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A NEW FORMULATION OF THE STOKES PROBLEM IN A CYLINDER,
AND ITS SPECTRAL DISCRETIZATION

NEHLA ABDELLATIF! AND CHRISTINE BERNARDI?

Abstract. We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric
geometries, relying on Fourier expansion with respect to the angular variable: the problem for each
Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential
and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly
divergence-free discrete velocity. We prove optimal error estimates.
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1. INTRODUCTION

The Stokes equations govern the flow of a viscous incompressible fluid in the case of very small velocities,
indeed their primitive variables are the velocity and the pressure of the fluid. The aim of this paper is to describe
and analyze a new spectral type discretization of these equations in a cylinder, that relies on two ideas:

e Thanks to the axisymmetry of the domain, the use of truncated Fourier series allows for computing a
discrete three-dimensional solution by only solving a few number of discrete problems on the meridian
domain.

e For each problem set in the meridian domain, the vector potential and vorticity can be used as new
unknowns.

Indeed, on one hand, in the special case of three-dimensional axisymmetric geometries, it is proven in ([10],
Chap. I) that, thanks to a Fourier expansion with respect to the angular variable, these equations reduce to an
infinite family of uncoupled problems set in the two-dimensional meridian domain. The corresponding variational
formulation of each two-dimensional problem, which involves weighted Sobolev spaces, and its well-posedness
are also presented in ([10] Sect. IX.1), together with its spectral discretization. Moreover, the Spectral — Fourier
discretization of the three-dimensional problem relies on Fourier truncation and consists in approximating only
a finite number of two-dimensional problems by spectral techniques: its numerical analysis is performed in ([10],
Chap. X) and leads to error estimates of spectral type, i.e. the order of the error only depends on the regularity
of the exact solution. The idea for using spectral techniques rather than finite elements is that they are well
appropriate for being coupled with Fourier truncation since they have the same infinite degree of accuracy.
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On the other hand, a well-known method for the discretization of the Stokes problem in two-dimensional
domains, first analyzed in [14] in the finite element framework and extended in [8] to spectral type discretizations,
relies on the stream function and vorticity formulation: indeed, the incompressibility equation is equivalent to
the fact that the velocity is the curl of this stream function and the curl of the velocity, which is the vorticity,
can be used as a second unknown. This results into a system of two Laplace equations which are coupled by the
boundary conditions on the stream function. This technique presents two main advantages: it is not expensive
since only two scalar unknowns are involved in the resulting formulation and it leads to exactly divergence-free
velocities which is important for instance when convection equations are coupled with the Stokes problem.

So, the idea of this paper consists in extending to the two-dimensional systems resulting from the reduction
of the three-dimensional Stokes problem in a cylinder the stream function and vorticity technique. This has
already been performed by Abdellatif, see [1,2], in the case of axisymmetric data, i.e. for the Fourier coefficient
of order zero: in this case, the Stokes system results into a Laplace equation for the angular component of
the velocity and another problem for the three other unknowns which can be formulated with a scalar stream
function and vorticity as only unknowns. We refer to [2] for a detailed analysis of the corresponding variational
formulation and spectral discretization, we only recall these results. However, for other Fourier coefficients, the
four equations of the Stokes reduced system are coupled: We propose here to choose as unknowns the vector
potential and the vorticity related to the velocity. Note however that, in this case, an additional gauge condition
must be enforced on the vector potential in order to ensure its uniqueness.

In general three-dimensional geometries, the Stokes problem with these new unknowns results into a system
of two coupled second-order vectorial equations. Several variational formulations of these problems exist, we
choose to use one which has been recently proposed and studied by Amara, Barucq and Duloué [4] (see [3] for
a first announcement and [13] for complementary results): a further decomposition of the unknowns is added,
which is linked to the well-known Glowinski and Pironneau algorithm [16] and seems very efficient for solving
the linear system resulting from the discretization.

We first write the formulation proposed in [4] in the case of an axisymmetric domain: it results into a
countable system of uncoupled two-dimensional variational problems, one for each Fourier coefficient. We prove
its well-posedness in the appropriate weighted Sobolev spaces. Next, we describe the spectral discretization of
the problem satisfied by each Fourier coefficient and we perform its numerical analysis, in the case of a model
cylinder. Note however that the discretization can be extended to more general axisymmetric geometries, by
transformation and decomposition of the domain, relying on the spectral element method. We also describe the
Spectral — Fourier discretization in this case, obtained by combining the previous discretization with Fourier
truncature, and give the corresponding three-dimensional error estimates.

The extension of this discretization to the full nonlinear Navier—Stokes equations, is presently under consid-
eration. We also intend to handle more complex axisymmetric geometries by the spectral element method.

An outline of the paper is as follows:

e In Section 2, we briefly recall the variational formulations and the well-posedness results of [4] for general
three-dimensional geometries.

e In Section 3, we present the variational formulations of the two problems satisfied by each Fourier
coeflicient of the vector potential and vorticity, and we check that they are well-posed. We also estimate
the error issued from Fourier truncature.

e In Section 4, we describe the corresponding discrete problems, we prove their well-posedness and we
establish optimal error estimates.

e Some results which require technical arguments are proved in Appendices A and B.

2. THE THREE-DIMENSIONAL VECTOR POTENTIAL AND VORTICITY FORMULATION

Let ) be a three-dimensional bounded connected domain with a Lipschitz-continuous boundary a9 and
generic point & = (,y, z). For simplicity, we assume from now on that this domain has a connected boundary
and is simply-connected (more general geometries can be handled from the analysis given e.g. in [5]). We denote
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by n the unit outward normal to Q on 9Q. The Stokes problem in this domain and in Cartesian coordinates
reads: 5
—Au+gradp=f in €,

divi =0 in Q, (2.1)
u=0 on 951,

where the unknowns are the velocity @ and the pressure p. The data are a density of body forces f and, only
for simplicity, we take homogeneous boundary conditions on the velocity. It is well-known that, for any data j"
in the dual space H~1(Q)3 of HL()3, this problem admits a variational solution (i,7) in H ()3 x L2(£),
which is unique up to an additive constant on the pressure.

We now introduce the new unknowns. The first one is the vorticity w defined by

9

w=curl & in. (2.2)

As far as the second one is concerned, we recall ([5], Th. 3.17) that, since @ is divergence-free in  and has its
normal component equal to zero on 0f), there exists a unique vector potential 1) such that

@ = curl ¥ in €,
div e =0 in Q, (2.3)
PYxn=0 on 52

This leads to the modified equivalent formulation of the Stokes problem

curl curl @ = curl j" in ,
curl curl 1Z =w in Q,

- . (2.4)
divy =divw =0 in €2,

pxn=curl p xn=0  on O

However, following [3,4], we consider a further decomposition of the vorticity which is used for the Glowinski and
Pironneau algorithm [16] in the two-dimensional case. We set: & = &” +&*, so that the previous problem (2.4)
can be written as a system of two uncoupled problems:

curl curl &° = curl j" in Q,
div @’ =0 in €, (2.5)
"xn=0 on 9%,
and 9
curl curl &* =0 in £,
<0

curl curl ¥ = &% + &* in Q,
div ¢ = div &* =0 in €,

pxn=curl p xn=0  on O

(2.6)

The variational formulation of these problems involves the space H(curl, §2) of vector fields in L2(£2)? such
that their curl belong to L2(€2)®. Relying on the standard result ([15], Chap. I, Th. 2.11) that the trace
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mapping:  — d x 1 is continuous from H(curl, ) into H~z(9Q)3 (defined as the dual space of Hz(8€2)?),
we define its closed subspace

X(Q):{f;eH(curl,Q); v xn=0on 8(2} (2.7)

Note also ([4], Prop. 2.1) that the mapping: © — curl @ is continuous from L2(£2)® into the dual space X (£2)’

v

of X(€2). We finally introduce the space
Y(Q) = {1”; € L2(Q)?; curl curl % ¢ X(Q)’} . (2.8)

From now on, we assume that the data j" belong to LQ(Q)3. The variational formulation of problem (2.5) is
of saddle-point type, it reads:

Find &° in X () and A° in HL(Q) such that

Vi GX(Q),[ curl &° - curl ¢di+[ grad \° - ¢dz = / f - curl pdz,
Q & Q (2.9)

Vi e Hé(ﬁ),/ grad i - &°d& = 0.
Q

The variational formulation of problem (2.6) is still of saddle-point type, however it is slightly more complicated.
It reads:

Find (&, X*) in Y(Q) x HX() and ¢ in X(Q) such that

v (ﬁu) e V() x HY(SY),

_|_

o - 9de — <cur1 curl 1v9,1vb> /"Z - grad gda = —/ @’ - 9dx, (2.10)
a ¢}

0

Vo e X (), — (curl curl &*, @)+ | @ - grad \*d& =0,

5

v v

where (-, -) stands for the duality pairing between X ()’ and X (£2). It can be observed that problem (2.9) is
completely independent of problem (2.10), so that they can be solved separately.
We conclude this section by recalling the main results concerning these problems, which are proven in ([4],
Thms. 3.1, 3.2 and 4.1):
(i) Problem (2.9) admits a unique solution (&°, A%) in X (€2) x HL(), with A’ = 0, and is equivalent to
problem (2.5).
(ii) Problem (2.10) admits a unique solution (GJ*,S\*,'J)) in Y(Q) X H&(Q) X X((ul)7 with A\* = 0, and is
equivalent to problem (2.6).
(iii) If the function @ is defined by @ = curl W, where (", 2, {#) is the solution of problem (2.10), there
exists a function g, unique up to an additive constant, such that the pair (4, p) belongs to H (Q)3 X LQ(Q)
and is the unique solution of problem (2.1).

