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THE FOURTH ORDER ACCURACY DECOMPOSITION SCHEME
FOR AN EVOLUTION PROBLEM

ZURAB GEGECHKORI', JEMAL ROGAVA! AND MIKHEIL TSIKLAURI!

Abstract. In the present work, the symmetrized sequential-parallel decomposition method with the
fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split
form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the
positive real part. For the considered scheme, the explicit a priori estimate is obtained.
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INTRODUCTION

It is known that mathematical simulation of processes taking place in the nature frequently leads to consid-
eration of boundary-value problems for partial-differential evolution (nonstationary) equation. These kind of
problems can be considered as a Cauchy abstract problem in a Banach space for an evolution equation with an
unbounded operator.

Study of approximated schemes for solution of evolution problems leads to the conclusion that a certain
operator (solution operator of the discrete problem) corresponds to each approximated scheme. This operator
approximates the solution operator (semigroup) of the initial continuous problem. For example, if we use the
Rotte scheme for the solution of an evolution problem, then the solution operator of the difference problem
thus obtained will be a discrete semigroup and we will have the approximation of a continuous semigroup by
discrete semigroups (see [32], Ch. IX). On the other hand, on the basis of the approximation of a continuous
semigroup, we can construct an approximated scheme for solution of an evolution problem.

Decomposition formulas approximate a continuous semigroup by means of the combination of the semigroups
generated by the addends of the operator generating this semigroup.

The first decomposition formula for an exponential matrix function was constructed by Lie in 1875. Trotter
generalized this formula for an exponential operator function-semigroup in 1959 [49]. The resolvent analogue
of this formula for the first time was constructed by Chernoff in 1968 [6,7]. At the same time, in the sixties
of the XXth century, in order to elaborate numerical methods for solution of multi-dimensional problems of
mathematical physics, the subject of construction of decomposition schemes has naturally raised. Decomposition
schemes allow to reduce a solution of multi-dimensional problems to the solution of one-dimensional problems.
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First works dedicated to construction and investigation of decomposition schemes were published in the fifties
and sixties of the XXth century (see Andreev [1], Baker [2], Baker and Oliphant [3], Birkhoff and Varga [4],
Birkhoff, Varga and Young [5], Douglas [11], Douglas and Rachford [12], Diakonov [9,10], Dryja [13], Fairweather,
Gourlay and Mitchell [14], Fryazinov [15], Gordeziani [20], Gourlay and Mitchell [24], Tanenko [25,26], Tanenko
and Demidov [27], Konovalov [33], Marchuk and Ianenko [37], Marchuk and Sultangazin [38], Peaceman and
Rachford [39], Hlin [30], Samarskii [43-45], and Temam [48]). These works became a basis of the further
investigation of decomposition schemes.

We can show that the split problem, obtained by means of a decomposition method, generates the Trotter
formula (see Trotter [49]), or the Chernoff formula (see Chernoff [6,7]), or a formula which is a combination of
these formulas. Thus, an estimate of decomposition formula’s error is equivalent to the study of approximation of
continuous semigroup by Lie-Trotter and Lie-Chernoff type formulas. The works of Ichinose and Takanobu [28],
Ichinose and Tamura [29], Rogava [41], (see also [42], T. II) are devoted to estimate of error of Lie-Trotter and
Lie-Chernoff type formulas.

We call Lie-Trotter type formulas the formulas which approximate a semigroup by a combination of semi-
groups generated by the addends of the operator generating this semigroup.

We call Lie-Chernoff type formulas the formulas which are obtained from Lie-Trotter type formulas if we
replace semigroups by the corresponding resolvents.

Decomposition schemes conditionally can be divided into two groups: differential and difference. Lie-Trotter
type formulas correspond to differential decomposition schemes and Lie-Chernoff type formulas to difference
schemes.

Decomposition schemes, associated with the Lie and Trotter formulas, allow to split a Cauchy problem for
an evolution equation with the operator A = A; + Ay into two problems, respectively with the operators A;
and As, which are solved sequentially on the time interval with the length t/n.

Decomposition schemes associated with the Chernoff formula are known as the fractional-step method (see
Tanenko [26]).

