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NUMERICAL APPROXIMATION OF DYNAMIC DEFORMATIONS
OF A THERMOVISCOELASTIC ROD AGAINST AN ELASTIC OBSTACLE

Maria I.M. Copetti1

Abstract. In this paper we consider a hyperbolic-parabolic problem that models the longitudinal
deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence
and uniqueness of a strong solution is shown. A finite element approximation is proposed and its
convergence is proved. Numerical experiments are reported.
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1. Introduction

We study the following hyperbolic-parabolic system

θt − θxx = −auxt, 0 < x < 1, t > 0, (1.1)

butt − σx = 0, 0 < x < 1, t > 0, (1.2)
where σ = ux + ζuxt − aθ, with initial conditions

θ(x, 0) = θ0(x), u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1, (1.3)

and boundary conditions

u(0, t) = 0, θ(0, t) = θA, −θx(1, t) = kθ(1, t), t > 0, (1.4)

σ(1, t) = −1
ε
[u(1, t) − g]+, t > 0, (1.5)

which models the deformations along the x-axis of a linear, homogeneous, thermoviscoelastic rod occupying in
its reference configuration the interval I = [0, 1]. The temperature, the axial displacement and the stress of the
rod are denoted by θ(x, t), u(x, t) and σ(x, t), respectively. At its left end the rod is clamped and has constant
temperature θA. The right end is free to expand or contract and may be in contact and, possibly, penetrate an
elastic obstacle with rigidity 1/ε > 0 located at distance g > 0 from the rest position. We assume that there is a
heat exchange with the obstacle. Here a, b ≥ 0 are constants given in terms of physical parameters, a is usually
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small, ζ > 0 is the coefficient of viscosity and k > 0 is the coefficient of heat transfer. When ε → 0 in (1.5) the
resulting boundary condition is the Signorini’s condition for contact with a rigid obstacle. In this work, linear
viscous effects have been included in the equations of linear thermoelasticity. We refer to Carlson [1], Day [4]
and Jiang and Racke [8] for physical background and mathematical modelling.

A related dynamic problem was studied by Elliott and Qi [7]. In that paper, the rod is only thermoelastic
(ζ = 0) and a regularization of the problem with elastic obstacle is used to prove existence, without uniqueness,
of a weak solution to the limiting case ε → 0. The existence of weak solutions to the thermoviscoelastic contact
problem with a rigid obstacle was shown by Kuttler and Shillor [10] in the case that the heat exchange coefficient
is a continuous function or a graph that depends on the distance between the free end and the obstacle.

In order to prove existence and uniqueness of a strong solution to (1.1)–(1.5) it is important the presence
of the term ζuxt that makes it possible to obtain the necessary a priori estimates to pass to the limit in the
associated Fourier-Galerkin formulation. A finite element method is proposed to numerically approximate the
present model. Convergence to the solution of the continuous problem is proved and some numerical experiments
are presented.

If the acceleration of the rod is small, the term butt is usually neglected and the resulting problem becomes
quasi-static. This situation was considered by Copetti and French [3] where existence and uniqueness of a strong
solution, for both elastic and rigid obstacles, was established and a numerical approximation was proposed and
analysed. The quasi-static contact problem for a thermoelastic rod and an elastic obstacle was studied by
Copetti [2]. In [9] Kim considers dynamic contact problems with elastic and rigid obstacles for a viscoelastic
rod with long memory. Existence of solution to dynamic thermoviscoelastic contact problems in R

n with friction
and contact condition for the displacement velocities was proved by Eck [5] and Eck and Jarušek [6]. Numerical
approximations by finite element and finite difference methods to the problem that models the deformations of
an elastic rod against a rigid obstacle were proposed by Schatzman and Bercovier [11].

Results on dynamic contact problems in thermoelasticity and thermoviscoelasticity modelling the deforma-
tions of a rod against a stationary obstacle, elastic or rigid, are scarce and the present work is a contribution
to the numerical solution of such problems.

Throughout the paper C denotes positive constants that may depend on data and are not necessarily the
same at each occurrence.

2. Existence and uniqueness

For completeness, we prove in this section that there exists a unique solution to the above problem. We
follow similar ideas as in [7] and [3] .

Let us introduce H1
E(I) = {χ ∈ H1(I) | χ(0) = 0} and assume that b = 1 for simplicity.

