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Abstract. The present paper is devoted to the computation of single phase or two phase flows using
the single-fluid approach. Governing equations rely on Euler equations which may be supplemented by
conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov
scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure
variables. Three distinct classes of closure laws to express the internal energy in terms of pressure,
density and additional variables are exhibited. It is shown first that a standard conservative formulation
of above mentioned schemes enables to predict “perfectly” unsteady contact discontinuities on coarse
meshes, when the equation of state (EOS) belongs to the first class. On the basis of previous work
issuing from literature, an almost conservative though modified version of the scheme is proposed to deal
with EOS in the second or third class. Numerical evidence shows that the accuracy of approximations
of discontinuous solutions of standard Riemann problems is strengthened on coarse meshes, but that
convergence towards the right shock solution may be lost in some cases involving complex EOS in the
third class. Hence, a blend scheme is eventually proposed to benefit from both properties (“perfect”
representation of contact discontinuities on coarse meshes, and correct convergence on finer meshes).
Computational results based on an approximate Godunov scheme are provided and discussed.
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Introduction

Computation of gas-liquid flows is of great importance in several industrial fields. For instance, when focusing
on nuclear safety problems, two great problems arise. The first one is known as the LOCA (Loss Of Coolant
Accident) problem. It corresponds to the unsteady flow of highly pressurised water entering an open domain
initially occupied by still air at atmospheric pressure. The resulting flow contains a mixture of water and
air, and the thermodynamical behaviour of the medium is quite uneasy to describe and therefore to compute.
Another problem corresponds to the ebullition crisis, due to sudden heating of coolant in reactor. The flow
suddenly becomes highly unsteady and contains two phases (liquid water for instance and saturated vapour).
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The dynamics of the whole is not very well understood up to now, both from a dynamical point of view and
thermodynamical aspect.

Simple models may be proposed in order to try to account for the physics involved in these problems. The
most well known is the Homogeneous Equilibrium Model. It only requires to give a suitable equation of state
(EOS). This one may be very simple or much more complex and tabulated [38]. It nonetheless requires schemes
to compute Euler equations which enable computing strong rarefaction waves, shocks and contact discontinuities.
Many schemes have been proposed to deal with that kind of system with reasonable success [6,13,14,16,47], which
rely on “standard” upwinding techniques such as those developed to cope with aerodynamics [22,23,36,39,46].
Another physically relevant approach relies on the Homogeneous Relaxation Model, which in addition requires
computing an extra mass balance equation including (stiff) source terms in order to account for mass transfer
terms between phases (see for instance the work of Bilicki and co-workers [7–9]). More complex models may
also be suggested to predict two phase flow patterns on the basis of the two fluid approach for instance [27],
using the single pressure or the two pressure approach [21,41,47]. These a fortiori require better understanding
of physical process involved but also urge the development of stable and highly accurate algorithms, due to
the occurrence of many different time scales, and to other specific problems including presence of first order
non conservative terms and of stiff source terms, conditional hyperbolicity when retaining the single pressure
approach. From a numerical point of view, a common need for this kind of problem is to obtain an accurate
prediction of contact discontinuities.

We restrict here our attention to the frame of the single fluid approach and Euler type systems in one
dimension, and consider the governing set of equations:

∂W

∂t
+
∂F (W )
∂x

= 0,

W (0, x) = W0(x),
(1)

where both W and F (W ) take values in R
5. The conservative variable W and convective flux F (W ) read:

W t = (ρ, ρC, ρU,E, ρψ),

F (W )t =
(
ρU, ρCU, ρU2 + P,U(E + P ), ρψU

)
.

(2)

The total energy E is written in terms of the kinetic energy plus the internal energy ρe:

E =
ρU2

2
+ ρe (3)

where e is a function of (P, ρ, C, ψ) which is the EOS. We have noted as usual the density ρ, the velocity U ,
the pressure P , the concentration C and a colour function ψ. Q = ρU is the momentum. Roughly speaking,
C is commonly used in single phase models, and ψ is used in two-phase models. The governing equation for
the colour function is more commonly written in non conservative form ∂tψ + U∂xψ = 0. We nonetheless will
privilege the conservative form in order to remove any ambiguity concerning formulation of jump conditions.
This equation on colour function is useful in some cases, for instance when modeling stiffened gas EOS. We also
denote the specific entropy s as a function of P , ρ, C, ψ.