Decomposition schemes in view of numerical calculation can be divided into two groups: schemes of sequential
account (see for example Marchuk [36]) and schemes of parallel account (Gordeziani and Meladze [22,23],
Gordeziani and Samarskii [21], Kuzyk and Makarov [35]). In [42] (see Sect. II), there are obtained explicit
a priori estimates for decomposition schemes of parallel account considered in [22]. There exist a lot of works
devoted to decomposition schemes. For example, see [26,36,46] and the references therein.

The accuracy order of the above-mentioned schemes are first or second. As it is known to us, the high
accuracy order decomposition schemes in case of two addends (A = A; + Az) for the first time were obtained
by Dia and Schatzman (see [8]). Note that the formulas constructed in these works are not automatically stable
decomposition formulas. Decomposition formula is called automatically stable if a sum of the absolute values
of split coefficients is equal to one. Sheng has proved [47] that, on the real number field, there does not exist
such automatically stable splitting of exp (—tA), the accuracy order of which is higher than two.

The present work is devoted to construction and investigation of the high order accuracy decomposition
scheme for an evolution problem.

In this work, by introducing a complex parameter, the fourth order accuracy symmetrized sequential-parallel
type differential scheme is constructed for a two-dimensional evolution problem with a split operator. The main
operator of the evolution problem conditionally is called the two-dimensional split operator if it represents a
sum of two addends (A = A; + As). The formula, corresponding to the constructed scheme, is an automatically
stable decomposition formula. For the considered scheme, there is obtained an explicit a priori estimate.
Under the explicit estimate we mean such a priori estimate for the solution error, where constants in the right-
hand side do not depend on the solution of the initial continuous problem, i.e. are absolute constants. In
the works [16-19], we have constructed the third order accuracy decomposition schemes for two- and multi-
dimensional homogeneous and inhomogeneous evolution problems.
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1. STATEMENT OF THE PROBLEM
Let us consider the Cauchy problem for an evolution equation in the Banach space X:

du(t)

T + Au(t) =0, t>0, u(0)=ep, (1)

where A is a linear closed operator with a definition domain D(A), which is everywhere dense in X, ¢ is a given
element from D (A).

Suppose that the operator (—A) generates a strongly continuous semigroup {exp(—tA)},~,. Then the solution
of problem (1) is given by the following formula [1, 36, 37]: -

u(t) = U(tv A)cp, (2)

where U(t, A) = exp(—tA) is a strongly continuous semigroup.
Let A=Ay + Ay, where A; (i =1,2) are closed operators, densely defined in X.
Let us introduce a grid set:
W, ={tp =kr,k=1,2,...,7 > 0}.
Together with problem (1), on each interval [t;_1,t;], we consider a sequence of the following problems:

1
du (1)

«

o e A (0 =00 ! (o) = e (o)
@) 1, o =
kdit 2A2’U (t) =0, (te—1) = v (k) ,
d’U(B)

T() +adiwy) () =0, vl (tior) = vl (1),
d’U( ) 1
O T =0, o ) = (),

dt 2
W@ o

0 040 1) =0, o () =0 (1),

(t) =0, ( ) (te—1) = ug—1 (tp—1),

+-Aw? (1) =0, w? (tr1) =wl (),

dt 2
dw'® (¢

D ma® (1) = 0, w® () = 0f® (1),
dw® () 1

L0 Ll ) = 0.l () = 0l (),

+ A (1) = 0, w (te1) = wi (1),

where « is a complex number with the positive real part, Re (a)) > 0; uo(0) = . Suppose that the operators
(—4;),(—ad;),(—@A;), j = 1,2 generate strongly continuous semigroups.
ug(t), k=1,2,.., is defined on each interval [tx_1, )] as follows:

ur(®) = 3120+ wd (). 3)
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We declare function ug(t) as an approximated solution of problem (1) on each interval [t5_1, tx].

2. ESTIMATE OF ERROR OF THE APPROXIMATED SOLUTION

We need the natural powers (A%, s=2,3,4,5) of the operator A = A; + As. They are usually defined as
follows:
(A2 +A2) (A1A5 + A2 Aq),
(A3 + A3) (A2A2 + ...+ AQA ) (A1 A3A1 + As A1 Ag)
(A} +A3) + (ATAz + ..+ ASA)) + (AT A2 A + ...+ AJA1 Ap)

+ (A1 A3 A1 Ay + Ay A1 Ag Ay)
A% = (A7 + AD) + (ATAs + . + AJAY) + (ATAs Ay + ..+ A3 A1 A)

+ (A%A2A1A2 + A§A1A2A1) + (A1 A2A1 A2 Ay + As A1 As AL Ag) .

