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ENTROPIC APPROXIMATION IN KINETIC THEORY

Jacques Schneider1

Abstract. Approximation theory in the context of probability density function turns out to go beyond
the classical idea of orthogonal projection. Special tools have to be designed so as to respect the
nonnegativity of the approximate function. We develop here and justify from the theoretical point
of view an approximation procedure introduced by Levermore [Levermore, J. Stat. Phys. 83 (1996)
1021–1065] and based on an entropy minimization principle under moment constraints. We prove in
particular a global existence theorem for such an approximation and derive as a by-product a necessary
and sufficient condition for the so-called problem of moment realizability. Applications of the above
result are given in kinetic theory: first in the context of Levermore’s approach and second to design
generalized BGK models for Maxwellian molecules.
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1. Introduction

The mathematical entropy H(f) =
∫

f ln f − f plays an important role in kinetic theory. Boltzmann showed
that it expresses the irreversibility of the evolution of a system of infinitely many particles subjected to their
own interaction. Secondly it measures the distance of such a system to the fluid limit. Finally among all
other meanings and uses of the entropy it can be used to reconstruct from macroscopic values the microscopic
description of the density function at local equilibrium (Maxwellian distribution). We are going to study in this
article the generalization of this last principle, that is, the possibility to reconstruct a density function from
a given set of moments (in the velocity space) of that density function. Such a generalization supposes, first,
that the set of moments, which we denote by ρ, is that of a nonnegative density function f unless there is no
possible kinetic interpretation. That is, ρ =

∫
m(v)f(v) dv with f ≥ 0 and where m(v) is a vector whose

components can be for example polynomials of v. This will be an a priori assumption in our work. Then,
we follow the idea of Levermore that consists in reconstructing a function G from the moments ρ through an
entropy minimization principle [11]. Notice that such a principle is also used within the context of hyperbolic
systems, that is, at a macroscopic level to define entropic projections suited to numerical approximation [3, 4].
However in that context the space on which the projection is defined (piecewise linear functions) is set a priori
while here it is not and is rather defined a posteriori.

We start our work (Sect. 3) by proving the following result: given a nonnegative function f with bounded
moments of order N and a polynomial space P = PN−1 ⊕ R.|v|N , there exists always a function G that is the
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solution to the minimization problem

min
{

H(g) :
∫

m(v)(g − f)dv = 0 ∀m ∈ PN−1,

∫
g|v|N ≤

∫
f |v|N

}
·

Moreover this solution is unique and can be written as G(v) = exp(m(v) + α|v|N ) where m ∈ PN−1 and α ≤ 0
are uniquely determined by the above moments constraints. We call the application f → ρ → G an entropic
approximation of f on exp(m). This result is more or less equivalent to the work of Csiszár [5] concerning
I-projection where a probabilistic approach is used and later on to Léonard [10] where duality in Orlics spaces
is the main tool. But in our proof pure functional (convex) analysis is preferred (see Rem. 2). This result is also
more or less equivalent to that of Junk [8, 9] and in some sense more directly obtained. Besides the originality
here is that the constraint of highest degree is relaxed so as to close the convex set of constraints and ensure a
global existence result for the minimization problem.

The entropic approximation finds a first application (Sect. 4) within the approach of Levermore concerning
moment closure in kinetic theory where it is used to define approximation of kinetic equations. The only
difference is that in Levermore’s approach all constraints must be qualified. We derive from our general result a
necessary and sufficient condition for qualification of all constraints, henceforth giving the domain of definition
of Levermore’s approach and recovering the results of Junk.

A second important application of the H-projection is a generalization of the so-called BGK relaxation model
for the Boltzmann equation (Sect. 5). It allows us to construct relaxation terms of the form ν(G − f) that fit
exactly to the Boltzmann collision operator Q(f, f) for Maxwellian molecules in the following weak sense:

ν

∫
(G − f)m(v)dv =

∫
Q(f, f)m(v)dv ∀m ∈ P, (1)

with ν =
∫

f . Notice here that P is an arbitrarily big polynomial space and that G is the entropy minimizer
whose moments in P are those of the positive part (

∫
f)−1Q+(f, f) of the Boltzmann collision operator. Con-

sequently ν(G − f) can be considered as an approximation of Q(f, f) whose order depends on m. Important
advantages are:

(1) The costly computation of the 5-fold collision integral at each velocity (see e.g. [14] for numerical issues)
is here replaced by the computation of a single minimization problem which is valid for all velocities –
this minimization process has already shown its efficiency for the classical BGK model (where G is the
Maxwellian distribution) within the discrete velocity approach [12].

(2) The fluid limit remains correct provided the relaxation rates of moments of order less than N are
correct. Consequently such models inherit the same viscosity, heat flux transfer or Prandtl number as
the Boltzmann fluid limit. Moreover the behavior of such moments are good even far from equilibrium
due to (1).

After deriving the models we prove in this section that due to the minimization principle and to recent results
on entropy dissipation ([15] and references therein) such models also enjoy the entropy dissipation law

ν

∫
(G − f) ln fdv ≤ 0

and we then study the Chapman-Enskog asymptotic of these models.
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2. Notations

• 〈g〉 is the Lebesgue measure of all measurable function g:

〈g〉 =
∫

R3
g(v)dv

with possible value ∞.
• L1

N(Rd) is the Banach subspace of L1 defined by

L1
N(Rd) = {f ∈ L1such that 〈|f(v)|(1 + |v|2)N/2〉 < +∞}

provided with the norm
||f ||L1

N
= ||(1 + |v|2)N/2f ||L1 .

Its dual is L∞
−N , the space of functions growing not faster than |v|N at infinity.

• PN (Rd) is the space of polynomials of order less than or equal to N in Rd. Let

vq = vq1
1 vq2

2 ...vqd

d , q = (q1, q2, ..., qd)T ∈ Nd

then the degree of the monomial vq is |q| = q1 + q2 + ... + qd and vq ∈ PN iff |q| ≤ N . Denoting by

#N =
(

N + d
N

)
the dimension of the vector space PN and with m(v) the application from Rd → RN

whose components are all monomials vq of order less than N then every p ∈ PN can be written as

p(v) = α.m(v) with α ∈ R#N .

• µ denotes the linear and continuous application from L1
N (Rd) into R#N defined by

∀f ∈ L1
N (Rd), µ(f) = 〈m(v)f(v)〉·

• Likewise to any polynomial space m ⊂ PN of finite dimension #P and of degree N , we associate
the #P -vector whose components are its generating polynomials (not necessarily monomials) and the
corresponding measure µ(f) = 〈m(v)f(v)〉.