Theorem 2.1. Given θ0 ∈ H2(I), θ0(0) = θA, θ0(1) = θ0x(1) = 0, u0 ∈ H2(I) ∩ H1
E , u0x(1) = 0, u0(1) ≤ g,

and u1 ∈ H2(I) ∩ H1
0 (I), u1x(1) = 0, there exists a unique {θ, u} satisfying equations (1.1)–(1.5) with

θ ∈ L∞ (0, T ; H1(I)
)
, θt, utt, σx ∈ L∞ (0, T ; L2(I)

) ∩ L2
(
0, T ; H1

E(I)
)
,

u, ut ∈ L∞ (0, T ; H1
E(I)

)
, θxx, uxx, σ ∈ L∞ (0, T ; L2(I)

)
.

Proof. Introducing the following change of variables

θ̃(x, t) = θ(x, t) − θ0(x), ũ(x, t) = u(x, t) − u0(x) − tu1(x),
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it results that θ̃, ũ satisfy, ∀w, v ∈ H1
E(I),

(
θ̃t, w

)
+
(
θ̃x + θ0x, wx

)
+ a (ũxt + u1x, w) + kθ̃(1, t)w(1) = 0,

(ũtt, v) +
(
ũx + ζũxt − aθ̃ − aθ0 + u0x + (t + ζ)u1x, vx

)
+

1
ε
[ũ (1, t) + u0 (1) − g]+v (1) = 0.

Let V m = span{φi}m
i=1, where {φi}∞i=1 ⊂ C∞(I) is an orthogonal basis for H1

E(I) and orthonormal for L2(I),
and look for

θm(x, t) =
m∑

i=1

ci(t)φi(x), um(x, t) =
m∑

i=1

di(t)φi(x),

satisfying, ∀w, v ∈ V m,

(θm
t , w) + (θm

x + θ0x, wx) + a (um
xt + u1x, w) + kθm (1, t)w (1) = 0, (2.1)

(um
tt , v) + (um

x + ζum
xt − aθm − aθ0 + u0x + (t + ζ) u1x, vx) +

1
ε
[um (1, t) + u0 (1) − g]+v (1) = 0, (2.2)

with initial conditions θm(x, 0) = um(x, 0) = um
t (x, 0) = 0. Since the nonlinearity involved is Lipschitz continu-

ous, this initial value problem has a solution on some interval [0, T m]. The a priori estimates established below
allow us to conclude that the solution can be extended to the whole interval [0, T ] for any given T.

Taking w = θm and v = um
t we find that

1
2

d
dt

‖θm‖2 + ‖θm
x ‖2 + k (θm (1, t))2 +

1
2

d
dt

‖um
t ‖2 +

1
2

d
dt

‖um
x ‖2 + ζ‖um

xt‖2 +
1
2ε

d
dt

[um (1, t) + u0 (1) − g]2+

= − (θ0x, θm
x ) − a (u1x, θm) + (aθ0 − u0x − (t + ζ) u1x, um

xt) ≤ C +
1
2
(‖θm

x ‖2 + ‖θm‖2 + ζ‖um
xt‖2

)
.

Thus, Gronwall’s inequality implies that

‖θm(·, T )‖2 +
∫ T

0

‖θm
x ‖2dt + k

∫ T

0

(θm(1, t))2dt + ‖um
t (·, T )‖2 + ‖um

x (·, T )‖2 + ζ

∫ T

0

‖um
xt‖2dt

+
1
ε
[um(1, T ) + u0(1) − g]2+ ≤ C.

Substituting θm
t for w gives

‖θm
t ‖2 +

1
2

d
dt

‖θm
x ‖2 +

k

2
d
dt

(θm (1, t))2 = − (θ0x, θm
xt) − a (um

xt + u1x, θm
t )

≤ − d
dt

(θ0x, θm
x ) + a2

(‖um
xt‖2 + ‖u1x‖2

)
+

1
2
‖θm

t ‖2.

By virtue of the previous estimate we deduce that

∫ T

0

‖θm
t ‖2dt + ‖θm

x (·, T )‖2 + k(θm(1, T ))2 ≤ C.
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Differentiating equations (2.1)–(2.2) with respect to t and setting w = θm
t , v = um

tt it results

1
2

d
dt

‖θm
t ‖2 + ‖θm

xt‖2 + k(θm
t (1, t))2 + a(um

xtt, θ
m
t ) = 0,

1
2

d
dt

(‖um
tt‖2 + ‖um

xt‖2
)

+ ζ‖um
xtt‖2 − a(θm

t , um
xtt) +

1
ε

d
dt

[um(1, t) + u0(1) − g]+um
tt (1, t)

= −(u1x, um
xtt) ≤

1
2ζ

‖u1x‖2 +
ζ

2
‖um

xtt‖2.

Hence, for δ > 0,

1
2

d
dt

‖θm
t ‖2 + ‖θm

xt‖2 + k(θm
t (1, t))2 +

1
2

d
dt

(‖um
tt‖2 + ‖um

xt‖2
)

+
ζ

2
‖um

xtt‖2 ≤ C +
1

2ε2δ
(um

t (1, t))2 +
δ

2
(um

tt (1, t))2.