It is obvious that the definition domain D (A?®) of the operator A® represents an intersection of definition domains
of its addends.
Let us introduce the following notations:

loll 4 = 1Arell + | A2¢ll, ¢ € D(A);
ol gz = ||ATe0|| + [| A3 + |A1d2e|| + [[A2410]|, » € D (A?),

where ||| is a norm in X. ||¢|| 4., (s =3,4,5) is defined analogously.
Theorem. Let the following conditions be fulfilled:
(a) a =1 iz%f (i =v-1);
(b) Opemtors (—v4;), v=1, a, @ (j =1,2) and (—A) generate strongly continuous semigroups, for which
the following estimates are true:
Ut~y A))I| < e,
U, A)|| < Me**, M = const. > 0;

(c) U (s,A)p € D (A%) for each fized s > 0.
Then the following estimate holds:

lu(ty) = ur(te)ll < ce*®ti7t sup [[U (s, A) | 45 ,
s€[0,tx]

where ¢ and wq are positive constants.

Proof. According to the following formula (see [32], p. 603):

¢
A/U(S,A)dszU(T,A)*U(t,A), 0<r<t,

T

we can obtain the expansion:

where
51 Sk—1
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From formula (3) we obtain:
ur(tr) = V* (1) o, (6)
where )
Vi) =3 @)+ 10,

and where
1 1
Vi(r)=U (T, %Al) U <T, §A2) U (r, @A) U <T, §A2) U (T, %Al) ,
1 1
Vo(r)=U (T, %Az) U (T, §A1) U (r,@d2)U (T, §A1) U (T, %AQ) )

Remark 1. Stability of the considered scheme on each finite time interval follows from the first inequality of
the condition (b) of the theorem. In this case, for the solving operator, the following estimate holds:

[VE ()] < e, (7)

where wq is a positive constant.

We introduce the following notations for combinations (sum, product) of semigroups. Let T (7) be a com-
bination (sum, product) of the semigroups, which are generated by the operators (—yA4;) (i =1,2). Let us
decompose every semigroup included in operator T (7) according to formula (4), multiply these decomposi-
tions on each other, add the similar members and, in the decomposition thus obtained, denote coefficients
of the members (—74;), (T24;4;), (-m34;A;Ay) and (7%A;A; Ak Ay) (i,5,k,1 = 1,2) respectively by [T (1)];,
(T (D) g [T ()]s g and [T (7)]; ;510

If we decompose all the semigroups included in the operator V(7) according to formula (4) from left to right
in such a way that each residual term appears of the fifth order, we will obtain the following formula:

2 2
=] — TZ 1; A + 72 Z Aj Aj—T1° Z v (T)]z',j,k AiA; Ay,

t 4,j=1 i,5,k=1

=1
2
Z )i jwn AiAj A AL+ Rs (1) (8)

i,7,k, =1
According to the first inequality of the condition (b) of the Theorem, for Rs (7), the following estimate holds:
1Rs (T) ol < ce™7° [lpll 45, 0 € D (A7), (9)

where ¢ and wqg are positive constants.
It is obvious that, for the coefficients in formula (8), we have:

va:§u<n FEL, =12

WV iy = 5 (), +0a0),), =12,
WV (lige = 5 (A ”k+w<mmy k=12
WV ligna = 5 (Vi Olgar + i) biki=12

Let us make two remarks which will simplify a calculation of coefficients in decomposition (8):
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Remark 2. Operator V (r) will not change if we replace with each other the operators A; and Ay in its
expression, as in this case V; (7) will coincide with V5 (7) , and V, (1) - with V4 (7). Therefore we have:

VL=V, i=12
\4 (T)]z] =[V (T)]371,37] s =12
\4 (T)]i,ng =V (T)]3—z,3—j,3—k’ i, k=12
[V (T)]m»,k,l =1[V (T)]3_i,3_j,3_k73_l, 1,7,k 1 =1,2.

