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ON THE MODELING OF THE TRANSPORT OF PARTICLES
IN TURBULENT FLOWS

Thierry Goudon1 and Frédéric Poupaud2

Abstract. We investigate different asymptotic regimes for Vlasov equations modeling the evolution
of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion
effective equation on the concentration of particles. In the second case, the effective model relies on a
Vlasov-Fokker-Planck equation.
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1. Introduction

In this paper, we investigate models describing the evolution of particles dispersed in a turbulent fluid. These
models arise for instance in combustion theory, as in the description of injection processes in Diesel engines, or
rocket propulsors. The particles are described through a density function f(t, x, v) ≥ 0. Given Ω ⊂ R

N and
V ⊂ R

N , the quantity ∫
Ω

∫
V
f(t, x, v) dv dx

is interpreted as the number of particles occupying at time t ≥ 0, a position x in the set Ω, and having their
velocity v in the set V . The fluid is described through its velocity field u(t, x) ∈ R

N . Forces exerted on the
particles are supposed to reduce to the friction forces exerted by the surrounding fluid. They are supposed to
be proportional to the relative velocity (u − v): the so-called Stokes force is then defined by

MF (t, x) = 6πµa (u(t, x) − v)

where:
– µ is the dynamic viscosity of the fluid;
– a is the radius, supposed constant, of the particles;
– M is the mass of a particle. In the sequel, we assume that the particles are spherically shaped, so that
M = 4

3πa
3 ρp, ρp being the mass density of the particles.
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Next, we shall suppose that any collision effects can be neglected. As pointed out to us by the referee, note that
the high dilution of the particles (typically the volume fraction occupied by the particle is less than 0.01) is not
enough to guaranty the validity of this assumption. It also relies on the interaction forces between the particles.
We refer to this aspect to the deep comments in the review paper of Villani [25]. Therefore, the evolution of
the density f is governed by the following Vlasov-type equation

∂tf + ∇x · (vf) + ∇v ·
(

9µ
2a2ρp

(u− v)f
)

= 0. (1)

Considering a cloud of P particles, the trajectories (Xi(t), Vi(t)), i ∈ {1, . . . P}, followed by the particles are
defined by the ODE system

d
dt
X = V,

d
dt
V = F (t,X, V ) =

9µ
2a2ρp

(u(t,X) − V ).

Hence, the quantity

f(t, x, v) =
P∑

i=1

δ(x = Xi) ⊗ δ(v = Vi)

obeys (1).
A complete modeling of the fluid/particles evolution involves a coupled equation governing the evolution

of the velocity field u. We refer for instance to the modeling presented by Russo-Smerecka [24],
Herrero-Lucquin-Perthame [15], or Jabin-Perthame [18] when considering potential flows, and, more recently,
the work of Gavrilyuck-Teshukhov [9]. A coupling involving the incompressible Navier-Stokes equation, with
a force term defined by moments of f is described by Caflisch-Papanicolaou [4]. More details on the physical
background can be found, e.g. in the treatises of Brock-Hidy [3], or Williams [26] and the article of O’Rourke
[22]. We also refer to the note of Desvillettes [6] and the references therein. Mathematical treatments of these
models are due to Hamdache [14], and Jabin [16].

In this work, we shall assume that the velocity field is given: since there are neither collisions between
particles, nor influence of the particles on the fluid evolution, the situation is said to correspond to a “very
thin spray”. We suppose the velocity field can be split into a mean part um and a fluctuating part ufl. We
are interested in asymptotic regimes where the scales of the fluctuations of the velocity field interact with
the typical scales of the evolution of the density f . Such kind of question is reminiscent to hydrodynamic
limits, see Golse [10], and for application to such fluid/particles interactions model we mention the works of
Berthonnaud [1], Domelevo-Vignal [7], Goudon [11], Jabin [17], and Goudon-Jabin-Vasseur [12, 13]. A part
of the questions we address here are dealt with, by using a different approach, by Clouet-Domelevo [5] and
Domelevo-Villedieu [8]. We also quote for a derivation from a physical viewpoint the work of Zaichik [27]. Here,
we shall use the method introduced by Poupaud-Vasseur [23] which relies on the properties of decorrelation in
time of the random fluctuation field. This method has also been applied to deal with general linear hyperbolic
systems by Brassart [2] or to investigate plasma turbulence in tokamaks by Loeper-Vasseur [21].

The paper is organized as follows. In Section 2, we write equation (1) in dimensionless form. The different
regimes are determined by physical assumptions and a convenient choice of units. In Section 3, we detail
precisely the mathematical assumptions that we use and we give the statements of the main results obtained in
the paper. Then, Section 4 is devoted to the proofs.
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2. Dimensionless equations

2.1. Dimension analysis of the Vlasov equation

First of all, we remark that the coefficient associated to the Stokes force in (1) is homogeneous to the inverse
of a time. We denote this relaxation time by

Trel =
2a2ρp

9µ
·

(This quantity is often referred to as the Stokes settling time.) We shall now discuss other physical quantities
which appear within the model.

2.1.1. The turbulent velocity field

Here, turbulence is modeled through the randomness of the fluctuation part of the velocity field ufl. For
the sake of simplicity, we assume that the mean velocity vanishes um = 0, and we simply denote u = ufl. A
key assumption is that ufl(t, x) and ufl(s, y) are correlated only on a short interval of time; precisely when
|t − s| ≤ Tcor. Hence, the correlation time Tcor has to be compared to the relaxation time Trel. Finally,
fluctuations of ufl occur in space with a characteristic length Lfl. Precisely, we have

ufl(t, x) = Ufl U(t/Tcor, x/Lfl),

where U is a dimensionless random field and Ufl stands for the amplitude of the fluctuations. We will make more
precise the mathematical assumptions on U later on. Let us finally define the correlation length Lcor = Ufl Tcor.
It corresponds to the characteristic length of a path of a particle having velocity Ufl on a time interval (t, t+Tcor).