Observing that

um
t (1, t) =

∫ 1

0

um
xtdx, um

tt (1, t) =
∫ 1

0

um
xttdx,

and taking δ = ζ/2 we obtain, recalling that
∫ T

0
‖um

xt‖2dt ≤ C,

1
2
‖θm

t (·, T )‖2 +
∫ T

0

‖θm
xt‖2dt + k

∫ T

0

(θm
t (1, t))2dt +

1
2
‖um

tt (·, T )‖2

+
1
2
‖um

xt(·, T )‖2 +
ζ

4

∫ T

0

‖um
xtt‖2dt ≤ C +

1
2
(‖θm

t (·, 0)‖2 + ‖um
tt (·, 0)‖2

)
.

We need to estimate ‖θm
t (·, 0)‖ and ‖um

tt (·, 0)‖. Letting t = 0 in equations (2.1) and (2.2) we get ∀w, v ∈ V m,

(θm
t (·, 0), w) = −(θ0x, wx) − a(u1x, w) = (θ0xx, w) − a(u1x, w),

(um
tt (·, 0), v) = (aθ0 − u0x − ζu1x, vx) = −(aθ0x − u0xx − ζu1xx, v),

and it follows that θm
t (·, 0) and um

tt (·, 0) are bounded in L2(I). Using the above estimates, we can select subse-
quences, denoted by {θm}, {um}, such that

θm → θ̃, um → ũ, um
t → ũt weakly ∗ in L∞(0, T ; H1

E(I)),

θm
t → θ̃t weakly ∗ in L∞(0, T ; L2(I)) and weakly in L2(0, T ; H1

E(I)),

um
tt → ũtt weakly ∗ in L∞(0, T ; L2(I)) and weakly in L2(0, T ; H1

E(I)),

θm(1, ·) → θ̃(1, ·) weakly ∗ in L∞(0, T ).

We infer also that um(1, ·) → ũ(1, ·) in H1(0, T ) weakly, and the fact that the injection of H1(0, T ) into L2(0, T )
is compact implies that um(1, ·) → ũ(1, ·) in L2(0, T ) strongly. Noting that

‖[um(1, ·) + u0(1) − g]+ − [ũ(1, ·) + u0(1) − g]+‖L2(0,T ) ≤ ‖um(1, ·) − ũ(1, ·)‖L2(0,T )
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we deduce that
[um(1, ·) + u0(1) − g]+ → [ũ(1, ·) + u0(1) − g]+ in L2(0, T ) strongly.

We can then pass to the limit and reverse the change of variables to find that

(θt, w) + (θx, wx) + a(uxt, w) + kθ(1, t)w(1) = 0,

(utt, v) + (ux + ζuxt − aθ, vx) +
1
ε
[u(1, t) − g]+v(1) = 0

hold for every w, v ∈ H1
E(I). By the standard argument, the existence result follows. The argument used by

Copetti and French in [3] yields the H2 regularity for u(·, t) : from the defining equations,

ux + ζuxt = aθ + σ

and therefore,
d
dt

(
et/ζux(·, t)

)
=

1
ζ
(aθ(·, t) + σ(·, t))et/ζ .

Integrating in time we obtain

ux(·, t) = e−t/ζ

(
ux(·, 0) +

1
ζ

∫ t

0

(aθ(·, s) + σ(·, s))es/ζds

)

and differentiating with respect to x we find that uxx(·, t) ∈ L2(I).
Let us suppose that {θ1, u1} and {θ2, u2} are two solutions. Setting θ = θ1 − θ2, u = u1 − u2, and choosing

w = θ and v = ut in the weak form above, we have

1
2

d
dt

(‖θ‖2 + ‖ut‖2 + ‖ux‖2
)
+‖θx‖2+k (θ (1, t))2+ζ‖uxt‖2+

1
ε

([
u1 (1, t) − g

]
+
− [u2 (1, t) − g

]
+

)
ut (1, t) = 0.

