
ESAIM: M2AN ESAIM: Mathematical Modelling and Numerical Analysis
Vol. 38, No 5, 2004, pp. 765–780
DOI: 10.1051/m2an:2004038

ANALYSIS OF TWO-LEVEL DOMAIN DECOMPOSITION PRECONDITIONERS
BASED ON AGGREGATION

Marzio Sala1

Abstract. In this paper we present two-level overlapping domain decomposition preconditioners for
the finite-element discretisation of elliptic problems in two and three dimensions. The computational
domain is partitioned into overlapping subdomains, and a coarse space correction is added. We present
an algebraic way to define the coarse space, based on the concept of aggregation. This employs a
(smoothed) aggregation technique and does not require the introduction of a coarse grid. We consider
a set of assumptions on the coarse basis functions, to ensure bound for the resulting preconditioned sys-
tem. These assumptions only involve geometrical quantities associated to the aggregates, namely their
diameter and the overlap. A condition number which depends on the product of the relative overlap
among the subdomains and the relative overlap among the aggregates is proved. Numerical experiments
on a model problem are reported to illustrate the performance of the proposed preconditioners.
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1. Introduction

In this paper we consider the scalar Poisson problem
{
−∆u = f in Ω

u = 0 on ∂Ω
(1)

where Ω is a bounded polyhedral domain in R
d, d ∈ {2, 3}. The finite-element discretisation of this problem

leads to a sparse, large linear system, which is typically solved using an iterative solver, like the conjugate
gradient. As the condition number of the associated matrix is O(h−2) (see for instance [15]), where h is the grid
size of the triangulation, a preconditioner needs to be employed. A possible solution, well-suited for parallel
computations, is to resort to preconditioners based on domain decomposition (DD) ideas, see [16, 19].

Here, we consider Schwarz procedures, which can be described as follows. The computational domain Ω is
subdivided into M overlapping subdomains Ωi, i = 1, . . . , M , and local Dirichlet-type problems are then solved
on each Ωi. The communication between the solutions on the different subdomains is here guaranteed by the
overlapping regions.
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It is well-known that this procedure, referred to as one-level Schwarz method, is non-scalable. In fact, the
information exchange among the subdomains is only through the overlapping regions, while for elliptic problems
the domain of dependence is global. A good scalability may be recovered by the addition of a coarse operator:
the original problem is solved on a coarse grid, to furnish a way to spread out information among far away
subdomains. Thinking as in a multigrid setting, this coarse space will be used to correct the “smooth” part of
the error, whereas the local preconditioner is used to damp the “high-frequency” ones.

A typical choice for the coarse problem is a finite-element approximation on a coarse grid. For structured
grids, it is relatively easy to find such a coarse triangulation. For unstructured grids, it is not always a trivial
task to define the interpolation operator from the fine grid to the coarse grid, and it may be problematic to
ensure that the boundary conditions are correctly represented on the coarse level. Moreover, the implementation
of this operator can be difficult or computationally expensive, especially for 3D computations.

A possible way to overcome the difficulties induced by the definition of a coarse grid – without losing the
power of two-level methods – is to resort to aggregation procedures. As presented in this paper, aggregation
(or agglomeration) is of particular advantage when dealing with problems defined on unstructured grids, since
it is possible to introduce coarse spaces without the need of introducing coarse triangulations.

The procedure is as follows. First, the differential problem is discretized on the fine grid. Then, the matrix
corresponding to the discretisation of the differential operator on the coarse space is build using the elements
of the fine-grid matrix. The basis functions of the coarse space are formed by summing up the finite element
basis functions of the nodes in each aggregate.

Aggregation procedures have been presented in literature by various authors. An aggregation technique was
first introduced in 1951 by Leontief ([12], Chap. 9). Here, it is written that “in the case of products which
comprise final demand, if enough is known to form a group of products whose use is strictly complementary [...],
no information is sacrificed by lumping them together. By the same token, products which are substitutable but
have dissimilar production functions must be separately identified since a change in their relative consumption
will have different effects on the economy”. Since then, aggregation has been extensively used in Economics;
see [13] and the references therein. For multigrid applications, smoothed aggregation techniques are used, for
example, in [2, 23], where investigations of the smoothed aggregation properties have been reported. In the
framework of domain decomposition methods, the focus is mainly on two-level methods. Results are presented
in [14] for the shallow water equations and 2D potential flows, in [6] for 3D potential flow computations, in [8]
for groundwater flows, in [9] for multiphase flows, in [10] for discontinuous Galerkin approximation of advection-
diffusion problems, and in [17, 18] for the 3D compressible Euler equations on unstructured tetrahedral grids.

The basic theory and the assumptions on the smoothed aggregation procedures here presented are essentially
the same as those already proposed in some recent articles; see [1,8,11]. However, in these articles the amount δ
of the overlap among the subdomains is assumed to be equal to that among the aggregates, here indicated by δ0.
Also, the size of the subdomains H is assumed to be equal to that H0 of the aggregates. In this paper, instead,
we keep these two ingredients separate, thus extending the previously developed theory. This allows to better
underline the different phases of our smoothed aggregation algorithm: the definition of a subdomain partition,
and the definition of the aggregates. Effects of these two phases are reflected on the proposed bound of the
condition number which involves geometrical quantities on the subdomains (H and δ) and on the aggregates
(H0 and δ0).