• For fixed P we denote with ≤∗ (resp. ≥∗) the order relation:

∀f, g ∈ L1
N : µ(f) ≤∗ µ(g) (resp. ≥∗) ⇐⇒ (2)

µq(f) = µq(g) if |q| ≤ N − 1, 〈f |v|N 〉 ≤ 〈g|v|N 〉 (resp. ≥). (3)

3. Entropic approximation: the general result

Let H denote the entropy functional acting on L1 functions defined as:

H(f) =
{ 〈f ln f − f〉 if f ≥ 0,

+∞ otherwise. (4)

We are interested in finding a solution to the problem of minimizing the entropy under moment constraints.
That is we are looking for solution(s) to

min{H(g), µ(g) = ρ}
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where µ is the above measure associated to the polynomial space m = PN−1 ⊕ R|v|N . This problem can be
divided into two parts:

(1) Clearly due to the definition of H this problem makes sense if and only if the set of constraints {f ≥
0, µ(f) = ρ} is not empty that is if ρ ∈ µ((L1

N )+) where (L1
N )+ is the cone of L1

N -nonnegative functions:

(L1
N )+ = {g ∈ L1

N (Rd), g ≥ 0 a.e.}

Such a problem is known as the Hamburger moment problems and there exists already an extensive
literature concerning it (see [8] and references therein). Remark however that if we define ρ as the
moments µ(f) of the solution to some kinetic equation then this problem does not arise and the only
thing to check is that this solution has bounded moments.

(2) Suppose that ρ ∈ µ((L1
N )+) then one wants to find among all functions f ∈ (L1

N )+ such that µ(f) = ρ
the one(s) with minimal entropy.

Our main result consists in proving that the minimization problem for ρ ∈ µ((L1
N )+) always possesses a solution

whenever the constraint of highest degree is relaxed. More precisely we prove the following theorem:

Theorem 1. Let N ∈ N and f be a non-negative function in L1
N(Rd) such that H(f) < +∞. Set

Cf = {g ≥ 0, µ(g) ≤∗ µ(f)}

then the minimization problem
min
g∈Cf

H(g) (5)

possesses a unique solution in Cf which takes the general form

G(v) = exp(α.m(v))

where the Lagrange multipliers α are uniquely determined by the moment constraints µ(G) ≤∗ µ(f). If the
last constraint is not qualified and N is odd then α.m(v) ∈ PN−1 and G is a global minimizer of H in
L1

N−1 under the only constraints µq(G) = µq(f), |q| ≤ N − 1. If N is even then α.m(v) ∈ PN−2 and
µq(G) = µq(f), |q| ≤ N − 2.

Conversely if there exists in Cf a function of the form exp(m(v)) with m ∈ P then such a function is unique
and it is the solution to our minimization problem.

Definition 1. The application f −→ G is called an entropic approximation on exp(P).

We shall see in the next section that the case of the minimization problem with qualified constraints can
be seen as a consequence of that result. So let us now turn to the proof of Theorem 1. We first recall some
technical properties on H that have already been proved in different contexts [2,6,8] and we prove them for the
sake of consistency.

Lemma 1.

(1) Let f ∈ L1
N(Rd), N ≥ 2, then H(f) > −∞;

(2) H is convex lower semi-continuous (l.s.c) in L1
N (Rd), N ≥ 2;

(3) let B be a bounded set in L1
N (Rd) such that H is bounded on B, then B is a weakly (relatively) compact

in L1(Rd).

Proof. (i) For every f ∈ L1
N(Rd), one can control the negative part of H by the L1

N norm:

∫
0≤f≤1

f ln
1
f

dv ≤
∫

Rd

f |v|2 +
∫

0≤f≤e−v2
f ln

1
f

dv.
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But for 0 ≤ x ≤ 1, there exists C > 0 such that x ln 1/x ≤ C
√

x. Hence:

H(f) ≥ −||f ||L1
N
− C

∫
e−v2/2 = −||f ||L1

N
− C1

where C1 is a positive constant independent of f .
(ii) Due to the convexity of H , it is enough to prove that H is l.s.c for the strong topology. So let fn → f in

L1
N . Either lim inf H(fn) = +∞ and consequently H(f) ≤ lim inf H(fn) or lim inf H(fn) = α < +∞. Then up

to successive extractions of sub-sequences, one has:

H(fn) → α, fn → f in L1
N and almost everywhere.

But H(fn) < +∞ ⇒ fn ≥ 0 and passing to the limit f ≥ 0. Then due to the continuity of x ln x on R+:

fn ln fn → f ln f a.e.

Now remark that the inequality x ln x ≥ −e−1 implies x ln(xev2
) ≥ − 1

ee−v2
or

x ln x + xv2 +
1
e
e−v2 ≥ 0, ∀x ≥ 0, ∀v ∈ Rd.

Setting hn = fn ln fn + fnv2 + 1
ee−v2

one has the following properties:

hn ≥ 0, hn → h = f ln f + fv2 +
1
e
e−v2

a.e.,
∫

hndv < +∞.

Using Fatou lemma one obtains: ∫
h ≤ lim inf

∫
hn

and since fn → f this gives
H(f) ≤ lim inf H(fn).

That is, H is l.s.c for the strong topology and by convexity for the weak topology σ(L1
N , L∞

−N).
(iii) According to (i) H is bounded from below on B and so:

∫
Rd

g(1 + |v|N + | ln g|)dv < +∞, ∀g ∈ B

from which one deduces as in [6] that B is “equi-integrable” in the sense of Dunford-Pettis lemma and conse-
quently weakly relatively compact in L1. �

The second lemma sets the problem of minimization of entropy on bounded sets of velocity. We introduce
for this particular case the notations:

HK(f) =
∫

Ω

(f ln f − f)dv, µK(f) =
∫

K

m(v)fdv

where K is any set in Rd. In that case all constraints are automatically qualified as long as ρ ∈ µK((L1(K))+).

Lemma 2. Let K ⊂ Rd be a compact set and let f be a nonnegative function in L1(K) (f �= 0). Then there
exists a unique solution to the minimization problem

min{H(g) : µK(g) = µK(f)}.
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This solution takes the form:
G(v) = exp(α.m(v)) with α ∈ R#N

where the Lagrange multipliers αi ∈ R are uniquely determined by the moments constraints µK(G) = µK(f).

Proof. We first recall the following result due to Junk [8]: let f be a nonnegative function in L1(K), f �= 0
and set ρ = µK(f) (remark that any moment of f of finite order is defined if f ∈ L1(K) since K is bounded)
then there exists a unique α ∈ R#N such that ρ = µK(exp(α.m(v))). Junk’s proof relies on the study of the
continuous and differentiable function:

α −→ z(α) =
∫

K

exp(α.m(v))dv − α.ρ.

It is clear that this function is strictly convex due to the positive definiteness of its Hessian:
∫

K

m(v) ⊗ m(v) exp(α.m(v))dv.

So if z(α) possesses a minimum then it is unique and it satisfies to

∇αz(α) = 0 ⇐⇒
∫

K

m(v) exp(α.m(v))dv = ρ.

The existence of such a minimum is then just the question of proving the coercivity of z(α). So let us prove
that

lim
|α|→+∞

z(α) = +∞ or equivalently ∀α �= 0 lim
s→+∞ z(sα) = +∞.

Let α �= 0 and suppose firstly that α.m(v) ≤ 0 on K then

α.ρ = α.µK(f) = 〈α.m(v)f(v)〉 < 0.

This strict inequality holds because on one hand α.m(v) < 0 except at a finite number of roots and on the other
hand f �= 0 means that f > 0 in a set ω ⊂ K with |ω| �= 0. Next remark that z(sα) > −sα.ρ and consequently
z(sα) → +∞ as s → +∞.
In the second case there exists a non-empty set ω and ε > 0 such that α.m(v) ≥ ε for all v ∈ ω. Then

z(sα) ≥
∫

ω

exp(sα.m(v)) − sα.ρ ≥ |ω| exp(sε) − sα.ρ → +∞ as s → +∞.

