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NUMERICAL ANALYSIS OF THE MFS FOR CERTAIN HARMONIC
PROBLEMS

Yiorgos-Sokratis Smyrlis1 and Andreas Karageorghis1

Abstract. The Method of Fundamental Solutions (MFS) is a boundary-type meshless method for
the solution of certain elliptic boundary value problems. In this work, we investigate the properties of
the matrices that arise when the MFS is applied to the Dirichlet problem for Laplace’s equation in a
disk. In particular, we study the behaviour of the eigenvalues of these matrices and the cases in which
they vanish. Based on this, we propose a modified efficient numerical algorithm for the solution of the
problem which is applicable even in the cases when the MFS matrix might be singular. We prove the
convergence of the method for analytic boundary data and perform a stability analysis of the method
with respect to the distance of the singularities from the origin and the number of degrees of freedom.
Finally, we test the algorithm numerically.
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1. Introduction

The Method of Fundamental Solutions is a relatively new boundary method for the solution of certain
elliptic boundary value problems. The formulation of the method as a numerical technique was first proposed
by Mathon and Johnston [11]. The MFS is a meshless method which is very easy to implement and avoids
integration on the boundary. The method has been applied to a variety of physical problems in fluid mechanics,
acoustics, electromagnetism and elasticity. Comprehensive surveys of the applications of the MFS and related
methods can be found in the recent survey articles [3, 4, 6]. Error estimates and a convergence analysis of the
MFS for circular harmonic problems appear in [8, 9]. Applications of the MFS can also be found in the books
by Kolodziej [10], Golberg and Chen [5] and Doicu, Eremin and Wriedt [2].

In [12] we considered the approximation of the solution of Laplace’s equation in the disk Ω = {x ∈ R2 : |x| <
�} subject to the Dirichlet boundary condition u = f . Although this is a very specific problem, it enables us
to identify applicability as well as error and stability features of the method which are present in more general
cases.
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MFS.
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In the MFS, the solution u is approximated by the harmonic function

uN(c, Q; P ) =
N∑

j=1

cj k(P, Qα
j ), P ∈Ω, (1.1)

where c = (c1, c2, . . . , cN )T and Q is a 2N -vector containing the coordinates of the singularities (sources) Qα
j ,

j = 1, . . . , N , which lie outside Ω. The function k(P, Q) is a fundamental solution of Laplace’s equation given
by

k(P, Q) = − 1
2π

log |P − Q|, (1.2)

where |P − Q| is the distance between P and Q. The singularities Qα
j are fixed on the boundary ∂Ω̃ of a disk

Ω̃ = {x ∈ R2 : |x| < R} concentric to Ω, with R > � . A set of collocation points {Pi}N
i=1 is placed on ∂Ω. If

Pi = (xPi , yPi), then we take

xPi = � cos
2(i − 1)π

N
, yPi = � sin

2(i − 1)π
N

, i = 1, . . . , N. (1.3)

If Qα
j = (xQα

j
, yQα

j
), then

xQα
j

= R cos
2(j − 1 + α)π

N
, yQα

j
= R sin

2(j − 1 + α)π
N

, j = 1, . . . , N, (1.4)

where the positions of the sources differ by an angle 2πα
N from the positions of the boundary points and 0 ≤ α < 1.

In the case α �= 0, we thus have a rotation of the singularities with respect to the boundary points (see [8,12]).
This rotation improves the accuracy of the method when R − � � 1 (see Figs. 2 and 4).

In the version of the MFS with fixed singularities, the coefficients c are determined so that the boundary
condition is satisfied at the boundary points {Pi}N

i=1:

uN (c, Q; Pi) = f(Pi), i = 1, . . . , N. (1.5)

This yields a linear system of the form

Gαc = f , (1.6)

for the coefficients c, where the elements of the matrix Gα are given by

Gα
i,j = − 1

2π
log |Pi − Qα

j |, i, j = 1, . . . , N. (1.7)

Clearly Gα is a circulant matrix, see [1]. More precisely Gα = circ(g1(α), . . . , gN(α)) where

gj(α) = − 1
2π

log
∣∣P1 − Qα

j

∣∣
= − 1

4π
log
(

R2 − 2R� cos
(

2π(j + α − 1)
N

)
+ �2

)
, (1.8)

j = 1, . . . , N . Thus Gα is diagonalizable

Gα = U∗DU, where D = diag(λ1(α), . . . , λN (α)),
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with eigenvalues

λj(α) =
N∑

k=1

gk(α)ω(k−1)(j−1) (1.9)

where ω = e2πi/N and j = 1, . . . , N . The corresponding normalized eigenvectors are

ξj =
1√
N

(1, ωj−1, ω2(j−1), . . . , ω(N−1)(j−1))T , j = 1, . . . , N,

and they form an orthonormal basis of C
N . The matrix U is therefore unitary (UU∗ = I) and its conjugate is

U∗ =
1√
N




1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2N−2

...
...

...
...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)


 .

The matrix U is known as the Fourier matrix.
Let 〈ζ, η〉 =

∑N
k=1 ζkη̄k be the complex inner product of ζ, η ∈C

N . Any vector v ∈C
N , can be expressed as

v =
∑N

k=1〈v, ξk〉ξk and hence Gαv =
∑N

k=1 λk(α)〈v, ξk〉ξk. In particular, when Gα is nonsingular

(Gα)−1
v =

N∑
k=1

1
λk(α)

〈v, ξk〉ξk . (1.10)

In Katsurada and Okamoto [9], the authors prove the convergence of the unrotated MFS for Laplace’s equation
in a disk, subject to analytic Dirichlet boundary data. The extension to non-analytic boundary data and to the
rotated case is studied by Katsurada [8]. Our approach is different as it is based on the study of the eigenvalues
of the matrix Gα. We first identify the cases when the matrix Gα is singular, we then develop an efficient
algorithm for the solution of the problem and, using the information we have obtained about the eigenvalues,
we prove the convergence of the method. Finally, from the properties of the eigenvalues, we develop a stability
analysis for the method with respect to R.

This paper is structured as follows: in Section 2 we study the invertibility of the matrix Gα and isolate the
eigenvalues which might vanish. In Section 3 we propose a modified algorithm which avoids these troublesome
eigenvalues. In Section 4 we prove the exponential convergence of the MFS approximate solution uN to the
exact solution u for analytic boundary data as N tends to infinity. In Section 5 we provide a stability result,
namely we demonstrate that when the radius R � �, roundoff error is generated. The resulting deterioration
in accuracy when R is large, which is contrary to the theoretical predictions, has often been reported in the
literature. Finally in Section 6 we test the method numerically on two examples for which the exact solution in
known.