For the sake of completeness, for the special case of H = H0 and δ = δ0 we report an improved convergence
bound, as proposed in [11]. In this case, the bound depends linearly on H/h, and this seems to be confirmed
by our numerical results. However, it was not possible to extend the proof of [11] to our general setting.

The paper outline is as follows. Section 2 introduces the problem and the basic results of two-level Schwarz
preconditioners. The definition of the coarse space using the concept of aggregation is considered in Section 3.
In Section 4, a theoretical estimate of the condition number for a model problem is given. Section 5 reports the
improved convergence bound presented in [11]. Section 6 reports several numerical results for a model problem.
Finally, conclusions are drawn in Section 7.
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2. Model problem

Let us consider again the Poisson problem (1), whose finite-element approximation reads

{
Find uh ∈ Vh such that
a(uh, vh) = f(vh) ∀vh ∈ Vh,

(2)

with a(uh, vh) =
∫
Ω
∇uh · ∇vh dΩ, f(vh) =

∫
Ω

fvh dΩ. By assumption, f ∈ L2(Ω), and Vh is a family of
finite dimensional subspaces of H1

0 (Ω). Precisely, Vh is the space of linear finite-element functions defined on a
conforming, quasi-uniform triangulation Th of Ω. By notation, ϕi is a generic basis function of Vh and h the
grid size parameter. Existence of a unique solution of (2) is shown, for instance, in [15].

The computational domain Ω is then partitioned into M overlapping subdomains Ωi. On each Ωi we have,
by construction, diam(Ωi) ≤ CH . Here and in the following, C is a constant independent of H , h, the overlap
among the subdomains δ, and the coarse space parameters H0, δ0, and n0 defined below.

The algebraic formulation of problem (2) reads

Au = f , (3)

where A ∈ R
n×n is a symmetric positive definite matrix, u ∈ R

n the solution vector, and f ∈ R
n the discreti-

sation of force term f .
Let Vi ⊂ H1

0 (Ωi) be a subspace of Vh containing the finite element functions defined on each subdomain Ωi,
i = 1, . . . , M . We can now define the matrices Bi = RT

i A−1
i Ri, where Ai = RiART

i and RT
i is the discrete

representation of the interpolation from Vi to Vh. With this notation, the one-level additive Schwarz method
can be regarded as preconditioned iterative method (ideally, the preconditioned conjugate gradient method if A
is symmetric and positive definite) for solving (3) with a preconditioner PS such that

P−1
S =

M∑
i=1

Bi. (4)

In a two-level Schwarz method, a further term B0 = RT
0 A−1

0 R0 is added to the preconditioner, obtaining

P−1
S,C,add =

M∑
i=0

Bi =
M∑
i=0

RT
i A−1

i Ri. (5)

A0 corresponds to the solution of the original variational problem in the space V0, which is “coarse” in the
sense that it contains a limited number of degrees of freedom, in order to make the “exact” inversion of A0

computationally acceptable – if n0 is the dimension of the coarse space, one must have n0 � n.
An alternative two-level method, derived from a three-step Richardson method, leads to the following pre-

conditioned matrix:

P−1
C,hybridA = I − (I − B0A)

(
I − P−1

S A
)
(I − B0A). (6)

This approach is very close to the so-called balancing Neumann-Neumann method for non-overlapping decom-
positions [20]. If the roles of B0 and PS are interchanged, the resulting preconditioner is close to the multigrid
approach, with PS playing the role of the smoother.

Remark 1. We always assume exact solvers for both the local and the coarse problems; approximate solvers
could be considered as well with minor modifications.
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We assume that there exists a set of interpolation operators Ii : Vi → Vh, and that a continuous and coercive
bilinear form ai(·, ·) that approximates a(·, ·) is defined on each Vi. Finally, let the projection-like operators
T̃i : Vh → Vi be defined as

ai

(
T̃iu, v

)
= a(u, Iiv) ∀v ∈ Vi, i = 1, . . . , M. (7)

The properties of additive Schwarz preconditioner (5) can be studied using an abstract convergence theory, as
presented in [5]; see also [19] and the references therein. This theory is based on the following 3 assumptions.

Assumption 1. Let C0 be the minimum constant such that for all uh ∈ Vh there exists a representation
uh =

∑M
i=0 Iiui, ui ∈ Vi such that

M∑
i=0

ai(ui, ui) ≤ C2
0a(uh, uh). (8)

Assumption 2. Define 0 ≤ εi,j ≤ 1 to be the minimal values that satisfy

|a(Iiui, Ijuj)| ≤ εi,ja(Iiui, Iiui)1/2a(Ijuj, Ijuj)1/2 ∀ui ∈ Vi, ∀uj ∈ Vj , i, j = 1, . . . , M.

We define ρ(ε) to be the spectral radius of a matrix ε whose entries are the εi,j.

Assumption 3. Let ω be the minimum constant such that

a(Iiui, Iiui) ≤ ωai(ui, ui) ∀ui ∈ Vi, i = 0, . . . , M (9)

where we assume that the ai(·, ·) are suitably scaled.

The following theorem holds. By notation, κ(B) denotes the the spectral condition number of the square
matrix B. For the proof, we refer to [5].