~—

So, from now on, we are interested with problems (2.9) and (2.10) in the special case of an axisymmetric
geometry, namely of a cylinder.

Remark. Assume that ) is a cylinder and also that the data j" belongs to H? ((UZ)3 The regularity properties
of the Stokes problem, as stated in ([10], Sect. IX.1.b) yield the properties

curl P € H¥™2(Q)?, & e H>™9(Q)>. (2.11)
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However the separate regularity of @° and & is weaker. By using the arguments in [12] and the fact that the
singularities of the Laplace equation in a cylinder are explicitly known (see [10], Th. I1.4.9) we derive that, for
all positive e,

v

¥ e H?5(Q)%, curl @° € H*5(Q). (2.12)

The same argument, combined with (2.11), finally yields
O e H*5(Q)?,  curl@” e H>5(Q)%, e H>5(Q)°. (2.13)

Another type of regularity results, concerning only the dependence with the angular variable in axisymmetric
domains, is stated later on.

3. THE TWO-DIMENSIONAL REDUCED FORMULATION FOR AXISYMMETRIC DOMAINS

Let © be a bounded open polygon in the (r, z) half-plane ]0, +oo[xR. We denote by T'g the interior of the
part of the boundary 9§ which is contained in the rotation axis {r = 0} and we set: T' = 9Q \ T'y. Let also n
stand for the unit outward normal vector to €2 on I'.

We now work in the three-dimensional domain ) which is built by rotating Q UT around the axis {r=0}:

%

Q={(r,0,2); (rz) eQUIlgand —7 <6 < 7}. (3.1)

We assume that I is not empty and is a finite union of disjoint segments (i.e. does not contain isolated points)
and also that (2 is connected and simply-connected. We need some further notation.

Notation. With each scalar function ji of the Cartesian variables z, y and z, we associate the corresponding
function p of the cylindrical variables r, z and 6. For each vector field ¥ of the Cartesian variables x, y and z,
we agree to denote by v,., vy and v, its radial, angular and axial components, respectively, which are functions
of r, # and z, and by v the vector with components v,., vy and v,.

With this notation, we recall that the curl and div operators of a function v in cylindrical variables and
components, denoted by curl, and div, to avoid confusion, are given by

(curl, v), = 7~ Ogv, — D,vg, (curl,.wv)y = 0.v, — dv.,
(curl, v), = 0,vp + 1 L vg — 17" Doy, (3.2)

div, v = 8y, + 7 L v, + 77 Bpug + ,0,.

Finally, we choose to use the Fourier development of all scalar functions and vector fields with respect to the
angular variable §. For instance, for a scalar function p, this development writes

™

1 . 1 .
w(r,0,z) = Nr: Z”k(r’ z) e with ¥ (r,z) = Nor ((r, 0, 2) e 0 4o,

keZ -

Thanks to this change of variables, problems (2.5) and (2.6) now result into a countable set of two-dimensional
problems, namely, for any & in Z,

curl, curl, w% = curly, f* in Q,

divy w% =0 in Q, (3.3)

0k 0

yrw " = onl,
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and
curly, curl, w** =0 in Q,
curly curly, ¢k = WO 4 ¥k in £, (3.4)
divy, ¥ = divp w*™* =0 in Q, '
vk = ~r(curly ¢k) =0 onT,
where the operators curly and divy are now given by
(curlyv), = ikr~t v, — 8, vy, (curly v)g = 0,vp — Orvz,
(curl, v), = d,vg + 1 " vy —ikr vy, (3.5)
divyv = 8,v, + Lo, +ikr~tvg + d,vs,
and the tangential trace operator v is defined by
(vrv)r =vonz,  (YrV)g =vine —venz,  (Y1V): = —Up Ny (3.6)
For completeness, we also introduce the operator grad; on scalar functions p by
(grady, p1), = Orpr, (grad;, p)o = ikr ™ Hs (grad; p1). = 0.p. (3.7)

We now describe the weighted Sobolev spaces which are needed for the variational formulations of these prob-
lems, next we write these formulations and we prove their well-posedness.

3.1. The weighted Sobolev spaces

Note that going from Cartesian variables z, y and z to cylindrical variables r, # and z transforms the Lebesgue
measure into the weighted one dr df dz. So, this change of variables leads to work with weighted Sobolev spaces
on .

We first introduce the spaces:

LA,(Q) = {v : 2 — Rmeasurable; / lu(r, 2)|? rEt drdz < +oo} . (3.8)
Q

Next, we define the complete scale of Sobolev spaces H; (£2):

e when s is an integer, H;(f2) is the space of functions in L?(£2) such that all their partial derivatives of
order < s belong to L?(£2);

e when s is not an integer, H{(Q) is defined by Hilbertian interpolation between H. {SHI(Q) and H {S] (Q),
where [s] stands for the integral part of s.

We also need the space of “flat” functions
VHQ) = H(Q) N L2 (). (3.9)

All these spaces are provided with the norms and seminorms that result from their definitions. Due to the
Fourier development, we also use the same spaces for functions from 2 into C, we keep the same notation for
simplicity. We finally define the spaces

Hl (Q)={veH(Q);v=00nT},  VL(Q) =V'(Q)nH,®Q).
We introduce the spaces, for any k € Z,
HL(Q) if k=0,

H(k)(m:{ VHQ) if R > 1, (3.10)
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provided with the norms and seminorms

1

2
[0l () = (||UH%{11(Q) + k2 HU||2L31(Q)> ; oluy, ) = (|U|§111(Q) + |k[? ||UH%31(Q)> : (3.11)

[

We also define their subspaces
H 3)5(2) = H{y,, () N Hi, (). (3.12)

Note that the equivalence of the norm || - ||H(1k)(Q) and seminorm | - |H(1k)(Q) on H(lk)O(Q), which is obvious for
k # 0, also holds for k = 0 (see [10], Prop. I1.4.1).

The interest of these k-dependent spaces is that, as proven in ([10], Thm. I1.3.1) the mapping: ji — (u*)xrez
is an isomorphism from H' () onto ], H,y () and also from H() onto [[,cp Hy0(Q). In the vectorial

case, we recall from ([10], Thm. I1.3.6) that the mapping: @ — (v, v5, v%)rez is an isomorphism from H'(()3

onto [],cz H%k)(Q), where the spaces H%k)(Q) are defined by

VHQ) x VHQ) x HL(Q) if k=0,
H ;) (Q) = {(vr,v9,0.) € HH(Q) x H} (Q) x VH(Q); v, +ikvg € L2, (Q)} if [k =1, (3.13)
VIHQ) x VH(Q) x VIH(Q) if |k| > 2.

Finally, we are interested with the spaces involving the curly operator. So, we first define H(curly, )
as the space of vector fields v in L3(Q2)? such that curlyv also belongs to L?(Q)3. The density of 2(Q)% in
each H(curly, ) is an easy consequence of the analogous three-dimensional result on Q (see [15], Chap. I,
Thm. 2.10). When combined this density result with the Stokes formula, valid for smooth enough vector fields
v and ¢ on ,

/v : curl,kﬁrdrdzf/ curl, v - prdrdz :/fyT'v - @r(r)dr, (3.14)
Q Q r

(here r(7) stands for the r-coordinate of the point with tangential abscissa 7), we prove that the trace operator
~r introduced in (3.6) is continuous from H (curly, 2) into the dual space of traces on I' of functions in H(lk) Q).
So we are now in a position to define for each k € Z the space

Xy (Q) = {v € H(curly,Q); y7v =0on T}, (3.15)
it is provided with the natural norm of H(curly, Q):

1
2
190l @ = (1013205 + leurlevlZz o ) (3.16)

Next, we observe from formula (3.14) that the mapping: v +— curly v is continuous from L?(Q)? into the dual
space of X (1)(Q), that we denote by X4 (€2)". This gives the idea for the definition of the space Y{3)(£2):

sz) (Q) = {’U S L%(Q)g, curly curlyv € X(k) (Q)/} (317)

The spaces X (1) (£2) and Y(;)(£2) are the basic ones for the variational formulation of problems (3.3) and (3.4).
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3.2. Variational formulation and analysis of the first problem

Since f belongs to L2(Q)3, it is readily checked that each f*, k € Z, belongs to L2(Q)3. So, for each k € Z,
we now propose the following variational formulation of problem (3.3):

Find W% in X()(Q) and X\ in H(lk)Q(Q) such that

Vo € X1y (Q),  aj (@, ¢) +bj(p, A7) = / f* - curl ,@rdrde,
Q

_ (3.18)
Vi € Hipo(€),  bh(w®,p) =0,
where the sesquilinear forms aj.(-,-) and b}, (-, -) are defined by
a(9,p) = / curl, ¥ - curl_, @prdrdz, b (@, 1) = / grad,p - @ rdrdz. (3.19)
Q Q

These forms are obviously continuous on X (€2) x X1)(Q2) and X 1)(2) x H(lk) (), respectively. Note also the
formula

bi (s, 1) = b4 (@, 7).
Proposition 3.1. Any solution (w, \%%) in X (Q) x H(lk)O(Q) of problem (3.18) satisfies: \°¢ =0 a.e. in Q
and is a solution of problem (3.3) in the distribution sense.