It is now well known that great difficulties in computations of (1, 2) arise when attempting at computing
shock tube test cases with high pressure ratio and distinct phases on each side of the initial membrane. Part of
the difficulty is connected with the need to compute the contact discontinuity with sufficient accuracy. This has
already been pointed out in the literature by different workers including Karni [29,30], Abgrall [1] for instance.
It clearly appears in preliminary computations that fully conservative schemes such as Godunov scheme [23]
provide rather poor accuracy around contact discontinuities, when the EOS is not the basic single component
perfect gas EOS, when examinating coarse meshes. This is a particularly annoying point when one aims at
providing an a posteriori computation of a discrete gradient of the ratio T = P/ρ, which of course requires
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Figure 1. L1 norm of the error. Moving contact discontinuity in Euler system (perfect gas EOS).

sufficient accuracy close to the contact discontinuity. Another point which urges for a global effort in this
direction is connected with the very small rate of convergence of variables governed by pure advection, say:

∂g

∂t
+ U

∂g

∂x
= 0, (4)

the measure of which is provided for instance in [18], and is approximately 1
2 for so called first-order schemes,

and 2
3 for so called second-order schemes, when the initial data is discontinuous. Figure 1 provides a measure

of the error in L1 norm when computing a pure contact discontinuity of the Euler system of gas dynamics with
perfect gas state law.

Actually, several ways to tackle with the problem of moving contact discontinuities have been suggested by
Karni [29,30], Abgrall [1], Karni and Abgrall [31], Abgrall and Karni [2], Fedkiw et al. [17], Sethian [43], Saurel
and Abgrall [42], and other workers Shyue [44], Allaire, Clerc and Kokh [3, 4, 33], Lagoutière [34], Barberon,
Helluy and Rouy [5, 40], ...

We note anyway that focus has actually been given on specific EOS such as mixture of perfect gases, or
equivalently on stiffened gas EOS. More recently Van der Waals EOS has been investigated by Shyue [44]. In
the latter case, the difference between the model, namely the set of PDE with adequate initial and boundary
conditions, and the number of discrete equations which is computed, is not totally clear. More precisely, the
exact amount of redundent discrete information, and the specificities due to particular choice of EOS, or of
basic flux schemes in the fully conservative schemes, do not clearly arise. In the approach proposed below, it
will be seen for instance that the choice of stiffened gas EOS is quite different from the choice of Van der Waals
EOS.

The purpose of the present paper is thus the following. It is intended to provide some generic way to compute
accurately Euler type systems on coarse meshes and on fine meshes with help of Godunov scheme at least, and
if possible with cheaper algorithms in order to cope with the broadest frame of equations of state. Since no
theoretical result on convergence is reachable, it seems also of great interest to:

1. provide numerical evidence that the basic Godunov scheme and a sufficiently broad class of approximate
Godunov schemes converge for any EOS towards the right solution;

2. examine whether modified “Godunov” schemes converge towards the right solution.
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The presently proposed strategy enables to deal with any EOS in one-dimensional framework. From a practical
point of view, one only needs to decompose the EOS in order to distinguish contributions pertaining to three
distinct classes. The first class of EOS includes the perfect gas EOS for single component flows and some other
very simple laws. The second class contains EOS such as the mixture of perfect gases and the stiffened gas
EOS. The third one contains the remaining.

As usual, we define Wn
i the mean value of the conservative variable W over cell i at time tn. We also use the

standard definitions: Un
i = Qn

i /ρ
n
i , en

i =
(
En

i − 1
2ρ

n
i U

n
i U

n
i

)
/ρn

i , Cn
i = (ρC)n

i /ρ
n
i and either ψn

i when the colour
function is computed with a non conservative equation, or its counterpart ψn

i = (ρψ)n
i /ρ

n
i in the conservative

case. Throughout the paper we call pn
i the pressure on cell i at time tn which is used to compute local one

dimensional Riemann problem at each interface. The classical value of pressure used by standard conservative
schemes is pn

i = Pn
i , where

Pn
i = P (ρn

i , e
n
i , C

n
i , ψ

n
i ), (5)

with P (ρ, e, C, ψ) the pressure given by the EOS (thus given by an analytic or tabulated law).
Actually, the first class of EOS is perfectly accounted for by standard conservative schemes, when defining

discrete pressure pn
i as the analytical value of pressure Pn

i . For other EOS, pn
i will not be set to Pn

i in hybrid
schemes. The new hybrid algorithm will only require computing one (or two) extra equation(s) (indeed redundent
discrete information), depending on the specific form of the EOS. If an extra equation needs to be computed, it
is only used to express the discrete value of the pressure pn

i at the end of any time step in terms of conservative
variables, and additional redundent information.