Observing that ∣∣∣∣1ε
([

u1(1, t) − g
]
+
− [u2(1, t) − g

]
+

)
ut(1, t)

∣∣∣∣ ≤ C‖ux‖2 +
ζ

2
‖uxt‖2

the uniqueness of the solution follows from Gronwall’s inequality. �
Remark 2.2. Let us observe that a generalized energy associated to the model considered here decays as time
tends to infinity. Substituting θ̂(x, t) = θ(x, t) + θAr(x), with r(x) = cx − 1, c = k/(k + 1), in (1.1)–(1.2) we
find that {θ̂, u} satisfies, ∀w, v ∈ H1

E(I),(
θ̂t, w

)
+
(
θ̂x, wx

)
+ a (uxt, w) + kθ̂ (1, t)w (1) = 0, (2.3)

(utt, v) +
(
ux + ζuxt − aθ̂ + aθAr, vx

)
+

1
ε
[u (1, t) − g]+v (1) = 0. (2.4)

Choosing w = θ̂ and v = ut it results that Ê(t) = 1
2 (‖θ̂‖2 +‖ut‖2 +‖ux‖2 + 1

ε [u(1, t)− g]2+)+aθA(r, ux) satisfies

d
dt

Ê(t) ≤ 0,

which implies that

d
dt

(
1
2

(
‖θ‖2 + ‖ut‖2 + ‖ux‖2 +

1
ε
[u(1, t) − g]2+

)
+ θA(r, θ) + aθA(r, ux)

)
≤ 0.
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3. Numerical approximation

In this section we extend the numerical scheme of Copetti and French [3] to the present situation.
We denote by Sh

E ⊂ H1
E(I) the space of continuous piecewise linear functions defined on a equidistant

partition 0 = x0 < x1 < . . . < xs = 1 of I into subintervals of length h = 1/s and, given v ∈ H1
E(I), we indicate

by P h
Ev the H1

E projection onto Sh
E defined by ((P h

Ev − v)x, ηx) = 0 ∀η ∈ Sh
E , which satisfies

P h
Ev → v in H1

E(I) strongly as h → 0, ‖(P h
Ev)x‖ ≤ ‖vx‖, P h

Ev(xi) = v(xi).

The Galerkin approximation to (2.3)–(2.4) is to find Θn, Un ∈ Sh
E , such that, ∀w, v ∈ Sh

E ,

1
∆t

(
Θn − Θn−1, w

)
+ (Θn

x , wx) +
a

∆t

(
Un

x − Un−1
x , w

)
+ kΘn(1)w(1) = 0, n = 1, . . . , N, (3.1)

1
(∆t)2

(
Un − 2Un−1 + Un−2, v

)
+ (Un

x − aΘn + aθAr, vx) +
ζ

∆t

(
Un

x − Un−1
x , vx

)

+
1
ε
[Un (1) − g]+v (1) = 0, n = 2, . . . , N, (3.2)

where Θ0 = P h
E(θ0 + θAr), U0 = P h

Eu0, U1 = U0 + ∆tP h
Eu1 and ∆t = T/N.

To implement (3.1)–(3.2) for n = 2, . . . , N, we need to solve two coupled systems of equations at each time
step and the following iterative procedure was used:

1
∆t

(
Θn,l − Θn−1, w

)
+
(
Θn,l

x , wx

)
+

a

∆t

(
Un,l−1

x − Un−1
x , w

)
+ kΘn,l (1)w (1) = 0, (3.3)

1
(∆t)2

(
Un,l − 2Un−1 + Un−2, v

)
+
(
Un,l

x − aΘn,l + aθAr, vx

)
+

ζ

∆t

(
Un,l

x − Un−1
x , vx

)
+

1
ε
[Un,l−1 (1) − g]+v (1) = 0, (3.4)

where Θn,0 = Θn−1 and Un,0 = Un−1.
Defining

Θn =
s∑

i=1

cn
i ηi, Un =

s∑
i=1

dn
i ηi,

with {ηi}s
i=1 the usual basis for Sh

E , we find that cn,l and dn,l solve the algebraic systems

(M + ∆tK + ∆tkB) cn,l = Mcn−1 + aC
(
dn−1 − dn,l−1

)
,

(
M +

(
(∆t)2 + ∆tζ

)
K
)

dn,l = (2M + ∆tζK) dn−1 − Mdn−2 − (∆t)2 aθAz

+ (∆t)2 aCT cn,l − (∆t)2
[
dn,l−1

s − g
]
+

e/ε,

where
Mij = (ηi, ηj), Kij = (ηix, ηjx), Bij = ηi(1)ηj(1), Cij = (ηi, ηjx), {z}i = (r, ηix).

Convergence as l → ∞ of the sequences generated by (3.3)–(3.4) to the unique solution of (3.1)–(3.2), for a < 1
and ∆t < εζ, follows as in the work of Copetti and French [3].
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4. Stability

It is our aim in this section to derive general a priori estimates for our discrete scheme.