Proof. We first observe that, for any p in H(lk)O(Q), grady, i belongs to X ;) (£2) and satisfies curly grad;, 4 = 0.
So, taking ¢ equal to grad, A°% in (3.18) yields

/ |gradk )\Ok‘2 rdrdz = 0.
Q

So, A% is constant on € (which is connected) and, since it vanishes on T, it is equal to zero. As a consequence,
taking ¢ in (3.18) in 2(Q)? yields that the first line of (3.3) is satisfied in the distribution sense. Finally,
letting p in (3.18) run through 2() yields that the second line of (3.3) is satisfied in the distribution sense.

Note that the analysis of problem (3.18) can be derived from the three-dimensional results recalled in Sec-
tion 2, however we have rather give a direct proof in view of its analogue for the discrete problem. As standard
for saddle-point problems ([15], Chap. I, Thm. 4.1) proving the well-posedness of problem (3.18) relies on the
ellipticity of aj(-,-) and on an inf-sup condition of Babuska and Brezzi type on the form b} (-, -). We begin with
this condition.

Lemma 3.2. There exists a constant 3! independent of k such that, for each k € Z, the following inf-sup
condition holds

by (o, 1)
Yu € Hjy o (), sup  —E2T0 > B ulp o (3.20)
(e PEX (1) (R) ”‘P”X(k)(ﬂ) o ()

Proof. Let pu be any function in H(lk)o(Q). As previously, the idea is to choose ¢ equal to grad,, 1, so that

bhpun) = [ legrad, i rdrds = lufl, o)
Q (k)

and
HQOHX(;C)(Q) = |M|H(1k)(Q)'
This gives the desired inf-sup condition.
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In order to check the ellipticity of the form a} (-, ), we introduce the kernel
Vi = {9 € X () Vi € Bl (9), bl ) = 0} (3:21)
By the same arguments as in the proof of Proposition 3.1, it is readily checked that
Vi = {# € X1y (); divi = 0in Q}. (3.22)

Lemma 3.3. There exists a constant o' independent of k such that, for each k € Z, the following ellipticity
property holds
Ve € Vi, anle,9) 2 o llolx,, @) (3.23)

Proof. We have

ab(. ) = lleurly @2 .
In order to prove the equivalence of this last seminorm with the norm [| - || x,, (@), we recall from ([5], Cor. 3.19)
that there exists a constant ¢; such that, for all functions ¢ in X () with divergence in L2(€2),

12122 30 + llewrl @2, 00 + lldiv l12. ) < ex (lleurl @2, 500 + div 112 ) -

Applying this inequality to the function ¢ such that its only non-zero Fourier coefficient is of order k and
belongs to V(}C), yields

Ve € ‘/(}9)7 ||‘PH%§(Q)3 + [lcurly, §0||2Lf(§l)3 < a1 ||curl, ‘P||2L§(Q)3a (3.24)
which implies the desired inequality.

Thanks to Lemmas 3.2 and 3.3, we now derive the next theorem from ([15], Chap. I, Thm. 4.1).

Theorem 3.4. For any data f* in L3(Q)3, problem (3.18) has a unique solution (w®,\°) in X (Q) x
H(lk)O(Q). Moreover, this solution satisfies: \° =0 a.e. in Q and

™1 x @) < e FE 203 (3.25)

Of course, since A\ is zero, the term bk (¢, A°*) could be suppressed in problem (3.18). However, it is
important to keep it for the discrete problem that is built via the Galerkin method, in order to obtain a square
linear system.

3.3. Variational formulation and analysis of the second problem

In analogy with Section 2, for each k € Z, we propose the following variational formulation for problem (3.4):

Find (w**, \*F) in Y5 (Q) x H(k)o( ) and YF in X)) () such that

V(’ﬂ, ,LL) € }/(k) (Q) X H(lk)o(Q)a ai(w*ka 19) + bi ((19, ,u'); ¢k) = *a%(kaa 19)7
Vo € Xy(Q),  b((w™, X)) =0, (3.26)

where the sesquilinear forms a2 (-,-) and b2(-,-) are now defined by

ai(w,9) = /Qw ~9rdrdz, by ((9,p);¢) = —(curl_j curl_;, 39, ¢) —l—/ﬂcp - grad_, rdrdz. (3.27)
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There also, these forms are obviously continuous on L}(£2)® x L?(€2)* and on the product (¥{)(€2) x H(lk) (Q)) x
X (4)(€2). Moreover the form a(-,-) is independent of k and the form @(, +) is simpler:

b2 (9, p); ) = —(curly curl; 9,3) +/Qgradku - prdrda.

We now check the analogue of Proposition 3.1 for this problem.

Proposition 3.5. For any solution w® of (3.3) in L}(Q)?, any solution (w**, \** 4*) in Y5,y () x H o (Q) x
X(1)() of problem (3.26) satisfies: A** = 0 a.e. in Q and is a solution of problem (3.4) in the distribution
sense.

Proof. We first take ¢ equal to grad, \** in the second line of (3.26), which yields that
/ lgrad, \**|> r drr dz = 0,
Q

or equivalently that A** is zero. Next, letting ¥ run through 2(Q2)? and taking p = 0 in the first line of (3.26)
gives the second line of (3.4), while letting ¢ run through 2(€2)? in the second line of (3.26) (with \** = 0)
yields the first equation of (3.4). Applying the divy operator to the second line of (3.4) and using (3.3) yields
that divyw** is zero, while the fact that divy”® = 0 is obtained by taking @ = 0 and letting p run through 2(Q)
in the first line of (3.26). Finally, the boundary condition yr(curlyy®) = 0 is derived from formula (3.14), by
taking 9 equal to any infinitely differentiable function on Q and g = 0 in the first line of (3.26).

In view of the analysis of problem (3.26), we prove the inf-sup condition on the form b7 (-, -).

Lemma 3.6. There exists a constant 32 independent of k such that, for each k € Z, the following inf-sup

condition holds b2 ((0 ); )
V(.p GX(k)(Q), sup k y ) P

(9,1)EY (1) ()X H () 19y 2 + |,LL|H(1,C)(Q

) > ﬁ2 HQOHX(;C)(Q)- (328)

Proof. With any ¢ in X (€), we associate the solution p(¢) in H(lk)O(Q) of the problem

Y € H(lk)o(Q), /Qgradk () - grad_, mrdrdz = /ng - grad_, mrdrdz. (3.29)

Such a problem is well-posed (see [10], Prop. I11.4.1 and I1.4.2). Next, we take 9 equal to —¢ (which belongs to
Y(x)(€2)) and p equal to u(p), so that

(0, 1); ) = ||Cur1k90”%§(9)3 + |N(<P)|§{(1k)(9)a (3.30)

and

19llyi @ + elm, @ < lellxe @ +1ue)]m, @ (3.31)

Next, we use the triangle inequality
lellxa @ < lle = gradg u(e)llzz @) + 1Pl a @) + leurlepl| L2 @)
and, since the function ¢ — grad,, u(¢) belongs to the space V(}g) defined in (3.21), applying (3.24) yields

el xuy @ < lleurlipl L2 + (@)l (@) (3.32)
(k)

Combining (3.30) to (3.32) leads to the desired inf-sup condition.
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Next, we introduce the kernel

Vi = {(9, 1) € Yy (Q) x Hpyo(2); Voo € X1y (), 3 ((9, p); ) = 0}. (3.33)

We need a lemma to characterize this kernel.

Lemma 3.7. The space V(i) coincides with the space of pairs (9, p) in Yy () x H(lk)O(Q) such that

curlycurl;, 9 =0 and p=0 a.e. in Q. (3.34)

Proof. Let (¥, u) be any pair in V(i) First, we take ¢ equal to grad,, ;1 which belongs to X (€2). This yields

by ((9, ) ) = / lgrad, p|?rdrdz =0,
Q
so that u is equal to zero. Next, we have
Ve € X1y (2), (curl_pcurl 9,¢) =0,
and since curl_j, curl_; 9 belongs to the dual space of X1 (Q), it is zero.

We skip the proof of the ellipticity property of a3 (-, ), which is now obvious.
Corollary 3.8. There exists a constant o independent of k such that the following ellipticity property holds

VD) € Vi, ab@,9) 2 a® (19113, o + il o)) (3.35)

The next theorem is now a consequence of ([15], Chap. I, Thm. 4.1) combined with Lemma 3.6 and Corollary 3.8.

Theorem 3.9. For any w% in L3(Q)3, problem (3.26) has a unique solution (w**, \** ) in Yy (Q) x
H(lk)o(Q) x X () (). Moreover, this solution satisfies: \** =0 a.e. in Q and

||w*k||Lf(Q)3 + HwkHX(k)(Q) <c ||kaHL%(Q)3 . (336)

As previously, the term involving A** is kept in problem (3.26) only in order to obtain a discrete problem
with as many unknowns as test functions. Moreover, on all pairs (¥, i) such that ¥ belongs to the smoother
space X(z)(€2), the form bi(-,-) can equivalently be written

b (9, 1); ) = —aj(,9) + b, ). (3.37)
This simpler form is used in the discretization.