Lemma 1. The abstract additive Schwarz preconditioner satisfies

κ(P−1
S,C,addA) ≤ ω [1 + ρ(ε)] C2

0 . (10)

In particular, 1/C2
0 is a sharp lower bound on the smallest eigenvalue of P−1

S,C,addA and ω [1 + ρ(ε)] is a bound
on the largest eigenvalue of P−1

S,C,addA.

3. Definition of the coarse space

The spectral properties (and the parallel performance) of the two-level Schwarz preconditioner will depend
on the definition of the coarse space V0. There are virtually unlimited choices of the coarse grid correction that
may be used. Convergence of the entire scheme will depend on the particular interpolation and coarse grid
operator used. When possible, this coarse space V0 may be itself embedded into Vh. If a coarse grid is used to
define V0, the following result holds [19].

Theorem 1. For the additive two-level overlapping Schwarz method, when the overlap is uniform of width O(δ),
the coarse grid space V0 corresponds to the finite-element functions on elements of O(H), and V0 ⊂ Vh, we have:

κ(P−1
S,C,addA) ≤ C

(
1 +

H

δ

)
, (11)

where C is a constant independent of h, H and δ.
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Figure 1. Example of basis function for the fine grid (on the left), and non-smoothed basis
function for the coarse space (on the right).

In aggregation procedures, instead, the definition of the coarse space does not require the explicit construction
of a coarse triangulation, since each element of V0 is actually composed by a linear combination of elements
of Vh. More precisely, we will group the nodes of the fine grid into n0 sets of contiguous nodes, called aggregates.
Then, the basis functions of the coarse space V0 will be formed by summing up the finite element basis functions
of all the nodes belonging to each aggregate. This defines the restriction operator R0. The coarse matrix is
computed as A0 = R0ART

0 .
To define R0, we start by constructing a tentative, non-smoothed restriction R̃0, so that each fine grid node

is included in just one aggregate. This decomposition can be obtained using a graph partitioning algorithm
(using for instance a vertex-oriented decomposition of the grid). The number of aggregates n0 will represent
the dimension of the coarse space V0, since each aggregate will be given a single coarse grid basis function. We
will indicate with ϑ̃i the set of nodes that form the non-smoothed aggregate i. The entries of R̃0 are thus as
follows:

R̃0(i, j) =

{
1 if j ∈ ϑ̃i

0 otherwise.
(12)

R̃0 can be viewed as a simple grid transfer operator corresponding to piecewise constant interpolation. With
this technique V0 ⊂ Vh and the non-smoothed basis functions {Φ̃i} of V0 are defined as

Φ̃i(x) =
∑
j∈ϑ̃i

ϕj(x). (13)

A 2D example is reported in Figure 1.
Once R̃0 has been defined, the second step (that may actually be avoided) consists of applying a prolongator

smoother S̃0 to produce the final prolongator operator RT
0 = R̃T

0 S̃0. The idea is to smooth out the {Φ̃i}, to
reduce their H1-norm (this also results in an increased support), using the stencil of suitable polynomials in A.
The final coarse space reads

V0 := span{Φi} = span
{
S̃0Φ̃i

}
.

A possible choice for the smoother is the Richardson smoother [10,11] (where A may need to be suitably scaled):

S̃ = S̃0(	k, k) = (I − 	kA)k, (14)

where 	k ∈ (0, 1] is a real parameter and k ∈ N0. Unless A has particular properties (for example, it is a
M -matrix), the spectral radius of a non-damped Richardson method is greater than one, hence the smoother
requires the definition of a proper value for 	. In this case, 	 must be chosen such that 	 < 2/ρ(A). Usually, it
is not too difficult to obtain a good estimate of ρ(A), using for instance the Gershgorin theorem, a small number
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of Lanczos or conjugate gradient or power method iterations. It is sometimes useful to scale the estimated value
by a small factor, because most computational methods give lower bounds to the largest eigenvalue.

Other smoothers proposed in literature are a recursive Richardson smoother [2, 22], or a SPAI smoother [3].
For a general comparison of these smoothers the reader is addressed to [10] or [11], where it is shown that, for
the considered model problem, the effect of the above mentioned smoothers is quite similar.

4. A convergence bound

In order to provide a bound for the two-level Schwarz preconditioner with aggregation coarse space, we need
to make precise some geometrical information about the used decomposition. This is done in the following
properties. By notation, we indicate with ϑj the set of nodes belonging to the j-smoothed aggregate, with
Θj = int

(
∪i∈ϑj supp(ϕi)

)
the support of Φj , j = 1, . . . , n0, and with H0 = maxj{diam(Θj)}. In the following

we will use the term aggregate for both ϑj and Θj, depending on the context.

Property 1 (partition). There exist two constants C1 and C2 so that, for each aggregate Θi, i = 1, . . . , n0, we
have:
a. diam(Θi) ≤ C1H0;
b. the Lebesgue measure |Θi| of Θi satisfies |Θi| ≥ C2H

d
0 ;

c. the overlap among the aggregates is of order δ0.

Property 1 states that the aggregates have diameter of comparable size H0 and are shape-regular. The following
Property 2 requires a certain regularity on the coarse space basis function Φi.

