if x > 0;

and we take initial conditions:

W (x, 0) =
{

WL if x < 0;
WR if x > 0;

where

WL =
[

1.0√
2 g

]
, g = 9.81,
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Figure 1. A solution with a contact discontinuity related with a bottom jump: comparison
between the stationary computed solution and the exact one.

and WR is a state that can be connected to WL by an entropic contact discontinuity. This state is calculated
by using (5.87): the first equation gives qR =

√
2g and the second one gives a cubic equation for hR that is

solved numerically. The only positive root giving a state that can be connected to WL by an entropic contact
discontinuity is selected:

WR =
[

0.6527036446614√
2 g

]
.

We have applied the numerical scheme to this Riemann problem. As boundary conditions, the state WL is
imposed upstream and free flow condition is imposed downstream. These are the natural boundary conditions
for this problem as λ1 and λ2 are both positives in all the domain. As expected, the steady state corresponding
to the contact discontinuity linking the states is not well captured: small waves develop downwards and after
some iterations, a steady state solution is obtained. Figure 1 depicts the water depth at the steady state solution
obtained with ∆x = 0.1 and CFL = 0.99. While mass-fluxes and the thickness to the left of x = 0 are computed
exactly, there are some small differences in the thickness at the right (see Fig. 1a). Nevertheless, these small
differences are not due to the discretization error but to a consistence error: they remain as ∆x tends to 0. To
observe this, in Table 1 we show the distance measured in the L∞ norm between the thickness corresponding
to the exact steady state solution and the numerical approximation obtained wit CFL = 0.99 and decreasing
values of ∆x.

As a consequence, the scheme can not be used to accurately simulate shallow flows over a bottom with jumps.

Remark 4. When the states W̃n
i , W̃n

i+1 can be linked by a contact discontinuity, a good choice for the inter-
mediate matrix can be calculated following the indications proposed in Remark 3:

Ãi+1/2 =

 1 0 0
−(un

i+1/2)
2 + (cn

i+1/2)
2 2un

i+1/2 −(cn
i+1/2)

2

0 0 0

 ,

where:

un
i+1/2 =

qn
i+1/2

hn
i+1/2

; cn
i+1/2 =

√
ghn

i+1/2,
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Table 1. Approximation of a contact discontinuity: L∞ distance between the thickness cor-
responding to the stationary solution and its numerical approximation.

∆x Error: L∞ norm

10−1 0.01063
10−2 0.01063
10−3 0.01063
10−4 0.01063

with

qn
i+1/2 = qn

i = qn
i+1, hn

i+1/2 =

(
(qn

i+1/2)
2[h]

[h] − [H ]

) 1
3

,

[h], [H ] being the jumps:

[h] = hn
i+1 − hn

i , [H ] = Hi+1 − Hi.

With this choice of intermediate matrix, the numerical scheme solves exactly every contact discontinuity and
every regular stationary solution. Nevertheless, as it was said in Remark 3, it is difficult to combine this choice
with the Roe linearization given above: in practice, in order to choose one or another type of intermediate
matrix, a test has to be implemented to decide whether or not the states at two neighbor cells lie on the same
integral curve of the linearly degenerate field, that is, if the total energy is preserved. Nevertheless, due to
the discretization and round-off errors, this test has to be done with a finite precision bounded by a chosen
parameter ε. We have observed in the numerical experiments that, depending of the value of this parameter,
the resulting scheme can capture accurately contact discontinuities or stationary shocks, but not both of them
at the same time.

5.2. Shallow water equations with breadth variations

Let us consider now the one-dimensional shallow water system:


∂A

∂t
+

∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
q2

A
+

g

2
A2

σ

)
= g

A2

σ2

dσ

dx
− g

2
A2

σ2

dσ

dx
,

(5.93)

which are the equations governing the flow of a shallow layer of homogeneous inviscid fluid through a symmetric
channel with a straight axis, a flat bottom and rectangular cross-sections of varying breadth. Again, the
coordinate x refers to the axis of the channel, t is time, and g is gravity; q(x, t) and A(x, t) represent the
mass-flow and the wetted cross-section respectively; and σ(x) is the breadth function. A(x, t) is related to the
thickness h(x, t) by the formula:

A(x, t) = h(x, t)σ(x, t),

and q(x, t) to the velocity u(x, t) by:

q(x, t) = u(x, t)A(x, t).
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System (5.93) can be written under the form (4.34) with N = N1 = 2, W = [A, q]T , and

F (W, σ) =

 q
q2

A
+

g

2
A2

σ

 , (5.94)

S(W, σ) =

 0

g
A2

σ2

 .

Clearly:

∂F

∂σ
(W, σ) =

 0

−g

2
A2

σ2

 .