3.4. Fourier truncation of the three-dimensional solution

To conclude, we consider a fixed function j" in LQ(Q)3 with Fourier coefficients fk, k € Z. With each fk, we
associate the unique solution (w%,0) of problem (3.18) and the corresponding unique solution (w**,0,") of
problem (3.26). We set: w* = w% + w** and we define the three-dimensional functions w and v by

w(r,6,2) = J% S W), p(n,2) = J% S (r, ) . (3.38)

kEZ kezZ

It is now readily checked that the corresponding pair (@, 1Z) is the only solution of problem (2.4), so that the
Stokes problem is fully equivalent to the system of problems (3.18) and (3.26), k € Z.
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Remark. In the case of axisymmetric data j", i.e. such that f., fo and f, are independent of 6, all Fourier
coefficients of & and ) vanish but those of order zero. We refer to [1,2] for a slightly different formulation of
the problem in this case.

In the case of general data j", the idea is to solve only a finite number of two-dimensional discrete problems.
So, we fix an integer K > 2 and we introduce the pair (wg, %) which is obtained from (w, ) by Fourier
truncation:

K
‘-‘)K(Taovz) = \/% Z wk(raz) eikea ¢K(Ta9az) I~ Z ¢k(7”vz) eikG' (339>
k=—K

We intend to evaluate the distance between (w, ) and (wg, 1) in appropriate norms.
Estimating this distance relies on two arguments:

(i) Let 7k be the standard Fourier truncation operator, defined from L?(—,7) into itself by

K
1 k _ik0
= — E e — T = — g e, 3.40
7 V2T v K V2T szrcp ( )

Then the following estimate is standard (see e.g. [11], Thm. 1.1): for any real numbers s and ¢,
0 <t < s, and for any function ¢ in H*(—m, ),

||90 - 7TK90||Ht(77r,7r) < CKt_s H()OHH‘S(fTK‘,ﬂ')' (341)

(ii) The partial regularity of the solution of the Stokes problem with respect to 6 only depends on the
regularity of the data f, but is independent of the regularity of the domain Q (see [10], Prop. IX.1.8).

We prove the next theorem by combining these arguments, thanks to the formula
W— WK =W — TgW, curl ¢ — curl ¥, = curl ¥ — 7k (curl ).

Theorem 3.10. Assume that the data f belong to H”(Q)3, o > 0. There exists a constant ¢ independent
of K such that the following estimate holds between the solution (@,1)) of problem (2.4) and the pair (Wx, Y )
defined in (3.39):

@ — ‘:’K||L2(§“z)3 + K |[curl P — curl iLK”L?(Q)S <cK™7! ||f||Ho(§“z)3- (3.42)

Remark. When the domain ( is convex, since both 'va and 'va x are divergence-free and their tangential traces
on 0§} vanish, we deduce from ([5], Th. 2.17) that

||"Z - ";Y’KHHl(SVZ)3 < ¢|lcurl ¢ — curl "Z’KHL2(Q)3- (3.43)
So, for convex domains Q, we have also evaluated the distance between 1Z and 1Z x in H 1((2)3

4. SPECTRAL DISCRETIZATION

The Fourier coefficients of the data j" cannot be computed explicitly in the general case. So we first ex-
plain how to compute them thanks to a quadrature formula. Next we present the polynomial spaces and the
quadrature formulas that are needed for the discrete problems. We then describe the discretizations of prob-
lems (3.18) and (3.26) that are derived by the Galerkin method with numerical integration and we prove their
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well-posedness together with error estimates. In a final step, we construct a three-dimensional discrete solution
from the previous problems.

In all that follows, we assume that € is a cylinder. Equivalently, €2 is a rectangle and, without restriction,
we take it equal to Q =]0,1[x] — 1, 1], with the corresponding definition for I'y and I". More complex domains
can be handled by combining the arguments in this paper with those of ([10], Chap. VIII).

4.1. Fourier interpolation

For the same integer K as in Section 3.4, we introduce the 2K + 1 equidistant nodes 6,, = 22;(”;1 ,—K<m<K.

Next, we assume the data j" such that f,., fo and f, are continuous with respect to 6 and we set:

K
f(r,2) = v2n > f(t0m,z)e*0m K <E<K. (4.1)
m=—K

2K +1

Note that, clearly, these approximate Fourier coefficients depend on K, however we omit the K in the index for
simplicity. This leads to define the function

fKo(Ta 0, Z) = T Z flg(rv Z) eikG. (42)

From the formula

7= Z FrHEEFDE (4.3)

LET
it is readily checked that the function j" Ko Provides a good approximation of j", as stated in the next proposition.

Proposition 4.1. Assume the function j" in H”(Q)3, o > L. There exists a constant ¢ independent of K such

2
that the following estimates hold:

V) V)

f*fKo

V) 9

<cK™°
Lz((z)s -

. <c
Heo (Q)S

and H}Ko

(4.4)

He ($)3 Ho ()3

Now, let (w2, A\%) be the solution of problem (3.18) with f* replaced by £¥, and let (w¥, A% 4%) be the
solution of problem (3.26) with w% replaced by w9. It follows from the previous Proposition 4.1 combined

with (3.25) and (3.36) that, if the function f belongs to H7(Q)3, o > 1

2
) <cK™°
X (k) ()

Moreover the uniqueness of the solutions of both problems (3.18) and (3.26), combined with (4.3), yields the
formulas

K
(35 (1o =il o e+ - ot )

P He (Q)3

Ok _ 0,k+(2K+1)¢ k_ k(2K 1)L k_ k(2K +1)¢
wy wa ( Wk wa* ( e, 1,[;0*21/; ( ®, (4.6)
tez tez tez

so that the regularity properties of the w9, w* and ’l,[)]g can be derived from those of cZ:O, @* and 1Z in an

obvious way.
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4.2. Polynomial spaces and quadrature formulas

For each positive integer n, we define the space P, (£2) as the space of polynomials on  with degree <n with
respect to r and z, respectively. We introduce the three subspaces P%(Q2), P2 () and P9 (Q) of polynomials
in P, (2) which vanish on Ty, I and 99, respectively. We also use the space P,(—1,1) of polynomials with
degree <n on ]—1, 1], its subspace P (-1, 1) made of polynomials vanishing in 4-1, and their analogues on ]0, 1].

Let now N be another fixed integer, N > 2. Our global discretization parameter is the pair (K, N). We first
define the space My (y) as the intersection of Py (£2) with H(lk)o(Q). It is readily checked that

P(Q)  ifk=0
M = N ’ 4.7
N (k) { PO(Q)  if [k > 1. (4.7)

Similarly, we define Y y(x) as the intersection of Py (Q)?* with H(curly, Q) or, equivalently,

Py (2) x P () x Px(€) .
Yy = . . (4.8)
{(vin,von,v2n) € PN (Q) x Pn(Q) x PR (Q); von — ikve.y € PR(Q)}, if [k] > 1.
Finally, we introduce the space
Xy = {vn € Yy yroy =0onT}. (4.9)

Let L,, stand for the Legendre polynomial of degree n. We recall that these polynomials are orthogonal to
each other one in L?(—1,1) and satisfy L, (1) = 1. We now introduce the standard Gauss-Lobatto formula on
]—1,1[: With & = —1 and {n§ = 1, there exist a unique set of nodes §;, 1 < j < N — 1, and a unique set of
weights p;, 0 < j < N, such that the following property holds

1 N

Ve e Py a(-11), [ @©dE =Y a(&) (4.10)

1 =0

The &;, 1 < j < N —1, are the zeros of Ly and the p;, 0 < j < N, are positive. We finally recall the positivity
property
N
Von € Pn(=1,1), [lonllZz_11 < Z%?v(fj)ﬁj <3llonllTa - (4.11)
§=0
Similarly, the polynomials M,, defined by

Ln () + Lnt1(¢)
1+¢ ’

are orthogonal to each other one on |—1, 1] for the measure (14¢) d¢ and satisfy M, (1) = 1. The Gauss-Lobatto
formula on |—1, 1] for the weighted measure (1 + ) d( is defined as follows: With {5 = —1 and (x = 1, there
exist a unique set of nodes (;, 1 <i < N — 1, and a unique set of weights w;, 0 <7 < N, such that the following
property holds

M, (¢) = n>0 (4.12)

)

1
V(I)EIPQN_l(—Ll), /

-1

N
Q)1+ d¢ = B(G)wi- (4.13)
1=0

The ¢;, 1 <i < N —1, are the zeros of M} and the w;, 0 <i < N, are positive. We refer to ([10], Sect. VI.1.b)
for a more detailed study of this formula and also for the positivity property

2

Ly (Gwi <4 [on @+ (4.14)
L2(-1,1) — NS = '

=0

Von € Py(—1,1), Hsozv (1+0)%

L2(-1,1)
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Of course, we use formula (4.10) in the z-direction. In the r-direction, thanks to the change of variables
r = 1'5—4, we use formula (4.13), so we set: r; = 1+T<i, 0 < i < N. This leads to the definition of the discrete

product, for any continuous functions v and v on 2,

N N
( Z ZZ r’bagj Tzaf])wzpja

i=0 j=0

—_

and it can be extended to vector-valued functions in a trivial way. Let also Zny stands for the Lagrange
interpolation operator at the nodes (r;,&;), 0 < ¢,j < N, with values in Px(€2). We are now in a position to
describe the discrete problems.