The second part of the proof consists in showing that G(v) = exp(α.m(v)) – where α defined above – is the
unique minimizer of HK on the set of constraints µK(g) = ρ. Remark that there exists positive m and M such
that m ≤ G(v) ≤ M on K. Consequently HK is Gateaux-differentiable at G in L∞(K) and

H ′
K(G).ϕ =

∫
K

ϕ ln Gdv = α.µK(ϕ), ∀ϕ ∈ L∞(K). (6)

Now for any nonnegative function g ∈ L1(K) such that µK(g) = ρ we define gn as

gn(v) = min(g(v), n).

Up to the extraction of a subsequence gn → g a.e and in L1(K) (dominated convergence) and µK(gn) →
µK(g) = ρ. One has also

gn ln gn − gn −→ g ln g − g a.e.
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since x → x ln x − x is continuous while on the other hand

|gn ln gn − gn| ≤ g(| ln g| + 1), ∀n ≥ 1.

According to Lemma 1 this last function is in L1(K) provided H(g) < +∞. So using again dominated conver-
gence H(gn) → H(g). The convexity of H and (6) implies that

HK(gn) − HK(G) ≥ H ′
K(G).(gn − G) = α.µK(gn − G).

Passing to the limit on both sides gives
HK(g) − HK(G) ≥ 0

since µK(gn) → µK(g) = µK(G) = ρ. Hence G is a global minimizer of HK under the constraints µK(G) = ρ
and it is unique thanks to the strict convexity of HK . �

Let us now finish the proof of Theorem 1:

Proof. Step 1. Existence of a minimizer G in the set of constraints Cf

Let gn be a minimizing sequence:
limH(gn) = inf

g∈Cf

H(g).

From Lemma 1 (3), (gn)n is weakly compact in L1 so up to the extraction of a sub-sequence there exists G ∈ L1

such that gn ⇀ G. Now let us remark that Cf is strongly and weakly closed in L1. Indeed if (hn)n → h in L1

and hn ∈ Cf then ∫
h|v|Ndv ≤ lim inf

∫
hn|v|Ndv

(Fatou lemma) and for any R > 0 and q ∈ Nd, |q| ≤ N − 1 one has:
∫
|v|≤R

hvqdv = lim
∫
|v|≤R

hnvqdv =
∫

fvqdv − lim
∫
|v|>R

hnvqdv.

But
∫
|v|>R

hnvqdv is uniformly bounded by 〈f |v|N 〉/R so letting R → +∞, one obtains µ(h) ≤∗ µ(f) and
h ∈ Cf ! But Cf is convex so that it is also weakly closed and consequently G ∈ Cf . Then H is l.s.c in L1

N and
H is strictly convex on its domain imply that G is the unique minimizer of H on Cf .

Step 2. Characterization of G
G is the unique solution to the minimization problem (5) implies that either the last constraint is qualified or
it is not. Those two cases write:

(1) µ(G) = µ(f);
(2) µ(G) ≤∗ µ(f) and 〈G|v|N 〉 < 〈f |v|N 〉. In that case the constraint of highest degree no longer plays a

role to characterize G as a consequence of the convexity of H .
We are going to prove in the two cases that there exists m(v) ∈ P such that G(v) = exp(m(v)) ∈ Cf . To do
so we use the characterization of the entropy minimizer on a bounded set (Lem. 2). Let us consider the first
case and set ρK = µK(G) for a given compact set K. Using Lemma 2 there exists a unique solution GK to the
minimization problem:

min{HK(g), µK(g) = ρK}· (7)
This solution writes GK(v) = exp(αK .m(v)) where αK ∈ R#P is uniquely determined by the moments
constraints µK(GK) = ρK . We now want to prove that G restricted to K is GK . It is quite simple by setting:

G̃(v) =
{

GK(v) if v ∈ K,
G(v) otherwise
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and remarking that µ(G̃) = ρK + µCK (G) = µ(G) and

H(G̃) = HK(GK) + HCK (G) ≤ HK(G) + HCK (G) = H(G)

(CK = Rd/K) so that G̃ ∈ Cf and G̃ minimizes the entropy as well. Hence G̃ = G and there exists an implicit
relation between the moments of G on K – ρK – and the coefficients αK :

µK(exp(αK .m(v)) = ρK .

Let us now consider a sequence of compact sets Kn – e.g. Kn = B(0, n) – such that Kn ⊂ Kn+1 and ∪nKn = Rd.
We denote by αn the above coefficients for K = Kn. Those coefficients do not depend on Kn since

G(v) = exp(αn.m(v)) = exp(αn+1.m(v)) ∀v ∈ Kn.

Therefore for all v ∈ Rd, G has the form G(v) = exp(α.m(v)) and

µKn(exp(α.m(v)) = ρKn .

Passing to the limit in n in this last equation (dominated convergence in L1
N with the functions

fn = exp(α.m(v))|Kn , 0 otherwise) we obtain a relation that determines entirely the Lagrange multipliers:

µ(exp(α.m(v)) = lim
n→∞ ρKn = µ(f)

(no further condition is required to ensure that µ(G) = µ(f)). The second case can be treated in a similar
way by omitting the constraint on the moment of highest degree and leads to an exponential form where the
Lagrange multiplier corresponding to that moment is null. So in the second case G writes

G(v) = exp


 ∑

|q|≤N−1

αqvq




where the Lagrange multipliers αq are uniquely determined by the relations µq(G) = µq(f) (|q| ≤ N − 1).
Remark however that when N is even then all αq with |q| = N − 1 must vanish since otherwise 〈G〉 would
diverge. This means that in that case the corresponding moments of order N − 1 play no role in determining
the other Lagrange multipliers αq (q ≤ N − 2) and only the constraints of degree less than N − 1 are required
to determine G. This is a particular case where the moments of order N − 1 depend on those of less order.

Step 3. Counterpart
Suppose now that there exists G ∈ Cf with G(v) = exp(α.m(v)) ∈ exp(m). We proceed as in Lemma 2 and
remark that H is Gateaux-differentiable at G in

L∞
G (Rd) =

{
ϕ such that

ϕ

G
∈ L∞(Rd)

}

and one has
∀ϕ ∈ L∞

G (Rd) : H ′(G).ϕ = α.µ(ϕ).

Then using the convexity of H one obtains

∀ϕ ∈ L∞
G , ϕ ≥ 0 : H(G) − H(ϕ) ≤ H ′(G).(G − ϕ) = α.µ(G − ϕ). (8)
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Next we want to prove that H(G) ≤ H(g) for all g ∈ Cf . Let g ∈ Cf with H(g) < ∞ (we can always assume
that this holds otherwise H(G) ≤ H(g) is obvious). We define gn as

gn(v) = min(g(v), n) if |v| ≤ n, 0 otherwise.

One can proceed exactly as in Lemma 2 to prove that up to the extraction of a subsequence on has on one hand
gn → g in L1

N (⇒ µ(gn) → µ(g)) and on the other hand H(gn) → H(g). Indeed one can apply the dominated
convergence theorem on hn = gn ln gn − gn to prove that hn → g(ln g − 1) in L1. Taking ϕ = gn in (8) and
passing to the limit yields

∀g ∈ Cf , H(G) − H(g) ≤ α.µ(G − g).