Theorem 4.1. The sequences {Θn, Un} generated by (3.1)–(3.2) satisfy the stability estimate

n∑
i=2

∥∥Θi − Θi−1
∥∥2

+ ‖Θn‖2 + ∆t

n∑
i=2

∥∥Θi
x

∥∥2
+ k∆t

n∑
i=2

(
Θi(1)

)2
+

n∑
i=2

∥∥δi
u − δi−1

u

∥∥2
+ ‖δn

u‖2

+ ∆tζ

n∑
i=2

∥∥δi
ux

∥∥2
+

n∑
i=2

∥∥U i
x − U i−1

x

∥∥2
+ ‖Un

x ‖2 +
1
ε

[Un(1) − g]2+ ≤ C

where δn
u = (Un − Un−1)/∆t for n ≥ 1 and C > 0 is a constant independent of h and ∆t.

Proof. Taking w = ∆tΘn in (3.1), v = ∆tδn
u in (3.2) and adding the resulting equations yields

1
2
(‖Θn − Θn−1‖2 + ‖Θn‖2 − ‖Θn−1‖2) + ∆t‖Θn

x‖2 + k∆t(Θn(1))2 +
1
2
(‖δn

u − δn−1
u ‖2 + ‖δn

u‖2 − ‖δn−1
u ‖2)

+
1
2
(‖Un

x − Un−1
x ‖2 + ‖Un

x ‖2 − ‖Un−1
x ‖2) + ∆tζ‖δn

ux‖2 +
∆t

ε
[Un(1) − g]+δn

u (1)

= −∆taθA(r, δn
ux) ≤ C∆t +

∆t

2
ζ‖δn

ux‖2.

Noting that

∆t[Un(1) − g]+δn
u (1) = [Un(1) − g]+(Un(1) − g + g − Un−1(1)) = [Un(1) − g]2+ − [Un(1) − g]+(Un−1(1) − g)

≥ [Un(1) − g]2+ − [Un(1) − g]+[Un−1(1) − g]+ ≥ 1
2
([Un(1) − g]2+ − [Un−1(1) − g]2+)

and summing over n, we find

1
2

(
n∑

i=2

‖Θi − Θi−1‖2 + ‖Θn‖2

)
+ ∆t

n∑
i=2

(‖Θi
x‖2 + k(Θi(1))2) +

1
2

(
n∑

i=2

‖δi
u − δi−1

u ‖2 + ‖δn
u‖2

)

+
1
2

(
n∑

i=2

‖U i
x − U i−1

x ‖2 + ‖Un
x ‖2

)
+

∆tζ

2

n∑
i=2

‖δi
ux‖2 +

1
2ε

[Un(1) − g]2+

≤ C +
1
2
(‖Θ1‖2 + ‖δ1

u‖2 + ‖U1
x‖2) +

1
2ε

[U1(1) − g]2+.

It follows from the definition of U0, U1 and the properties of P h
E that the last three terms on the right hand

side of the above inequality are bounded. It remains to estimate ‖Θ1‖. We have

1
2
(‖Θ1 − Θ0‖2 + ‖Θ1‖2 − ‖Θ0‖2) + ∆t‖Θ1

x‖2 + k∆t(Θ1(1))2 = −a(U1
x − U0

x , Θ1)

≤ a2‖U1
x − U0

x‖2 +
1
4
‖Θ1‖2

and hence ‖Θ1‖ ≤ C. �
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Corollary 4.2. We have that

∆t

n∑
i=1

∥∥∥∥Θi − Θi−1

∆t

∥∥∥∥
2

+
n∑

i=1

‖Θi
x − Θi−1

x ‖2 + ‖Θn
x‖2 + k

n∑
i=1

(Θi(1) − Θi−1(1))2 + k(Θn(1))2 ≤ C.

Proof. Setting w = Θn − Θn−1 in (3.1) gives

1
∆t

‖Θn − Θn−1‖2 +
1
2
(‖Θn

x − Θn−1
x ‖2 + ‖Θn

x‖2 − ‖Θn−1
x ‖2) +

k

2
((Θn(1) − Θn−1(1))2 + (Θn(1))2 − (Θn−1(1))2)

= − a

∆t
(Un

x − Un−1
x , Θn − Θn−1) ≤ a2∆t

2
‖δn

ux‖2 +
1

2∆t
‖Θn − Θn−1‖2

and the desired estimate is now a consequence of the previous Theorem after summation over n. We also used
that ∆t‖δ1

ux‖2 ≤ T ‖u1x‖2. �

Theorem 4.3. There exists a positive constant C, independent of h and ∆t, such that

n∑
i=2

‖δi+1
θ − δi

θ‖2 + ‖δn+1
θ ‖2 + ∆t

n∑
i=2

‖δi+1
θx ‖2 + k∆t

n∑
i=2

(δi+1
θ (1))2 +

n∑
i=2

‖γi+1 − γi‖2 + ‖γn+1‖2

+
n∑

i=2

‖δi+1
ux − δi

ux‖2 + ‖δn+1
ux ‖2 + ζ∆t

n∑
i=2

‖γi+1
x ‖2 ≤ C

where γn = (δn
u − δn−1

u )/∆t for n ≥ 2.