2. Properties of the eigenvalues

In this section we investigate the properties of the eigenvalues of the matrix Gα. We divide these eigenvalues
in three groups:

(i) the “first” eigenvalue λ1;
(ii) in the case N is even, the “middle” eigenvalue λN

2 +1; and
(iii) the remaining eigenvalues.
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In the sequel we shall assume, without loss of generality, that the radius of the disk is � = 1. Also, because of
symmetry, we shall restrict the parameter α in the interval [0, 1

2 ].
Combining (1.8) with (1.9) we obtain for j = 1, . . . , N that

λj(α) = − 1
4π

N∑
k=1

e
2πi(j−1)(k−1)

N log
(

R2 + 1 − 2R cos
(

2π(k + α − 1)
N

))
· (2.1)

Clearly,

N∑
k=1

sin
(

2π(j − 1)(k − 1)
N

)
log
(

R2 + 1 − 2R cos
(

2π(k − 1)
N

))
= 0, (2.2)

which leads to the following result:

Lemma 2.1. When α = 0, the eigenvalues λj(0), j = 1, . . . , N , of Gα are real and

λj(0) = λN−j+2(0), j = 2, . . . ,

[
N + 1

2

]
·

When α �= 0, the eigenvalue λ1(α) is real, and so is λN
2 +1(α), in the case N is even. The remaining eigenvalues

are complex with

λj(α) = λ̄N−j+2(α), j = 2, . . . ,

[
N + 1

2

]
·

2.1. The first eigenvalue

We are particularly interested in the points where the first eigenvalue vanishes.

Proposition 2.2. The first eigenvalue λ1(α) of the matrix Gα is given by

λ1(α) = − 1
4π

log
(
R2N − 2RN cos(2πα) + 1

)
. (2.3)

Proof. Since Gα is circulant, i.e., Gα = circ (g1(α), g2(α), . . . , gN(α)) , the eigenvalues of Gα are given by (1.9).
In particular,

λ1(α) =
N∑

k=1

gk(α). (2.4)

From (1.8), we have

λ1(α) = − 1
4π

log

{
N∏

k=1

(
R2 + 1 − 2R cos

(
2π(k + α − 1)

N

))}
·

From [7] (p. 34)

n−1∏
k=0

{
x2 − 2xy cos

(
α +

2kπ

n

)
+ y2

}
= x2n − 2xnyn cosnα + y2n , (2.5)

from which (2.3) follows. �
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From (2.3) we obtain the following corollary:

Corollary 2.3. The eigenvalue λ1(α) vanishes if and only if α = 1
2π cos−1

(
RN

2

)
.

We observe the following:

Remarks 2.1.
(i) An immediate consequence of Corollary 2.3 is that if RN > 2 (or equivalently R > 2

1
N ), the eigenvalue

λ1(α) cannot vanish.
(ii) In order for λ1(α) to vanish we need 2 cos 2πα > 1, i.e., 0 < α < 1

6 or 5
6 < α < 1. Since because of

symmetry we are only considering values of α ∈ [0, 1
2 ), it follows that the eigenvalue λ1(α) could only

vanish for values of α ∈ [0, 1
6 ].

2.2. The middle eigenvalue λN

2
+1(α) when N is even

The behaviour of the eigenvalue λN
2 +1(α) in the case N = 2M is even, is of particular interest. Its corre-

sponding normalized eigenvector is

ξ N
2 +1 =

1
N1/2

(1,−1, 1,−1, . . . , 1,−1)T ,

which isolates from the boundary data (f1, . . . , fN)T the term(
1

N1/2

N∑
k=1

(−1)k−1fk

)
ξ N

2 +1,

corresponding to noise.

Proposition 2.4. If N is even, then the eigenvalue λN
2 +1(α) is given by

λN
2 +1(α) = − 1

4π
log

RN − 2RN/2 cosαπ + 1
RN − 2RN/2 cos(α + 1)π + 1

· (2.6)

Proof. Let N = 2M . We know that the eigenvalues of Gα are given by (1.9); therefore

λN
2 +1(α) = − 1

4π

N∑
k=1

(−1)k−1 log
(

R2 − 2R cos
2π(k + α − 1)

N
+ 1
)

= − 1
4π

M∑
n=1

log
(

R2 − 2R cos
(

2π
n − 1
M

+
απ

M

)
+ 1
)

+
1
4π

M∑
m=1

log
(

R2 − 2R cos
(

2π
m − 1

M
+

(α + 1)π
M

)
+ 1
)

.

From (2.5) we get that

λN
2 +1(α) = − 1

4π
log
(
R2M − 2RM cosαπ + 1

)
+

1
4π

log
(
R2M − 2RM cos(α + 1)π + 1

)
= − 1

4π
log

RN − 2RN/2 cosαπ + 1
RN − 2RN/2 cos(α + 1)π + 1

· �
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A direct application of this theorem yields the following corollary:

Corollary 2.5. For N even and R > 1, the eigenvalue λN
2 +1(α) vanishes if and only if α = 1

2 . [We assume
that α∈ [0, 1). ]

2.3. The eigenvalues λj(α), j �= 1, and j �= N
2 + 1, when N is even

Theorem 2.6. For α∈ [0, 1
2 ] and j �= 1 , we have

λj(α) =
N

4π

∞∑
m=0

{
e−i 2π

N (mN+j−1)α

(mN +j−1)RmN+j−1
+

ei 2π
N (mN+N−j+1)α

(mN +N−j+1)RmN+N−j+1

}
. (2.7)

In particular when N is even

λN
2 +1(α) =

N

2π

∞∑
m=0

cos(2m + 1)απ(
mN + N

2

)
RmN+N

2
· (2.8)

Proof. Let F (R, ϑ) = − 1
4π log(R2 − 2R cosϑ + 1). Then, from [7] we have

F (R, ϑ) = − 1
4π

log(R2 − 2R cosϑ + 1) = − 1
2π

log R +
1
2π

∞∑
n=1

cosnϑ

nRn
· (2.9)

Then for j = 2, . . . , N , we have

λj(α) =
N∑

k=1

exp
(

i
2π

N
(j − 1)(k − 1)