Property 2 (coarse space). We assume that the basis functions {Φi} of the coarse space satisfy

a. |Φi|2H1(Ω) ≤ C
Hd−1

0
δ0

;
b. ||Φi||2L2(Ω) ≤ CHd

0 ;
c. there is a domain Ω̂ ⊂ Ω such that

∑
i Φi(x) = 1 for every x ∈ Ω̂ and supx∈Ω\Ω̂ dist(x, ∂Ω) ≤ CH0.

We can now prove the following lemma.

Lemma 2. Let us define the operator Q0 : Vh → V0 by

Q0u =
n0∑
i=1

αiΦi, αi =
1

|Θi|

∫
Θi

u(x)dΩ. (15)

If Properties 1 and 2 are satisfied, then there exists a constant C > 0 independent of H0, δ0 and h such that
∀u ∈ Vh

a. ||u − Q0u||2L2(Ω) ≤ CH2
0 |u|2H1(Ω);

b. |Q0u|2H1(Ω) ≤ C H0
δ0

|u|2H1(Ω).

Proof. The proof extends a similar proof proposed in [8]. It is split into 2 parts. First, we prove Lemma 2
in Ω \ Ω̂; then, in Ω̂, where Ω̂ is the domain introduced in Property 2. Throughout the proof, C represents a
generic positive constant independent of h, H , H0, δ, and δ0.

First, we note that, for the operator Q0 defined by (15), we have

n0∑
i=1

α2
i (u) ≤ CH−d

0 ||u||2L2(Ω), (16)

which easily follows by the Cauchy-Schwarz inequality.
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Figure 2. On the left, in shaded colour, ΩΓ. On the right, in shaded colour, Ω̌, and in white, Ω̂.

Now, let us consider Lemma 2a, and set Ω̌ = Ω \ Ω̂. Further, define

B =
{
i : Θi ∩ Ω̌ �= ∅

}
, Ξ̌ =

⋃
i∈B

Θi, W = sup
x∈Ω̌

inf
y∈∂Ω

dist(x, y)

and set ΩΓ = {x ∈ Ω | dist(x, ∂Ω) ≤ W}. Figure 2 illustrates the domains Ω̌ and ΩΓ.
From Property 1c it follows that W ≤ CH0, and therefore the Poincaré inequality yields

‖u‖L2(Ω̌) ≤ ‖u‖L2(ΩΓ) ≤ CH0|u|H1(ΩΓ). (17)

The restriction of Q0u onto Ω̌ can be expressed as

(Q0u) |Ω̌ =
∑
i∈B

αi(u)Φi(x)|Ω̌.

Further, let us set
Ni = {j | Θj ∩ Θi �= ∅} . (18)

We have

‖Q0u‖2
L2(Ω̌) =

∑
i∈B

∑
j∈Ni∩B

(αi(u)Φi, αj(u)Φj)L2(Ω̌)

≤
∑
i∈B

∑
j∈Ni∩B

|αi(u)| · |αj(u)| · ‖Φi‖L2(Ω)‖Φj‖L2(Ω)

[by Prop. 2b] ≤ CHd
0

∑
i∈B

∑
j∈Ni∩B

1
2
(
α2

i (u) + α2
j (u)

)
≤ CHd

0 max {cardNi}
∑
i∈B

α2
i (u)

[by (16)] ≤ C ‖u‖2
L2(ΩΓ) .

Using the last inequality together with inequality (17) gives

‖u − Q0u‖L2(Ω̌) ≤ C‖u‖L2(Ω̌) ≤ CH0|u|H1(ΩΓ).

In an analogous way, we can estimate 2b in Ω̌ exploiting Property 2a, obtaining

|Q0u|2H1(Ω̌) ≤ CH−1
0 /δ0 ‖u‖2

L2(ΩΓ) ≤ CH0/δ0 |u|2H1(ΩΓ) . (19)

Now, we turn our attention to Ω̂.
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For every function u ∈ Vh, let us consider an extension uE satisfying

‖uE‖H1(Rd) ≤ ‖u‖H1(Ω), uE = u in Ω.

For j = 1, . . . , n0, we define Θ�
j = ∪i∈Nj Θi with Ni given by (18), and Ξj to be the ball circumscribing Θ�

j .
From property 1 is follows that diam(Ξj) ≤ CH0. We now use the Friedrichs inequality in the form

‖u‖L2(Ξj) ≤ CH0 |u|H1(Ξj) , ∀u ∈
{

v ∈ H1(Ξj) |
∫

Ξj

v dx = 0

}
. (20)

For every j = 1, . . . , n0 we define

cj =
∫

Ξj

uE dx, ūj = uE − cj .

Then, the Friedrichs inequality holds for every ūj. Due to Property 2c, for every x ∈ Θj ∩ Ω̂ it holds

(Q0u)(x) = (Q0ūj)(x) + Q0cj

=
∑
i∈Nj

αi(ūj)Φi(x) + cj

∑
i∈Nj

Φi(x)

[by Prop. 2c] = (Q0ūj)(x) + cj .