Proof. Writing equations (3.1) and (3.2) for n + 1 it follows that, for all w, v ∈ Sh
E ,

(δn+1
θ − δn

θ , w) + ∆t(δn+1
θx , wx) + a∆t(γn+1

x , w) + k∆tδn+1
θ (1)w(1) = 0,

(γn+1 − γn, v) + ∆t(δn+1
ux − aδn+1

θ + ζγn+1
x , vx) +

1
ε
([Un+1(1) − g]+ − [Un(1) − g]+)v(1) = 0.

Choosing w = δn+1
θ , v = γn+1 and adding the resulting equations yields

1
2
(‖δn+1

θ − δn
θ ‖2 + ‖δn+1

θ ‖2 − ‖δn
θ ‖2) + ∆t‖δn+1

θx ‖2 + k∆t(δn+1
θ (1))2 +

1
2
(‖γn+1 − γn‖2 + ‖γn+1‖2 − ‖γn‖2)

+ ∆t(δn+1
ux , γn+1

x ) + ζ∆t‖γn+1
x ‖2 = −1

ε
([Un+1(1) − g]+ − [Un(1) − g]+)γn+1(1).

Since

1
ε
|([Un+1(1) − g]+ − [Un(1) − g]+)||γn+1(1)| ≤ 1

ε
|Un+1(1) − Un(1)||γn+1(1)|

≤ ∆t

2ε2ζ
‖δn+1

ux ‖2 +
ζ∆t

2
‖γn+1

x ‖2
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and ∆t(δn+1
ux , γn+1

x ) = (δn+1
ux , δn+1

ux − δn
ux) we find, after summation over n and using Theorem 4.1,

1
2

n∑
i=2

‖δi+1
θ − δi

θ‖2 +
1
2
‖δn+1

θ ‖2 + ∆t
n∑

i=2

‖δi+1
θx ‖2 + k∆t

n∑
i=2

(δi+1
θ (1))2 +

1
2

n∑
i=2

‖γi+1 − γi‖2 +
1
2
‖γn+1‖2

+
1
2

n∑
i=2

‖δi+1
ux − δi

ux‖2 +
1
2
‖δn+1

ux ‖2 +
ζ

2
∆t

n∑
i=2

‖γi+1
x ‖2 ≤ C +

1
2
(‖δ2

θ‖2 + ‖γ2‖2 + ‖δ2
ux‖2).

Let us estimate the last three terms on the right hand side. We have, from equations (3.1) and (3.2),

1
2
(‖δ2

θ − δ1
θ‖2 + ‖δ2

θ‖2 − ‖δ1
θ‖2) + ∆t‖δ2

θx‖2 + k∆t(δ2
θ(1))2 + a∆t(γ2

x, δ2
θ) = 0,

‖γ2‖2 + (U2
x − aΘ2 + aθAr + ζδ2

ux, γ2
x) +

1
ε
[U2(1) − g]+γ2(1) = 0.

Substituting U2 = U1 + ∆tδ2
u, Θ2 = Θ1 + ∆tδ2

θ and δ2
u = δ1

u + ∆tγ2 gives

1
2
(‖δ2

θ − δ1
θ‖2 + ‖δ2

θ‖2 − ‖δ1
θ‖2) + ∆t‖δ2

θx‖2 + k∆t(δ2
θ(1))2 + ‖γ2‖2 + ζ∆t‖γ2

x‖2

+
1
2
(‖δ2

ux − δ1
ux‖2 + ‖δ2

ux‖2 − ‖δ1
ux‖2) +

1
ε
[U2(1) − g]+γ2(1) = −(U1

x − a(Θ1 − θAr) + ζδ1
ux, γ2

x).

Now,

− (U1
x − a(Θ1 − θAr) + ζδ1

ux, γ2
x) = −(U0

x + (∆t + ζ)(P h
Eu1)x − a(Θ0 + ∆tδ1

θ − θAr), γ2
x)

= −(u0x + (∆t + ζ)u1x − a(Θ0 − θAr), γ2
x) + a∆t(δ1

θ , γ2
x) ≤ C +

1
2
‖γ2‖2 +

a2∆t

2ζ
‖δ1

θ‖2 +
ζ∆t

2
‖γ2

x‖2

where integration by parts and the hypothesis on the initial data were used. The definition of U1, the assumption
that u1(1) = 0 and the properties of P h

E yields γ2(1) = (U2(1) − U0(1))/(∆t)2. Thus,

[U2(1) − g]+γ2(1) =
1

(∆t)2
[U2(1) − g]+(U2(1) − g + g − U0(1))

=
1

(∆t)2
[U2(1) − g]2+ − 1

(∆t)2
[U2(1) − g]+(U0(1) − g) ≥ 0.