4.3. Discretization of the first problem

The discrete problem corresponding to problem (3.18) is obtained by the Galerkin method with numerical
integration, it reads:
Find W in Xy and X3 in My such that

Ven € Xy, ajy (WN ’ ‘PN) + by (‘PNa )\Ok) ((foa curlkgoN))N

o (4.15)
VNN € MN(k)a bllcN (w%ga ,U'N) =0,
where the bilinear forms aj, (-, -) and b}, (-, ) are defined by
apn (9N, o) = ((curly Oy, curly oy))n, by (en, an) = ((gradiun, o)) (4.16)

There also, even if the function fff in the right-hand side depends on K, we omit the index K and the ¢ in wQ

for simplicity.
Thanks to (4.11) and (4.14), the forms a}, (-, -) and b}, (-, -) satisfy the following continuity properties, with
constants ¢ and ¢’ independent of k and N:

VON € X, Yeon € Xnk)s apn(On, on) < 9N x @ lenlx o @)

(4.17)
Yon € Xnwy Vv €My, brn(ens i) < ¢ llenllxg, @lunlm, -

The next lemma states a key property of our discrete spaces.
Lemma 4.2. For all k € Z, the grad;, operator maps M) into Xy x)-

Proof. For all k and any gy in My, the function vy = grad,uy belongs to Px ()3, so it remains to check
that it satisfies the nullity conditions on I'y and on T'.
1) On Ty, for k = 0, the angular component vgy is equal to zero, hence belongs to P (Q2). For k # 0, we
have
von — ik vy =ik Y uy — ik Oppun = —ik 7 0, (7’*1 ﬂN) .
Since uy belongs to P (€), hence vanishes on I'g, the quantity r~! uy belongs to Py (). Thus, the
polynomial vgy — ik v,y vanishes on 'y, and the same property obviously holds for v,y = d,un-
2) On T, the quantities (yrv), = ikr~t uyn, and (y7v), = —ikr~! uy n, also vanish since py has a
zero trace on I'. Moreover, we have

(PYT’U)G = az/LN Ny — OpUN M.

According to the edges of T, either n,. is equal to 1, n, is equal to zero and 0, represents the tangential
derivative or n, is equal to zero, n, is equal to £1 and 0, represents the tangential derivative. So, in
all cases, (yrv)g vanishes.
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Thanks to the Definition (4.9) of Xy ), this concludes the proof.

We can now prove the inf-sup condition on the form b,l€ MO

Lemma 4.3. There exists a constant 3* independent of k and N such that, for each k € Z, the following inf-sup
condition holds

bt ,
Yun € My, sup M

> B un |
@ NEXN (1) H‘PNHX(;C)(Q)

L@ (4.18)

Proof. Thanks to Lemma 4.2, the idea is to associate with any uy in My ) the function ¢ equal to grad;, ux.
With this choice, we have

bin (@ un) = ((grady pn, grad, pn)) -
It follows from the positivity properties (4.11) and (4.14) that

bllcN(‘PNaﬂN) 2 |NN|%{(1,€)(Q)7

while
lenllxa @) = lenlm, @
This concludes the proof.

In order to prove the ellipticity of the form a},y(-,-), we introduce the kernel
Vi = 1¢n5 € Xnw); Yun € My, by (o, i) = 0} (4.19)

Lemma 4.4. There exists a constant &' independent of k and N such that, for each k € Z, the following
ellipticity property holds
Von € Vg, awn(en oy) > a' |\¢N|\§((k)(ﬂ)- (4.20)

To derive property (4.20), we only have to prove that

Von € Vg llenllizas < clleurle oyl 2. (4.21)

Checking this inequality with a constant ¢ possibly depending on N is easy. Indeed, let ¢ be any polynomial
in V}V(k) such that curly ¢ is zero. The three-dimensional function such that its only non-zero coefficient is ¢
is also curl-free, so that it is the gradient of a function x. Then, it can be observed that the Fourier coefficient of
order k of x belongs to My (), hence is zero thanks to the definition of V}V(k). So, the right-hand side of (4.21)

is a norm on V}V(k) and, from the equivalence of norms on finite-dimensional spaces, we derive (4.21) with a
constant ¢(N), possibly depending on N. Checking that the constant is independent of N is rather technical,
so we prefer to give the arguments in Appendix A.

Remark. As a by-product of the proof given in Appendix A, we note that V}V(k) is not contained in V(}C),
indeed all functions in V}V (k) are not exactly divergence-free. For instance, the function ¢, given by

CJOTN(T’ Z) =0, (PGN(Tv Z) =0, PN = ILLN(T.) LN(Z)v
for any pn in P4 (0,1) belongs to V}V(k) and is not divergence-free.

Theorem 4.5. For any data f’g continuous on €, problem (4.15) has a unique solution (W, %) in Xy X
M (k). Moreover, this solution satisfies: )\9\? =01in Q and

W[l o) <€ HINf’Z (4.22)

L2(Q)3
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Proof. The existence and uniqueness of a solution are a direct consequence of Lemmas 4.3 and 4.4. Moreover,
using once more Lemma 4.2, we take ¢, equal to grad A% in the first line of problem (4.15), which implies
that AQ¥ is zero. Finally, estimate (4.22) follows by takmg ¢ x equal to w in (4.15) and using Lemma 4.4

together with (4.11) and (4.14).
In order to prove the error estimate, we first check from Theorem 4.5 that

Vey € XN(k)a a’llcN (‘-"%a ‘PN) = ((flga CUFIk‘PN))N- (4.23)

Denoting by ¢, any approximation of wQ in Xn_1(k) (this space is defined by replacing the space P (£2) by
Py _1(Q2) everywhere in the definition of Xy (x)), we derive from (4.11) and (4.14) that

[|curly, (Wi — ‘PN)Hif(Q)a < apy (W — N WX — on) -

Combining (4.23) with the exactness property of the quadrature formula yields

chrlk (WX — N HL2(Q ((fo,curlk( ‘PN)))N — ap(en, W — Pn)-

Thus, it follows by adding (3.18) and using Theorem 3.4 that

chrlk (w%“fsoN)Hi%(Q)gSallc( & — oy, Wiy - on)
[ £ eurly @ - ) rrde+ ((fhcurl (@8~ o))
Q

By a triangle inequality, this leads to the estimate

Jewrte (w2 — ) [ ziye <2 nfJleurl (@8 o) e
+  sup fQ fﬁ “pyrdrdz — ((f];a “’N))N. (4.24)
uNEPN(Q)3 HNN||L§(Q)3

The last term in (4.24) comes from numerical integration and is bounded in a standard way: for any function f
continuous on {2,

sup fo'ﬁNTdeZ*((faﬂN))N
uNEPN(Q)3 ||HNHL§(Q)3

<c(lf —Un-1fllzs + 1 F = InFllrzs):

where IIy_1 stands for the orthogonal projection operator from L%(2) onto Pn_1(Q). Using ([10], Sect. V.2
and VIL.3) leads to the following estimate: if the function f belongs to H{(Q)3, o > %,

sup Jof -Byrdrdz — ((f,uy))N
g €PN (Q)3 el Lz (o

< e N7 fllag - (4.25)

This is combined later with Proposition 4.1 in order to use the regularity properties of f* instead of that of flj

The first term in the right-hand side of (4.24) represents the approximation error, and it is easy to bound it
as a function of w%*. However, we have rather state a slightly improved result which is proved in Appendix B
according to the arguments in [6], Section 4, and only involves the regularity of curly w9
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Lemma 4.6. The following estimate holds for any function ¢ in X ;) (2) such that curlyp belongs to H; ()3,
s>0,

inf [leurl, (¢ — @pn)llLz)s < cN 7% eurly ¢| ;s (4.26)
PNEXN (k)

Inserting (4.25) and (4.26) into (4.24) leads to the first error estimate.

Theorem 4.7. Assume that the data f¥ belong to H7 (Q)3, o > 3 and that the vorticity w3 of problem (3.18)

is such that curl, w9 belongs to H;(Q)2, s > 0. Then, the following error estimate holds

||curly, (wdF — w%“)HL%(Q)g <c (N*S ||curly kaHHf(Q)3 +N7° ||ff|\Hf(Q)3) . (4.27)

0k

9% — w0 in the L3(Q)3>-norm can be derived by a duality argument.

A better estimate for w

Corollary 4.8. If the assumptions of Theorem 4.7 are satisfied, the following error estimate holds
ngk - w%“HL%(Q)S <ec (N_l_s ||curly wngHf(Q)g +N7° ||f§||Hf(Q)3> . (4.28)

Proof. We start from the formula

Jo @O — %) - grdrdz

0k 0k
W —w s = sup
H ¢ N HL%(Q)S geL2(Q)3 ||9HL§(Q)3
Next, for any g in L2(Q)3, we solve the problem
curlycurly, o =g in Q,
divp =0 in Q, (4.29)
yre =0 onI.