2.1.2. Dimensionless parameters

Up to now we have determined four physical constants which characterize the model. We are dealing with
two time scales: {

Trel the relaxation time associated to the Stokes force,

Tcor the time on which velocity fields remain correlated,

and two length scales:

{
Lfl the typical length of the fluctuations of the velocity field,

Lcor the correlation length of the trajectories of the velocity field.

In order to write equation (1) in a dimensionless form, we need to introduce a time unit T, a length unit L and
a velocity unit V. Throughout the paper, we shall investigate regimes verifying

VT
L

= 1.

Adopting the convention that dimensionless parameters will be denoted by Greek letters, we set


η =
Ufl

V
=

LcorT
TcorL

(size of velocity fluctuation),

τ =
Trel

T
(relaxation time),

ε =
Tcor

T
and λ =

Lfl

L
(time and space scales of turbulence).
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We point out that contrary to the physical constants the choice of units is free. (It depends on the scale
of observations.) Therefore, in the determination of the different regimes we will distinguish the physical
assumptions which compare the physical constants and the assumptions related to a choice of units.

We associate to these quantities the following dimensionless variables

t =
t

T
, x =

x

L
, v =

v

V
=
vT
L

·

Finally, let us set 


f
(
t, x, v

)
= f

(
Tt,Lx,Vv

)
LNVN ,

u
(
t, x

)
=

1
Ufl

ufl

(
Tt,Lx

)
= U

(
Tt/Tcor,Lx/Lfl

)
.

Hence, dropping the overlines, we are led to

∂tf + v · ∇xf +
1
τ
∇v ·

(
(ηu − v)f

)
= 0 (2)

with u(t, x) = U(t/ε, x/λ).

2.2. Asymptotic regimes

In this work, we study the effects of turbulence, characterized by the limit ε → 0, in two different physical
situations. The former consists of assuming τ � 1 which corresponds to a “Fine Particles Regime”. Indeed
in this regime, the Stokes force which is a friction term is predominant. It presupposes that the particles are
“light” (or “fine”) compared to the surrounding fluid. It results that the kinetic velocities relax rapidly to
the velocity of the fluid. We are thus led to fluid equations for the (macroscopic) concentration of particles.
Therefore this situation corresponds to a “Fluid Regime”.

The latter assumes τ = 1 which corresponds to a “High Inertia Particles Regime” since the particles are less
influenced by the turbulence and they still follow their individual trajectories. The effective equation remains
kinetic and the turbulence leads to a diffusion process of the velocities of the particles.

2.2.1. Fine particles regimes

Let us first assume that τ � 1. This scaling is reminiscent to hydrodynamic limits in rarefied gas dynam-
ics, see e.g. [10]. When dealing with such a regime, we might expect a limit equation concerning averaged
macroscopic quantities. It is then convenient to use the moment equations associated to (2). We set

ρ(t, x) =
∫

RN

f dv, J(t, x) =
∫

RN

vf dv, P(t, x) =
∫

RN

v ⊗ vf dv. (3)

Integration of (2) with respect to the velocity variable yields the following system

∂tρ(t, x) + divxJ = 0, (4)

∂tJ + divxP =
1
τ

(η ρu− J). (5)

In such a regime, we can formally guess that the solution looks like a Dirac mass centred to velocity v = ηu,
with density ρ(t, x). We expect that

f(t, x, v) ∼ ρ(t, x) δv=ηu(t,x), (6)

the macroscopic concentration ρ being of order 1. Accordingly, we have

ρ = O(1), J = O(η), P = O
(
η2

)
. (7)
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Furthermore, (6) implies that (ρηu− J) → 0, so that multiplying (5) by τ we deduce τJ → 0 and τP → 0. We
are thus led to the conditions

τη, τη2 → 0.

We also have to average over turbulence which imposes ε→ 0. Now, we can distinguish two approaches, which
lead to investigate different asymptotic regimes.

• Small Stokes number regime
We shall see within the proofs that turbulence induces an effective drift term of order O(εη2/λ) and an effective
diffusion coefficient of order O(εη2). The regimes where both effects account are thus characterized by

ε→ 0, εη2 = λ, λ = O(1).

Remark that it implies η → ∞.
Coming back to the physical constants, these conditions mean that the observation time scale T is large

compared to both the relaxation time Trel and the time scale of turbulence Tcor. Furthermore, in this regime
the Stokes number defined by the ratio

relaxation time
time scale of turbulence

=
τ

ε
= O(τη2) → 0

is small: we have T � Tcor � Trel. On the other hand, we note that the conditions imply L ≈ Lfl � Lcor

while time and length units are related by

L =
L2

cor

Lfl

T
Tcor

·

The same analysis also applies to the situation where convection dominates diffusion in the asymptotic regime.
It corresponds to the case

λ→ 0, L � Lfl � Lcor.

Summarizing the discussion, we wish to investigate asymptotic regimes verifying

εη2

λ
= 1, λ� ε� τ, λ→ λ∞ ∈ [0,∞).

The corresponding result is the object of Theorem 1.