)
F

(
R,

2π

N
(k − 1 + α)

)

=
1
2π

∞∑
n=1

1
nRn

{
N∑

k=1

cos
(

2π

N
(j − 1)(k − 1)

)
cos
(

2π

N
n(k − 1 + α)

)}

(2.10)

+i
1
2π

∞∑
n=1

1
nRn

{
N∑

k=1

sin
(

2π

N
(j − 1)(k − 1)

)
cos
(

2π

N
n(k − 1 + α)

)}
·

We are going to calculate the above two sums. We first observe that:

N∑
k=1

cos
(

2π

N
k


)
cos
(

2π

N
n(
 + α)

)
=

1
2

cos
(

2π

N
nα

){
CN

n−�+CN
n+�

}
, (2.11)

N∑
k=1

sin
(

2π

N
k


)
cos
(

2π

N
n(
 + α)

)
=

1
2

sin
(

2π

N
nα

){
CN

n−�−CN
n+�

}
, (2.12)

where

CN
κ =

N∑
j=1

cos
(

2π

N
κj

)
=
{

N if κ ≡ 0 modN
0 if κ �≡ 0 modN.

(2.13)
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Combining (2.10), (2.11) and (2.12), and replacing the CN
κ according to (2.13), we obtain

λj(α) =
1
4π

∞∑
n=1

e−i 2π
N nα

nRn
CN

n−j+1 +
1
4π

∞∑
n=1

ei 2π
N nα

nRn
CN

n+j−1

=
N

4π

∞∑
m=0

e−i 2π
N (mN+j−1)α

(mN + j − 1)RmN+j−1
+

N

4π

∞∑
m=0

ei 2π
N (mN+N−j+1)α

(mN + N − j + 1)RmN+N−j+1
·

Formula (2.8) is an immediate consequence of (2.7). �
In particular, when α = 0 we have the following formula for the eigenvalues

Corollary 2.7. For α = 0 and j �= 1 , we have

λj(0) =
N

4π

∞∑
m=0

(
1

j−1+mN
· 1
Rj−1+mN

+
1

N−j+1+mN
· 1
RN−j+1+mN

)
· (2.14)

In particular, for N even and j = N
2 + 1, we have

λN
2 +1(0) =

N

2π

∞∑
m=0

1
N
2 + mN

· 1

R
N
2 +mN

· (2.15)

Finally for j = [N
2 ] + 1, . . . , N , we have λj(0) = λN−j+2(0) .

We also have the following two corollaries:

Corollary 2.8. For all j = 2, . . . , N we have λj(0) > 0 .

In particular, since λ1(0) = 0 if and only if R = 2
1
N (see Cor. 2.3), we also have the corollary:

Corollary 2.9. The matrix G0 is nonsingular if and only if R �= 2
1
N .

Next we shall prove that the eigenvalues λj(α), for α∈ [0, 1
2 ] and j = 2, . . . ,

[
N+1

2

]
, never vanish. In particular,

we have the following result:

Lemma 2.10. For α∈ [0, 1
2 ) and j = 2, . . . ,

[
N+1

2

]
, we have Re λj(α) > 0 .

Proof. Let rj(α) = Re λj(α) . The proof of the lemma is a consequence of the following two properties of the
rj :

(i) for all α∈ [0, 1
2 ] and j = 2, . . . ,

[
N+1

2

]
, we have that drj(α)

dα < 0 . Therefore, for α∈ [0, 1
2 ], the rj(α) are

decreasing functions in the interval [0, 1
2 ];

(ii) for all j = 2, . . . ,
[

N+1
2

]
, we have that rj(1

2 ) > 0 . Therefore, rj(α) ≥ rj(1
2 ) > 0.

�

Proof of (i):
Clearly

rj(α) =
N

4π

∞∑
m=0

{
cos
(

2π
N (mN + j − 1)α

)
(mN +j−1)RmN+j−1

+
cos
(

2π
N (mN + N − j + 1)α

)
(mN +N−j+1)RmN+N−j+1

}
·

Differentiating with respect to α we obtain

r′j(α) = −1
2

∞∑
m=0

{
sin
(

2π
N (mN + j − 1)α

)
RmN+j−1

+
sin
(

2π
N (mN + N − j + 1)α

)
RmN+N−j+1

}
·
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Let z = ei 2π
N

α

R ; then

r′j(α) = −1
2
Im

{ ∞∑
m=0

(
zmN+j−1+zmN+N−j+1

)}
=−1

2
Im

{
(zj−1+zN−j+1)(1 − zN)

|1 − zN |2
}
·

It thus suffices to show that Im
(
(zj−1 + zN−j+1)(1 − zN)

)
> 0 , for α∈ [0, 1

2 ] . After some simple calculations
we get

Im
(
(zj−1 + zN−j+1)(1 − zN )

)
= Im

{(
ei 2π

N (j−1)α

Rj−1
+

ei 2π
N (N−j+1)α

RN−j+1

)(
1 − e−i 2π

N Nα

RN

)}

(2.16)

= sin
(

2π

N
(j−1)α

)(
1

Rj−1
+

1
R2N−j+1

)
+sin

(
2π

N
(N−j+1)α

)(
1

RN−j+1
+

1
RN+j−1

)
·

Both the arguments of the sines, in the above expression, lie in (0, π) and therefore both sin
(

2π
N (j−1)α

)
and

sin
(

2π
N (N−j+1)α

)
are positive. Thus the right hand side of (2.16) is positive, which concludes the proof of (i).

Proof of (ii):
Let γ = 1/R, then we have

rj

(
1
2

)
=

N

4π

∞∑
m=0

{
cos π

N (mN +j−1)
(mN +j−1)RmN+j−1

+
cos π

N (mN +N−j+1)
(mN +N−j+1)RmN+N−j+1

}

=
N

4π
cos

π(j − 1)
N

∞∑
m=0

{
γ2mN+j−1

(2mN +j−1)
+

γ(2m+2)N−j+1

((2m+2)N−j+1)

}

− N

4π
cos

π(j − 1)
N

∞∑
m=0

{
γ(2m+1)N+j−1

((2m+1)N +j−1)
+

γ(2m+1)N−j+1

((2m+1)N−j+1)

}
·

Clearly cos π(j−1)
N > 0 ; thus it suffices to show that for every m > 0 we have

γ2mN+j−1

2mN +j−1
+

γ(2m+2)N−j+1

(2m+2)N−j+1
>

γ(2m+1)N−j+1

(2m+1)N−j+1
+

γ(2m+1)N+j−1

(2m+1)N +j−1
,

or equivalently

1
2mN +j−1

− γN

(2m+1)N +j−1
> γN−2j+2

(
1

(2m+1)N−j+1
− γN

(2m+2)N−j+1

)
.