But the right hand side reduces to α#P 〈(G− g)|v|N 〉 since g and G are in Cf . Then either α#P = 0 (constraint
of highest degree not qualified) or α#P < 0 (due to 〈G〉 < ∞) and 〈g|v|N 〉 ≤ 〈G|v|N 〉. In both cases the right
hand side is ≤ 0 which implies that H(G) − H(g) ≤ 0 ∀g ∈ Cf and G is the entropy minimizer in Cf .
Finally remark that in the case where the last constraint is not qualified one can proceed the same way to prove
that

H(G) − H(g) ≤ 0 ∀g ∈ (L1
N−1)

+, µq(g) = µq(f), |q| ≤ N − 1

that is G is a global minimizer of H in L1
N−1 under the above constraints. �

Remark 1. When N = 2, Theorem 1 implies that the unique minimizer of the entropy in

C = {g ≥ 0, 〈g〉 = ρ0, 〈gv〉 = ρ1, 〈g|v|2〉 ≤ ρ2}

where ρ = 〈f(1,v, |v|2)T 〉 for some nonnegative function f ∈ L1
2(R

d) qualifies all constraints. This unique
minimizer is the well-known Maxwellian distribution (13) whose parameters are entirely determined by the
mass, momentum and energy of f .

Remark 2. Csiszar introduced in 1973 the concept of I-projection which he defines as follows. Let P, Q be two
probability distributions and define the relative entropy (or Kullback-Leibler information) as:

I(P |Q) =
∫

log pQdP =




∫
pQ log pQdQ if P � Q,

+∞ otherwise

where P � Q means “P absolutely continuous with respect to Q” and pQ is the Radon-Nikodym derivative.
We may redefine this relative entropy for two L1 nonnegative functions of same mass as:

I(f |g) =




∫
f log

f

g
if f � g,

+∞ otherwise

where here f � g essentially means that when g vanishes then so does f . Then he proves that given a closed
convex set E in L1 (variation closed in his terminology) there exists always a solution to the minimization
problem

I(q|r) = min
g∈E

I(g|r) (9)

which he calls the I-projection of r onto E . Remark first that

I(g|r) = H(g) −
∫

g ln r
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and that 〈g ln r〉 = constant depending only on E if E = Cf defined in Theorem 1 and if r(v) = exp(m(v)) with
m(v) ∈ PN−1. This means that in this particular case the two minimization problems (5) and (9) are equivalent
and consequently the I-projection on Cf of any exp(PN−1)-function coincides with the entropic approximation
of f on exp(P).

The assumption “E closed” amounts in our case to relaxing the last constraint. Remark also that in his
proof the existence of a converging minimizing sequence is obtained by using the celebrated Csiszar-Kullback
inequality:

||f − g||2L1 ≤ 2I(f |g).
In his case it is the relative entropy that gives the control on such a sequence while it is the entropy in our case
together with Dunford-Pettis criteria. This does not make much difference.

The main difference between his proof and ours is the characterization of the I-projection. He essentially
proves that if G exists and qualifies all constraints in a set of linear constraint then G must take the exponential
form. It is clear that this would be sufficient if all constraints would be qualified – for example in the case of
bounded domains of integration (see Lem. 2). This is also the case when the set of constraints is spanned by
some (φ)i’s with φi odd except for one φN which is even and controls any other φi at infinity. So in this sense
our theorem enlarges the spectrum of application of the I-projection.

Remark 3. The result of Theorem 1 can be extended to the case of nonnegative function in L1
N with unbounded

entropy. Indeed a result due to Junk [9] sets that for such function there exists a function g compactly supported
and bounded such that µ(g) = Mu(f). This ensures the existence of a minimizing sequence of H in Cf !

4. Application to Levermore’s moment closure in kinetic theory

Our first application of Theorem 1 concerns Levermore’s approach in kinetic theory [11]. Let us first recall
his framework. Suppose we want to solve the kinetic equation

∂tf + v.∇f = C(f) (10)

where f = f(t,x,v) is the density function (t,x,v) ∈ R+ ×Rd ×Rd and C(f) is a collision operator acting only
on the v dependence of f . The above equation describes the behavior of a gas where particles evolve according
to their own velocity and through the interaction with other particles. A particularly important equation of
that form is the Boltzmann equation which will be discussed in the next section. At the moment let us just
assume that C(f) satisfies the following quite general and physically meaningful properties:

(1) Conservation laws: for every f ∈ D(C) – the domain of definition of C which is assumed to be contained
in the cone of nonnegative functions – one has

〈C(f)ϕ〉 = 0, ∀ϕ ∈ E0 = span[1, v1, v2, ..., vd, |v|2] . (11)

(2) Dissipation of entropy:

∀f ∈ D(C) 〈ln fC(f)〉 ≤ 0 (12)

with equality if and only if:

f(v) = M(v) ≡ ρ

(2πT )d/2
exp

(
− (v − u)2

2T

)
, (13)

for some (ρ,u, T ) ∈ R+ × Rd × R+.
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(3) Galilean invariance: let τu define the translation operator τuf(v) = f(v − u) and for any O ∈ SO(Rd)
(the group of orthogonal transformations in Rd) define τO as τOf(v) = f(Ov). Then

τuC(f) = C(τuf), τOC(f) = CτO(f). (14)

Levermore’s approach can be seen as a Galerkin method for solving (10). It is performed in two steps: the first
one is rather standard and consists in projecting equation (10) onto a given polynomial space m. Using the
notations of section 1 this first step reads

∂t〈m(v)f〉 + ∇.〈vm(v)f〉 = 〈m(v)C(f)〉·

This system of #P -moments equations is of course not closed since fluxes of highest order are not defined. Then
the second step consists in a non-standard way of projecting f : first onesolves the minimization problem

min{H(g), 〈m(v)g〉 = 〈m(v)f〉}

and secondly one remarks that according to Section 3 the solution should belong to exp(P). That is the
non-linear projection of f is of the form exp(α.m(v)) and the complete approximation of (10) reads:

Find α(t,x) solution to the system of equations:

∂t〈m(v) exp(α.m(v))〉 + ∇.〈vm(v) exp(α.m(v))〉 = 〈m(v)C(exp(α.m(v)))〉· (15)

Another (and more physical) way to interpret that second step is to speak about “closure relation”. Fluxes of
highest order are considered as functions of moments of lower order – so-called closure relations – through the
assumption that the density function f is closed to a local equilibrium function. The most classical example
is to consider f as a local Maxwellian distribution; the closure relation is then nothing but the second law of
thermodynamic and the above system of equations is the Euler system of equations.