• Large Stokes number regime
We shall see that another fluid regime, i.e. where τ → 0, can be dealt with, assuming that the Stokes number
is large:

τ

ε
→ ∞.

The leading term will be in this situation a convective term, whose order is O( ε2η2

τλ ). Hence, we naturally assume

ε2η2 = τλ,

which will be combined with the assumptions ε/λ → 0 and, as mentioned above, τη2 → 0. Summarizing, we
wish to investigate the asymptotic regime where the dimensionless coefficients satisfy

τ

ε
→ ∞, ε2η2 = τλ,

ε

λ
→ 0, τη2 → 0.



678 T. GOUDON AND F. POUPAUD

Note that these conditions have the following consequences:
– η2 = λ

ε
τ
ε → ∞;

– hence, since τη2 = τ2

ε2 λ tends to 0, it follows that τ → 0 and λ→ 0.
Coming back to the physical variables, these assumptions mean that

T � Trel � Tcor

combined to
L � Lfl � Lcor.

The corresponding result is the object of Theorem 2.

Remark 1. Note that any asymptotic regime with η → 0 would lead to the trivial limit equation ∂tρ = 0.

2.2.2. High-inertia-particles regime

In this regime, the velocity of the particles can differ from the velocity of the surrounding fluid. It means
that the particles have enough inertia to balance the Stokes force. Actually, the relaxation time scale remains
large compared to the characteristics time scale of correlations. On the other hand, the fluctuations have large
amplitude. In such a physical situation, we keep a kinetic description, obtaining when passing to the limit a
Vlasov-Fokker-Planck equation which involves a diffusion matrix defined from the properties of the turbulent
fluctuations. Precisely, we assume

τ = O(1), ε→ 0.

We shall see that turbulence induces now an effective diffusion coefficient of order O(εη2) and an effective drift
of order O(ε2η2/λ). This motivates to suppose

εη2 = O(1),
ε2η2

λ
=
ε

λ
εη2 = O(1)

which implies

η = O
(

1√
ε

)
→ ∞, λ = O(ε) → 0.

Coming back to the physical quantities, this scaling means that the observation time scale and the relaxation
time have the same order but they are large compared to the time scale of turbulence

T ≈ Trel � Tcor.

In turn, the Stokes number τ/ε = Trel/Tcor is large. On the other hand, both length scales of turbulence are
small compared to the length unit, with the scaling

L � Lcor � Lfl.

The corresponding statement is given in Theorem 3.

3. Main results

This section is devoted to the statement of the main results of the paper. Let us start by recalling some
classical notations and basic facts from probability theory.

Let Ω stands for an abstract space. It is endowed with a σ−algebra P and a probability measure P. A random
variable is a measurable function X : Ω → R. Actually, we shall consider families of random variables X(z)
parameterized by a variable z which belongs to a certain set Z. Such a function will be said “deterministic”



PARTICLES IN TURBULENT FLOWS 679

when it does not depend on the variable ω ∈ Ω. Next, let X be an integrable random variable. Its expectation
is defined by

E(X) =
∫

Ω

X(ω) dP(ω).

In what follows, as usual when dealing with stochastic processes, we will never write the dependence with
respect to the random parameter ω.

Next, we need to describe the set of assumptions fulfilled by the data.

3.1. Assumptions on the data

The velocity field u presents random oscillations with respect to time and space variables; we suppose it has
the form

u(t, x) = U(t/ε, x/λ) ∈ R
N ,

where the function U is required to satisfy{
The random velocity field U ∈ L∞(R; W2,∞(RN )) satisfies for some K > 0,
supt,x |∂α

xU(t, x)| ≤ K <∞, almost surely for any α ∈ N
N , |α| ≤ 2.

(8)

It implies that U(t, x) is a bounded random variable. We assume




•E(U(t, x)) = 0;
• there exists a (N ×N matrix valued) function R : [0,∞) × R

N → MN ,
such that for every x, y ∈ R

N , for every t, s ∈ [0,∞):
E(U(t, x) ⊗ U(s, y)) = R(t− s, x− y);
• for every x, y ∈ R

N , for every t, s ∈ [0,∞), if |t− s| ≥ 1,
then U(t, x) and U(s, y) are independent random variables.

(9)

Here, MN stands for the space of N ×N matrices, while for vectors a and b in R
N , a⊗ b stands for the matrix

having coefficients aibj . Various examples of velocity fields which fulfil this set of assumptions are described in
[23], or [2]. The first assumption means that U is centred. The second assumption means that U is stationary:
the covariances of U evaluated at different points depends only on the differences between these points. The
third assumption can be seen as a Markov-like assumption on the trajectories.

Remark 2. With assumption (9), events are decorrelated when occurring at times separated by ε→ 0, which
is reminiscent to the classical Kubo’s analysis, [20], see also [19].

Remark 3. The derivation of the model and in particular the use of the Stokes force require the incompressibility
of the surrounding fluid. However, we can consider perturbations of the Stokes force by other forces (e.g.
electrostatic forces, magnetic forces...). Such perturbations can be incorporated in the field u which can be no
more incompressible. For this reason, we consider in this work general fields u.

Since u is a random function, the solution f of (2) is also a random function. However, we shall assume that
the initial data remains deterministic. Precisely, we suppose

f0 : R
N × R

N → R is deterministic, f0 ≥ 0. (10)

Then, the cornerstone of our analysis relies on the following independency statement.