Since γN−2j+2 < 1, it is sufficient to show that

1
2mN +j−1

− γN

(2m+1)N +j−1
>

1
(2m+1)N−j+1

− γN

(2m+2)N−j+1
,

or equivalently

mN−2j+2
(2mN +j−1)((2m+1)(N−j+1)

> γN mN−2j+2
((2m+1)N +j−1)((2m+2)(N−j+1)

,

which is clearly true. This concludes the proof of property (ii) and the theorem. �
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This leads to the central result of this section:

Theorem 2.11. The matrix Gα is singular if and only if

(i) α = 1
2π cos−1

(
RN

2

)
, in which case the first eigenvalue λ1(α) vanishes;

or
(ii) α = 1

2 , when N is even. In this case the eigenvalue λN
2 +1(α) vanishes.

Remarks 2.2.
(i) From Remark 2.1(ii) and Theorem 2.11 it follows that, if α∈( 1

6 , 1
2

)
, then detGα �= 0;

(ii) for every R > 1, α∈ [0, 1
2 ), for sufficiently large N , the matrix Gα is nonsingular. In particular Gα is

nonsingular for N ≥ [ log 2
log R ] + 1;

(iii) more detailed proofs of the results presented in this section may be found in [13].

3. Implementation

3.1. Expression of uN in terms of the eigenvalues and eigenvectors of Gα

By denoting the approximation uN(c, Q; P ) in (1.1) by uN (P ), where P = (x, y), we have

uN (P ) = 〈c, l〉 = 〈(Gα)−1f , l〉 ,

where

l = l(P ) = − 1
2π

(log |P − Q1|, . . . , log |P − QN |)T
. (3.1)

Since the {ξk}k=1,...,N form an orthonormal basis of C
N , for nonsingular Gα we have

(Gα)−1
f = (Gα)−1

N∑
k=1

〈f , ξk〉ξk =
N∑

k=1

1
λk(α)

〈f , ξk〉ξk.

Thus using (1.10) we obtain

uN (P ) = 〈(Gα)−1
f , l〉 =

N∑
k=1

1
λk(α)

〈f , ξk〉〈l, ξk〉. (3.2)

Remark 3.1. By using Fast Fourier Transforms (FFT), the quantities λk(α) , 〈f , ξk〉 and 〈l(P ), ξk〉, for k =
1, . . . , N , can be evaluated at a cost of O(N log N) operations.

3.2. Description of the proposed algorithm

We will suggest a modification of the method which avoids the presence of the inverses of possible zero
eigenvalues in (3.2). Clearly, since the only possibly vanishing eigenvalues are λ1 and λN

2 +1, if the boundary
condition vector f does not contain the corresponding eigenvectors ξ1 and ξ N

2 +1 (i.e. 〈f , ξ1〉 = 〈f , ξ N
2 +1〉 = 0 ),

then the troublesome terms do not appear in (3.2), and thus the MFS can be used without modification. To
treat the general boundary condition vector f , when N is even, we decompose it as follows:

f = f0 + f1 + f2 ,

where

f0 = f − 〈f , ξ1〉ξ1 − 〈f , ξ N
2 +1〉ξ N

2 +1 , f1 = 〈f , ξ1〉ξ1 , f2 = 〈f , ξ N
2 +1〉ξ N

2 +1 ,
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and

ξ1 =
1√
N

(1, 1, . . . , 1) , ξ N
2 +1 =

1√
N

(1,−1, 1,−1, . . . , 1,−1).

We shall solve the boundary value problems, corresponding to f �, for 
 = 0, 1, 2, separately.
• For 
 = 0 the boundary value problem is solved with the MFS yielding the approximate solution

u0
N (P ) =

∑
2≤k≤N
k �= N

2 +1

1
λk(α)

〈f , ξk〉〈l, ξk〉 . (3.3)

• For 
 = 1 the vector describing the boundary is a constant multiple of the constant vector (1, 1, . . . , 1) .
Since the constant functions are harmonic, the most natural choice for a solution in this case is the
constant solution

u1
N(P ) =

1√
N

〈f , ξ1〉· (3.4)

• For 
 = 2 the vector f2 is a constant multiple of

(1,−1, 1,−1, . . . , 1,−1).

An appropriate solution in this case, i.e., a harmonic function the boundary values of which at the
points {Pk}N

k=1, coincide with f2, is a suitable multiple of

Re z
N
2 = Re (x + iy)

N
2 .

The appropriate solution is thus

u2
N (P ) =

1√
N

〈f , ξ N
2 +1〉 Re z

N
2 . (3.5)

Summarizing, the approximate solution of the modified MFS is taken to be

uN(P ) = u0
N (P ) + u1

N (P ) + u2
N(P ). (3.6)

In the case when N is odd the part u2
N is not present.

This algorithm can thus be performed in O(N log N) operations.
For α∈( 1

6 , 1
2

)
, the matrix Gα is nonsingular and therefore the algorithm can be applied without subtracting

the two troublesome terms.

4. Convergence of the MFS for analytic boundary data

In this section we shall show that the (unmodified) MFS approximation uN converges uniformly exponentially
fast in the || · ||∞−norm to the exact solution u of the Dirichlet problem in the unit disk Ω, provided that the
boundary data f = u|∂Ω are analytic or equivalently u can be extended as a harmonic function in an open
region D containing Ω = {(x, y) |x2 + y2 ≤ 1 }. In particular, we assume that for some β > 0

B(0, 1+β) = { (x, y) | (x2 + y2)1/2 ≤ 1+β } ⊂ D . (4.1)
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If we express f as a Fourier series f(ϑ) =
∑

k∈Z
f̂keikϑ, then (4.1) implies that

||f ||1+β =

(∑
k∈Z

|f̂k|2(1 + β)2|k|
) 1

2

< +∞ . (4.2)

In particular, we have that for every k∈Z

|f̂k| ≤ ||f ||1+β(1 + β)−|k|. (4.3)

Let fN be the Discrete Fourier Interpolant of f corresponding to the values of f at ϑj = 2π
N j, j = 1, . . . , N .