Therefore,

‖u − Q0u‖2
L2(Ω̂) ≤=

∑
i

‖(I − Q0)(ūi + ci)‖2
L2(Ξi∩Ω̂)

≤ 2
∑

i

(
‖ūi‖2

L2(Ξi∩Ω̂) + ‖Q0ūi‖2
L2(Ξi∩Ω̂)

)
. (21)

Further,

‖Q0ūi‖2
L2(Ξi∩Ω̂) ≤

∥∥∥∥∥∥
∑
j∈Ni

αj(ūi)Φj

∥∥∥∥∥∥
2

L2(Ω)

≤


∑

j∈Ni

|αj(ūi)| · ‖Φj‖L2(Ω)




2

≤ card{Nj}
∑
j∈Ni

α2
j (ūi) ‖Φj‖2

L2(Ξi∩Ω̌)

[by 2b and (16)] ≤ C ‖ūi‖2
L2(Ξi∩Ω̌) .

Substituting the last inequality into (21), using the Friedrichs inequality (20) and exploiting the bounded
intersections of balls {Ξi}n0

i=1, we get

‖u − Q0u‖2
L2(Ω̂) ≤ C

n0∑
i=1

‖ūi‖2
L2(Ξi)

≤ CH2
0 |u|2H1(Ω) .
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We have therefore proved Lemma 2a, since

‖u − Q0u‖2
L2(Ω) = ‖u − Q0u‖2

L2(Ω̌) + ‖u − Q0u‖2
L2(Ω̂)

≤ CH2
0 |u|2H1(ΩΓ) + CH2

0 |u|2H1(Ω) ≤ CH2
0 |u|2H1(Ω) .

To finish the proof, we turn to 2b in Ω̂. We have

|Q0u|2H1(Ω̂) ≤
n0∑
i=1

|Q0u|2H1(Θi∩Ω̂)

[by Prop. 2a and (16)] ≤ C
Hd−1

0

δ0
H−d

0

n0∑
i=1

∑
j∈Ni

‖ūi‖2
L2(Θi)

[by (20)] ≤ C
H0

δ0

n0∑
i=1

|ūi|2H1(Ξi)

≤ C
H0

δ0
|u|2H1(Ω) . �

For our main result we need the following two lemmas.

Lemma 3. Let Ωi ⊂ R
d, d = 2, 3, be a rectangle of diameter H, and let Γδi be a strip along its boundary of

width δ > 0. Then, for any function u ∈ H1(Ωi),

‖u‖2
L2(Γδi

) ≤ Cδ2

[(
1 +

H

δ

)
|u|2H1(Ωi)

+
1

Hδ
‖u‖2

L2(Ωi)

]
. (22)

Proof. See [4]. �
Lemma 4. Under Properties 1 and 2 and for every finite element function uh ∈ Vh, there exists a decomposition
{ui ∈ Vi} , i = 0, . . . , M , such that

uh =
M∑
i=0

ui, (23)

and
M∑
i=0

|ui|2H1(Ω) ≤ C

(
1 +

H

δ

)(
1 +

H0

δ0

)
|uh|2H1(Ω),

with H0 ≤ H and δ0 ≥ δ.

Proof. Define Ih to be the fine grid operator Ih : V → Vh such that

Ih(uh) =
n∑

i=1

uh(xi)ϕi

where ϕi is a generic finite element basis on the fine grid, and xi’s are the fine grid nodal points. Let ηi be a
partition of unity such that ηi ∈ C∞

0 (Ωi) and 0 ≤ ηi ≤ 1. We then define

u0 = Q0uh, w = uh − u0, ui = Ih(ηiw).

Equation (23) is verified by construction. Because of the definitions on the overlap, we can ensure that the
gradients of ηi are well behaved. That is, we can construct ηi so that |∇ηi|2L∞(Ω) ≤ C/δ2.
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Over a single element K and using the inverse inequality, we easily get

|ui|2H1(K) = |Ih [η̄iw + (ηi − η̄i)w]|2H1(K)

≤ 2 |η̄iw|2H1(K) + 2 |Ih(ηi − η̄i)w|2H1(K)

≤ 2 |η̄iw|2H1(K) + Ch−2 ‖Ih(ηi − η̄i)w‖2
L2(K)

≤ 2 |η̄iw|2H1(K) + Ch−2 ‖ηi − η̄i‖2
L∞(K) ‖Ihw‖2

L2(K) ,

where η̄i being the average of ηi on element K. Now, we sum up over all the elements. The last term is
identically zero for all elements K in the interior of Ωi. Therefore, when we take the sum over all the elements,
the last term only includes those elements in the overlapping region. Moreover, since a finite number, bounded
independently of h, δ, H and H0, of ui is non-zero for any element K, we obtain summing over i,

M∑
i=1

|ui|2H1(Ω) ≤ C |w|2H1(Ω) Cδ−2
M∑
i=1

‖ui‖2
L2(Γδi

) .

Using Lemma 3 to bound the last term and Lemma 2, we get

M∑
i=1

|ui|2H1(Ω) ≤ C |w|2H1(Ω) + C

M∑
i=1

[(
1 +

H

δ

)
|ui|2H1(Ω) +

1
Hδ

‖ui‖2
L2(Ω)

]

≤ C |w|2H1(Ω) + C

(
1 +

H

δ

)
|w|2H1(Ω) + C

1
Hδ

‖w‖2
L2(Ω)

≤ C

(
1 +

H

δ

)
|u − Q0u|2H1(Ω) + C

H2
0

Hδ
|u|2H1(Ω)

≤ C

(
1 +

H

δ

)(
1 +

H0

δ0

)
|u|2H1(Ω) .