Remark 3. Operators V4 (1) and V5 (7) are symmetrical in the sense that in their expressions the factors
(semigroups) equally remote from the ends coincide with each other. Therefore we have:

V), =Vl 6i=12
\4 (T)]i,ng =V (T)]k,jﬂ'a i,k =1,2;
\4 (T)]i,j,k,l =[V (T)]l7k7j,iv 1,7,k 1=1,2.
Let us calculate the coefficients [V (7)], corresponding to the first order members in formula (8). It is obvious
that the members, corresponding to these coefficients, are obtained from the decomposition of only those factors
(semigroups) of the operator V (1), which are generated by the operators (—yA;), and from the decomposition

of other semigroups only first addends (the members with identical operators) will participate.
On the whole, we have two cases: i = 1 and i = 2. Let us consider the case i = 1. We obviously have:

Vi), = [U (1, 4]y =1

and
[Va(7)], = [U (1, A1), = 1.
Thus 1
VDl = 5 (@] + [Va(n)],) = 1.
According to Remark 2:
V() =[V(r)l, = 1. (10)

Let us calculate the coefficients [V/(7)], ; (i,7 = 1,2) corresponding to the second order members included in
formula (8). On the whole we have two cases: (i,7) = (1,1), (1,2), (2,1), (2,2). Let us consider the case
(i,7) = (1,1). We obviously have:

\4 (T)]1,1 =[U(r, Al)h,l =

and

S Rl T

[‘/2(7)]1,1 =[U (TaAl)]m =

Therefore

—_

Vo =5 (WOl + W) = 5
According to Remark 2: .
[V(T)]2,2 =V, = 9 (11)

s

Let us consider the case (i,7) = (1,2), we obviously have:

o= [0 (5], o (3a0) ]+ [0 (5 )], [o ()],

1 al «al 1
aA A =S4 2 igs =2
+ [U (1,@A1)], |:U<T,2 2):|2 2+22—|—a2
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Thus 1 )
Ve =3 (Vs +Dat)],) = 5
According to Remark 2:
1

Vlos = Vs = 5 (12)

Here we used the identity a + @ = 1.
By combining formulas (11) and (12), we will obtain:
1 .
Vi, =5 ii=l2 (13)

Let us calculate the coefficients [V/(7)]; ;, (i,j,k = 1,2) corresponding to the third order members in for-
mula (8). On the whole we have eight cases: (i,j,k) = (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2),
(2,2,1), (2,2,2). Let us consider the case (¢,7,k) = (1,1,1). We obviously have:

[Vl('r)]1,1,1 =[U (r, Al)h,l,l = %
and 1
[‘/2(7')]1,1,1 =[U (TaAl)]Ll,l = 6
Thus: 1 1
Vs =5 (MO + 10ha,) = 5
According to Remark 2: .
[V(T)]2,2,2 = [V(T)]1,1,1 6 (14)

Let us calculate the case (i,7,k) = (1,1,2). We obviously have:

Vi(m)li12 = {U (Tv %Al)} . {U (T’ %A2>L + [U (T’ %fh)hl [U <T’ %AQ)L

U (7, @A), [U (T, %Agﬂ +[U(m, @A), [U (T, %f‘b)L

2

and
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Thus
1 2+a+a 1
Ve =5 (MEhe+ 120 ,,) = = =
Here we used the identities a +a@ =1, aa = % and a4+ a2 = %
According to Remarks 2 and 3:
1
[V(T)]1,1,2 = [V(T)]2,1,1 = [V(T)]2,2,1 = [V(T)]1,2,2 = 6 (15)

Let us consider the case (4, j, k) = (1,2,1). We obviously have:

2
1 «
+[U (r, @A), [U <T, §A2)L [U T, §A1)]1
_al_ ala ala _la 1 o
T 2297922 7222 T2 T 1
and
1 1 a
elian = U (mgar)| Winaa), v (nga)] =5
1 1
Thus
1 1 o2+a 1
Vo =5 (MOhas+ 1a@has) = 5+ 5 =5

Here we used the identity o + @ = 2.
According to Remark 2:

[V(T)]2,1,2 = [V(T)]1,2,1 6 (16)
By combining formulas (14), (15) and (16), we will obtain:
r
[V(T)]MJc =g i,5,k=1,2. (17)
Let us calculate the coefficients [V(T)]i”j,k’l (i,4,k,l =1,2) corresponding to the fourth order members in

formula (8). On the whole we have sixteen cases: (i,j,k,1) = (1,1,1,1), (1,1,1,2), ..., (2,2,2,1), (2,2,2,2). Let
us consider the case (4,7, k,1) = (1,1,1,1). We obviously have:

1
[VI(T)]1,1,1,1 =[U (TaAl)]1,1,1,1 = 24
and
1
[V2(T)]1,1,1,1 = [U (r, Al)]1,1,1,1 = 24
Thus:

V()11 = % ([Vl (M 111+ Va(M)]iaa 1) = 21_4

syt
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According to Remark 2:
1
[V( )]2222 [V( )]1111 24" (18)

14545 IR R

Let us consider the case (4, j, k,1) = (1,1,1,2), we obviously have:

Vi(Dli112= {U (T’ %Al)hl,l [U <T’ %AQ)L * {U <T’ %Al)}m,l [U <T’ %AQ)L

+ U (n 5], wEad), [U (T, %AQ)L o (n54)] Wwmman),, [U (T, %AQ)L
1
2

PO [PATe)| 8e T 82T 8 "2 T 222 62
_od*+a+4a’+20 1+3a°+a
a 48 a 48
and
1 1 o
1% U A U A U A U(r,—A
Va(T)]11 1.2 (7—72 1)]1’171[ (r,@ 2)]2+[ (T’Q 1)}171’1[ (T’2 2”2
1 1 o
o (mgn)] [ (g G5,
1 1 a 1 o
#lo (g, [ (raa)],, [0 (5], + o (ga)] | (5],
_1_,la lla, lla, la_lf3a
48 482 822 282 482 48
Thus

1 2+3@+a)+a 1
Ve =5 (MEOhae + V@) = 5 =5
Here we used the identities 3 (@3 + a) =2—-a@ a@+a>=0.
According to Remarks 2 and 3:

(V(r )]1,1,1,2 =[V(r )]2,1,1,1 =[V(r )]1,2,2,2 =[V(r )]2,2,2,1 Y

Let us consider the case (4, j, k,1) = (1,1,2,1

)-
s o), o ()] e o om0
o(msa)],, v (iA)] [U (- %AI)L
+|v (T,%Al)}l U (1, 5A)), [U <T, %A2>L v (r, %AI)L

+[U (r,@A1)]; 4 [U (T’ %A2>} ) [U (T’ %Al)} 1

a?1 a?la oa?la a_ la @ la
8 2 8 22 8 22 2 22 222
3 +3a+2a0 30 +a+2

48 - 48

We obviously have:
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and
1 _ 1 1_1 1_

Va(7)], 121= [U (T, —Al)] » U (1,@A2)], [U (T, §A1)] 1 =3% = g

Thus
1 3¢ +a+2+3a 3(P+a)+a+2 1
[V(T)]1,1,2,1 D) ([‘/1(7)]1,1,2,1 + [V2(7')]1,1,2,1) = 9 = ( 92 o1
Here we used the identity @® + o® = 0.
According to Remarks 2 and 3:
1
[V(T)]1,1,2,1 = [V(T)]2,2,1,2 = [V(T)]1,2,1,1 = [V(T)]2,1,2,2 o1 (20)

Let us consider the case (4, j, k,1) = (1,1,2,2). We obviously have:

b3, 3] 30, (200 3]
+[v(r %AI)L 1 [U (T, %AQ)LQ +[v(~ %AI)L [U (1, aA1)), [U (n lAQ)L2

, 2

2
a1 a?11 0421+o<_1+_2
= — A R —a— R
8 8 8 22 8 8 2 8
B o? + aa + a2 1
N 16 24

and

1
+[U 7,541 L : }2’2
12> 1_a 1a®> 11a® 1a?
“32 "8z 78% T22% 8w
B a’ +aa + a? _ 1
- 16 24
Thus
1 1
V(2o =5 (Ol 0e+ Vali02) = 57

According to Remark 2:

WV nne = VOlain = 57 (21)
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Let us consider the case (4,7, k,1) = (1,2,2,1). We obviously have:

3494y

V(D20 = U

/N
R
(] e}

)], v (r5a)] wEaa,

RGO

=

—
Ju—

+
.
~

a

U <T, —AQ

2,2

+
d
/N
2
N[ N[ R
-~
N— N——— N———

2
_al_ ala alla ala _la_ o*+od
28 282 2222 282 8 2 8
and
1 1 12?1 a2
V(T 200 = |U (7 54 I[U(T704A2)]22 U7 g T332 %
Thus
1 a? + aa + a2 1
Vot =5 (MOhaon + Va(hao) = 1 = 57
According to Remark 2:
1
[V(T)]1,2,2,1 = [V(T)]2,1,1,2 o1

Let us consider the case (4,7, k,1) = (1,2,1,2). We obviously have:

and

Thus

([V1 (T)]1,2,1,2 + [Va(1)ly 51 2) _ i

34y Lsy

|~

[V(T)h 2,1,2 —

1454y

According to Remark 2:

1
[V(T)]LQ,LQ = [V(T)]2,1,2,1 o1
By combining formulas (18)—(23), we will obtain:
1 o
[V(T)]i,j7k7l = ﬂ’ Za]7k7l = ]-; 2.

717

(23)
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From equality (8), taking into account formulas (10), (13), (17) and (24), we will obtain:

*IfTZAJr T2ZAAf 8 Z AAAkJrl Z A;AjALA + Rs (1)

4,j=1 i,5,k=1 i,5,k,1=1
2 1 2 4
—I—TZA 1 (z&) - (24) s L (ZAZ) + Ry ()
i=1
—7_ Low Llans 1 4
=1 TA+2TA 6TA +24TA + Rs (7). (25)
According to formula (4):
Voo a1 ap4
U(T,A)ZI—TA+§TA —ETA +ﬂTA + R5(1,A). (26)

According to condition (b) of the second inequality of the theorem, for Rs (7, A), the following estimate holds:
IR (7, A) pll < e || A]| < ce”T7° ||| 45 - (27)
According to equalities (25) and (26):
U(r,A) =V (1) =Rs(1,A) — R5 (7).
From here, taking into account inequalities (9) and (27), we will obtain the following estimate:
U (7,4) =V (D] ]l < ce”7° [l 45 - (28)
From equalities (2) and (6), taking into account inequalities (7) and (28), we will obtain:

llu(tr) — ue(te)| = H[U(tk,A) Vk } goH = || [Uk (1, A) — Vk ](p”

<ZHV WU (7, 4) =V (D] U (- D)7, A) ¢

Mw

VET () [U (r, A) =V (D] U ((i = 1) 7, A)

i=1

< Zewl(kfi)'rceszTf’ HU ((Z — ].)T, A) C,OHA5

=1
k
< e N U ((i = 1) 7, A) @l 45 < ke 7 sup [|U (s, A) ]| 45
p s€[o,tr]
< ce®otrt, 7t sup U (s, A) @] 45 - B
SE[O,tk]

Remark 4. In case of a Hilbert space, if A;, As and A; + Ao are self adjoint nonnegative operators, then wy
will be replaced by 0 in the estimate of the theorem. In addition, for the solution operator of the split problem,
the following estimate holds: ||[V* (7)|| < 1.

Remark 5. In case of a Hilbert space, if Ay, As and A; + Ay are self adjoint positive defined operators, then
wp will be replaced by (—ay), g > 0 in the estimate of the Theorem. In addition, for the solution operator of
the split problem, the following estimate holds: HVk (T)H <e 9tk ap > 0.
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Remark 6. According to the classical theorem of Hille-Philips-Iosida (see [40]), if the operator (—A) generates
a strongly continuous semigroup, then the second inequality of condition (b) of the Theorem is automatically
satisfied. The proof of this inequality is based on the uniform boundedness principle, due to which constants
M and w exist, but can not be explicitly constructed (following to method of the proof). For this reason we
demand a satisfaction of the second inequality of the condition (b) of the theorem.