Lemma 1. We suppose the initial data f0 satisfies (10). Let f be the solution of (2) with the Cauchy data
f|t=0 = f0.Then for every t ≥ 0, f(t) is non negative, and, furthermore, f(t) and u(s) are independent provided
s ≥ t+ ε.
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It is an immediate consequence of the fact that f0 is deterministic. Then for any t ≥ 0, f(t) depends only
on the realization of u(s) for s ∈ [0, t]. The third assumption of (9) leads to the result.

3.2. The fine particles regime

Now, we state the results which correspond to the physical situation described in Section 2.2.1.

Theorem 1. Assume (8), (9). Suppose

εη2 = λ, λ� ε� τ, λ→ λ∞ ∈ [0,∞). (11)

Let the initial data f0 satisfy (10) and

∫
RN

∫
RN

f0 dv dx = M0 <∞,

∫
RN

∫
RN

v2

2
f0 dv dx = M2 <∞. (12)

Let f be the solution of (2) with the Cauchy data f|t=0 = f0. Set ρ(t, x) =
∫
f(t, x, v) dv. Let 0 < T < ∞.

Then, up to a subsequence, E(ρ) converges in C0([0, T ];M1(RN ) − weak − �) to r solution of the following
drift-diffusion equation 


∂tr + div(c r − λ∞D∇xr) = 0,

r|t=0 =
∫

RN

f0 dv.

The diffusivity matrix D and the drift vector c are defined by




Dij =
∫ 1

0

Rij(z, 0) dz

ci =
∫ 1

0

N∑
j=1

(∂yjRij)(z, 0) dz.

The matrix D satisfies, for any ξ ∈ R
N\{0}

N∑
i,j=1

Dijξiξj ≥ 0.

Remark 4. The limit r solves the drift-diffusion equation in the sense that

d
dt

∫
RN

ψ r dx =
∫

RN

(
div(λ∞DT∇xψ) + c · ∇xψ

)
r dx

holds for any ψ ∈ C∞
c (RN ), these quantities belonging to C0([0, T ]). Remark the limit equation is purely

convective when λ→ 0.

Remark 5. Assumption (9) can be slightly modified so that we obtain space dependent effective coefficients.
For instance consider random velocity fields verifying E(U(t, x)⊗U(s, y)) = R(t−s, x, y) with R : R×R

N×R
N →

MN a smooth function, compactly supported in (−1,+1)× R
N × R

N .

Theorem 2. Assume (8), (9). Suppose

ε2η2 = τλ, λ� ε, τ � ε, τη2 → 0. (13)
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Let the initial data f0 satisfy (10) and (12). Let f be the solution of (2) with the Cauchy data f|t=0 = f0. Set
ρ(t, x) =

∫
f(t, x, v) dv. Let 0 < T < ∞. Then, up to a subsequence, E(ρ) converges in C0([0, T ];M1(RN ) −

weak − �) to r solution of the following convection equation




∂tr + div(c r) = 0,

r|t=0 =
∫

RN

f0 dv

with

ci =
∫ 1

0

N∑
j=1

(∂yjRij)(z, 0) z dz.

3.3. The high inertia particles regime

Here, we give the statement corresponding to the physical framework introduced in Section 2.2.2.

Theorem 3. Assume (8), (9). Suppose

τ = 1, ε→ 0, η = 1/
√
ε,

ε

λ
→ κ∞ ∈ [0,∞). (14)

Let the initial data f0 ≥ 0 satisfy (10) and (12). Let f be the solution of (2) with the Cauchy data f|t=0 = f0.
Let 0 < T < ∞. Then, up to a subsequence, E(f) converges in C0([0, T ],M1(RN × R

N ) − weak − �) to F
solution, in D′([0,∞) × R

N ) of the following Fokker-Planck equation
{

∂tF + v · ∇xF −∇v ·
(
D(v)∇vF + vF

)
= 0,

F|t=0 = f0.

The matrix D is defined by

Dij(v) =
∫ 1

0

Rij(z, κ∞zv) dz.

For any ξ ∈ R
N , it satisfies

N∑
ij=1

Dijξiξj ≥ 0.

This result is quite close to the analysis performed by Clouet-Domelevo [5]. There, the random fluctuations
are defined through a piecewise constant velocity field. In each time step, the field is an identically distributed
random variable which follows a Gaussian law. Then the so-called white noise limit is investigated where the
size ε of the time intervals shrinks.

4. Proofs

This section is devoted to the proofs of Theorems 1, 2 and 3. As usual, we start with some basic estimates
in suitable functional spaces. Then, we explain how we can pass to the limit in the equation.

4.1. Key estimates

Solution of (2) satisfy some useful estimates. First of all, the total mass is clearly conserved∫
RN

∫
RN

f(t, x, v) dv dx =
∫

RN

∫
RN

f0(x, v) dv dx = M0. (15)
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In view of (12) this quantity is bounded uniformly with respect to the parameters τ, ε, η, λ, so that one has at
least a uniform estimate on the solution in L∞(R+; L1(RN × R

N )). Next, (2) can be rewritten as

∂tf + v · ∇xf − N

τ
f +

1
τ

(ηu− v) · ∇vf = 0.

This non conservative form of the equation allows to obtain estimates in L∞(0, T ; Lp(RN ×R
N )). However, the

estimates are not uniform with respect to the parameter τ . Contrarily, as τ → 0, as explained before, one may
expect that f concentrates in velocity to the velocity of the fluid f(t, x, v) ∼ ρ(t, x)δ(v = ηu) (see for instance
for such concentration effects [16, 17]).