The outline of the paper is the following. We briefly recall the main properties of the governing set of equa-
tions (1, 2) of the single-phase or two-phase model assuming equal velocities within each phase in Section 1. In
Section 2, closure laws to express internal energy in terms of pressure, density and (possibly) complementary
variables including concentrations of species will be detailed, and three distinct classes of EOS will be exhib-
ited. In Sections 3, 4 and 5, we recall the properties of the conservative exact Godunov scheme to deal with
conservation laws, or in an alternative way of an approximate conservative Godunov scheme called VFRoe-ncv
which is based on velocity and pressure variables [11, 18, 20], that is to say:

Y t = (Φ(W ))t = (U,P, g(ρ, s), C, ψ), (6)

which depend on the kind of EOS(a short presentation of VFRoe-ncv schemes is provided in the Appendix A).
In Section 6, a modified version of the previous fully conservative schemes is proposed in order to improve
accuracy of computations on coarse meshes. It will be shown that the whole approach exactly extends those
previously proposed by Abgrall, Karni, Saurel and Shyue. Results obtained when computing a single component
perfect gas state law, a mixture of perfect gases, Van der Waals EOS are discussed in Section 7. The latter
three belong to the three distinct classes. Other computations including EOS with Chemkin database, and
any tabulated EOS will be discussed, which again will confirm that accurate approximations of solutions of
shock tube experiments may be obtained with any kind of EOS, even when these have some non negligible
contribution in the third class. In Section 8, we finally present a blend scheme which benefits from advantages
of standard conservative schemes (convergence towards the right solution as the mesh size tends to 0) and their
hybrid version (accuracy on coarse meshes).

We emphasize that though somewhat similar, the present approach should not be confused with the efficient
energy relaxation method proposed by Coquel and Perthame (see [15] and also [25,26]). We also insist that an
important ingredient in the method proposed below is that the interface Riemann solver perfectly preserves
unsteady contact discontinuities.
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1. Some standard results for Euler equations

We briefly recall here some notations and properties of system (1)
∂W

∂t
+
∂F (W )
∂x

= 0,

W (0, x) = W0(x),
(7)

with both W and F (W ) given by (2, 3).
The whole system must be complemented with a physically relevant entropy inequality:

∂η

∂t
+
∂Fη

∂x
≤ 0. (8)

The specific entropy s complies with

γ̂P
∂s(P, ρ, C, ψ)

∂P
+ ρ

∂s(P, ρ, C, ψ)
∂ρ

= 0

and allows to define an entropy-entropy flux pair (η, Fη) = (−ρLog s,−ρULog s).
We introduce the speed of sound waves c following: ρc2 = (P/ρ− ρ∂e/∂ρ)(∂e/∂P )−1 (here we consider e as

a function of P , ρ, C, ψ). We assume that γ̂P := ρc2 is positive. Thus the system (1, 2) is hyperbolic. It has
real eigenvalues and associated right eigenvectors span the whole space R

5. Eigenvalues are:

λ1 = U − c, λ2 = λ3 = λ4 = U, λ5 = U + c. (9)

The 1- and 5-fields are genuinely non linear [45], and the 2- 3- 4-field is linearly degenerate, since:

∇Wλ2(W ).r2(W ) = ∇Wλ3(W ).r3(W ) = ∇Wλ4(W ).r4(W ) = 0 (10)

where rk stand for the five right eigenvectors of the Jacobian matrix
∂F

∂W
. Whatever the EOS is, both the

pressure and the velocity are Riemann invariants in the three linearly degenerate fields. Jump conditions
simply write (σ stands for the speed of the discontinuity between left state indexed by a and right state indexed
by b):

−σ[W ]ba + [F (W )]ba = 0, (11)

where [α]ba = αb − αa. Using some basic algebra, one gets the following counterpart:

v = U − σ, ρv

[(
e+

P

ρ
+ v2

2

)]b

a

= 0,

ρv[v]ba + [P ]ba = 0, ρv[C]ba = 0,

[ρv]ba = 0, ρv[ψ]ba = 0.

(12)

We also briefly recall that the list of Riemann invariants in the 1-rarefaction wave (respectively the 5-rarefaction
wave) are I1 = {s, U +

∫ ρ

0 (c(ρ, s, C, ψ)/ρ)dρ, ψ, C} (respectively I5 = {s, U − ∫ ρ

0 (c(ρ, s, C, ψ)/ρ)dρ, ψ, C}).
Details on computation of specific entropy are recalled in Appendix B of [19]. Note also that: I2,3,4 = {P,U}.
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2. Equation of state

The next sections are dedicated to EOS which are such that the internal energy may be expressed in terms
of some analytic function of the unknowns. The specific case where thermodynamical coefficients issue from
tabulated laws will be discussed in Section 7.4.

We now introduce three distinct classes of EOS. The first one, which is noted T1, contains EOS which agree
with:

ρe = φ1(P, ρ, C, ψ) = ρ(a1(P ) + b1(P )C + c1(P )ψ) + d1(P ). (13)

The second class contains EOS which do not lie in T1 but nevertheless agree with:

ρe = φ2(P,C, ψ) = f2(C,ψ)h2(P ) + g2(C,ψ) (14)

where both f2 and g2 should differ from constants. The third class T3 contains the remaining.
Note first that for given pressure P = Pref , the function φ1(Pref , ρ, C, ψ) is linear w.r.t. unknowns ρ, ρC

and ρψ. This has important consequences as will be discussed later. Note for instance that Tamman EOS and
single component perfect gas EOS belong to the first class. It also includes EOS such as Tait EOS for solid
material (see for instance [28]), since this one reads:

ρe =
P

γ − 1
+
γ(B −A)
γ − 1

where A,B and γ are positive constants.
The second class contains laws such as the stiffened gas EOS [40–42]

ρe =
P − P∞(ψ)
γ(ψ) − 1

and the mixture of perfect gases [1]

ρe =
P

γ(C) − 1
·

Note of course that Van der Waals EOS [35]:

ρe = ρCvT − a(ρ)2,(
P + a(ρ)2

)
(1 − bρ) = ρRT

does not belong to the first or second class, nor does Mie-Gruneisen EOS (unless of course in some degenerated
cases where they identify with previous mentioned laws, given specific (say null) values of constants imbeded).
Obviously complex laws such as those described in [37] and in [32] are in T3.

3. Properties of Godunov type schemes with any EOS

All results in the present section are independent of the kind of EOS application.
Let Φ be a regular function from R

5 to R
5 defined by (6) and Ψ its inverse (we use the notation Y = Φ(W )).

For practical applications, we either use g(ρ, s) = 1/ρ (see [10, 11]), or g(ρ, s) = ρ – in that case, the scheme is
close to PVRS scheme proposed by Toro [46] –, or g(ρ, s) = s in order to cope with vacuum [20]. Recall that
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the variable Y t = (U,P, s, C, ψ) enables to symmetrize the system. A detailed comparison of performances of
VFRoe-ncv scheme with other well-known schemes is available in [18]. Schemes used herein take the form:

hi

(
Wn+1

i −Wn
i

)
+ δt

(
F

(
Ψ

(
Y ∗

i+1/2

))
− F

(
Ψ

(
Y ∗

i−1/2

)))
= 0 (15)

where hi and δt respectively denote the mesh size and the time step chosen in agreement with a CFL condition,
Wn

i stands for the mean value of conservative variable W over cell i at time tn, and Y ∗
i+1/2 is the exact (or

approximate) value of the associated Riemann problem at the interface between two neighbouring cells with
associated cell values Wn

i and Wn
i+1. This provides updated value of conservative variable Wn+1

i , which enables
to get the natural “obvious” definition of en

i :

ρn
i e

n
i = En

i − 1
2
ρn

i U
n
i U

n
i (16)

and standard definitions: Un
i = Qn

i /ρ
n
i , Cn

i = (ρC)n
i /ρ

n
i , (and if required ψn

i = (ρψ)n
i /ρ

n
i ). Hence, one may

then extract Pn
i as the value of the function P (given by the EOS (5)) for given arguments ρn

i , en
i , Cn

i , ψn
i , and

we set here:

pn
i = Pn

i . (17)

It is emphasized here that this “natural” definition of pn
i will be modified in Section 6 which deals with EOS in

T2∪T3. We recall that due to the specific form of the governing equations, both C and ψ are Riemann invariants
through the 1-field and the 5-field. We introduce intermediate states indexed l, r on the left and right side of the
contact discontinuity, and index L,R the left and right initial condition in the Riemann problem. If we assume
that the genuinely non linear fields contain some discontinuity, we still have: [C]lL = [ψ]lL = [C]Rr = [ψ]Rr = 0.
Furthermore:

Property 1. Assume that we use either the exact Godunov scheme or some approximate Godunov scheme such
as VFRoe-ncv scheme (see appendix, or [11, 18, 20]) in terms of Y t = (U,P, g(ρ, s), C, ψ). Intermediate states
indexed Yl and Yr agree with:

CL = Cl, Cr = CR,
ψL = ψl, ψr = ψR,
Ul = Ur, Pl = Pr,

given left and right initial states YL = Φ(WL) and YR = Φ(WR).

The proof is straightforward for Godunov scheme, and very easy for VFRoe-ncv scheme (see [18]). On this
basis, we also obviously check that for both solvers mentioned above, the following holds:

Property 2. Assume that the initial condition of a Riemann problem fulfills: UL = UR and PL = PR, then,
intermediate states in Godunov scheme and VFRoe-ncv scheme with variable Y given by (6) agree with:

Ul = Ur = UL = UR,
Pl = Pr = PL = PR.

(18)

The proof is well known for Godunov scheme, and straightforward for the VFRoe-ncv scheme with variable Y
given by (6).

Property 3. For given initial data in agreement with: Un
k = U0 and pn

k = P0 for k = i− 1, i, i+ 1, Godunov
scheme and VFRoe-ncv scheme with variable Y given by (6) ensure that: Un+1

i = U0.
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Figure 2. Moving contact discontinuity on coarse mesh.