3. CONNECTION BETWEEN DECOMPOSITION FORMULAS WITH DIFFERENT ACCURACIES

It is interesting if there exists a certain regularity, on the basis of which it is available to construct auto-
matically stable decomposition formulas with accuracy of any order. Concerning the above-mentioned let us
consider the concrete first and second order accuracy decomposition formulas and see whether there exists a
connection between them.

VO (1) = U (1, A1) U (1, A2) , (29)

VA () =U <T, %A1> U(r,A)) U <T, %A1> . (30)

In this formula and the formulas given below, the upper indices of the operator V' denote the order of the
corresponding decomposition formula. Formula (29) represents the first order accuracy decomposition formula
(see [49]), while formula (30) represents the second order accuracy decomposition formula (see [3]). In order to
show more clearly the connection between them, let us rewrite formula (30) in the following form:

1 1 1 1
VA (r) = {U <T, §A1) U <T, §A2)] [U <T, §A2) <T, §A1>]
1 — (1
S yACON N =
\%4 (27') 14 (27) .
In this formula and the formulas given below, we denote by V the multiplication of factors of the operator V
in the reverse order.

The regularity of the same type exists between the third and fourth order accuracy decomposition formulas,
constructed by us (see [16,18,19]). In order to show this, let us introduce the following notations:

ve () = 2 [V )+ v )], (31)

Vi (r) = U (r,ad)) U (1, A2) U (r,@A1)
Vi (r) = U (r,ad) U (1, A1) U (r,345) ,

and
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In order to reveal the connection between formulas (31) and (32), let rewrite the addends of formula (32) in the
following form:

v (r) = [U (r5an)U (n %A2) U (T, gAl)} [U (T, gAl) U (T, %AQ) v %Alﬂ
()
v (r) = [U (r.542)U <T, %Al) U <T, gAz)} [U <T, §A2> U <T, %A1> v, %Az)}

\
S
&
7 N
N |
ﬁ
~
S
8‘
7N\
N —
\‘
~~

Finally we obtain:

1 1\ o (1 1\ o (1
VO () = {Vf?’) <§T> e <§T) Lv® <§T> ® <§T)] .

Unfortunately, the following formula constructed by the same rule:

o (1 \T@/(1 4 (1 D (1
7 (5) 7 () v () W (7))
o ! 1

VO (1) =

N = N =

does not represent the fifth order accuracy decomposition formula. To check this out, it is sufficient to calculate,

for example, the coefficient [V(5) (T)], 5.1 94~ We see that

[V(S) (T)} 1,2,1,2,1 %

In our opinion, it is interesting and important to find the general regularity, by means of which it will be
available to construct recurrently an automatically stable decomposition formula with accuracy of any order, or
to prove that, on the complex number field, there does not exist an automatically stable decomposition formula
with accuracy of order more than four (as well as on the real number field there does not exist an automatically
stable decomposition formula with accuracy of order more than two). In addition, it is not excluded that,
to obtain the higher order accuracy, it will be necessary to use as split parameters, for example, quaternions
instead of complex numbers,

In our opinion, these questions are very interesting and difficult, and we work in this direction, but we have
not yet obtain actual results.

4. CONCLUSION

In case when operators A; A, are matrices, it is obvious that conditions of the theorem are automatically
satisfied. Also conditions of the Theorem are satisfied if A1, As and A are self-adjoint, positive definite operators.
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The requirement, that the operators aA and @A (a = 1/\/§(cos 30° 4 isin 300)) must generate a strongly
continuous semigroup, puts the condition on the spectrum of A. Namely, the spectrum of A must be placed
within a sector with the angle less than 120 degrees, because in case of turning of spectrum by +30 degrees (this
is caused by multiplying of A on the parameters a and @) the spectrum area will stay in the positive (right)
half-plane.

The fourth order accuracy is reached by introducing a complex parameter. For this reason, each equation of
the given decomposed system is replaced by a pair of real equations, unlike the lower order accuracy schemes.
To solve the concrete problem, (for example) the matrix factorization can be used, where coefficients are the
matrices of the second order, while in the lower order accuracy schemes the common factorization may be used.

It must be noted that a sum of the absolute values of coefficients of the addends of the transition operator V (1)
equals to one, unlike the high order accuracy decomposition schemes considered in [8]. Hence, the considered
scheme is stable for any bounded operators A1, As.
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