For further purposes, it is convenient to look at the evolution of the kinetic energy. We have

d
dt

∫
RN

∫
RN

v2

2
f(t) dv dx = −

∫
RN

∫
RN

v2

2
1
τ
∇v ·

(
(ηu− v)f(t)

)
dv dx

= −1
τ

∫
RN

∫
RN

v2f(t) dv dx+
η

τ

∫
RN

∫
RN

u · vf(t) dv dx

≤ −1
τ

∫
RN

∫
RN

v2f(t) dv dx

+
η

τ
‖u‖L∞

(∫
RN

∫
RN

f(t) dv dx
)1/2 (∫

RN

∫
RN

v2f(t) dv dx
)1/2

.

Let us set Y (t) =
( ∫∫

v2f(t) dv dx
)1/2

. It thus verifies the differential inequality

d
dt

(
et/τY

)
≤M0

η

τ
‖u‖L∞ et/τ .

We deduce that Y (t) ≤ e−t/τY (0) +M0η‖u‖L∞. We have proved the following statement.

Lemma 2. Suppose (8). Let the initial data f0 ≥ 0 satisfy (10), (12). Then, for any time t ≥ 0,
∫ ∫

f(t) dv dx =
M0 and there exists a constant C > 0, depending only on M0,M2 and K such that, almost surely, for any t ≥ 0,

∫
RN

∫
RN

|v|f(t) dv dx ≤ Cη,

∫
RN

∫
RN

v2f(t) dv dx ≤ Cη2.

The estimate on |v|f follows from the mass and the energy estimates and an application of the Cauchy-Schwarz
inequality. Lemma 2 provides readily estimates on the macroscopic moments defined in (3) which in turn
justify (7).

Corollary 1. There exists a constant C > 0, depending only on M0,M2,K such that almost surely, for any
t ≥ 0 ∫

RN

ρ(t) dx = M0,

∫
RN

|J |(t) dx ≤ Cη,

∫
RN

|P| dx ≤ Cη2.

4.2. Proof of Theorem 1

For the proof of Theorem 1, we do not use the kinetic equation; instead, we work on the moments
system (4–5). As a first consequence of Corollary 1, we have the following equicontinuity estimate.



PARTICLES IN TURBULENT FLOWS 683

Lemma 3. Let ψ ∈ C1
b(R

N ) and h > 0. Then, we have

∣∣∣∣
∫

RN

ρ(t+ h)ψ dx −
∫

RN

ρ(t)ψ dx
∣∣∣∣ = h

∣∣∣∣
∫ 1

0

∫
RN

J(t+ hs) · ∇ψ dx
∣∣∣∣

≤ C hη ‖∇ψ‖L∞(RN ) (16)

where the constant C depends only on the constants appearing in (12).

Notice that this estimate does not provide any compactness property on the sequence ρ since in the scaling
assumptions η tends to ∞. To obtain more complete information, we shall use the second moment equation.
Precisely, we rewrite (5) as follows

J = ηρu− τ∂tJ − τdivxP. (17)

In the sequel, the notation O(β) stands for a time dependent function (random or not) which is bounded by Cβ
where the constant C > 0 does not depend on the time variable t, the random variable nor on the parameters
ε, τ , η and λ.

Lemma 4. Let ψ ∈ C∞
c (RN ). Then, we have

d
dt

(∫
RN

ρ(t)ψ dx+ O(τη)
)

= η

∫
RN

ρ(t) u(t) · ∇ψ dx+ O
(
τη2

)
. (18)

Proof. Using (4) and (17) we obtain (using integration by parts)

d
dt

(∫
RN

ρ(t)ψ dx
)

=
∫

RN

J(t) · ∇ψ dx

= η

∫
RN

ρ(t)u(t) · ∇ψ dx

− τ
d
dt

(∫
RN

J(t) · ∇ψ dx
)

+ τ

∫
RN

P(t) : D2
xψ dx.

The estimates of Corollary 1 conclude the proof. �

We recall that, for the asymptotic regime we are dealing with, τη and τη2 tend to 0. Hence, we are left
with the task of determining the limit of η

∫
ρ(t)u(t) · ∇ψ dx. Actually, this term is not bounded (recall that

η → ∞); but its expectation is bounded. The strategy to compute the limit of the expectation is inspired from
[23]. We express ρ(t) with ρ(t− ε) in order to obtain a decorellation with u(t). Namely, we write, using (4)

ρ(t) = ρ(t− ε) − ε

∫ 1

0

divxJ(t− εs) ds. (19)

We are thus able to prove the following statement (which justifies the discussion on the scaling of the parameters).

Lemma 5. Let ψ ∈ C∞
c (RN ). Then, for any t ≥ ε, we have

ηE

∫
RN

ρ(t) u(t) · ∇ψ dx = ηεE

∫
RN

∫ 1

0

J(t− εs) · ∇ (u(t) · ∇ψ) ds dx

= O
(
εη2

λ

)
+ O

(
εη2

)
. (20)

As a consequence, we establish the following compactness property.
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Corollary 2. Let εn, τn, λn, ηn be sequences of parameters satisfying (11). Let fn be the associated solution
of (2) with concentration ρn(t, x) =

∫
fn dv. Let ψ ∈ C∞

c (RN ). Then, for every T > 0, the family of functions{
E

∫
RN

ρn(t)ψ dx, n ∈ N

}

is relatively compact in C0([0, T ]).

Proof of Lemma 5. Multiply (19) by ηu(t) · ∇ψ and integrate. We get

η

∫
RN

ρ(t) u(t) · ∇ψ dx = η

∫
RN

ρ(t− ε) u(t) · ∇ψ dx+ ηε

∫
RN

∫ 1

0

J(t− εs) · ∇
(
u(t) · ∇ψ

)
ds dx.