Note that we have used the fact that δ0 ≥ δ and H0 ≤ H . This latter inequality states that the coarse space
must be sufficiently rich with respect to the number of subdomains. �

The following theorem states the main result of this paper.

Theorem 2 (aggregation coarse space). Let the Properties 1 and 2 hold. Then, for the additive two-level
overlapping Schwarz method, when the overlap is uniform of width O(δ) and V0 = span{Φi, i = 1, . . . , n0}, there
exists C > 0 such that

κ(P−1
S,C,addA) ≤ C

(
1 +

H0

δ0

)(
1 +

H

δ

)
· (24)

Proof. The proof follows easily using Lemma 1. As verified by Lemma 4, the first parameter C2
0 of Definition 1

is bounded by

C2
0 ≤

(
1 +

H

δ

)(
1 +

H0

δ0

)
·

The second parameter can be estimated by using a coloring argument. We know that we can colour the
subdomains with Nc colours, independently of h and H . Taking the coarse space into account we have therefore
that we can group the Ti into Nc + 1 classes. Hence, ρ(ε) ≤ Nc + 1. Since ω = 1 as we suppose to use exact
solvers on the subdomains, the thesis follows from Lemma 1. �

Next, we report two lemmas, which prove that both the non-smoothed and the smoothed aggregation pro-
cedure outlined in Section 3 satisfy Properties 1 and 2.
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Lemma 5 (non-smoothed aggregation). The non-smoothed functions {Φ̃i} defined by equation (13) satisfy
Property 2 with H0 = H̃0 and δ0 = h.

Proof. Property 2a is proved by noting that ∇Φ̃i is zero outside the overlapping part ΓΘ̃i
of Θ̃i of width h,

while it is bounded by 1/h on ΓΘ̃i
, and that ΓΘ̃i

, where the gradient of Φ̃i is non-zero, has a Lebesgue measure
of order O(hH̃d−1

0 ) and the grid is quasi-uniform. Property 2b is shown noting that ||Φ̃i||2L2(Ω) ≤ C|Θ̃i| ≤ CH̃d
0 .

where Θ̃i is the support of Φ̃i. Property 2c easily follows. �

Lemma 6 (smoothed aggregation). Let S̃0 be defined as in equation (14), and let Φ̃i, i = 1, . . . , n0 satisfy
Properties 1 and 2 with H0 replaced by H̃0 and δ0 by δ̃0. Then, for a fixed, sufficiently small, degree k of the
smoother, the coarse functions Φi = S̃0(k)Φ̃i satisfy Properties 1 and 2.

Proof. The effect of the smoother is to increase the diameter of the subdomains and the overlap. The application
of the smoother results in a diameter of the aggregates of O(H̃0 + kh) and an overlap of order O(h+ kh). Since
the triangulation is quasi-uniform, we have that, for a fixed k,

diam(Θi) = C(H̃0 + kh) ≤ CH0.

This verifies Property 1a. Using similar arguments, Property 1b is verified.
Now, let us prove that Property 2a holds. We have

|Φi|2H1(Ω) =
∣∣∣S̃0Φ̃i

∣∣∣2
H1(Ω)

≤ ρ(S̃0)2
∣∣∣Φ̃i

∣∣∣2
H1(Ω)

≤ Cρ(S̃0)2
Hd−1

0

δ0
,

since H̃0 ≤ H0 and δ0 = h + kh ≥ Cδ̃0 for a fixed k.
As regards Property 2b, we have:

‖Φi‖2
L2(Ω) =

∥∥∥S̃0Φ̃i

∥∥∥2

L2(Ω)
≤ ρ(S̃0)2

∥∥∥Φ̃i

∥∥∥2

L2(Ω)
≤ CHd

0 .

To prove Property 2c, we define the function u(x) =
∑n0

i=1 Φ̃i(x), which is equal to one ∀x ∈ Ω̂, and consequently
at every x ∈ Ω outside a strip of width O(δ̃0) around ∂Ω. Thus, we obtain

n0∑
i=1

Φi(x) =

(
S̃0

n0∑
i=1

Φ̃i

)
(x) = (S̃0u)(x) = 1

at every x ∈ Ω outside a strip of width O(h) + kh = O(δ0) around ∂Ω. �

We conclude this section with two remarks about the parallel implementation of SA techniques.