4. Behaviour of Godunov type schemes with EOS in T1

In addition to Property 3, we have:

Property 4. For given EOS in T1, and for given initial data in agreement with: Un
k = U0 and pn

k = P0 for
k = i− 1, i, i+ 1, Godunov scheme and VFRoe-ncv scheme with variable Y given by (6) also ensure that:

pn+1
i = P

(
ρn+1

i , en+1
i , Cn+1

i , ψn+1
i

)
= P0. (19)

Thus these schemes perfectly preserve unsteady contact discontinuities when restricting to EOS in T1.
Note that pn+1

i = P
(
ρn+1

i , en+1
i , Cn+1

i , ψn+1
i

) �= P0 when the EOS does not lie in T1; in that case, Un+2
i no

longer remains equal to U0.

5. Behaviour of Godunov type schemes with EOS in T2 or T3

If we still use previous definition pn+1
i = Pn+1

i , where Pn+1
i = P

(
ρn+1

i , en+1
i , Cn+1

i , ψn+1
i

)
, as defined in (5),

Property 4 mentioned above is violated here. We first give some results obtained using EOS in T2 as follows:
ρe = P/(γ(C)−1) where γ(C) = 1, 4C+5, 5(1−C). This corresponds to some stiffened gas EOS (with P∞ = 0).
Initial conditions are such that both U and P should remain constant w.r.t. time and space. Results presented
below (Figs. 2 and 3) correspond to standard “first-order” VFRoe-ncv scheme, using CFL number 0.5, and
regular meshes containing 400 nodes (coarse mesh though “fine” industrial mesh when considering the “3-D
counterpart”) and 40000 nodes (fine mesh). Note that the relative error in the L∞ norm is approximately 30%
on the coarse mesh. The latter diminishes when refining the mesh, and is about 5% on the finest mesh. The
numerical method nevertheless converges (in L1 norm) towards the right solution when the mesh size is refined.
We emphasize that there is no contradiction between Property 3 and behaviour of the velocity in Figures 2
and 3 (see remark after Property 4).
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Figure 3. Moving contact discontinuity on fine mesh.

We turn now to EOS in T3, focusing on Van der Waals EOS. Once more, Property 4 mentioned above is
violated when using Pn

i to initialize interface Riemann problems. We still emphasize that the basic first order
conservative numerical method (exact Godunov or) VFRoe-ncv nonetheless provides convergent approximations
of the solution. Figure 4 shows the behaviour of the error in the L1 norm for both pressure and velocity variables,
considering the first order scheme, with CFL = 0.5, and uniform meshes with 200 cells up to 20000 cells. Initial
conditions are:

UL = UR = 100, ρL = 100, CL = CR = 1,
PL = PR = 106, ρR = 200, ψL = ψR = 1.

The rate of convergence for U,P is clearly 1
2 as expected (since contact discontinuities are not perfectly pre-

served). However the very poor accuracy on coarse meshes is not appealing for industrial purposes.

6. Hybrid version of Godunov-type schemes applied to T2 ∪ T3

6.1. Basic idea

We now decompose any EOS in terms of EOS in T1 ∪ T2 and the remaining part, thus:

φ3(P, ρ, C, ψ) = ρe− φ1(P, ρ, C, ψ) − φ2(P,C, ψ),

φ1(P, ρ, C, ψ) = ρ(a1(P ) + b1(P )C + c1(P )ψ) + d1(P ),

φ2(P,C, ψ) = f2(C,ψ)h2(P ) + g2(C,ψ).
(20)

The decomposition should be achieved in order to “minimize” contributions in T2∪T3. Hence, we define a1(P ),
b1(P ), c1(P ), d1(P ) first, and then introduce f2(C,ψ), g2(C,ψ) and h2(P ) in order to “minimize” the residual
part φ3(P, ρ, C, ψ). This is achieved in practice in a natural way when focusing on analytic laws such as those
imbeded in mixture of perfect gases, stiffened gas EOS, Van der Waals EOS, Chemkin database, Tamman EOS
and many other laws such as those used to construct thermodynamical tables. For a given value of constant
Pref , we also introduce the function:

g0(C,ψ) = f2(C,ψ)h2(Pref) + g2(C,ψ). (21)
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Figure 4. L1 error norm.

The latter quantity is governed by the following redundent equation when no discontinuity is present in the
field:

∂g0(C,ψ)
∂t

+ U
∂g0(C,ψ)

∂x
= 0 (22)

or alternatively by

∂ρg0(C,ψ)
∂t

+
∂(ρg0(C,ψ))U

∂x
= 0. (23)

We note that this conservative formulation corresponds to additional jump relations:

−σ[ρg0(C,ψ)]ba + [ρg0(C,ψ)U ]ba = 0. (24)

When combined with the (true) jump relation associated with mass conservation this is equivalent to:

ρvab[g0(C,ψ)]ba = 0 and v = U − σ. (25)

where αab = (αa +αb)/2. When v is null (contact discontinuity), (25) is ensured of course. Besides, in genuinely
non linear 1 and 5 fields, ρvab is non zero but g0(C,ψ) is constant, hence (25) holds, and therefore (24) is valid.
We emphasize anyway that we will not use the “conservation law” for ρg0(C,ψ), since it does not correspond to
any physically conserved quantity, even if the EOS is exactly in T2. Moreover, Abgrall’s analysis has confirmed
that this quantity is not the adequate variable to propagate.