Remark that performing the change of variable f → f∗ = ln f in (10) and then projecting both the equation
and f∗ on m leads to the above system of equation. This justifies once more the term “Galerkin approach”
but again the projection of f∗ is absolutely non-standard. All the theory leans on the fact that f∗ is the polar
variable of f with respect to the strictly convex function h(f) = f ln f − f . At a macroscopic level – that is at
the level of system (15) – this reads α is the polar variable of the moments ρ with respect to the entropy

h(ρ) = min
g

{H(g), 〈m(v)g〉 = ρ}· (16)

All features concerning system (15) such as hyperbolicity or entropy dissipation can be derived from this
supposed one-to-one relation between α and ρ. But this relation raises many questions related to Section 3.
The existence of a solution is indeed subjected to the restriction that the hyperbolic system (15) should produce
moments ρ that can be represented by exponential functions. Those exponential functions are precisely solutions
to minimization problems such as (16). The problem is that Theorem 1 just ensures the existence of a single
solution in a set of constraints where the one of highest order is relaxed. So the first question that arises
is what is the set of moments for which all constraints are qualified? We may call this set the domain of
definition D(h) of the entropy h. Then is D(h) equivalent to the set of moments µ((L1

N )+) (the set of moments
of all nonnegative L1

N -functions)? This is called a realizability problem. Such a problem has already been
addressed by Junk in two different papers. In [8] he gives a complete description of D(h) in the particular
case of “Levermore’s five-moment system” while in [9] he essentially proves that D(h) is the set of moments
of integrable exponential functions (with polynomial exponent of the form α.m(v)). Here we prove that his
results can be derived directly from Theorem 1.
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Levermore proposes to set the system of equations (15) for particular spaces of approximation P. More
precisely such spaces are assumed to fulfill the following requirements:

(I) E0 = span[1, v1, v2, ..., vd, |v|2] ⊂ P.

(II) P is invariant under the actions of τu and τO.

(III) The cone Pc = {m ∈ P : 〈exp(m(v))〉 < ∞} has nonempty interior in P.

Property (I) allows to recover conservation laws (11). (II) is set to ensure Galilean invariance of the whole
theory. (III) is a necessary (but not sufficient) condition for the system (15) to be well-posed. The problem
is that system (15) can produce moments in µ((L1

N )+) that might not fall into µ(exp(Pc)). We call this a
realizability problem. Our concern here is to describe properly the domain for which this problem occurs.

Remark first that it is quite easy to satisfy (I) and (II) if P is polynomial so that we can assume from now
on that P is contained within a certain PN . Next condition (III) implies that N = degP must be even and
that there are monomials of degree N of the form v2q (with q ∈ Nd and 2|q| = N) that can control any other
monomials of P at infinity. We shall still denote with ≤∗ the relations which here have the general meaning:

µ(g) ≤∗ µ(f) ⇐⇒ µ(g) ∈ µ

(
C

L1
)

where C
L1

is the closure of C = {g ≥ 0/ µ(g) = µ(f)} in L1. It is clear that this definition amounts to the
previous one when

(III)′ P = E ⊕ R|v|N with E ⊂ PN−1

since then

gn → g in L1 and gn ∈ (L1
N )+ =⇒

〈gvq〉 = lim〈gnvq〉, |v| ≤ N − 1 and 〈g|v|N 〉 ≤ lim inf〈gn|v|N 〉.

Then our general result implies the following theorem:

Theorem 2. Let P be a polynomial space that satisfies (I),(II),(III) and ρ ∈ R#P . Then ρ is realizable in the
sense that “there exists m(v) ∈ P solution to µ(exp(m(v))) = ρ” if and only if:

(i) ρ ∈ µ((L1
N )+);

(ii) there exists no function in exp(P) contained in C
L1

/C where C
L1

is the L1-closure of

C = {g ≥ 0 a.e., µ(g) = ρ}.

Proof. The condition ρ ∈ µ((L1
N )+) is necessary and sufficient to ensure the existence of a minimizer of H in C

according to Theorem 1. The only thing to check is that Theorem 1 still applies in the general case of space P
satisfying (I),(II),(III). Remark first that Lemmas 1, 2 and 3 are still valid. Next a minimizing sequence of H

in C = {g ≥ 0, µ(g) = µ(f)} only converges in its closure in L1 – C
L1

– and its limit G takes the exponential
form G(v) = exp(m(v)) with m(v) ∈ P. The important point is the uniqueness of this solution: it is not only
the unique solution to the minimization problem in C, it is also the unique solution in exp(P) to the problem
µ(exp(m(v)) ≤∗ ρ according to the counterpart of Theorem 1. Then either µ(G) = ρ or µ(G) ≤∗ ρ with strict
inequality for at least one component in which case ρ is not realizable. �
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Remark 4. Junk proceeds in [9] as follows: he first considers formally the problem of minimization and
concludes that the exponential form of the minimizer is a necessary condition. Then he deduces from the shape
of the set

Λ = {λ ∈ R#P /〈exp(λ.m(v)〉 < ∞}

sufficient conditions for the existence of the minimizer. His approach considers Lagrange multipliers and is a
duality argument while ours is a direct and rather classical one.

Corollary 1. All exponential functions are entropy minimizers under suitable constraints. More precisely
let G(v) = exp(m(v)) with m(v) polynomial and let P be any polynomial space containing m and satisfying
(I),(II),(III) then G is the unique minimizer of the entropy in all sets of the form

C = {g ≥ 0, µ(g) ≤∗ ρ}

where ρ ∈ R#P just satisfies ρ ≥∗ µ(G).

Example 1. As an application of Theorem 2 let us study the problem already solved by Junk in [8] concerning
the domain of definition of Levermore’s five-moment system. Let d = 1 and set P = span[1, v, v2, v3, v4]. We
are interested in defining the set of moments ρ ∈ R5 for which the minimization problem

min{H(g), µ(g) = ρ}

possesses a solution. A necessary condition for this problem to possess a solution is C �= ∅. According to
Junk (see [8] and references therein) such a property relies on the positive definiteness of the Hankel matrix
(ρi+j)i,j=0,1,2. For example in the case of normalized mass, momentum and energy

ρ̄ = (1, 0, 1, ρ3, ρ4)T ∈ µ((L1
4(R))+) ⇐⇒ ρ4 > 1 + ρ2

3.

Suppose that ρ fulfills that condition then there exists a solution G ∈ ∂C to the problem ming∈C H(g) iff

there exists no function of exp(Pc) in the interior of C
L1

. Such functions necessarily take the form G̃(v) =
exp(α0+α1v+α2v

2) (see Th. 1). If such a G̃ exists then the first three relations determine entirely the Lagrange
multipliers αi:

G̃(v) =
ρ√
2πT

exp
(
− (v − u)2

2T

)
where ρ = ρ0, u =

ρ1

ρ0
, T =

ρ2

ρ0
−

(
ρ1

ρ0

)2

(17)

and its third and fourth moments are defined by the previous ones

ρ̃3 = ρu(u2 + 3T ), ρ̃4 = ρ(u4 + 6Tu2 + 3T 2). (18)

Therefore the existence result reads:

“Let ρ ∈ R5, ρ ∈ µ((L1
4(R))+) then there exists a minimizer of the entropy in C iff

(ρ, ρ1, ρ2, ρ3, ρ4)T �≥∗ (
ρ, ρ1, ρ2, ρu(u2 + 3T ), ρ(u4 + 6Tu2 + 3T 2)

)T
”

In particular for the normalized density this reads:

“Let ρ3, ρ4 ∈ R then there exists a minimizer of the entropy in C = {g ≥ 0, µ(g) = (1, 0, 1, ρ3, ρ4} iff
ρ4 > 1 + ρ2

3 and (ρ3, ρ4) �≥∗ (0, 3).”
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Example 2. A second interesting example is the one where d = 3 and