Remark 2. In general, one let each processor build the aggregate corresponding to its piece of the grid
(corresponding to the triangulation of the computational domain), ignoring the connections among subdomains.
That is, each processor is assigned a subgrid of the entire grid (that corresponds to the triangulation of the
subdomain given to that processor); then, a serial aggregation algorithm is used on each subgrid. This approach,
sometimes referred to as decoupled aggregation, is efficient if the load balance of the grid data among the
processors is satisfactory. In general, when the ratio between the number of nodes and the number of aggregates
is large enough, like for the two-level methods here presented, the decoupled aggregation offers good partitioning.
If a large number of aggregates are required (like, for instance, in multilevel methods), decoupled aggregation
may result in a somewhat irregular decomposition, and in this case it is usually worth to re-equilibrate the
partitioning among the subdomains to minimize the dependency of the resulting algorithm on the subdomain
decomposition; see [21].
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Remark 3. If δ0 = δ = ηh, η ≥ 1, and the diameter of the aggregates Θi is bounded by H/χ, where χ ≥ 1,
that is, χH0 = H , we have

κ
(
P−1

S,C,addA
)
≤ C

(
1 +

H

ηh

)(
1 +

H

χηh

)
≤ C

χη2

(
H

h

)2

·

Equation (25) states that we can reduce the condition number by increasing the number of aggregates and the
overlap. Computationally, it is expensive to use wider overlap (a minimal-overlap is often preferred), whereas
larger values of χ have influence only on the coarse problem, whose size is remarkably smaller than that of the
global problem.

5. An improved convergence bound

A possible improvement of the estimate given by Theorem 2 can be obtained considering that each subdomain
defines an aggregate. This bound is presented in [11]. To establish this result, the following property is required.

Property 3. We assume that the basis functions {Φi} , i = 0, . . . , M of the coarse space V0 satisfy

(1) ‖Φi‖2
L∞(Ω) ≤ C;

(2) ‖∇Φi‖2
L∞(Ω) ≤ C/δ2;

(3)
∑M

i=1 Φ(x) = 1, ∀x ∈ Ω̄;
(4) supp (Φi) ⊆ Ω̄i.

The following theorem holds (see [11], Lem. 7).

Theorem 3. Let Properties 1 (with H0 = H) and 3 hold. Then, there exists a constant C > 0 such that

κ(P−1
S,C,addA) ≤ C

(
1 +

H

δ

)
.

6. Numerical experiments

In this section we report some numerical results for problem (1) with Ω = (0, 1) × (0, 1). The grid is built
by dividing Ω into n2 equal squares and subdividing them into two triangles. Thus, we obtain a triangulation
with h = 1

n . As regards the decomposition into subdomains, we consider overlapping squares Ωi of area H2.
We use linear finite-elements, and solve the linear system (3) by the conjugate gradient method. Aggregates are
build, of square shape, by grouping fine-grid nodes into non-overlapping sets. As a result, the overlap among
the aggregates is one element (that is, δ0 = h).

The tables report the estimated condition number for the preconditioned system; see for instance [7].
We have used minimal overlap among the subdomains, that is, δ = h. Equation (12) is used to define R̃0.

The smoother is the Richardson smoother (14), with 	 = 1.5/ρ(Ã0), where 1.5 is a chosen correction factor
to minimize the spectral radius of the coarse problem. Possible under-estimate in the value of ρ(A) could be
handled by lowering this value.

Table 1 gives the condition number for the one-level Schwarz preconditioner (4). The condition number grows
as O(1/hH) as theory predicts [16]. The following Tables 2 and 3, which are about the two-level Schwarz pre-
conditioner (5) and (6) with a coarse space built using a coarse grid, confirm the bound provided by Theorem 1.
Hybrid preconditioners behave only slightly better than additive ones, therefore their use for these kind of
problems seems unjustified. Tables 4 and 5 report the influence of a non-smoothed aggregation procedure. The
effect of the parameter χ of equation (25) can be clearly appreciated. P−1

S,C,hybrid shows the same convergence
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Table 1. Estimated condition number for P−1
S A using the one-level Schwarz preconditioner

PS with minimal overlap (δ = h).

PS H = 1/2 H = 1/4 H = 1/8 H = 1/16
h = 1/16 15.95 27.09 52.08 -
h = 1/32 31.69 54.52 104.85 207.67
h = 1/64 63.98 109.22 210.07 416.09
h = 1/128 127.99 218.48 420.04 832.57

Table 2. Estimated condition number for P−1
S,C,addA, with a coarse space built using a coarse

grid (standard coarse space).

PS,C,add H = 1/4 H = 1/8 H = 1/16 H = 1/32
h = 1/32 7.03 4.94 - -
h = 1/64 12.73 7.59 4.98 -
h = 1/128 23.62 13.17 7.66 4.99
h = 1/256 45.33 24.34 13.28 -

Table 3. Estimated condition number for P−1
S,C,hybridA, with a coarse built using a coarse grid

(standard coarse space).

PS,C,hybrid H = 1/4 H = 1/8 H = 1/16 H = 1/32
h = 1/32 6.11 3.56 - -
h = 1/64 11.47 6.24 3.58 -
h = 1/128 22.26 11.71 6.27 3.58
h = 1/256 43.86 22.71 11.77 -

Table 4. Estimated condition number for P−1
S,C,addA, with a coarse space built using non-

smoothed aggregation.

PS,C,add χ H = 1/4 H = 1/8 H = 1/16
h = 1/16 1 13.37 8.87 -
h = 1/32 1 26.93 17.71 9.82
h = 1/64 1 54.33 35.21 19.70
h = 1/128 1 109.39 70.22 39.07
h = 1/32 2 13.13 7.78 -
h = 1/64 2 27.18 15.28 9.96
h = 1/32 3 7.61 - -
h = 1/64 3 17.13 8.39 -

rate of the additive version, although the estimated condition number is sensibly smaller. Note that two matrix-
vector products are needed to apply P−1

S,C,hybrid to a given vector, thus making its application computationally
more expensive than that of P−1

S,C,add. However, differently from “classical” coarse spaces, hybrid preconditioners
perform much better than their additive versions, with significant reduction in the condition number.