For regular solutions of the basic five equation model, the redundent governing equation for φ3 is:

∂

∂t
φ3(P, ρ, C, ψ) + U

∂

∂x
φ3(P, ρ, C, ψ) +

(
γ̂P

∂φ3

∂P
+ ρ

∂φ3

∂ρ

)
∂U

∂x
= 0 (26)

which of course may degenerate if φ3 = 0. Unlike when dealing with EOS in T2, one cannot provide a conservative
re-formulation of (26) which enables to retrieve the true jump conditions. We may thus expect some greater
difficulties when attempting to compute the extra non conservative governing equation for φ3 [24].



A HYBRID SCHEME TO COMPUTE CONTACT DISCONTINUITIES IN EULER SYSTEMS 1143

Focus for instance on Van der Waals EOS, then:

ρe = φ1(P, ρ, C, ψ) + φ2(P,C, ψ) + φ3(P, ρ, C, ψ),

φ1(P, ρ, C, ψ) =
(1 − bρ)P
γ − 1

,

φ2(P,C, ψ) = 0,

φ3(P, ρ, C, ψ) = aρ2

( −bρ
γ − 1

+
2 − γ

γ − 1

)
·

Obviously in this particular case, the function g0 is null.

6.2. Numerical scheme

The basic scheme is the following for any EOS :

hi

(
Wn+1

i −Wn
i

)
+ δt

(
F

(
Ψ

(
Y ∗

i+1/2

))
− F

(
Ψ

(
Y ∗

i−1/2

)))
= 0,

hi

(
(g0)n+1

i − (g0)n
i

)
+ δtÛi

(
(g0)∗i+1/2 − (g0)∗i−1/2

)
= 0,

hi

(
(φ3)n+1

i − (φ3)n
i

)
+ δtÛi

(
(φ3)∗i+1/2 − (φ3)∗i−1/2

)
+ δtĤi

(
U∗

i+1/2 − U∗
i−1/2

)
= 0,

(27)

with

2Ûi = U∗
i+1/2 + U∗

i−1/2,

2Ĥi =
(
γ̂P

∂φ3

∂P
+ ρ

∂φ3

∂ρ

)∗

i−1/2

+
(
γ̂P

∂φ3

∂P
+ ρ

∂φ3

∂ρ

)∗

i+1/2

·

The definition of the numerical flux is the following:

F (W ∗) =
(
ρ∗U∗, ρ∗U∗C∗, ρ∗U∗U∗ + P ∗, U∗

(
ρ∗(U∗)2

2
+ P ∗

)
+ U∗(ρe)∗, ρ∗U∗ψ∗

)
where (ρe)∗ = φ1(P ∗, ρ∗, C∗, ψ∗) + φ2(P ∗, C∗, ψ∗) + φ3(P ∗, ρ∗, C∗, ψ∗), W ∗ = Ψ(Y ∗) and (g0)∗ = g0(C∗, ψ∗).
The series (f2)k

i and (g2)k
i issue from the computation of g0 setting h2(Pref) = 0 and h2(Pref) = 1. They should

not be confused with f2
(
Ck

i , ψ
k
i

)
and g2

(
Ck

i , ψ
k
i

)
.

The cell pressure used to compute the local Riemann problems at the beginning of the next time step namely:

pn+1
i = P̃n+1

i

is obtained by solving the following problem:∥∥∥∥∥ Find P̃n+1
i solution of

ρn+1
i en+1

i − (
(g2)n+1

i + (φ3)n+1
i

)
= (f2)n+1

i h2

(
P̃n+1

i

)
+ φ1

(
P̃n+1

i , ρn+1
i , Cn+1

i , ψn+1
i

) (28)

where ρn+1
i en+1

i = En+1
i −

((
Qn+1

i

)2
)
/

(
2ρn+1

i

)
and with given values En+1

i , Qn+1
i , ρn+1

i , Cn+1
i , ψn+1

i pro-

vided by discrete conservative equations, and (f2)n+1
i , (g2)n+1

i , (φ3)n+1
i provided by discrete non-conservative

equations. Note that (28) implies that φ1 or h2 are non zero.
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6.3. Main property and remarks

We now have the main property:

Property 5. For any EOS in T1 ∪T2∪T3, and for given initial data in agreement with: Un
k = U0 and pn

k = P0

for k = i− 1, i, i+ 1, the above mentioned scheme (27) ensures that:

pn+1
i = P0 and Un+1

i = U0

when using Godunov scheme and VFRoe-ncv scheme with variable Y given by (6).

6.3.1. Main remarks

Remark 1. We first note that the frame of EOS which lie exactly in T1 is contained in the global formulation
above since in that case, both φ2 and φ3 are null, and as a result Pn+1

i is computed as:∥∥∥∥ Find Pn+1
i solution of

ρn+1
i en+1

i = φ1

(
Pn+1

i , ρn+1
i , Cn+1

i , ψn+1
i

)
and one retrieves the fully –standard– conservative scheme.