Therefore,

1
2
(‖δ2

θ − δ1
θ‖2 + ‖δ2

θ‖2) + ∆t‖δ2
θx‖2 + k∆t(δ2

θ(1))2 +
1
2
‖γ2‖2 +

ζ∆t

2
‖γ2

x‖2

+
1
2
(‖δ2

ux − δ1
ux‖2 + ‖δ2

ux‖2) ≤ 1
2
(‖δ1

θ‖2 + ‖δ1
ux‖2) + C +

a2∆t

2ζ
‖δ1

θ‖2.
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From Corollary 4.2 we have that ∆t‖δ1
θ‖2 ≤ C and we need to show that ‖δ1

θ‖ is bounded. Writing equation (3.1)
for n = 1 yields, ∀w ∈ Sh

E ,

(δ1
θ , w) + (∆tδ1

θx + Θ0
x, wx) + a(δ1

ux, w) + kΘ1(1)w(1) = 0.

Since (Θ0
x, wx) = (θ0x + cθA, wx) = cθAw(1) − (θ0xx, w) we find that, ∀w ∈ Sh

E ,

(δ1
θ , w) + ∆t(δ1

θx, wx) + a(δ1
ux, w) + (kΘ1(1) + cθA)w(1) − (θ0xx, w) = 0.

Taking w = δ1
θ and observing that Θ1(1) = ∆tδ1

θ(1) − cθA/k we obtain

‖δ1
θ‖2 + ∆t‖δ1

θx‖2 + ∆tkδ1
θ(1)2 = (θ0xx − aδ1

ux, δ1
θ) ≤ ‖θ0xx‖2 + a2‖δ1

ux‖2 +
1
2
‖δ1

θ‖2

and the statement of the theorem follows. �
Remark 4.4. Note that, similarly to the continuous case, the proof of Theorem 4.1 yields

Ên − Ên−1

∆t
≤ 0 n = 2, . . . , N,

where
Ên =

1
2
(‖Θn‖2 + ‖δn

u‖2 + ‖Un
x ‖2 +

1
ε
[Un(1) − g]2+) + aθA(r, Un

x ).

5. Convergence

We proceed to prove that the numerical method converges.
Given ξ ∈ C∞(0, T ), we define the piecewise, constant in time, functions

θh,∆t(t) =
N∑

i=0

Θiχi(t), uh,∆t(t) =
N∑

i=0

U iχi(t), ξ∆t(t) =
N∑

i=1

ξi−1χi(t),

where χi is the characteristic function of [(i − 1)∆t, i∆t), and ξi = ξ(ti), and the piecewise linear, continuous
in time, functions ûh,∆t, θ̂h,∆t such that ûh,∆t(i∆t) = U i, θ̂h,∆t(i∆t) = Θi. We introduce the operators

δuh,∆t(t) =
uh,∆t(t) − uh,∆t(t − ∆t)

∆t
t ∈ [0, T ],

γuh,∆t(t) =




δuh,∆t(t) − δuh,∆t(t − ∆t)
∆t

t ∈ [∆t, T ],

0 t ∈ [0, ∆t).

It follows, from Theorems 4.1, and 4.3 and Corollary 4.2, that we can extract subsequences such that, as h,
∆t → 0,

θh,∆t → θ, θ̂h,∆t → θ in L∞(0, T ; H1
E(I)) weakly∗,

uh,∆t → u, ûh,∆t → u, δuh,∆t → ut in L∞(0, T ; H1
E(I)) weakly∗,

δθh,∆t → θt, γuh,∆t → utt in L∞(0, T ; L2(I)) weakly∗,
δθh,∆t → θt, γuh,∆t → utt in L2(0, T ; H1

E(I)) weakly,

θh,∆t(1, ·) → θ(1, ·) in L∞(0, T ) weakly∗.
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Furthermore, ûh,∆t(1, ·) → u(1, ·), ξ∆t → ξ in L2(0, T ) strongly. Since

‖ûh,∆t(1, ·) − uh,∆t(1, ·)‖2
L2(0,T ) ≤ ∆t

N∑
i=1

(U i(1) − U i−1(1))2 ≤ ∆t

N∑
i=1

‖U i
x − U i−1

x ‖2

and

‖[uh,∆t(1, ·) − g]+ − [u(1, ·) − g]+‖ ≤ ‖uh,∆t(1, ·) − u(1, ·)‖
≤ ‖[uh,∆t(1, ·) − ûh,∆t(1, ·)‖L2(0,T ) + ‖ûh,∆t(1, ·) − u(1, ·)‖L2(0,T ),

the stability estimate given in Theorem 4.1 implies that

[uh,∆t(1, ·) − g]+ → [u(1, ·) − g]+ in L2(0, T ) strongly.