P = span[1,v,v ∧ v, |v|2v, |v|4]

since this is the minimal space that satisfies (I),(II),(III) (or (III)’) and that contains all physically meaningful
information: mass, momentum, stress tensor and heat flux. Let f ∈ (L1

4(R
3))+ and let us denote by

ρ = 〈f〉, ρu = 〈fv〉, Σ = 〈f(v − u) ∧ (v − u)〉, q =
1
2
〈f |v − u|2(v − u)〉 (19)

ρ4 = 〈f(v)|v|4〉 (20)

its moments (remark here that we have expressed moments up to order 3 in terms of the physically relevant
ones and that it is equivalent to give 〈f(1,v,v∧v, |v|2v)T 〉). Then Theorem 2 tells us that either the constraint
on the fourth order moment is qualified for the entropy minimizer G, or G must takes the form exp(m(v)) with
m ∈ span[1,v,v ∧ v]. In that case the constraints

〈G〉 = ρ, 〈Gv〉 = ρu, 〈G(v − u) ∧ (v − u)〉 = Σ

determine entirely G:

G(v) =
ρ

π3/2

√
det A exp(−(v − u)T .A.(v − u)) with A =

ρ

2
Σ−1 (21)

(remark that A is well defined since Σ is a symmetric definite positive matrix). Hence it is easy to see that the
heat flux q is null while ρ̃4 = 〈G(v)|v|4〉 can be computed analytically. Denoting by p = 1/3TrΣ the pressure
and with T = ρ−1p the temperature of both f and G, one obtains the relation

ρ̃4 = ρu4 + 6ρu2T + 4uT .Σ.u + 9ρT 2 +
2
ρ
T r(Σ2).

Remark that the fourth order moment of the Maxwellian distribution (13) is obtained by letting Σ = pII and
gives

〈M(v)|v|4〉 = ρu4 + 10ρu2T + 15ρT 2.

“Let ρ, ρuu, Σ,q and ρ4 be the mass, momentum, energy, heat flux and fourth order moments of a nonnegative
function then there exists a minimizer of the entropy in

C =
{
g ≥ 0 : 〈g〉ρ, 〈g(v − u)〉 = 0, 〈g(v − u) ∧ (v − u)〉 = Σ,

1
2 〈g|v − u|2(v − u)〉 = q, 〈g|v|4〉 = ρ4

}

if and only if (q, ρ4) �≥∗ (0, ρ4) with ρ̃4 defined above.”

That is the problem of non qualified constraint may arise only for null heat flux functions.

5. Generalized BGK models

A second important application of the entropic approximation is the simplification of the Boltzmann collision
operator. Let us recall that this operator reads

C(f) = Q(f, f)(v) =
∫

S2

∫
R3(f ′f ′

∗ − ff∗)q(v� − v, ω) dv�dω, (22)
g = v� − v, v′ = v + (g, ω)ω, v′

� = v� − (g, ω)ω, (23)
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where f = f(t,x,v) is the density function (f∗ = f(t,x,v�), f ′ = f(t,x,v′), f ′
∗ = f(t,x,v′

�)) and q(v� −v, ω)
is the differential cross-section. A classical exercise consists in proving that C(f) = Q(f, f) fulfils the conditions
(11),(12) with equality if and only if f takes the form (13) and (14). That is the Boltzmann equation is mass,
momentum and energy preserving, entropy dissipating and Galilean invariant. A second classical theory consists
in studying the asymptotic fluid limit of the Boltzmann equation by expanding formally f according to a small
parameter ε which represents the rarefaction of the gas (Knudsen number):

fε = f0 + εf1 + ε2f2 + ... (24)

Then letting ε tend to 0 in the non-dimensional equation

∂tfε + v.∇fε =
1
ε
Q(fε, fε)

leads through the so-called Chapman-Enskog analysis to a “hierarchy” of system of equations depending on
the order of ε. At the zeroth-order f0 takes the Maxwellian form (13) (local equilibrium function) and it
formally satisfies a kinetic equation whose first moments are precisely the Euler system of equations. The next
order provides us with the Navier-Stokes equation with viscosity µ and thermal diffusivity κ determined by the
interaction potential. Those coefficients and in particular the so-called Prandtl number which expresses the
ratio between viscosity and thermal diffusivity

Pr =
µcp

κ

correspond to those of the true Navier-Stokes system and can even be used to determine the latter. This
similarity occurs also for higher members in the hierarchy (Burnett, super Burnett, etc.) but the major input
of this asymptotic theory is the correlation between the Boltzmann equation and the Euler and further on
Navier-Stokes systems of equations.

Approximations or simplifications of the complicated collision operator Q(f, f) should take more or less all
those features into account. The simplest model that mimics most of those properties is the Bhatnagar, Gross
and Krook (BGK) relaxation model:

R(f) =
1
τ
(M − f)

where M is the local equilibrium function defined in (13) whose first moments are those of f :

ρ = 〈f〉, ρu = 〈fv〉, T =
1
3ρ

〈f |v − u|2〉

and τ is a relaxation time possibly depending on moments of f . All properties of the BGK model are derived
from the characterization of M :

“M is the unique minimizer of the entropy in the set

C = {g ≥ 0, µ0(g) = µ0(f) = 〈(1,v, |v|2)T f〉}”

(see Th. 1 and Rem. 1). Indeed conservation of mass, momentum and energy (11) is a simple consequence of
M ∈ Cf ⇒ µ0(M) = µ0(f). The entropy dissipation law

〈R(f) ln f〉 ≤ 0

is easily deduced from the convexity of H and the property H(M) ≤ H(f). Characterization of the equilibrium
function for the BGK model relies on the same properties and (14) is straightforward. Unfortunately this
model shows a deficiency when studying its asymptotic fluid limit. On one side the zeroth order still gives
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the Euler system of equations but the next member in the hierarchy (Navier-Stokes equations) is obtained
with an incorrect Prandtl number (=1). The reason for this is quite simple: relaxation rates for the moments
corresponding to the pressure tensor and heat flux are not comparable for the two different models. It is however
interesting to try to correct that deficiency especially in view of applications: the computation of the interaction
term R(f) is just a matter of computing 〈f(1,v, |v|2)T 〉 while computing Q(f, f) at each velocity requires an
integration on S2 × R3. A correction is brought in the Ellipsoidal Statistical model (ES) so as to adjust the
viscosity. In this model the following constraint is added in C:

∫
g(v)Bij(v − u)dv)ij = t(Σ − pII), Bij(v) = vivj − |v|2

3
δij (25)

where Σ is the stress tensor of f defined in (19). Then setting t = 1 − 1/Pr leads to the definition of a non-
isotropic Gaussian function G (21) which is such that at the asymptotic fluid limit the ratio between µ and κ
is correct.

Adding constraints in C is the leading idea of our generalization of the BGK model. Notice that two condi-
tions are required:

1 - The supplementary constraints must be such that they match the Boltzmann collision operator. This
requires for example that the “new” relaxation model R(f) gives a correct asymptotic fluid limit, or
that 〈R(f)m(v)〉 = 〈Q(f, f)m(v)〉 for given moments m(v).