The system can be written under the form (2.4) with

W̃ =

A
q
σ

 ,

and

Ã(W̃ ) =

 0 1 0
−u2 + c2 2u −hc2

0 0 0

 , (5.95)

where c =
√

gh.
The eigenvalues of this matrix are again:

λ1 = u − c, λ2 = u + c, 0.

If c �= 0, λi �= 0, i = 1, 2, the system is strictly hyperbolic and a complete set of eigenvectors is given by:

R̃i(W ) =

 1
λi

0

 , i = 1, 2; R̃3(W ) =

 1
0

(1 − Fr2)/h

 ;

where Fr is given by (5.86). The integral curves of the 3rd-field are given by:

q = ct.,
A

σ
+

q2

2gA2
= ct. (5.96)

In the particular case q = 0 these curves are straight lines.
As in the previous case, two kind of discontinuities may appear in the weak solutions: 1 or 2-shocks satis-

fying the usual Rankine-Hugoniot conditions and evolving in zones when the breadth function is regular, and
stationary contact discontinuities standing at points where the breadth function presents a jump. Again, two
states W̃L and W̃R can be connected by a contact discontinuity when the total mechanical energy is preserved.

Steady state solutions corresponding to water at rest are given by:

A

σ
= ct., q = 0, (5.97)

and those corresponding to vacuum by:
A = 0, q = 0. (5.98)
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In this case the construction of a Roe scheme based on the family of paths (2.16) is not as easy as in the previous
case. First the Roe matrices Ji+1/2 given by (5.90), (5.91) are again considered. Then, the numerical source
term has to satisfy:

Si+1/2 =
∫ 1

0

S(W̃n
i + s(W̃n

i+1 − W̃n
i )) ds.

After some calculations, the following expression is obtained:

Si+1/2 =
[

0
si+1/2

]
;

where si+1/2 is equal to 0 if σi = σi+1, and it is given by:

g

(σi − σi+1)2

(
2
Ai+1 − Ai

σi+1 − σi
(Aiσi+1 − Ai+1σi) log

(
σi+1

σi

)
− 4AiAi+1 +

(
A2

i+1

σi+1
+

A2
i

σi

)
(σi + σi+1)

)
,

otherwise.
Finally an intermediate value of σ satisfying (4.55) has to be calculated. If σi �= σi+1 this is done by solving:

A2
i+1 − A2

i

σi+1/2
=

A2
i+1

σi+1
− A2

i

σi
+ si+1/2

σi+1 − σi

g
·

We deduce from Theorem 3 that the resulting scheme is well-balanced with order 2 and exactly well-balanced
for steady state solutions corresponding to water at rest or vacuum. Moreover, the numerical scheme can handle
correctly with the shocks, as (4.69) is satisfied when σi = σi+1. In our knowledge, this scheme has not been yet
described.

A numerical scheme with the same properties and a more suitable expression can be constructed by choosing
a family of paths which are segments in the variables:

W̃ ∗ =

A
q
h

 .

More precisely, given W̃L = [AL, qL, σL]T ; W̃R = [AR, qR, σR]T and s ∈ [0, 1], we define:

Ψ̃(s; WL, WR) =


AL + s(AR − AL)

qL + s(qR − qL)

AL + s(AR − AL)
hL + s(hR − hL)

 (5.99)

where hL = AL/σL, hR = AR/σR.
With this choice of paths, some easy calculations allow to show that:

Si+1/2(σi+1 − σi) =
∫ 1

0

S(Ψ̃(s; W̃i, W̃i+1))
d
ds

(
AL + s(AR − AL)
hL + s(hR − hL)

)
ds

=
[

0
−Ai+1/2(hi+1 − hi) + hi+1/2(Ai+1 − Ai)

]
,
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where

Ai+1/2 =
Ai + Ai+1

2
, hi+1/2 =

hi + hi+1

2
·

Finally, it can be easily shown that

σi+1/2 =
Ai+1/2

hi+1/2

satisfies (4.55).
From Theorem 4 we deduce that this numerical scheme is also well-balanced with order 2. Moreover it is

exactly well-balanced for steady state solutions corresponding to water at rest or vacuum, as the corresponding
curves in the (A, q, h) variables are the straight lines of equation h = ct.

Observe that, if σi = σi+1 the identity (4.69) is not satisfied in general. Nevertheless, in this case it can be
easily proved that:

−Ai+1/2(hi+1 − hi) + hi+1/2(Ai+1 − Ai) = 0,

and thus: ∫ 1

0

S
(
Ψ̃(s; W̃i, W̃i+1)

) d
ds

(
AL + s(AR − AL)
hL + s(hR − hL)

)
ds = 0.