Remark 2. When considering the specific case of stiffened gas EOS, it is emphasized that the proposed
scheme (27) identifies with the proposal of Abgrall and Saurel [42], by setting h2(P ) = P in φ2(P,C, ψ).

Remark 3. From a numerical point of view, it is also necessary to point out that the numerical scheme which
is used to compute governing equation of φ3 in (27) is consistent with conservative equations for total mass and
mass species. This means that for given laws of the form:

φ3(P, ρ, C, ψ) = µ0ρ+ µ1ρC + µ2ρψ

the discrete equation of φ3 is exactly the counterpart of the linear combination of discrete equations of ρ and ρC.
Though it would correspond to some “wrong” decomposition of the EOS - all these contributions should have
been set in T1 -, one nonetheless needs to examine this “virtual” case. Thus, in that particular case, it may be
rewritten in the form:

∂φ3(P, ρ, C, ψ)
∂t

+
∂Uφ3(P, ρ, C, ψ)

∂x
= 0

from a continuous point of view, but one notices that the discrete governing equation of φ3 is also a linear
combination of discrete equations of ρ, ρC, ρψ, and thus retrieves the correct conservative form:

hi

(
(φ3)n+1

i − (φ3)n
i

)
+ δt

(
(Uφ3)∗i+1/2 − (Uφ3)∗i−1/2

)
) = 0.

The latter remark no longer holds when defining for instance (Ĥ)i = Hn
i . Actually, some counterpart of

this discretization (Ĥ)i = Hn
i has been experienced before to provide loss of stability in other computations

(computation of Reynolds stress closures in compressible turbulent flows).

Remark 4. Actually, there is no proof whether the hybrid scheme (27) converges, and assuming it does,
there is little evidence that it converges towards the right weak solution when discontinuities are present in the
computational field, owing to the non conservative form of the whole scheme. This will be discussed in Section 7.
From an industrial point of view, it does not seem compulsory to get the right (Ĥ)i, more precisely the one
which yields correct jump conditions. This will be checked a posteriori when computing Van der Waals EOS
which is a good example where the contribution in T3 is not negligible when compared with the contribution
in T1. It nonetheless seems appealing from an academic point of view, but it must be underlined that feasibility
in a one dimensional framework does not imply the counterpart in a three dimensional case.
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6.3.2. Minor remarks

Remark 5. We have implicitly assumed that all EOS will have some non zero contribution in at least one class
among T1 or T2. Otherwise updating the cell pressure through relation (28) would be no longer feasible, and
should be replaced by: ∥∥∥∥∥∥

Find P̃n+1
i solution of

(φ3)n+1
i = φ3

(
P̃n+1

i , ρn+1
i , Cn+1

i , ψn+1
i

)
.

This frame is very unlikely to happen in practice, and all EOS considered herein which arise from the literature
do have some contribution in T1 ∪ T2. This academic case will nonetheless be examined in Section 7.4.3.

Remark 6. We also note that formally, both second and third discrete equations in (27) might be put together.
This is due to the fact that:

γ̂P
∂g0
∂P

+ ρ
∂g0
∂ρ

= 0

and to the use of the superposition principle. We nonetheless will still distinguish both for at least two reasons.
The continuous counterpart of the third discrete equation in (27) cannot be recast in true conservative form,
whereas this may be achieved for the second equation in (27) which governs any function α(C,ψ), as discussed
above. Second, we note that doing so (i.e. gathering both contributions) would result in an illposedness of the
value Pn+1

i when precisely focusing on EOS in T2. Last but not least, we will check that the accuracy on very
fine meshes may be slowed down when doing so (see Sect. 7.4 about the influence of the decomposition).

7. Numerical results

7.1. Stiffened gas EOS

Numerical results below are dedicated to simplified stiffened gas EOS in T2 (since (P∞)1 = (P∞)2 = 0) as
follows:

ρe(P, ρ, C, ψ) =
P

γ(ψ) − 1

where γ(ψ) = 1.667ψ + 1.4(1 − ψ). The decomposition is thus the following:
ρe = φ2(P,C, ψ) = f2(C,ψ)h2(P ) + g2(C,ψ),

h2(P ) = P , f2(C,ψ) =
1

γ(ψ) − 1
, g2(C,ψ) =

P∞(ψ)
γ(ψ) − 1

,

(φ1(P, ρ, C, ψ) = φ3(P, ρ, C, ψ) = 0).

A first series of results corresponds to initial conditions proposed by Sandra Rouy [40]:

UL = 0, PL = 120000, ρL = 0.192, CL = 1, ψL = 1,
UR = 0, PR = 100000, ρR = 1.156, CR = 1, ψR = 0.