Namely for N even (the case when N is odd can be dealt with similarly)

fN(ϑ) =

N
2∑

k=−N
2 +1

ϕkeikϑ,

where the coefficients ϕk ∈C, k = −N
2 + 1, . . . , N

2 , are chosen so that fN and f agree at the points {ϑj | j =
1, . . . , N} . Clearly if ω = e

2πi
N , then

ϕk =
1
N

N∑
j=1

ω−kjf(ϑj) =
1
N

N∑
j=1

ω−kj

(∑
�∈Z

f̂� ei�ϑj

)

=
1
N

N∑
j=1

ω−kj

(∑
�∈Z

f̂� ω�j

)
=
∑
�∈Z

f̂�


 1

N

N∑
j=1

ω−kjω�j




=
∑
m∈Z

f̂k+mN . (4.4)

Thus

|ϕk| ≤
∑
m∈Z

|f̂k+mN | ≤ ||f ||1+β

∑
m∈Z

(1 + β)−|k+mN |

≤ 2||f ||1+β(1 + β)−|k|
+∞∑
n=0

(1 + β)−nN = 2||f ||1+β(1 + β)−|k| 1
1 − (1 + β)−N

≤ 2(1 + β)
β

||f ||1+β (1 + β)−|k| = M1 ||f ||1+β (1 + β)−|k| , (4.5)

with M1 depending only on β. This interpolant converges to f exponentially fast, with respect to the supremum
norm, as N tends to infinity. In fact

|fN(ϑ) − f(ϑ)| =
∣∣∣∣∑

k∈Z

f̂keikϑ−
N
2∑

k=− N
2 +1

ϕkeikϑ

∣∣∣∣ ≤
N
2∑

k=−N
2 +1

|f̂k − ϕk| +
∑

|k|≥N
2

|f̂k|

≤ 2
∑

|k|≥N
2

|f̂k| ≤ 2(1 + β)
β

· ||f ||1+β · (1 + β)−
N
2 . (4.6)
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Let us denote by u(·; h) the solution of the boundary value problem{
∆u = 0 in Ω

u = h on ∂Ω

and by uN (·; h) its MFS approximation. Note that uN depends also on R and the angular parameter α. Since
both u(·; h) and uN(·; h) depend linearly on h we have that

||uN (·; f)−u(·; f)||∞≤||u(·; f−fN)||∞+||uN(·; f−fN)||∞+||uN(·; fN )−u(·; fN)||∞. (4.7)

Clearly, since f and fN agree at the boundary points, the middle term uN(·; f−fN ) is identically zero. In what
follows we shall show that, each of the remaining two terms on the right hand side of (4.7), decays exponentially
fast as N tends to infinity.

A. The term ||u(·; f − fN)||∞
Since u is harmonic, it satisfies the maximum principle in Ω

||u(·; f − fN )||∞ = sup
ϑ∈[0,2π]

|(f − fN)(ϑ)| .

Using (4.6) we obtain that

||u(·; f − fN )||∞ ≤ 2(1 + β)
β

· ||f ||1+β · (1 + β)−
N
2 . (4.8)

B. The term || uN(· ; fN ) − u(· ; fN)||∞
Let fN(ϑ) =

∑N
2

k=− N
2 +1

ϕk eikϑ. Then

u(· ; fN ) =

N
2∑

k=−N
2 +1

ϕk u
(· ; eikϑ

)
and uN (· ; fN) =

N
2∑

k=− N
2 +1

ϕk uN

(· ; eikϑ
)
.

Thus

||uN(· ; fN ) − u(· ; fN)||∞ ≤
N
2∑

k=− N
2 +1

|ϕk| ·
∣∣∣∣uN

(· ; eikϑ
)− u

(· ; eikϑ
)∣∣∣∣

∞ . (4.9)

The observation which enables us to obtain the desired bound, is the fact that the right hand side of (3.2)
reduces to a single term when h = eikϑ , which is easy to treat.

Lemma 4.1. We have the following estimates for ||uN(· ; eikϑ) − u(· ; eikϑ)||∞:
(i) Case I, k = 0: For R > 1 and every N ∈N

||uN(· ; 1) − u(· ; 1)||∞ ≤ 8
N log R · RN

; (4.10)

(ii) Case II, 0 < |k| ≤ N/2: For R > 1 and sufficiently large N

||uN(· ; eikϑ) − u(· ; eikϑ)||∞ ≤ 16
(

1 − 1√
R

)−1

· |k|
(N − |k|) · 1

RN−2|k| · (4.11)



NUMERICAL ANALYSIS OF THE MFS 507

Proof. Case I. k = 0
In this case h ≡ 1, h = (1, 1, . . . , 1), u ≡ 1 and

〈h, ξj〉 =
{ √

N if j = 1
0 otherwise.

Thus from (3.2) we obtain

uN (x, y; 1) =
N∑

j=1

1
λj

〈h, ξj〉〈l(x, y), ξj〉 =
√

N

λ1
〈l(x, y), ξ1〉 .

On the other hand if (x, y) = (r cosφ, r sin φ) and r < 1, we have

〈l(r cosφ, r sin φ), ξ1〉 =
1√
N

N∑
j=1

lj(r cosφ, r sin φ),

where l = (l1, . . . , lN ) (see (3.1)) and if we set ϑj,α = 2π
N (j − 1 + α) we obtain

lj(r cosφ, r sinφ) = − 1
4π

log(R2 − 2rR cos(ϑj,α − φ) + r2)

= − 1
2π

log R +
1
2π

∞∑
m=1

1
m

( r

R

)m

cosm(ϑj,α − φ).