Its well-posedness follows from Theorem 3.4. Moreover, by noting that the curly of curly, ¢ belongs to L2(Q)?,
that its divy is zero and that its normal trace vanishes on I (which can easily be derived from the condition
v = 0), we derive from the convexity of {2 and the three-dimensional regularity results ([5], Thm. 2.17) that
curly ¢ belongs to H{(Q)? and satisfies

lcurly @ 710y < cllgllLz(a)s- (4.30)
Moreover, we have
/Q (W — W) - grdrds = ap (W — W, ).
Then, we derive from (4.23) that, for any ¢y in Xy_q),

/ (W — Q) - grdrdz = aj, (W — W, @ —@y) +/ f5 o curl @y rdrdz — (5, curl, o).
Q Q

Finally, combining (4.25), Lemma 4.6 and (4.30) with the estimate of Theorem 4.7 leads to the desired result.
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4.4. Discretization of the second problem

The discrete problem corresponding to problem (3.26) now reads:
Find (wik, \3F) in Ynky X My and 1#];\, in Xy such that

V(IN, uN) € YNy X My,
ajn (Wi ON) + by ((ﬁN,um;w%) = —ajy (WN,On) (4.31)

Von € Xnwy,  biy (W AN) sew) =0,

where, as hinted in (3.37), the bilinear forms a3 5 (-,-) and b7 5 (-, -) are now defined by

Ay (Wn,In) = (Wns O8N, En(On, un)ion) = —abn(@n, On) + bhy (@, i)- (4.32)

Proving that this problem is well-posed there also relies on the inf-sup condition on b7  (+; -) and on the ellipticity
of a% ~ (55 ). We prove the first property by very similar arguments as in the continuous case.

Lemma 4.9. There exists a constant 52 independent of k and N such that, for each k € Z, the following inf-sup
condition holds

2 .
V(PN c XN(k), sup ka ((ﬂNa /J/N)7 SON)
(ON 1N )EY N (1) XM N (k) HﬁNHY(k)(Q) + |MN|H(1k)(Q)

> 62 HCION”X(]C)(Q)' (433)
Proof. With any ¢y in Xy ), we associate the solution un(py) in M (x) of the problem

VAN € My, /gradk pn(py) - grad_, Ay rdrdz = / pn - grad Ay rdrdz.
Q Q

So, taking ¥y equal to —p, and uyx equal to pun (@) and using the positivity properties (4.11) and (4.14)
yield

biN((ﬁNaNN);QaN) 2 |\Cur1k90N||2L§(Q)3 + |#N(90N)|%r(1k)(n)- (4.34)
On the other hand, we have

19Ny @) + [enlmr @) < llenllxe @ + v (en)la: @) (4.35)

(k) (k)

Owing to the triangle inequality
lenllxa @) < llen —grad, un(en)llLz2)s + |:LLN(<PN)|H(1M(Q) + leurlip |l 2203,

and using (4.21) (indeed, the function ¢ — grad;, un (@) belongs to the space V}V(k) defined in (4.19)), we
derive

lenllx @ < lleurlypy L2 + |NN(90N)|H(1k>(Q)7

which, combined with (4.34) and (4.35), leads to the desired inf-sup condition.

The discrete kernel is now defined by
Vi = {0, in) € Yy X Myy; Yeon € Xnw, bin (On, un);on) =0} (4.36)

The next property is an easy consequence of Lemma 4.2.
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Lemma 4.10. All pairs (On,pn) in V?\,(k) are such that py =0 in Q.

Even if this result is not as precise as its analogue in the continuous case, see Lemma 3.7, using the equivalence
of norms on finite-dimensional spaces leads to the following ellipticity property: There exists a constant aj y
depending on k and N such that the following inequality holds

V(On, un) € Vi, ain(On,On) > iy HﬁNH%f(k)(Q) + |MN|%((1M(Q)- (4.37)

This result is not optimal, but it is sufficient to derive the well-posedness result.

Theorem 4.11. For any data w%F in Py (Q)?, problem (4.31) has a unique solution (wiF, \i¥, 1#];\,) in Y k) X

My @y X Xn(k)- Moreover, this solution satisfies: NE=0inQ and
xk k 0k
ooz + [#5] 5, 0 = 1820 (4.9

Proof. The existence and uniqueness of the solution follow from Lemma 4.9 and (4.37). The fact that ik
cancels can then be derived from Lemma 4.10, and the estimate on w*F is obtained by taking 9x = wiF and
pun = 0in (4.31). The estimate on 1#];\, follows from the inf-sup condition in Lemma 4.9.

In order to prove the error estimate, we introduce a fixed pair (dy,0) in V?V(k)' Using the positivity
properties (4.11) and (4.14) together with problem (4.31), we derive

lwi _19NHi§(Q)3 < apy (N — 9N, W —In)

= *aiN (w%a"‘)N 19N) - akN (19NawN 79N)

Thus, it follows from (3.26) that, for any ¢y in Xy _q(x),

||w7\;€_ﬂNH%f(Q)3S k(wgkva In) — aiN(w%,wff IN) + aj(w :;kva In)
— ain(On, Wi —In) + B ((WN — On,0), 9% — op).

As previously, we use the orthogonal projection operator IIx_; from L?(£2) onto Px_1(Q2) and we note for
instance that

a; (wgk,wN ﬁN)—aiN (w%,wN Iy) = i( — Ty 1w wiF — In)
—aiy (w%f — HN_lwgk,wN ﬂN)
So using a triangle inequality leads to
[ ﬁ”};fmw < Jwdt - “’%CHLf(Qw + [|we® — Ty —1wg ||L2(Q)3

*k *k *k allc (wk — PN CN) (439)
s = Ol gy + lwd” = a2 g + Cnetuie HCQNHL%(QP |

Finally, we recall from ([15], Chap. II, formula (1.16)), combined with Lemmas 4.9 and 4.10 that

inf wik -9 inf wiF —v
(ON.0)EVE s, ooz NHL?(QV T (OIN0)EVE ez NHY”“)(Q)
<c inf o = O meur, 0)-

ﬂNGYN(k)
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Combining all this yields
wk sk 0k 0k 0k 0k . wk
w3t —wy ||L§(Q)3 < [Jwl" - Wiy HL%(QP +{jws =y ywg ||Lf(Q)3 + inf wgt - 1917\7H11r(cur1k,9)

INEYN(x)
k 4.40
kH , +  inf sup a (¥ *‘PNaCN). (4.40)
3
LI PNEXNG) ¢ NEY Nk 1< n ||L§(Q)3

+ ||w2k —y_1w}

The approximation result of functions in H (curly, ) is stated in the next lemma which is proven in Appendix B.
Lemma 4.12. The following estimate holds for any function ¢ in Y(5)(Q) N H{ (Q)?, s > 1,

inf e — onllaEur.o) < N el g @s- (4.41)
PNEYN )

The following estimate holds for any function @ in Y () N Hf (Q)?, such that curly ¢ belongs to H;(Q)?,
s> 3,

inf [l — @nllmear.o) < N7 (el @s + lleurly @l ;o)) (4.42)
PNEYN (k)
The last term in (4.40) is evaluated in the next lemma, according to the idea in [8].

Lemma 4.13. Assume the function ¢’<§ such that curly, wi belongs to HY(Q)3, t > 1. The following estimate

holds .
inf sup ak("/’o —on:CN)
PNEXNGK) CNEY N HCNHL%(Q)i"

< cNEt chrlk Pt (4.43)

HE(Q)3

Proof. For any ¢ in Xy (y) such that yr(curly ¢ ) vanishes, we have thanks to an integration by parts

ak (¥ — o . Cy) = / C - curlyeurly (¢ — gy ) rdrdz,

whence

1k
inf sup ap (s — PN, Cw)
PNEXNM®) CNEY N ||CN||L§(Q)3
The desired result then follows from Appendix B, see Lemma B.5.

< c||curl,curly (¢ — o)Lz )s-

By combining the results of Lemmas 4.12 and 4.13 with (4.40) and also using Corollary 4.8, we derive the
first error estimate.

Theorem 4.14. Assume that the data f¥ belong to HY (), o > 3. and that the vorticity w3* of problem (3.18)
belongs to H; 1 (Q)%, s > 1, and is such that curl, w9 belongs to Hi ' (Q)3. Assume also that the solution
(wk k) of problem (3.26) is such that w** belongs to Hj(Q)3, s > 1, and that curl, ¢¥ belongs to HE ()3,

t > 1. Then, the following error estimate holds

’Lf(Q)S sc (Nl_s (”“’QkHHf*l(Q):s"'chrlk ""gk”Hf’l(Q)ii + Hw:;k”Hf(Q)i")

- —0
+ N3 eurl gy + N7 £l e ).

os® — Wi
(4.44)

This estimate and the following one are rather technical, but this is only due to the fact that we try to
minimize the regularity properties of the solution which are required for them. Estimating the error between
¢§ and wlfv relies on the inf-sup condition (4.33). From now on, we set for simplicity:

wh = W% 4 Wik, whe = W% + w3k, (4.45)
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Indeed, we derive from (4.33) that, for any @y in Xy_q),

- bin (O, un)i Pk — ¢
H’:ZJIJCV - <10N||X(k)(Q) < 62 ! sup kN( N N) :

(IN 1N )EY N (1) XM (1) H’l9N||Y(,€)(Q) + |‘LLN|H(1k>(Q)

By using problems (3.26) and (4.31) together with the exactness properties of the quadrature formulas, we note
that, for all (19N7NN) in YN(k) X MN(k:)7

biN ((ﬁNaMN);"/’]fv - <PN) = ai (wff - HN71<-0]<§,19N) + aiN (HNflw’; — w’fv,ﬁN) + bi ((19N,;LN);1/;’§ - cpN) .

Combining all this and using triangle inequalities leads to the estimate

REL] <||w’s e + kT awhlgye +, 0E e - soNnX(k)(m) -

eNEXN_1(
(4.46)
So using a further triangle inequality relying on (4.45) for the terms involving w, together with Corollary 4.8
and Theorem 4.14, and also Lemma 4.6, we obtain the second error estimate.