Combining (9) and Lemma 1 we realize that the expectation of the first term vanishes

η E

∫
RN

ρ(t− ε) u(t) · ∇ψ dx = η

∫
RN

E(ρ(t− ε)) E(u(t)) · ∇ψ dx = 0.

Next, using (8) and Corollary 1, we obtain

ηεE

∫
RN

∫ 1

0

J(t− εs) · ∇ (u(t) · ∇ψ) ds dx = O
(
ηε× η

λ

)
+ O(ηε× η).

Assuming (11), we have η2ε
λ = O(1), where λ has a finite limit, so that η2ε = O(1). �

Proof of Corollary 2. Take the expectation of equation (18). Then, using Lemma 5, an application of the
Arzela-Ascoli theorem shows that the sequence

{
E

∫
ρn(t + εn)ψ dx + O(τnηn), n ∈ N

}
is relatively compact

in C0([0, T ]). (We have to shift the time because (20) holds only for t ≥ εn.) Since τnηn → 0, it follows that{
E

∫
ρn(t+εn)ψ dx, n ∈ N

}
is also relatively compact in C0([0, T ]). Then, we go back to Lemma 3 which yields∣∣∣∣

∫
RN

ρn(t+ εn)ψ dx−
∫

RN

ρn(t)ψ dx
∣∣∣∣ ≤ C εnηn ‖∇ψ‖L∞(RN ).

The fact that εnηn → 0 ends the proof. �
Having obtained the compactness of Eρ, in a suitable weak sense, it remains to pass to the limit in the

equation. By using (18) and (20), we get

d
dt

(
E

∫
RN

ρ(t)ψ dx+ O(τη)
)

= ηεE

∫
RN

∫ 1

0

J(t− εs) · ∇ (u(t) · ∇ψ) ds dx+ O
(
τη2

)
. (21)

Then, we use (17) again. Consider a function φ ∈ [C1
b([0,∞) × R

N )]N , possibly depending on the parameters
and on the random variable. We have∫ 1

0

∫
RN

J(t− εs) · φ(t) dxds = η

∫ 1

0

∫
RN

ρ(t− εs)u(t− εs) · φ(t) dxds

− τ
d
dt

∫ 1

0

∫
RN

J(t− ε) · φ(t) dxds

+ τ

∫ 1

0

∫
RN

J(t− εs) · ∂tφ(t) dxds

+ τ

∫ 1

0

∫
RN

P(t− εs) : ∇φ(t) dxds.
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The three last integrals can be bounded by

Cτη‖∂tφ‖∞, Cτη2‖∇φ‖∞, Cτη‖φ‖∞,

respectively, the constant C depending only on M0, M2 of (12). Inserting this expression with φ = ηε∇
(
u(t) ·

∇ψ
)

in (21) we are led to the following lemma.

Lemma 6. Let ψ ∈ C∞
c (RN ) then

d
dt

(
E

∫
RN

ρ(t)ψ dx+ O(τη + τη2ε/λ)
)

= εη2
E

∫ 1

0

∫
RN

ρ(t− εs) u(t− εs) · ∇ (u(t) · ∇ψ) ds dx

+ O(τη2 + τη2/λ+ ετη3/λ2)

Proof. The conclusion follows from the previous manipulations and remarking that, with φ = ηε∇
(
u(t) · ∇ψ

)
,

the following estimates hold

‖φ‖∞ ≤ Cεη/λ, ‖∂tφ‖∞ ≤ Cη/λ, ‖∇φ‖∞ ≤ Cεη/λ2. �

Assuming (11), we observe that all the quantities

τη, τη2, ε
τη2

λ
,

τη2

λ
,

τεη3

λ2

tend to 0. Hence, we are left to the task of studying the leading term

E

∫ 1

0

∫
RN

ρ(t− εs) Φ(t, s, x) ds dx

with the notation

Φ(t, s, x) = εη2 u(t− εs, x) · ∇
(
u(t, x) · ∇ψ(x)

)
.

It can be rewritten as follows

E

∫
RN

∫ 1

0

ρ(t− εs) Φ(t, s) ds dx = E

∫
RN

∫ 1

0

E(ρ(t))Φ(t, s) ds dx

+ E

∫
RN

∫ 1

0

(
E
(
ρ(t− 2ε) − ρ(t)

)
+ ρ(t− εs) − ρ(t− 2ε)

)
Φ(t, s) ds dx

+ E

∫
RN

∫ 1

0

(
ρ(t− 2ε) − E(ρ(t− 2ε))

)
Φ(t, s) ds dx.

Actually, the last integral of the right hand side vanishes by using the independency property Lemma 1 which
implies that E

(
ρ(t − 2ε)Φ(t, s)

)
= Eρ(t − 2ε) EΦ(t, s). Next, the second integral can be evaluated by using

Lemma 3; it is shown to be O(εη2 × εη × λ−2) = O
(
(εη2/λ)2 × η−1) = O(1/η) → 0. Therefore, it remains to

pass to the limit in ∫
RN

∫ 1

0

E(ρ(t))EΦ(t, s) ds dx
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where, by using assumption (9), we note that

EΦ(t, s) = εη2
∑
i,j

E
(
ui(t− εs)∂xi(uj(t)∂xjψ)

)

= εη2
∑
i,j

{
∂xi

(
E(ui(t− εs)uj(t))∂xjψ

)
− E (∂xiui(t− εs)uj(t)) ∂xjψ

}

= εη2
∑
i,j

∂xi

(
Rj,i(s, 0)∂xjψ

)
− εη2

λ

∑
i,j

∂xiRj,i(s, 0) ∂xjψ.