As ∂F
∂σ (W, σ) = − 1

2S(W, σ) the following identity also holds:∫ 1

0

∂F

∂σ
(W, σ)

(
Ψ̃(s; W̃i, W̃i+1)

) d
ds

(
AL + s(AR − AL)
hL + s(hR − hL)

)
ds = 0.

Therefore, the numerical scheme satisfies (4.68) when σi = σi+1 and, as a consequence, the shocks are correctly
taken into account.

This last numerical scheme is similar to the one introduced in [14] for a more general problem corresponding
to a symmetric channel with an arbitrary cross-section.

Systematic comparison between these two schemes are in progress.

5.3. The bilayer shallow water system

We consider in this paragraph the system of partial differential equations governing the one-dimensional flow
of two superposed immiscible layers of shallow water fluids studied in [4]:

∂h1

∂t
+

∂q1

∂x
= 0,

∂q1

∂t
+

∂

∂x

(
q2
1

h1
+

g

2
h2

1

)
= −gh1

∂h2

∂x
+ gh1

dH

dx
,

∂h2

∂t
+

∂q2

∂x
= 0,

∂q2

∂t
+

∂

∂x

(
q2
2

h2
+

g

2
h2

2

)
= −ρ1

ρ2
gh2

∂h1

∂x
+ gh2

dH

dx
·

(5.100)

In these equations, index 1 makes reference to the upper layer and index 2 to the lower one. The fluid is assumed
to occupy a straight channel with constant rectangular cross-section and constant width. The coordinate x refers
to the axis of the channel, t is the time, and g is gravity. H(x) represents the depth function measured from
a fixed level of reference. Each layer is assumed to have a constant density, ρi, i = 1, 2 (ρ1 < ρ2). The
unknowns qi(x, t) and hi(x, t) represent respectively the mass-flow and the thickness of the ith layer at the
section of coordinate x at time t.
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System (5.100) can be written under the form (4.32) with K = 2, N1 = 2, N2 = 2, N = 4, σ = H ,

Wj(x, t) =
[

hj(x, t)
qj(x, t)

]
, j = 1, 2. (5.101)

Here, F1 = F2 = F , where F is given by (5.84), and

S1(W1, W2) =

 0

gh1

 , S2(W1, W2) =

 0

gh2

 ,

B1,2(W1, W2) =
[

0 0
−gh1 0

]
, B2,1(W1, W2) =

[
0 0

−grh2 0

]
,

with
r =

ρ1

ρ2
.

The system can also be written under the forms (4.35) or (4.37). In this last formulation:

W̃ =

W1

W2

H

 , (5.102)

Ã(W̃ ) =


0 1 0 0 0

−u2
1 + c2

1 2u1 c2
1 0 −c2

1

0 0 0 1 0
rc2

2 0 −u2
2 + c2

2 2u2 −c2
2

0 0 0 0 0

 , (5.103)

where ui = qi/hi represents the averaged velocity of the ith layer and ci =
√

ghi, i = 1, 2.
The eigenvalues of this matrix may become complex, corresponding to the development of shear instabilities.

In this work only the case where the matrix A has real eigenvalues is considered, i.e., the flow is supposed to
be stable and the system hyperbolic.

The eigenvector associated to the eigenvalue 0 is:

R̃5 =


−Fr2

2

0
1 − Fr2

1

0
1 − Fr2

c

 ,

where:
Fri =

ui√
grhi

, i = 1, 2,

with
gr = (1 − r)g,

and
Fr2

c = Fr2
1 + Fr2

2 − (1 − r)Fr2
1Fr2

2 .

F ri, i = 1, 2, are the internal Froude numbers; Frc, the composite Froude number ; and gr the reduced gravity.
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The integral curves of the 5th characteristic field are calculated by integrating (4.39):

q1 = ct.

u2
1

2
− u2

2

2
+ grh1 = ct.

q2 = ct.

u2
1

2
+ g(h1 + h2 − H) = ct.

(5.104)

In this case it is not easy to verify the genuinely nonlinear character of the 4 other characteristic fields, as
the eigenvalues and eigenvectors can not be explicitly written in a simple manner. Nevertheless, this fact can
be easily proved if r = 0 as, in this case, the system reduces to two decoupled shallow water systems. As a
consequence, using a continuity argument, this is also true at least for small values or r. We assume here that
this hypothesis is satisfied.

Concerning the definition of weak solutions, accordingly to Section 4.2 a family of paths has to be chosen
firstly for the homogeneous system (4.43), that is, the system corresponding to a channel with a constant
depth H . As this homogeneous problem is again independent of H , only a family of paths Φ has to be chosen.
At this stage, we have considered the family of segments:

Φ(s; WL, WR) = WL + s(WR − WL),

that is, we assume Volpert’s definition for the nonconservative products. Nevertheless, further investigations
will be performed in order to look for a family of paths closer to the physical background of the problem.