Corollary 4.15. If the assumptions of Theorem 4.14 are satisfied, the following error estimate holds

Hﬂ/’ﬁ - d”fv” <c (Nl_s (ngk”Hf’l(Q)B + [|eurly wngHf’l(Q)S + HkaHHf(Q)S)

Xy (Q) —
Hi’(ﬂ)3> '

The final idea is of course to associate with the solutions w of problem (4.15) and the solutions (w%F, i)
of problem (4.31), —K < k < K, the three-dimensional pair (Wxn, ¥ y) defined by (w%; is introduced in
(4.45))

(4.47)

+N77
Hi(Q)®

+N3! chrlk pF fr

4.5. The three-dimensional discrete solution

K
wKN(Taovz) = \/% Z "‘)IJC\/'(T;Z) eikea ¢KN(7”7972) = Z 17[)];\/'(732) eike' (448>
k=—K

@‘ -
3

bl

I‘\

=

Indeed, we use the triangle inequality (with obvious definition of w k)
[@ = @rnll 2y < @0 = @kll2@)s + 190K = @roll2()s + @Ko — Wr N L2355

and a similar one for ||curl (¢ — 1,7;KN)||L2(§2)3. We also recall from Section 4.1 that the regularity properties

of the @°, &*, 1,7) and j" yield analogous ones for the w9 wik, ’; and fff So, the final estimate follows from

Theorem 3.10, (4.5), Corollary 4.8, Theorem 4.14 and Corollary 4.15.

Theorem 4.16. Assume that
(i) the data f belong to H? ()3, o > 3,
(i) the solution &° of problem (2.9) belongs to H* ()3, s > 1, and is such that curl&® belongs to
Hs—l(fz)?;;
(iii) the solution (&*, ) of problem (2.10) is such that &* belongs to H$(Q)3, s > 1, and that curl ¥ belongs
to H'(2)?, £ > 0.
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Then, the following error estimate holds between the solution (w, 1,7;) of problem (2.4) and the pair (OxnN, 1,7;KN)
defined in (4.48)

-0
w

.. v N N —s .0 o %
| *""KNHLQ(SVZ):* + [[curl ("/’ - "j’KN) [22(0)2 < c (Nl ° ( ’HS*l(Q)S + ||cur1w HHS*l(Q)i" + [lw ”HS(S“Z)'“")

3 Y —0 —0o I
N2 leurl o gpe + (K7 + N )|\f||HC,(Q)3). (4.49)

Remark. Assume that the data f belong to H?(Q)3, o > 3. Thus combining (4.49) with the regularity

properties stated in (2.11) to (2.13) leads to the estimate, for any positive e,

& = @renllzqays + lewrd (v = ien ) oz < e (K77 +N=71) || (4.50)

Ho ($)3 ’

So the convergence order is € — 1. However it seems likely that estimate (4.41) can be replaced by (4.42) in
all the previous results, even for low values of s, which leads to a convergence order equal to € — 2. Moreover,
the singular functions associated with problems (2.9) and (2.10) are explicitly known (see [10], Sect. II.4.c
and IX.1.b) and, as usual, approximating these singular functions in a separate way leads to doubling the
convergence order (see [10], Sect. 10.3).

Estimate (4.49) is not fully optimal in the general case but it proves the convergence of the method for all
data in H? (Q)S, o> %, and, when o is large enough, K can be chosen very small. So the previous discretization
is not at all expensive in comparison with a three-dimensional computation and furthermore leads to an exactly
divergence-free velocity @y ny = curl 1,7; KN-

APPENDIX A

The aim of this Appendix is to prove that inequality (4.21), i.e.
Von € Vv, lenlzzqe < clleurly oyl 12,

where the space V}v( K is defined in (4.19), holds with a constant ¢ independent of N. We consider successively
the cases kK = 0 and k # 0, since the arguments are rather different.

Proof in the case Kk = 0

Let ¢ be any polynomial in V}v(o)- We handle separately the component g, next the components ¢,

and p,n.
Indeed, since gy vanishes in z = —1, we have

i (r,2) = < [ @m0 d<>2 <2 f (Do) (r. ) C.

-1 -1

Integrating this inequality on Q with respect to the measure r dr dz and noting that the radial component of
curly ¢ coincides with —0,ppn, we derive

lponllz2() < 2||(curlo )l L2q)- (A1)
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Let us consider the expansions of ¢, and ¢,x with respect to the polynomials L, and M,,. When taking
into account the boundary conditions yr¢pxy = 0 on I', we have

N N-1
pr(r, 2) Z Qi My (27 = 1) (L1 — L 1)(2),
=0 n=1
N—1 N
Pen(r2) = 3> Ban (M1 — M) (27 — 1) L, ().
m=0n=0
This yields
N N-1
(divg ) (1, 2) Z Z Qmn (2M], + 77 M) (2r — 1) (Lyg1 — Ln_1)(2)
m=0 n=1
N—1 N
+ Z Z ﬁmn m+1 — m)(27“ — 1) L;L(Z) (AQ)
m=0n=0

It appears in this expansion that divg ¢y vanishes in the two corners (1,—1) and (1,1) of Q that are not on
the axis r = 0.

Next, using an integration by parts that relies on the exactness properties (4.10) and (4.13), we observe that
the condition which defines V}v(o)’ see (4.19), can equivalently be written as

VMN € P})V(Q)a ((leO 90N7MN))N =0.

This means that divg ¢ vanishes in all nodes (r;,&;), 0 < 4,5 < N, that do not belong to I'. So, there exist
polynomials xy and x7; in Py (0,1) and Ay in P%,(—1,1) such that

(divo ) (1, 2) = wy (1) (1 = 2)Ly () + K5(r) (1 + 2) Dy (2) + rMiy(2r — 1) A (2). (A.3)

Moreover, since divg ¢, vanishes in (1,+£1), both k5 and /ﬁ} vanish in 1.

The idea is now to compare (A.2) and (A.3). It appears that the second term of the right-hand side in (A.2)
is orthogonal (for the discrete product) to r M}, (2r —1) and that the first term has degree < N —1 with respect
to 7, so that Ay is equal to zero. Similarly, the first term in (A.2) is orthogonal to (1+ z) L’y (z) and the second
has degree < N — 1 with respect to z, whence the equality

N-1
BN (M1 — M) (2r — 1).

m=0

l\’)lr—t

Ky (r )*“N

It follows from the previous lines that the function (p,n,0,.n) can be written as a sum ¢} + %, where
e} is equal to (0,0, xn(r) Ln(2)) for a polynomial sy vanishing at 7 = 1, while ¢3%, = (¢2y, 0, ¢%y) is exactly
divergence-free and ¢?, has degree < N — 1 with respect to z. Clearly, we have

leinllzz) = IEnllzz o 1L 21,y and (180 nllz2 ) = KN L20,1) LNl 22(1.1)-
So applying the standard Poincaré—Friedrichs inequality to xx (which vanishes at r» = 1) yields

H‘piNHLf(Q) < CH&(PILNHLf(Q) =c|| 0.0y — ar@iNHLf(Q)- (A4)
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Next, it follows from the previous lines that (2,0, ¢?y) belongs to the space V(lo) introduced in (3.21), so that
applying Lemma 3.3 yields

H‘pzNHLf(Q) + H<P§N||L§(Q) < c||curlg ‘P?vHLf(Q)& (A.5)

By noting that 9,¢!y — 0,0l y and 9,92y — 9,2 (which has degree < N — 1 with respect to z) are orthogonal
in L#(Q), we thus derive
H%NHLf(Q) + H%NHLf(Q) < c|leurly ‘10N||Lf(9)3- (A.6)

So the desired result for & = 0 follows by combining (A.1) and (A.6).
Proof in the case k # 0

Let o = (prn,Pon,p-n) be any polynomial in V}V(k)’ k # 0. Thanks to the definition (4.9) of the space
XN (k), it admits the expansion

N N-1
(prN(r; Z) = Z Qmn, Mm(2r - 1) (Ln+1 - Ln—l)('z)a
m=0 n=1
N—-1N-1
SDGN(ra Z) = ﬁmn (Mm-i-l - Mm)(2r - 1) (Ln—i-l - Ln—l)(z)a
m=0 n=1
N-2 N
PN (1, 2) = D Yn (Mg — M) (28 — 1) L (2),
m=0n=0
with the further condition
N-1 N
> Bon (M1 — M) (—1) =ik Y Qi My (1) = 0.
m=0 m=0

This of course yields

N N-1
(dive o) (r,2) = D D Qo (2My, + 177 My) (27 = 1) (L1 — Ln—1)(2)
m=0 n=1
N—-1N-1
+ ik Bon ™™ (M1 — M) (2r = 1) (Lpgy — Ln—1)(2) (A7)
m=0 n=1
N—-2 N
m=0n=0

From this formula, divy o vanishes at the four corners of 2. On the other hand, the same arguments as
previously yield that there exist four polynomials xy and k% in P (0,1), Ay and A% in PQ,(—1,1) such that

(divi o) (r 2) = iy (r) (1= 2)Liy(2) + £ (r) (14 2)Liy(2) + (1= 1) My (r) Ay (2) + My (r) Ay (). (A.8)

There also the idea is to compare (A.7) and (A.8). As previously, we easily derive that

N | =

Z TmN T(Merl - Mm)(2r - 1)7
=0

N—2
Ky (r) = s (r) =
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and also that A\ and )\x are zero.