Finally, Tables 6–10 show the influence of the smoother (14) for different values of k. Note that, for all the
smoothers, the hybrid version performs significantly better than the additive one.

By comparing Tables 4 and 6, one can see that one step of smoother (14) results in small reductions in
the condition number, using an additive preconditioner. This reduction is even smaller for the hybrid version,
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Table 5. Estimated condition number for P−1
S,C,hybridA, with a coarse space built using non-

smoothed aggregation, with χ = 1.

PS,C,hybrid H = 1/4 H = 1/8 H = 1/16
h = 1/16 5.24 2.89 -
h = 1/32 10.64 5.66 2.97
h = 1/64 21.60 11.34 5.79
h = 1/128 43.65 22.77 11.55

Table 6. Estimated condition number for P−1
S,C,addA, with a coarse space built using aggrega-

tion and smoother (14) with k = 1 and χ = 1.

PS,C,add H = 1/4 H = 1/8 H = 1/16 H = 1/32
h = 1/16 11.91 6.02 - -
h = 1/32 25.59 14.95 6.28 -
h = 1/64 50.03 32.64 16.23 6.36
h = 1/128 108.13 67.75 35.81 16.631
h = 1/256 218.57 137.91 74.55 -

Table 7. Estimated condition number for P−1
S,C,hybridA, with a coarse space built using aggre-

gation and smoother (14) with k = 1 and χ = 1.

PS,C,hybrid H = 1/4 H = 1/8 H = 1/16 H = 1/32
h = 1/16 5.09 2.86 - -
h = 1/32 10.49 5.63 2.96 -
h = 1/64 21.46 11.31 5.77 2.99
h = 1/128 43.51 22.75 11.54 5.82

Table 8. Estimated condition number for P−1
S,C,addA, with a coarse space built using aggrega-

tion and smoother (14) with k = 2 and χ = 1.

PS,C,add H = 1/4 H = 1/8 H = 1/16 H = 1/32
h = 1/16 10.71 5.70 - -
h = 1/32 24.28 12.78 5.92 -
h = 1/64 51.77 30.35 19.70 10.12
h = 1/128 106.89 65.42 32.97 13.82

as shown by Tables 5 and 7. This suggests that, at least for the considered problem and two-level hybrid
preconditioners, non-smoothed aggregation can be preferred to smoothed aggregation. By comparing Tables 4,
6, 8, and 10, one can note that high-order polynomials can be used to improve the condition number (even if,
for k > 1, better strategies to define the damping parameters need to be studied).

7. Conclusions

In this paper we have presented aggregation procedures to construct the coarse space for two-level Schwarz
preconditioners. The basis functions of V0 are built as a linear combination of the basis functions of the fine
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Table 9. Estimated condition number for P−1
S,C,hybridA, with a coarse space built using aggre-

gation and smoother (14) with k = 2 and χ = 1.

PS,C,hybrid H = 1/4 H = 1/8 H = 1/16 H = 1/32
h = 1/16 5.00 2.82 - -
h = 1/32 10.39 5.611 . -
h = 1/64 21.36 11.29 5.78 2.98

Table 10. Estimated condition number for P−1
S,C,addA, with a coarse space build using aggre-

gation, using smoother (14) with k = 3 and χ = 1.

PS,C,add H = 1/4 H = 1/8 H = 1/16 H = 1/32
h = 1/16 9.77 5.59 - -
h = 1/32 23.12 11.08 5.88 -
h = 1/64 50.56 28.31 11.55 -

space, and the use of a coarse triangulation is not required. For this reason, aggregation procedures can be
easily applied to problems defined on complex geometries without losing the power of two-level methods. The
coarse matrix can be constructed automatically and for any computational grid with no input from the user,
except for the linear system matrix A and the dimension of the coarse space. Moreover, the computational
complexity of the aggregation procedure is smaller since the method is simpler to implement. This simplicity
has its origin in the way the restriction and interpolation operators are defined.

A theoretical analysis is reported for an elliptic model problem, discretized on a quasi-uniform grid with
finite-elements. Our theory extends results presented in literature; see [8, 11]. There, the authors assume
equal overlap among the subdomains δ and the aggregates δ0, and equal size of the subdomains H and the
aggregates H0. Instead, in the bound of Theorem 2, the influence of the subdomain decomposition and the
aggregates are kept separate.

For the special case H = H0 and δ = δ0, Theorem 3 furnishes an improved convergence bound, which depends
linearly on H/δ. However, the basis functions of the coarse space must satisfy different properties: Property 2
for Theorem 2 and Property 3 for Theorem 3. It can be proved that the presented smoother satisfies Property 2,
while, to our knowledge, there are no proofs that it satisfies Property 3. (We note however that this property
can be verified for special cases.) Theorem 2 is more general and allows aggregates and subdomains of different
shapes and overlap, but numerical results (at least for our model problem) seem to satisfy Theorem 3.

Acknowledgements. The author wants to thank the anonymous referees for their helpful suggestions, that helped to
improve the quality of this paper.
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