Imitating the proof of Theorem 2.6 we obtain

〈l(r cosφ, r sin φ), ξ1〉 = −
√

N

2π

{
log R+

∞∑
m=1

1
mN

( r

R

)mN

cos
(

mN

(
φ− 2π

N
α

))}
· (4.12)

Similarly, for 0 < |k| < N/2 , we have

〈l(r cosφ, r sinφ), ξk+1〉 =

√
N

4π

∞∑
m=0

{( r

R

)k+mN e−i(k+mN)(φ− 2π
N α)

k + mN
+
( r

R

)N−k+mN ei(N−k+mN)(φ− 2π
N α)

N − k + mN

}
· (4.13)
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Consequently, using (4.12) and (2.9), we have

uN(x, y ; 1) =

√
N

{
−
√

N

2π
log R+

√
N

2π

∞∑
m=1

1
mN

( r

R

)mN

cos(mN(φ − 2π

N
α))

}

− 1
4π

log(R2N − 2RN cos(2πα) + 1)

=

log R −
∞∑

m=1

1
mN

( r

R

)mN

cos(mN(φ − 2π

N
α))

1
2N

log(R2N − 2RN cos(2πα) + 1)

= 1 +

{
log R−

∞∑
m=1

rmN cos(φ − 2mπα)
mNRmN

}
−
{
log R−

∞∑
m=1

cos(2mπα)
mNRmN

}

log R −
∞∑

m=1

cos(2mπα)
mNRmN

·

Since uN − u is harmonic and u(· ; 1) ≡ 1, using the maximum principle we have

||uN (· ; 1)−u(· ; 1)||∞ = max
ϑ∈[0,2π]

|uN (cosϑ, sin ϑ ; 1) − 1|

≤ max
ϑ∈[0,2π]

1
N

∞∑
m=1

1
mRmN

· | cos(mNφ−2mπα))−cos(2mπα)|

log R −
∞∑

m=1

1
mNRmN

≤
2

1
N

∞∑
m=1

1
RmN

1
2 log R

=
4

N log R(RN − 1)
≤ 8

N log R · RN
,

for N sufficiently large, i.e. there exists some N1 = N1(R), such that the above holds for N ≥ N1. (Indeed,
eventually 1 − 1

RN ≥ 1
2 and

∑∞
m=1

1
mNRmN ≤ 1

2 log R .)

Case II. 0 < |k| < N
2

Let us first treat the case k > 0 . Then for h = eikϑ, combining (5.2) and (4.13) we obtain

uN

(
r cosφ, r sin φ; eikϑ

)
=

1
λk+1

〈h, ξk+1〉〈l(r cosφ, r sin φ), ξk+1〉=
(
reiφ

)k (
1+

S

T

)
,

where

T =
∞∑

m=0

{(
1
R

)mN e−imN 2π
N α

k + mN
+
(

1
R

)N−2k+mN ei(N−2k+mN) 2π
N α

N − k + mN

}

and

S =
∞∑

m=0

{( r

R

)mN eimN(φ− 2π
N α)

k + mN
+
( r

R

)N−2k+mN e−i(N+mN)(φ− 2π
N α)

N − k + mN

}
− T.
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Since u(r cosφ, r sin φ ; eikϑ) = rkeikφ (in general, u(r cosφ, r sin φ ; eikϑ) = r|k|eikφ ), we have

|uN − u| =
∣∣uN

(
r cosφ, r sin φ; eikϑ

)−(reiφ)k
∣∣ =

∣∣∣∣ST
∣∣∣∣ (4.14)

and S/T , as a function of (x, y) = (r cosφ, r sinφ) , is a harmonic function in B(0, R) . Thus it takes its absolute
supremum in B(0, 1) when r = 1. Thus for r = 1 we have

|T | ≥ 1
k
−

∞∑
m=1

1
k + mN

· 1
RmN

− 1
N − 2k

· 1
RN−2k

∞∑
m=0

1
N − k + mN

· 1
RmN

>
1
k

(
1 − 1

RN − 1
− 1

R
· RN

RN − 1

)
·

It is easy to see that there exists a N2 = N2(R), such that, for N ≥ N2, the right hand side of the above
inequality becomes larger than 1

2k (1 − 1√
R

). Therefore, for N ≥ N2

|T | >
1
2k

(
1 − 1√

R

)
· (4.15)

On the other hand, for r = 1

S =
∞∑

m=1

1
RmN

· e
−i2παm

(
e−imNφ−1

)
k + mN

+
∞∑

m=0

1
RmN+N−2k

·
ei2πα(m+1)

(
e−i(m+1)Nφ−e−i 4kπα

N

)
N − k + mN

.

Consequently we have

|S| ≤ 2
N + k

· 1
RN − 1

+
2

N − k
· 1
RN−2k

· 1
1 − 1

RN

·

Similarly, we can find an N3 = N3(R), such that, for N ≥ N6, the right hand side of the above inequality

becomes less than
8

N − k
· 1
RN−2k

. Thus for N ≥ N3 and for RN > 2

|S| <
8

N − k
· 1
RN−2k

· (4.16)

Combining (4.14), (4.15) and (4.16) we obtain that, for every N ≥ N4 = max{N1, N2, N3},

||uN (· ; eikϑ)−u(· ; eikϑ)||∞ ≤ 16
(

1− 1√
R

)−1

· k

N−k
· 1
RN−2k

= M2R
−N+2k, (4.17)

where M2 depends only on R. The case k < 0 , |k| < N/2, is treated identically since

uN (· ; e−ikϑ) = uN (· ; eikϑ). �

Remark 4.1. A more detailed proof of Lemma 4.1 may be found in [13].

From (4.17) we obtain that

||uN (· ; eikϑ) − u(· ; eikϑ)||∞ ≤ M2 R−N+2|k|. (4.18)
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Altogether, for N ≥ N4

||uN (· ; fN ) − u(· ; fN )||∞ ≤
N
2∑

k=− N
2 +1

|ϕk| · ||uN (· ; eikϑ) − u(· ; eikϑ)||∞

≤
N
2∑

k=− N
2 +1

M1 ||f ||1+β (1 + β)−|k| · M2R
−N+2|k| (4.19)

≤ 2M1M2 ||f ||1+β
1

RN

[ N+1
2 ]∑

n=0

(
R2

1 + β

)n

≤ 2M1M2(N + 1) ||f ||1+β
1

RN

(
1 +

RN+1

(1 + β)
N
2

)

≤ M3N ||f ||1+β

(
R−N + (1 + β)−

N
2

)
, (4.20)

where M3 = 4RM1M2 and depends on α, β and R . Combining the estimates of the parts A and B we obtain

||uN(·; f)−u(·; f)||∞ ≤ ||u(·; f−fN)||∞ + ||uN(·; fN )−u(·; fN)||∞

≤ 2(1 + β)
β

· ||f ||1+β · (1 + β)−
N
2 +M3 ||f ||1+β N

(
R−N + (1 + β)−

N
2

)
,

for N ≥ N8, which provides the main result of this section:

Theorem 4.2. If the boundary data f satisfy (4.2), for some β > 0 (or equivalently the exact solution u can
be extended to a harmonic function in an open domain D containing B̄(0, 1+β)), then there exists a positive
constant M̃ = M̃(β, R, α), such that

||uN (· ; f) − u(· ; f)||∞ ≤ M̃ ||f ||1+β N γN ,

for N ≥ Ñ , where Ñ depends only on R, α, and where

γ = max

{
1
R

,

(
1

1 + β

)1/2
}
· (4.21)

Remark 4.2. It is noteworthy that (4.19) indicates that if f is a trigonometric polynomial, i.e., f(ϑ) =
1
2a0 +

∑L
n=1(an cosnϑ + bn sinnϑ) , then for any fixed α∈ [0, 1

2 ),

||uN − u||∞ = O
(
R−(N−2L)

)
.