2 - The procedure must be entropy decaying.
As concerns the ES model, condition 1 is somehow fulfilled artificially: G has no heat flux but the Prandtl
number is correct. Therefore (moments of) G does not lie between (moments of) M and f and the entropy
decay for that model can be hardly seen as a direct consequence of the convexity of H (see [1]). In this respect
the fundamental difference between BGK and ES models is that on one side M matches the positive part of
the collision integral Q+(f, f) while G does not. Indeed in the first case the set of constraints reads:

C = {g ≥ 0, µ0(g) = ρ−1〈(1,v, |v|2)T Q+(f, f)〉}”

(where ρ = ρ0 = 〈f〉) so that
µ0(M) = µ0(ρ

−1Q+(f, f))
while the added constraint (25) cannot be written in terms of Q+(f, f) since:

(〈Gvivj〉)ij �= (〈ρ−1Q+(f, f)vivj〉
)

ij
.

Therefore our generalization consists in adding constraints relative to Q+(f, f). For the sake of simplicity we
shall consider the case of Maxwellian molecules for which:

Q(f, f)(v) = Q+(f, f) − ρf with Q+(f, f) =
∫

S2

∫
R3

f ′f ′
∗dv�, ρ =

∫
fdv.

Another reason for dealing with Maxwellian molecules is that we need ”strong” entropy dissipation estimate to
fulfil condition (31) (see below) and no such estimate is available for other cross-sections.

Theorem 3. Let f ∈ L1
N (R3) be a nonnegative function and P be a polynomial space of order N satisfying

(I),(II),(III), then the relaxation model

R(f) = ρ(G − f) (26)

where G is solution to the minimization problem:

min{H(g)/ µ(g) ≤∗ µ(ρ−1Q+(f, f))} (27)
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fulfils the following properties:

〈R(f)m(v)〉 = 〈Q(f, f)m(v)〉, ∀m ∈ P such that d0m ≤ N − 1, (28)
〈R(f)|v|N 〉 ≤ 〈Q(f, f)|v|N 〉. (29)

In particular the model is mass, momentum and energy preserving as long as E0 ⊂ P. Besides one has:

G = f ⇒ f = Maxwellian distribution (30)

and finally the model is entropy dissipating

〈R(f) ln f〉 ≤ 0 and 〈R(f) ln f〉 = 0 ⇒ f = G = M. (31)

Proof. The first part of the theorem is essentially an application of Theorem 1. We just have to check that all
assumptions are fulfilled: ρ−1Q+(f, f) ≥ 0 a.e. is obvious since f is nonnegative. Its moments are bounded
thanks to the Povzner inequality [13]:

∫
R3

(1 + |v|2)N
2 Q(f, f)dv ≤ C||f ||L1

N
||f ||L1 ,

with C independent of f . So Theorem 1 directly applies and gives (28, 29) and G is nothing but the entropic
approximation of ρ−1Q+(f, f) on exp(P). In particular

H(G) ≤ H(ρ−1Q+(f, f)).

Relations (30) and (31) are then a consequence of the absolutely nontrivial inequality:

H(ρ−1Q+(f, f)) ≤ H(f) (32)

which holds only for Maxwellian molecules. This last inequality is due in its most general form to Villani [15]
(see therein for other references). Indeed as concerns the dissipation law (31) one just has to write

〈(G − f) ln f〉 ≤ H(G) − H(f) ≤ H(ρ−1Q+(f, f)) − H(f) ≤ 0 (33)

where we have used the convexity of H and the inequality (32). Now remark that one can also write

H(ρ−1Q+(G, G)) ≤ H(G)

so that in the case where G = f one has H(ρ−1Q+(f, f)) ≤ H(G). But G itself is the entropic approximation
of ρ−1Q+(f, f) so that

G = ρ−1Q+(f, f) = ρ−1Q+(G, G).
Multiplying this equality by lnG and integrating over R3 gives

∫
R3

(Q+(G, G) − ρG) ln Gdv =
∫

R3
Q(G, G) ln Gdv = 0

which holds only for Maxwellian distributions and proves (30). Finally by using (33)

〈(G − f) ln f〉 = 0 ⇒ H(G) = H(ρ−1Q+(f, f)) ⇒ G = ρ−1Q+(f, f)

and the same reasoning applies for characterizing stationary states. �
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Remark that the main obstacle in extending the relaxation model (26) to general cross-sections is the in-
equality (32): in the general case no inequality of that type is available so that entropy decay is not ensured.

We finish this section by studying the asymptotic fluid limit of the non-dimensional equation:

∂tfε + v.∇fε =
ρ

ε
(G − fε) (34)

where G is defined above. In this section we shall assume that the space of moments P which defines G uniquely
through the minimization problem (27) contains E0 = span[1, v1, v2, v3, |v|2] – the space of collision invariants
– together with the Sonine polynomials

Ai(v) =
1
2
(|v|2 − 5)vi, Bij(v) = vivj − |v|2

3
δij . (35)

This means that P contains at least polynomials of degree 4.
Suppose that fε can be expanded with respect to ε:

fε = f0 + εf1 + ε2f2 + ... (36)

Then we need to expand G as well. Remark first that G is a function of the moments of Q+

〈Gm〉 = ρ−1Πh(〈Q+(f, f)m〉) ≤∗ ρ−1〈Q+(f, f)m〉.
(remember that the inequality can arise for the higher order moment) which according to the above expansion
can be written:

〈Gm〉 ≤∗
+∞∑
n=0

εnρ+
n where ρ+

n = ρ−1
n∑

i=0

〈Q+(fi, fn−i)m〉· (37)

Let us now suppose that G can be expanded as a function of its moments at ρ+
0 :

G(ρ+
0 + ερ+

1 + ...) = G(ρ+
0 ) + εG′(ρ+

0 ).ρ+
1 + O(ε2).

Inserting this last expression and the expansion of f in (34) and equating orders of ε gives:
• Order 1. G(ρ+

0 ) = f0 and so according to (30) f0 is a Maxwellian. We can choose the parameters of
this Maxwellian M so that its first moments match those of fε: µ0(fε) = µ0(M) = ρ+

0 and so all other
terms in the expansion are orthogonal to E0.

Remark now that G has to be expanded around the moments of a Maxwellian distribution which
justifies a posteriori the above expansion since G is directionally differentiable at ρM :

G′(ρM ).ρ = lim
ε→0

1
ε
(G(ρM + ερ) − G(ρM )) is well defined ρ ∈ R#P .

Besides G(ρ) = exp(α.m(v)) with α = h̃ρ(ρ) (h̃ is itself directionally differentiable at ρM ) so that

G′(ρM ).ρ = Mm(v)T .h̃ρρ(ρM ).ρ.

Remark here that the Hessian matrix h̃ρρ(ρM ) is not single valued. It takes one form in the directions
ρ �∗ 0 while it is degenerate in the case 0 ≤∗ ρ for which h̃ρρ(ρM ).ρ = 0. In both cases we can however
write

G(ρM + ερ+
1 + ...) = M

(
1 + εm(v)T .h̃ρρ(ρM ).(

∑+∞
n=1 εn−1ρ+

n ) + O(ε2)
)

= M
(
1 + εm(v)T .h̃ρρ(ρM ).ρ+

1 + O(ε2)
)

. (38)
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On the other hand GM−1 belongs to L2(R3, M) since either G = M or G is exponentially decaying with
at least an order 0(exp(−α|v|4)) (α > 0). Therefore G can be expanded on any (polynomial) Hilbert
basis (φn) of L2(Rd, M):

G(v) = M(v)
+∞∑
n=0

〈Gφn〉φn(v).