The end of the proof is nearly the same as in the case & = 0. The function ¢, can be written as a sum
oL + ¢, where ¢k is equal to (0,0,kn(r) Ln(2)) and the polynomial xy vanishes at 7 = 0 and r = 1,
while ¢%; is exactly divergence-free and its axial component @2, has degree < N — 1 with respect to z. The
standard Poincaré—Friedrichs inequality applied to xy yields

||50.1ZNHL§(Q) <c HaMPiN”L%(Q) =c ||az8071-1v - aTSD.lzNHLf(Q)' (A.9)

Next, it follows from Lemma 3.3 that
le%llz2 0 < ¢ lleurly o[l L2 (o) (A.10)

We conclude by noting that curly, ¢}, and curly ¢3; are orthogonal in L#()3.

APPENDIX B

The aim of this Appendix is to prove Lemmas 4.6 and 4.12, namely to establish the approximation properties
of the space Xy for functions in X (€2) and also of the space Yy for functions in Y3 (€2). We use two
steps for this.

Approximation of smooth functions

In the z-direction, we consider the orthogonal projection operator 7% _; from L?*(—1,1) onto Pn_;(—1,1)
and also the projection operator m}7 from H'(—1,1) onto Px(—1,1) which preserves the values in £1 and such
that

Vo € Hl(_lal)v (ﬂ-ll\fz‘p)/ :77-12\7—190/' (B.1)
In the r-direction, we use the same projection operators as 7%;_; and w}\,z, now translated onto ]0,1[, and we
denote them by 7%, and 7k, respectively. We also introduce the analogue wX" ; of wk" with N replaced by
N — 1 and the projection operator 74 from H?(0,1) onto Px(0,1) which preserves the values of the function
and of its first derivative in 0 and 1 and such that

Vo € H*(0,1), (nx¢) =nn_1¢. (B.2)

Let now ¢ be any smooth enough vector field on €2, with components ¢,, ¢y and ¢,. The idea is to define
the vector field II$ ¢ with components (II§ ), (I ¢)e and (IS ), by the formula

Iy e)r = W}\f—l © 7T11VZ<PT7 Iy p)e = rt 7r]2\f o Wll\fz(r ©6), (ye). = 7r]2\f O My 1Pz (B.3)

The idea for the choice of this operator, due to ([6], Sect. 4), in the Cartesian case, is that
1) for any smooth enough function ¢, it preserves the nullity at » = 0 of @y for k = 0, of ¢, and g — ik @,
for |k| > 1, so that it maps smooth functions in H(curly, ) into Yy z);
2) for any function ¢ such that yr vanishes, so does v (II§ ), so that it maps smooth functions in
X(k) (Q) into XN(k);
3) the following property can be derived from (B.1) and (B.2)

(curl, IS @), = 73 o i, (curly @), (curly % @)g = T, o Tar_ (curly, @),

B4
(curly %), = 7n_, o i (curly, )., B4

where, for m =1 and 2, the operator 73" is defined by

1

N =1 my (re).
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Let us recall from ([7], Sect. II.1), that the following estimates hold for all functions ¢ in H*(—1,1), s > 0,

lo—mrh_1¢llr2(=1,1) LN |ollgs(=1,1), (B.5)

and for all functions ¢ in H%(—1,1), s > 1,
o = ellz11) < e N2 llell s -1,)- (B.6)
Similarly the following estimates hold for m = 1,2 and for all functions ¢ in H;(0,1), s > m + 1,

e — 78" @llz20,1) < e N2 ollas0,1)- (B.7)

Establishing an estimate for the operator 73" requires a further argument which is analogous to ([7],

Thm. I11.1.19, see the proof of this theorem).
Lemma B.1. The following estimate holds for all functions ¢ in H;(0,1), s > m,
o =70l r2(0,1) < e N7 @l ag 0,1)- (B.8)

Proof. We only give the proof in the case m = 1 since its analogue in the case m = 2 is rather similar but more
technical. Let us recall from ([7], Déf. 11.1.8) that, for any function ¢ in H'(0,1), we have

—myp=¢° —aye®,  with 9% =4 — (1 =r)p(0) —r (1),

and the restriction of 7X to HZ(0,1) is nothing but the orthogonal projection from H}(0,1) onto P, (0, 1).
Denoting by Ly, n > 0, the Legendre polynomials L, composed with the homotethy that maps [0, 1] onto [—1, 1],
we write for any ¥° in H}(0,1)

Zan (1—r)L,, thus miy®= Zan (1—r)L,

so that . .
[ -t tar< [P - et - ar < Za n.
0 0
This yields
1
[ @ = et < e N2 O - a e o
0
Thus, we derive from (B.1) and (B.7) that, for all s > 2,
1@ = 7n ) r 2 0,0) < e N2 190 0,1)-

The same estimate holds with 19 replaced by % (note that H{(0,1) is embedded in €°([0,1]) for s > 1), and
of course with ¢ replaced by r¢, whence the desired result for s > 2. Moreover the previous estimate holds
with ||1/}O||Hi<(0,1) replaced by ||Tl)0||H5(071) for s > 1, see (B.6), and, from the previous embedding, ¥° can be
replaced by v for s > 1. Finally, an inequality of Hardy’s type gives

7ol s 0,1) < llellms0,1)s

for s =1 and s = 2, whence for 1 < s < 2 by an interpolation argument, which concludes the proof.
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Note that, in (B.3), we can write equivalently

(M p)e = T © TN Po-
So estimates for the operator II§; can be derived from (B.5) to (B.8) thanks to a tensorization argument.

Lemma B.2. The following estimate holds for all functions ¢ in H(curly, Q)N H;(Q)3, s > 3,
e — Ml zaays < e N gl - (B.9)
The following estimate holds for all functions ¢ in H(curly, Q) such that curlyp belongs to Hj(2)3, s > 2,
Jeurly (o — )3 oy < ¢ N~ lleurly @] s - (B.10)

Proof. For instance, we have the formula

lor — My )rllz2 ) < ller — N _10rll200) + llor — T8 rllL2(0) + I(id — 73 _1) (0r — TR @) |22 (00)»

so that the estimate for ||, — (IIf )| 12(q) follows from (B.6) and (B.7). Analogous arguments can be used
for the other five terms.

Approximation of any functions

We now wish to extend the results of Lemma B.2 to less smooth functions. We first work with functions
with zero tangential trace.

Lemma B.3. The following estimate holds for any function ¢ in X (2) such that curlyp belongs to H; ()3,
s>0,
inf [Jeurly (¢ — on)l 202 < cN77 [leurly | m: )z (B.11)

PNEXN (k)
Proof. We first observe from ([5], Thm. 3.17) that the mapping: ¢ — curly ¢ is continuous from X, (£2) onto
the space

Z3)(Q) = {v € L}(Q)?; divjv =0in Q and yyv = 0 sur I'},
where the normal trace operator vy is simply defined by yyv = v, n, + v, n.. Let now Iy be the orthogonal
projection operator from Z (Q) onto the range curly, X (k) of the space Xy (1) by the operator curly associated
with the scalar product of L2(Q)3. Then, the estimate

lv = Tnvl| L2 < e N~° 0]l ms @)

holds for s = 0 by definition and for s > 2 from (B.10). So the desired result follows by an interpolation
argument between the spaces Z(j) () N H{(2)*, s = 0 and s > 2, which can be derived from an extension of
([9], Rem. 4.13) to the case of a cylinder.

The same argument can be used for functions in ¥{x)(€2), but this does not lead to estimate of | — ¢y || L2(q)s
(the corresponding interpolation property seems presently unknown). So to conclude the proof of Lemma 4.12
we are led to use the orthogonal projection operator from H%k) (€2) onto Y (xy. The next result is derived from
([10], Sect. V.3).

Lemma B.4. The following estimate holds for any function ¢ in Yy (€2) N H;(Q)3, s> 1,

inf (N e = enllrz()p + [leurly (¢ — ‘PN)HLf(Q)i") < N el g s (B.12)

PNEYN (k)
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A further result

In order to prove Lemma 4.13, we introduce the modified operator ﬁf\,, defined as follows on smooth enough
vector fields ¢:

1

(O% @) =ma_qomaer,  ([y@lo=r'ayonn(rey), (OXe): =mx oTN_1¢:, (B.13)

where the operator 737 is the analogue on |—1, 1] of the operator w3". This operator has the same properties as
1%, plus the further one: if yr(curly ¢) is equal to zero, so is yr(curly I15,¢). Let Xy 4y be the subspace of
vector fields ¢ in Xz such that yr(curly ) is equal to zero.

Lemma B.5. The following estimate holds for any function ¢ in X ;) (2) such that curlye belongs to HI(Q)3,
t > 1, and yr(curly ) is equal to zero,

. 3_
inf  |[eurly curly (¢ — oy )12 < c N2 " |lcurly, el i (B.14)
PNEXN (k)

Proof. The same arguments as for (B.10) and a further investigation of the property of the operator 7% in

the H{(0,1)-seminorm yields that (B.14) holds with ¢y = Il for t > 2. So, we conclude by the same

arguments as for Lemma B.3, by noting that, for any function ¢ satisfying the assumptions of the lemma,
curly ¢ belongs to
Z)(Q) = {v € H| (Q)% divyv=0inQ}

and using an interpolation argument between the spaces Z(k) (Q) N H{(2)3 relying on ([9], Cor. 4.6).
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