Once Φ chosen, the family of paths Φ̃ corresponding to the nonhomogeneous case (5.100) is determined (see
Sect. 4.2). Again, the calculation of the path linking two arbitrary states requires to solve a Riemann problem,
which is a very difficult task in this case.

The steady states solutions of (5.83) can be calculated by parameterizing the curves (5.104) with x. In
particular, if q1 = 0, q2 = 0, we obtain the solutions:

q1 = 0, h1(x) = ct., q2 = 0, h2(x) − H(x) = ct., (5.105)

representing water at rest. Another steady state solution corresponding to vacuum is given by:

hi = 0, qi = 0, i = 1, 2. (5.106)

We consider again the family of segments to construct the Roe linearization. Following Section 4.3, we first
consider the Roe matrices for each homogeneous shallow water system:

Ji+1/2,k =
[

1 0
−(un

i+1/2,k)2 + (cn
i+1/2,k)2 2un

i+1/2,k

]
, k = 1, 2,

where

un
i+1/2,k =

√
hn

i,kun
i,k +

√
hn

i+1,kun
i+1,k√

hn
i,k +

√
hn

i+1,k

, cn
i+1/2,k =

√
g
hn

i,k + hn
i+1,k

2
, (5.107)
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and then, we calculate Bi+1/2 and Si+1/2 by (4.56), (4.57). The Roe matrices Ãi+1/2 obtained are as follows:


0 1 0 0 0

−(un
i+1/2,1)

2 + (cn
i+1/2,1)

2 2un
i+1/2,1 (cn

i+1/2,1)
2 0 −(cn

i+1/2,1)
2

0 0 0 1 0
r(cn

i+1/2,2)
2 0 −(un

i+1/2,2)
2 + (cn

i+1/2,2)
2 2un

i+1/2,2 −(cn
i+1/2,2)

2

0 0 0 0 0

 . (5.108)

If the numerical scheme is expressed under the formulation (4.63), it coincides exactly with the generalized
Q-scheme of Roe upwinding the source term introduced in [4].

Accordingly to Theorem 3, the numerical scheme is well-balanced with order 2. Moreover, it is exactly
well-balanced for the integral curves of the linearly degenerate field:

q1 = 0, h1 = ct., q2 = 0, h2 − H = ct.,

or

q1 = 0, h1 = 0, q2 = 0, h2 = 0,

which are straight lines. In other terms: the scheme approaches the steady state solutions with order 2, and it
solves exactly those corresponding to water at rest or vacuum. The exact well-balance property for water at
rest was proved, for the formulation (4.63), in [5].

In [4, 5], some numerical solutions obtained with this scheme (or with its natural extension to more general
cases) have been compared successfully with experimental measurements or with analytical steady state solu-
tions. Nevertheless, as in the case of the shallow water system, contact discontinuities related to bottom jumps
can not be expected to be well captured.

As Volpert’s definition is assumed for the nonconservative products in the homogenous case, the paths used
in the definitions of weak solutions and Roe matrices coincide. Therefore, j-shocks, 1 ≤ j ≤ 4, are expected
to be correctly approached. Let us verify this with a numerical example. To begin with, we calculate a steady
state solution of the homogeneous system (H is constant) representing an internal hydraulic jump as follows:
we fix the values of the constants g = 10, r = 0.02, we put ξ = 0 and we choose the state to the left of the shock
as:

WL =


1√
0.1
1√
20

 .

Then, the generalized Rankine-Hugoniot conditions give a nonlinear system for the state to the right that
is solved numerically. Among the set of solutions obtained, we select the only one satisfying Lax’s entropy
condition, which is:

WR =


0.396156√

0.1
1.5820186√

20.

 .

The generalized Rankine-Hugoniot conditions are satisfied by WL, WR, ξ = 0 with an error of about 10−5.
We have applied the numerical scheme to the Riemann problem with the initial condition given by these two

states. As the jump condition is not satisfied in an exact manner, initially some small waves develop. After
some iterations, a steady state solution is obtained. Figure 2 depicts the steady state solution obtained with
∆x = 0.066666666 and CFL = 0.99. The L∞ distance between the exact and the numerical solution is of
order 10−3 and it can not be appreciated in Figure 2.
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(a) Zoom at x = 0 of the computed discharges at the stationary
state. Comparison with the exact solution.
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Figure 2. Solution with a stationary shock of the two-layer shallow-water system: comparison
between the numerical and the exact solution.
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