Since we assume εη2/λ = 1, we get

E

∫
RN

∫ 1

0

ρ(t− εs) φ(t, s) ds dx =
∫

RN

E(ρ(t))
(
div

(
λDT∇ψ

)
− c · ∇ψ

)
+ O(1/η),

with the matrix D and the vector c defined in Theorem 1.
This equation combined together with Lemma 6 yields

d
dt

∫
RN

E(ρ(t)) ψ dx =
∫

RN

E(ρ(t))
(
div

(
λDT∇ψ

)
− c · ∇ψ

)
dx+O

(
τη2 + τ/ε+ τ/(εη) + 1/η

)
+

d
dt

O
(
τη + τ

)
,

where we used εη2/λ = 1.
Consider a sequence of parameters which satisfy




τn → 0, εn → 0, λn → λ∞ ∈ [0,∞), ηn → ∞,

εnη
2
n

λn
= 1,

τn
εn

→ 0.

Then by Corollary 1, Lemma 5 and standard arguments we can exhibit r ∈ C0([0,∞);M1(RN ) − weak − �)
and a subsequence such that, for any 0 < T < ∞, Eρn → r in C0([0, T ];M1(RN ) − weak − �). Then, passing
to the limit in the above equation concludes the proof of Theorem 1. Non negativity of the symmetric part of
the diffusivity matrix D is proved by repeating arguments in [23]. �

4.3. Proof of Theorems 2 and 3

Multiplying (2) by a test function ψ ∈ C∞
c (R2N ) and integrating yields the following weak formulation

d
dt

∫
RN

∫
RN

E(f(t)) ψ dv dx−
∫

RN

∫
RN

E(f(t)) v ·
(
∇x − 1

τ
∇v

)
ψ dv dx = +

η

τ
E

∫
RN

∫
RN

f(t) u(t) · ∇vψ dv dx.

(22)
All the difficulties are thus concentrated in the right hand side; in particular, since in the scaling assumptions
η → ∞, it is not obvious at all that this integral remains bounded uniformly with respect to the parameters. As
in the previous Section, we follow the method of [23] which uses the Duhamel formula to write f(t) by means
of f(t− ε) so that the singular term can be cancelled thanks to the independency property of Lemma 1. Since
the proof is very close to [23], we only sketch the main arguments. As in the previous section, O(β) stands for
a time dependent function, possibly random, which is bounded by Cβ where C does not depend on time, on
the random variable nor on the parameters ε, η, λ, τ .
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Let us introduce the group of operators St(Φ)(x, v) = Φ(x− vt, v), t ∈ R. We note that:

– St is unitary on L∞(R2N );
– its formal adjoint is S−t;
– the commutator formula ∇vSt = St(∇v − t∇x) holds.

Hence, we are led to
∫

RN

∫
RN

f(t)φdv dx =
∫

RN

∫
RN

f(t− εs)S−εsφdv dx

+
ε

τ

∫ s

0

∫
RN

∫
RN

f(t− εσ)ηu(t− εσ) · S−εσ(∇v + εσ∇x)φdv dxdσ

− ε

τ

∫ s

0

∫
RN

∫
RN

f(t− εσ)v · S−εσ(∇v + εσ∇x)φdv dxdσ, (23)

for any (smooth enough) test function φ, random or not, and t ≥ ε, s ∈ [0, 1].

4.3.1. Proof of Theorem 3

Throughout this section, we set τ = 1. First, we use (23) with φ = ηu(t) · ∇vψ and s = 1. We note that
(∇v + εσ∇x)φ = O(η) + (ηε/λ). Therefore, by using Lemma 2, the second integral in the right hand side has
order O(εη2) + O(ε2η2/λ) while, since ψ is compactly supported, the third integral is O(εη) + O(ε2η/λ). This
motivates the scaling announced in Section 2:

η =
1√
ε
,

ε

λ
→ κ∞ ∈ [0,∞).

From now on, we consider coefficients verifying these relations.
Indeed, taking the expectation, using Lemma 1, assumption (9) and Corollary 1, we obtain, for t ≥ ε,

1√
ε
E

∫
RN

∫
RN

f(t) u(t) · ∇vψ dv dx = E

∫ 1

0

∫
RN

∫
RN

f(t− εσ) Φ(t, σ) dv dxdσ + O(
√
ε), (24)

with
Φ(t, σ) = u(t− εσ) · S−εσ(∇v + εσ∇x)(u(t) · ∇vψ).

Furthermore, arguing as in the previous section or in [23], we are then able to prove that the family of functions
{
∫∫

Ef(t)ψ dxdv} lies in a compact set of C0([0, T ]). (We first consider the shifted functions
∫∫

Ef(t+ε)ψ dxdv
by coming back to (22) and using this estimate on the right hand side.) Accordingly, we can work with a
subsequence verifying Ef(t) → F (t) in C0([0, T ];M1(R2N ) − weak − �) for any T > 0.

It remains to compute the limit of the leading term in (24). Using (23), we have for σ ∈ [0, 1],

E

∫
RN

∫
RN

f(t− εσ)Φ dv dx = E

∫
RN

∫
RN

(f − Ef)(t− 2ε)S−(2−σ)εΦ dv dx

+ E

∫
RN

∫
RN

(f(t− 2ε) − f(t)S2ε)S−(2−σ)εEΦ dv dx

+
∫

RN

∫
RN

E(f(t))SσεEΦ dv dx+ O(
√
ε× (‖∇vΦ‖∞ + ε‖∇xΦ‖∞)).