Thus the MFS approximation converges to the exact solution, exponentially fast, as R tends to infinity, while
N remains constant.

5. Stability analysis with respect to R and N

In [12] it was observed that the numerical approximation deteriorates when R � 1. Clearly (4.21) does
not explain this phenomenon. On the contrary, (4.19) shows that if f is a trigonometric polynomial, then
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||uN − u||∞ = O(R−N ) . As we shall see in this section, this is caused by the presence of roundoff errors. In
what follows we address the question:
How is the approximate solution uN = uN (·; f) affected when the boundary data f are perturbed by δf?
In particular we shall estimate the error

E = ||uN (·; f + δf) − uN(·; f)||∞ .

More specifically, we shall be looking for the optimal constant C for which

||uN (·; f + δf) − uN(·; f)||∞ ≤ C ||δf ||∞ .

We shall need the following lemmata:

Lemma 5.1. If λj(α), j = 1, . . . , N , are the eigenvalues of the matrix Gα, then

||uN (·; h)||∞ ≤ N

2π
max {| log(R−1)|, log(R+1)} · max

1≤j≤N

1
|λj(α)| · sup

ϑ∈[0,2π]

|h(ϑ)| . (5.1)

Proof. We have already seen that

uN(·; h) =
N∑

j=1

1
λj(α)

〈h, ξj〉〈l(·), ξj〉 , (5.2)

where h = (h1, . . . , hN ), l = (l1, . . . , lN ), hj = h(2π
N (j − 1)), lj = − 1

2π log |P (·) − Qα
j |, j = 1, . . . , N . Thus

|uN (·; h)| ≤ max
1≤j≤N

1
|λj(α)| ·

N∑
j=1

|〈h, ξj〉| · |〈l, ξj〉|

≤ max
1≤j≤N

1
|λj(α)| ·


 N∑

j=1

|〈h, ξj〉|2



1
2

·

 N∑

j=1

|〈l, ξj〉|2



1
2

= max
1≤j≤N

1
|λj(α)| ·||h||2 ·||l||2

≤ max
1≤j≤N

1
|λj(α)| ·

√
N ||h||∞ ·

√
N ||l||∞

≤ N max
1≤j≤N

1
|λj(α)| · max

{
1
2π

| log(R − 1)|, 1
2π

log(R + 1)
}
· max
ϑ∈[0,2π]

|h(ϑ)| .

We have used that ||v||2 =
(∑N

j=1 |〈v, ξj〉|2
) 1

2
, for every v∈CN , since {ξj}j=1,...,N form an orthonormal basis,

and also that ||v||2 ≤ √
N ||v||∞ . �

Lemma 5.2. For R > 1 and α∈ [0, 1
2 ) fixed, the eigenvalues of the matrix Gα satisfy the inequalities

|λ1(α)| ≥ N

4π
log R ,

|λj(α)| ≥ N

8(j−1)π
· 1
Rj−1

(
1 − 1√

R

)
, j = 2, . . . ,

[
N + 1

2

]
,

∣∣∣λN
2 +1(α)

∣∣∣ ≥ | cosπα|
2π

· 1
R

N
2

, if N is even ,

for N ≥ N0 = N0(α, R).
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Proof. I. For j = 1 we have that

λ1(α) = − N

2π
log R +

N

2π

∞∑
m=1

cos(2πmα)
mNRmN

·

Thus

|λ1(α)| ≥ N

2π
log R − N

2π

∞∑
m=1

1
mNRmN

>
N

2π

(
log R − 1

N

∞∑
m=1

1
RmN

)

=
N

2π

(
log R − 1

N
· 1
RN − 1

)
≥ N

2π
· log R

2
,

when RN ≥ 2 and N ≥ 2
log R

or equivalently when N ≥ N5 = [ 2
log R ] + 1 = N5(R) .

II. For 2 ≤ j ≤ [N+1
2 ], setting k = j−1 we have from Theorem 2.6 that

λk+1(α) =
N

4π

∞∑
m=0

{
1

mN +k
· e−i 2π

N (mN+k)α

RmN+k
+

1
mN +N−k

· ei 2π
N (mN+N−k)α

RmN+N−k

}
·

Thus

|λk+1(α)| ≥ N

4π

{
1

kRk
−

∞∑
m=1

1
mN +k

· 1
RmN+k

−
∞∑

m=0

1
mN +N−k

· 1
RmN+N−k

}

≥ N

4π
· 1
Rk

{
1
k
− 1

N + k
· 1
RN

· 1
1 − 1

RN

− 1
N − k

· 1
RN−2k

· 1
1 − 1

RN

}
·

Clearly N − k > k, N − 2k ≥ 1 and for N sufficiently large 1√
R

< 1 − 1
RN , in which case

1
k
− 1

N − k
· 1
RN−2k

· 1
1 − 1

RN

>
1
k

(
1 − 1√

R

)

and since 1
N+k · 1

RN · 1
1− 1

RN
→ 0, for N → +∞, there is an N5 = N5(R), such that

|λk+1(α)| ≥ N

4π
· 1
Rk

· 1
2k

(
1 − 1√

R

)
,

for every N ≥ N6.