Let η ∈ H1
E(I) be arbitrary. We set w = P h

Eη and multiply (3.1) by ∆tξn−1 and sum over n, n = 1, . . . , N.
Then, recalling the strong convergence of w,

∫ T

0

((δθh,∆t, w) + (θh,∆t
x , wx) + a(δuh,∆t

x , w))ξ∆t(t)dt + w(1)
∫ T

0

kθh,∆t(1, t)ξ∆t(t)dt = 0.

Passing to the limit as h, ∆t → 0 we find that

∫ T

0

((θt, η) + (θx, ηx) + a(uxt, η) + kθ(1, t)η(1))ξ(t)dt = 0

which implies
(θt, η) + (θx, ηx) + a(uxt, η) + kθ(1, t)η(1) = 0

a.e. in (0, T ). Next, we take v = P h
Eχ, χ ∈ H1

E(I), and multiply equation (3.2) by ∆tξn−1 and sum over n,
n = 2, . . . , N, to obtain

∫ T

∆t

((γuh,∆t, v) + (uh,∆t
x + ζδuh,∆t

x − aθh,∆t + aθAr, vx))ξ∆t(t)dt +
1
ε

∫ T

∆t

[uh,∆t(1, t) − g]+v(1)ξ∆t(t)dt = 0.

Passing to the limit as h, ∆t → 0 it results

∫ T

0

((utt, χ) + (ux + ζuxt − aθ + aθAr, χx))ξ(t)dt +
1
ε

∫ T

0

[u(1, t) − g]+χ(1)ξ(t)dt = 0

and therefore,

(utt, χ) + (ux + ζuxt − aθ + aθAr, χx) +
1
ε
[u(1, t) − g]+χ(1) = 0

a.e. in (0, T ). Because δθh,∆t → θt in L2(0, T ; H1
E(I)) weakly implies that Θ0(·) → θ(·, 0) in H1

E(I) weakly and
we have that Θ0 → θ0 + θAr in H1

E(I) strongly, we conclude that θ(x, 0) = θ0(x) + θAr. In the same way, the
convergence of δuh,∆t and γuh,∆t leads to u(x, 0) = u0(x) and ut(x, 0) = u1(x).

6. Numerical simulations

We now present some numerical calculations.
In our computations, we let a = 0.017, g = 0.1, θA = 10, h = 1/250 and ∆t = 0.001. The initial data were

θ0(x) = θA(cos 2πx−sin 0.5πx), u0(x) = 0 and u1(x) = 20x(x−1)2. Numerical integration was used to compute
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Figure 1. ε = 0.01, k = 1, ζ = 0.2.

the matrix M. For each experiment we show the displacement at x = 1 and x = 0.5 and the velocity of the
deformation and the stress at the contact point.

First, we took ε = 0.01, k = 1 and ζ = 0.2 and then we increased the coefficient of viscosity to ζ = 1. When
ζ = 0.2, initially, the solution is oscillatory with intervals of contact with penetration (u(1) > g) and separation.
In both experiments, we observe contact at later times. The rough behaviour of ut is due to the fact that the
obstacle is almost rigid. See Figures 1 and 2.
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Figure 2. ε = 0.01, k = 1, ζ = 1.

In the third and fourth experiments, we let ε = 0.01, k = 100, with coefficients of viscosity ζ = 0.2 and ζ = 1,
respectively. Again, during some time, we saw intervals of penetration and separation but the system evolved
towards a state with no contact with the obstacle with the stress at the contact point equal to zero (Fig. 3).
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Figure 3. ε = 0.01, k = 100, ζ = 0.2.

Figure 4 shows the results for the last experiment, when the obstacle is more elastic with ε = 1, k = 1 and
ζ = 0.2. As expected, the solution is oscillatory and smoother. At first, it is seen a large penetration in the
obstacle with the oscillations damping out as time progresses.
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Figure 4. ε = 1, k = 1, ζ = 0.2.

In all experiments, convergence towards a stationary solution, as described in [2], seems to take place. When
ζ = 1, a rapid stabilization is observed. Also, as reported previously by Copetti and French [3] and Copetti [2]
to the quasi-static problem, the temperature profiles were virtually identical when ζ and ε changed. The decay
of the energy when ε = 0.01 and k = 1 is shown in Figure 5 where ln(Ên + 0.01) is plotted against time.
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Figure 5. The time evolution of the energy when ε = 0.01, k = 1, ζ = 0.2 (a) and ζ = 1 (b).
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