Since ∇vΦ and ε∇xΦ are O(1), we realize that the remainder is actually O(
√
ε). Furthermore, combining this

bound on (∇v + ε∇x)Φ to the estimates of Lemma 2 and coming back to (23), the second integral of the right
hand is also shown to be O(

√
ε). Eventually, due to the independence property of Lemma 1, the first term of
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the right hand side vanishes for any t ≥ 2ε. Accordingly, equation (24) becomes

1√
ε

E

∫
RN

∫
RN

f(t) u(t) · ∇vψ dv dx =
∫

RN

∫
RN

E(f(t))
(∫ 1

0

SσεEΦ(t, σ) dσ
)

dv dx+ O(
√
ε). (25)

It remains to compute EΦ. We have, by using (8),

EΦ(t, σ) = E

(
u(t− εσ) · S−εσ(∇v + εσ∇x)(u(t) · ∇vψ)

)

=
N∑

i,j=1

E

(
Ui

(
t

ε
− σ,

x

λ

)
Uj

(
t

ε
,
x

λ
+
ε

λ
σv

))
∂vi∂vjψ(x, v)

+
N∑

i,j=1

E

(
Ui

(
t

ε
− σ,

x

λ

)
ε

λ
σ∂xiUj

(
t

ε
,
x

λ
+
ε

λ
σv

))
∂vjψ(x, v)

+ O(ε).

(The term O(ε) takes into account the difference between ψ(x + εσv, v) and ψ(x, v) and terms involving cross
derivatives ε∂xi∂vj of the test function.) Using (8) again and (9) yields

EΦ(t, σ) =
N∑

i,j=1

Rj,i

(
σ,
ε

λ
σv

)
∂vi∂vjψ(x, v)

+
N∑

i,j=1

ε

λ
σ∂xiRj,i

(
σ,
ε

λ
σv

)
∂vjψ(x, v) + O(ε)

=
N∑

i,j=1

∂vi

(
Rj,i(σ, κ∞σv)∂vjψ(x, v)

)
+ O(ε) + O

( ε
λ
− κ∞

)
.

Inserting this formula in (25) we can pass to the limit in (22) which ends the proof. �
4.3.2. Proof of Theorem 2

The proof starts by coming back to Lemma 4 which shows that the crucial term to perform the hydrodynamic
limit, provided τη2 → 0, is∫

RN

ρ(t) ηu(t) · ∇xψ dx =
∫

RN

∫
RN

f(t) ηu(t) · ∇xψ dv dx, (26)

ψ being a smooth enough test function depending only on the space variable. Therefore, let us use (23) with
φ = ηu(t) · ∇xψ. Notice that (∇v + εσ∇x)φ = εσ∇xφ = O(εη/λ) +O(εη), so that, by using Lemma 2, the two
last integrals in the right hand side of (23) are O( ε

τ × η × εη
λ ). It motivates to set

ε2η2 = τλ.

Consequently, combining Lemma 4 to (23), Lemma 1 and (9), and reasoning as in the proof of Corollary 2,
we are able to prove the compactness of the family {E

∫
ρ(t) ψ dx} in C0([0, T ]). Thus, we can exhibit a

subsequence such that Eρ converges to some r in C0([0, T ],M1(RN ) − weak − �). Hence, we are left with the
task of computing the expectation of (26). Let us set

Φ(t, σ) =
εη2

τ

(
u(t− εσ) − 1

η
v
)
· S−εσεσ∇x

(
u(t) · ∇xψ

)
.
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Repeating the tricks of the previous section, we can rewrite E(26) as follows

E

∫
RN

∫
RN

f(t) ηu(t) · ∇xψ dv dx = E

∫ 1

0

∫
RN

∫
RN

f(t− εσ) Φ dv dxdσ

=
∫ 1

0

∫
RN

∫
RN

Ef(t) SσεEΦ dv dxdσ + O(1/η). (27)

By using (8) and (9), we get

EΦ(t, σ) =
εη2

τ
E

((
u(t− εσ) − 1

η
v

)
· S−εσεσ∇x(u(t) · ∇xψ)

)

=
ε2η2

τ
σ

N∑
i,j=1

E

{ (
Ui

(
t

ε
− σ,

x

λ

)
− vi

η

)

×
(

1
λ
∂xiUj

(
t

ε
,
x

λ
+
ε

λ
σv

)
∂xjψ(x) + Uj

(
t

ε
,
x

λ
+
ε

λ
σv

)
∂2

xixj
ψ(x)

) }
+ O(ε)

=
ε2η2

τλ
σ

N∑
i,j=1

∂xiRj,i

(
σ,
ε

λ
σv

)
∂xjψ(x)

+
ε2η2

τ
σ

N∑
i,j=1

Rj,i

(
σ,
ε

λ
σv

)
∂xi∂xjψ(x, v) + O(ε).

Plugging this formula in (27), and recalling from (13) that ε/λ→ 0, ε2η2/(τλ) = 1, λ→ 0 and η → ∞ allow us
to pass to the limit and ends the proof of Theorem 2. �
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[1] P. Berthonnaud, Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés. C. R. Acad. Sci. 331
(2000) 651–654.

[2] M. Brassart, Limite semi-classique de transformées de Wigner dans des milieux périodiques ou aléatoires. Thèse Université
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