III. Finally for j = N
2 + 1, when N is even and α �= 1

2 we have

λN
2 +1(α) =

N

2π

∞∑
m=0

cos(2m + 1)πα

(mN + N
2 )RmN+N

2
·
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Thus

∣∣∣λN
2 +1(α)

∣∣∣ ≥ N

2π

(
| cosπα|

N
2 R

N
2

−
∞∑

m=1

1

(mN + N
2 )RmN+N

2

)

≥ N

2π

(
| cosπα|

N
2 R

N
2

− 1
3N
2 R

3N
2

· 1
1 − 1

RN

)
·

Since | cosπα| > 0, there exists a N7 = N7(α, R), such that for N ≥ N7

| cosπα| ≥ 1
2
· 1
3RN

· 1
1 − 1

RN

,

in which case for every N ≥ N7 we have that

∣∣∣λN
2 +1(α)

∣∣∣ ≥ N

2π
· 1
2
· | cosπα|

N
2 R

N
2

=
| cosπα|
2πR

N
2

,

The proof of the lemma is completed by taking N0 = max{N5, N6, N7}. �

Given that λk(α) = λN−k+1(α), we obtain the following bound for the eigenvalues of Gα:

Corollary 5.3. When α∈ [0, 1
2 ), and N ≥ N0 = N0(α, R) (with N0 defined as in the previous lemma) we have

that

max
1≤j≤N

1
|λj(α)| ≤ max

{
4π

N log R
,

2πR
N
2

| cosπα| , 4πR
N
2

(
1 − 1√

R

)−1
}

≤ M0 R
N
2 , (5.3)

for a suitable positive constant M0 = M0(α).

Combining (5.1) and (5.3) and using the linear dependence of uN on the boundary data, we obtain for N ≥ N0

that

||uN (·; f +δf)−uN(·; f)||∞ ≤ M0 · N

2π
· max {| log(R−1), log(R+1)} · R N

2 · ||δf ||∞ .

Remark 5.1. We can not do much better that the above estimate (in terms of the order of magnitude of the
error) since

λN
2 +1(0) =

N

2π

∞∑
m=0

1
N
2 + mN

· 1

R
N
2 +mN

≤ N

2π
· 1

N
2

∞∑
m=0

· 1

R
N
2 +mN

=
1
π
· 1

R
N
2
· 1
1 − 1

RN

,

thus, in particular for α = 0,

||(G0)−1|| ≥ max
j=1,...,N

1
|λj(0)| ≥ R

N
2 ,

for sufficiently large R and N . If for instance δf = εei N
2 ϑ, then

||uN(·, δf)||∞ ≥ εR
N
2 .
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Consequently, the exponential convergence of the MFS is meaningful in practice, provided that R
N
2 ||δf ||∞ � 1.
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Figure 1. Log of maximum relative error versus log ε in Example 1.

6. Numerical results

The algorithm described in the Section 3 was applied to the problem in Ω with � = 1 and exact solution

u =
1

z − β
=

x − β

(x − β)2 + y2
− i

y

(x − β)2 + y2
= uR + iuI .

In particular, we considered the cases with (i) β = 2 (Ex. 1) and (ii) β = 1.01 (Ex. 2). We calculated the
maximum relative error

E =
||uR − uR

N ||∞ + ||uI − uI
N ||∞

||u||∞
where uR

N , uI
N are the MFS approximations to uR and uI , respectively. The maximum relative error was

calculated on a uniform grid of m points on the boundary (since all the functions involved are harmonic and
the maximum principle applies) defined by

(cos θj , sin θj), θj =
2π(j − 1)

m
, j = 1, · · · , m.

The parameter m is taken to be equal to 1001.
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6.1. Example 1

In this example the singularity in the solution occurs at the point (2, 0) in the (complex) plane and we
therefore expect the accuracy to suffer when R > 2. In Figure 1, we present the behaviour of the maximum
relative error for different values of N when α = 0 for ε = R − 1 ∈ (10−4, 104). As expected, we observe that
the accuracy improves with N for R < 2 but eventually deteriorates (for all N) beyond R = 2. The behaviour
of the solution is similar for values of α �= 0. In Figure 2, we present the maximum relative error as the angular
parameter α varies on [0, 1

2 ], for different values of N and fixed ε = 10−1, 10−2 and 10−4. We observe that the
error is optimized for a value of α∈ [16 , 1

2 ], with the improvement being sharper for the smaller values of ε. For
ε = 10−1 and larger, the minimum eventually disappears.
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Figure 2. Log of maximum relative error versus α for ε = 10−1, 10−2, 10−4 in Example 1.

6.2. Example 2

In this example the singularity in the solution occurs at the point (1.01, 0) in the (complex) plane and we
therefore expect the accuracy to suffer when R > 1.01. As the accuracy of the solution improves with R, this
leaves very little room for the solution to become accurate and we therefore expect the accuracy of the solution
to be poor. In Figure 3, we present the behaviour of the maximum relative error for different values of N when
α = 0 for ε = R − 1 ∈ (10−6, 1). As expected, we observe that the accuracy of the solution is poorer than
in the previous case, with the best results obtained for very small values of R. We also observe the eventual
deterioration of the solution for ε > 0.01. In Figure 4, we present the maximum relative error as the angular
parameter α varies on [0, 1

2 ], for different values of N and fixed ε = 10−2, 10−3 and 10−5. We observe that the
error is minimized only in the cases when R = 10−3 and R = 10−5 and the larger values of N . In these cases,
the point where the error is minimized is close to α = 1

6 .
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Figure 3. Log of maximum relative error versus log ε in Example 2.

7. Conclusions

In this work we analyze the MFS when applied to Dirichlet harmonic problems on a disk. Although this
is a very specific problem, by exploiting its symmetries we investigate its applicability and present a complete
error and stability analysis. These analyses enable us to identify the mechanisms responsible for the rapid
convergence of the method for analytic boundary data and the potentially poor stability when the singularities
and placed far from the boundary. These features persist for more general domains and different governing
elliptic equations.

We examine the properties of the eigenvalues of the matrix arising when the MFS is applied to the above
problem. It is shown that these eigenvalues depend on the number of boundary points and singularities N , the
angular rotation coefficient α and the radius R of the circle on which the singularities are placed. In particular
it is shown that the only eigenvalues that can vanish are: (i) the first eigenvalue λ1, and, (ii) in the case N is
even, the eigenvalue λN

2 +1. Also, expressions for all eigenvalues are given as functions of N, α and R. Further,
propose an efficient numerical algorithm for the solution of the problem which is designed to overcome the cases
when the MFS matrix might be singular. We show that for analytic boundary data, the MFS approximation
converges to the exact solution exponentially, with respect to N and we explain why the results obtained with
the MFS deteriorate for large R and N .
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Figure 4. Log of maximum relative error versus α for ε = 10−2, 10−3, 10−5 in Example 2.
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