Writing m -the #P -vector which components are vector basis of P- in terms of φn (this can always be
done since φn is a polynomial basis) G can be expanded as follows:

G = M〈Gm〉.m(v) + MΣ⊥

where
Σ⊥ =

∑
φn⊥m

〈Gφn〉φn is orthogonal to P.

Inserting (38) in this last expression proves that Σ⊥ is of order 2 and

G(ρM + ερ+
1 + ...) = M〈Gm〉.m(v) + O(ε2).

Expanding 〈Gm〉 as in (37) gives

G(ρM + ερ+
1 + ...) = M(1 + ερ̃+

1 .m(v) + O(ε2)) (39)

with ρ̃+
1 = ρ+

1 in the non-degenerate case
∑

n≥1 εn−1ρ+
n �≥∗ 0 and ρ̃+

1 ≤∗ ρ+
1 in the degenerate case.

Remark that in the degenerate case the (in)equality

0 ≤∗ ∑
n≥1

εn−1ρ+
n ⇒ (ρ+

1 )i = −ε
∑
n≥2

εn−2(ρ+
n )i i = 1, ..., #P − 1.

This means that all components of ρ+1 (but the last one) must be themselves of order ε.
• Order 0. Due to the above expansion the order 0 equation is:

∂tf0 + v.∇f0 = ρM
(
ρ̃+

1 .m(v) − f1M
−1

)
. (40)

Multiplying this equation with 1,v, |v|2 gives the Euler system of equation since the right hand side of
the equation is orthogonal to the collision invariants:




∂tρ + ∇xρu = 0
∂tρu + ∇x(ρu⊗ u + pI) = 0
∂tρE + ∇xu(ρE + p) = 0

(41)

where
ρ =

∫
fdv, ρu =

∫
fvdv, ρE =

1
2

∫
fv2dv,

together with the closure relation:

p =
2
3
ρ(E − 1/2u2) = ρT. (42)

Differentiation of M and using the Euler system of equations allows one to eliminate the time derivative
in the left hand side of (40):

∂tM + v.∇M = M(A(V).
∇xT

T 1/2
+ B(V) : ∇xu)
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where A = (Ai) and B = (Bij) are defined in (35). Then (40) gives

A(V).
∇xT

T 1/2
+ B(V) : ∇xu = ρ

(
ρ̃+

1 .m(v) − f1M
−1

)
(43)

which means that f1M
−1 ∈ P and one can write:

f1 = M〈f1m〉.m(v).

Let us now focus on the right hand side of (43):

ρ̃+
1 − 〈f1m〉 ≤∗ ρ−1〈(2Q+(f0, f1) − ρf1)m〉 = 2ρ−1〈Q(M, f1)m〉

which can be expressed in terms the linearized Boltzmann collision operator

2〈Q(M, f1)m〉 = 〈ML(f1M
−1)m〉 with L(φ) = 2M−1Q(M, Mφ).

This operator is self-adjoint for the scalar product in L2(R3, M) and its eigenvectors (generalized Hermite
polynomials [7]) constitute precisely a Hilbert basis of L2

M

〈ML(f1M
−1)m〉 = 〈f1L(m)〉 = Λ.〈f1m〉

where Λ is a diagonal matrix composed of eigenvalues. The nullspace of L is E0 (collision invariants)
and all other eigenvalues are negative. In particular

L(Ai(V)) = − 1
3Ai(V), L(Bij(V)) = − 1

2Bij(V), V = v−u
T 1/2 (44)

and for the moment of highest degree

(ρ̃+
1 )#P − 〈f1m#P 〉 ≤ ρ−1λ〈f1m#P 〉 with λ < 0

with equality in the non-degenerate case.
Inserting all those results in (40) proves that f1 can simply be written as

f1 = M

(
3A(V).

∇xT√
T

+ 2B(V) : ∇xu
)

,

and that the Chapman-Enskog expansion of the density function fε at order 1 is exactly the same as
the one for the full Boltzmann equation:

fBGK
CE = fBoltz

CE = M(1 + 3εA(V).
∇xT√

T
+ 2εB(V) : ∇xu).

Consequently the order 1 equation gives after multiplication with 1,v, |v|2 and integration over the
velocity space the same Navier-Stokes equation – i.e. with same coefficients – as that obtained at the
first order for the Boltzmann equation!:




∂tρ + ∇xρu = 0
ρ(∂t + u.∇x)u + ∇x(ρT ) = ε∇x.[µσ(u)]
3
2ρ(∂t + u.∇x)T + ρT∇xu = ε

2µσ(u) : σ(u) + ε∇x.[κ∇xTσ]
(45)
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where µ = 2T is the viscosity and κ = 15
2 T is the thermal diffusivity and σ(u) is the strain-rate tensor

given by

σij(u) =
∂ui

∂xj
+

∂uj

∂xi
− 2

3
∇x.uδij .

Remark that here Pr = 2/3.

6. Conclusion

We have justified/developed an approximation tool that is well adapted to kinetic theory. It is essentially
based on an entropy minimization principle with relaxed constraint(s) for the moments of highest degree. On
one hand the approximation f → G conserves the positivity and a fixed number of moments of f and on
the other hand it is compatible with the entropy dissipation law – i.e. the approximation procedure does not
contradict this law. There are essentially two possible issues to this work: theoretical and numerical. The first
one is concerned with Levermore [11] moments closure hierarchy in kinetic theory. As remarked in Section 4
solutions to those systems suffer drawbacks when the moments of the solution are closed to the domain of non-
realizability, that is when there exists no exponential functions having those moments. We postpone to a future
work possible modifications of those systems so as to make them compatible with the realizability problem. It
shall then be interesting to connect solutions to those systems to solutions to the full Boltzmann equation.

Besides one may think of a Chapman-Enskog expansion where the approximate density is not a polynomial
expansion (up to the multiplication of a local Maxwellian distribution) but an entropic approximation.

Finally numerical issues are also a possible continuation of this work especially as concerns our generalized
BGK models. It is first interesting to try to extend those models to the case of general cross-sections and then
to develop numerical algorithm that should improve computational costs. Such a generalization can be done
for example on the basis of the paper of Mieussens [12] in the framework of discrete velocity models.

Acknowledgements. The author would like to thank J.J Alibert and G. Bouchitté for helpful discussions about convex
analysis.
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Probab., Birkhaüser, Boston, MA (2001) 59–73.
[11] C.D. Levermore, Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83 (1996) 1021–1065.
[12] L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models

Methods Appl. Sci. 10 (2000) 1121–1149.
[13] A.J. Povzner, The Boltzmann equation in the kinetic theory of gases. Amer. Math. Soc. Trans. 47 (1965) 193–214.
[14] F. Rogier and J. Schneider, A Direct Method for Solving the Boltzmann Equation. Proc. Colloque Euromech n0287 Discrete

Models in Fluid Dynamics, Transport Theory Statist. Phys. 23 (1994) 1–3.
[15] C. Villani, Fisher information bounds for Boltzmann’s collision operator. J. Math. Pures Appl. 77 (1998) 821–837.