Results presented below (Fig. 5) correspond to standard “first-order” VFRoe-ncv scheme, using CFL number 0.5,
and regular meshes containing 100 nodes (coarse mesh), and 40000 nodes (fine mesh). Results obtained with
the hybrid version of the approximate Godunov scheme apparently converge towards the entropy solution when
the mesh is refined. Nonetheless, the approximate solution on coarse mesh is indeed nicer when using the hybrid
version (27).
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Figure 5. Shock tube with EOS in T2 – coarse mesh (left), fine mesh (right).

We turn now to a simpler set of initial condition, as follows:

UL =
((

1
ρR

− 1
ρ2

)
(PL − PR)

)0.5

, PL = PR
βRz − 1
βR − z

, ρL = 4.0, ψL = 1, CL = 1

UR = 0, PR = 100000, ρR = 1.0, ψR = 0, CR = 1,

where βR = γ2+1
γ2−1 , and z = ρ2

ρR
with ρ2 = 2. This results in a pure right going 3 shock. This Riemann problem

is close to the previous one, since the difference lies in the ghost 1-wave here, which turned to be a rarefaction
wave before. However, one may clearly expect that this regular wave cannot inhibit the convergence towards
the right solution. In addition, the present case enables to get rid of the compulsory error in the prediction of
the regular 1-rarefaction wave, which might hide some error in the computation of the 3-shock. In practice, the
present initial conditions require that the hybrid scheme manages to compute the exact intermediate state of
density on the right side of the (moving) contact discontinuity, which is not obvious at all. We have plot below
the error using the L1 norm. Uniform meshes contain from 100 up to 160000 cells. The CFL number still equals
0.5. The error obviously vanishes as the mesh size tends towards zero (see Fig. 6). The rate of convergence for
density is slightly greater than 1

2 , and the rate of convergence for U and P variables is 1. We emphasize that
the rate is 1

2 for ρ, U, P when using basic conservative scheme (Fig. 6).

7.2. Van der Waals EOS

Note that when restricting to Van der Waals EOS, there is no need to compute redundent information for
(null) function g0. Constants used in the EOS are: a = 1684.54, b = 0.001692, R = 461.5, Cv = 1401.88. We
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Figure 6. Pure unsteady 3-shock with EOS in T2 – error in L1 norm.

recall below the decomposition:

ρe = φ1(P, ρ, C, ψ) + φ2(P,C, ψ) + φ3(P, ρ, C, ψ),

φ1(P, ρ, C, ψ) =
(1 − bρ)P
γ − 1

,

φ2(P,C, ψ) = 0,

φ3(P, ρ, C, ψ) = aρ2

( −bρ
γ − 1

+
2 − γ

γ − 1

)
·

7.2.1. Shock tube case

We focus here on test case proposed by Letellier and Forestier [35]. Initial data is given by [35]:

UL = 0, PL = 37311358, ρL = 333, CL = 1, ψL = 1,
UR = 0, PR = 21770768, ρR = 111, CR = 1, ψR = 1.

Figures 7 and 8 refer to the comparison of both approximations provided by the basic fully conservative scheme
and the hybrid scheme when computing a shock tube case on different meshes. Results are obviously more
appealing when using the hybrid version of the scheme. The error in L1 norm associated with the hybrid
scheme is given on the last Figure 9, as a function of the mesh size. We note that on the finest mesh which is
clearly out of reach of present computers for 3D calculations, the decrease of error slows down.

For seak of completeness, we now examine the remaining two configurations of the basic 1D Riemann problem,
which either involve two shock waves or two rarefactions waves.

7.2.2. Double rarefaction wave

We now examine some symmetrical double rarefaction wave. This enables to predict the behaviour of the
scheme close to the wall boundary behind some bluff body, when applying for the mirror technique (see [11]).
Initial conditions are now:

UL = −100, PL = 107, ρL = 111, CL = ψL = 1,
UR = 100, PR = 107, ρR = 111, CR = ψR = 1.



1148 T. GALLOUËT ET AL.
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Figure 7. Shock tube with EOS in T3 – coarse mesh.
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Figure 8. Shock tube with EOS in T3 – finest mesh.

The time step is still in agreement with CFL condition, CFL = 0.5. The mesh is composed of 200 regular cells.
The first order version of the scheme has been used here (see Fig. 10-left). Note that the small glitch on the
density at the initial position of the membrane is already present when using the standard Godunov scheme or
VFRoe-ncv scheme in a fully conservative form. One might expect a rather nice behaviour of the scheme here
since the exact solution contains no shock wave.

7.2.3. Double shock wave

Before going further on, we examine some symmetrical double shock wave. This provides an initial guess of
what happens when the flow is impinging the wall boundary. Initial conditions are:

UL = 100, PL = 107, ρL = 111, CL = ψL = 1,
UR = −100, PR = 107, ρR = 111, CR = ψR = 1.

The CFL number is the same as above. The mesh still contains two hundred nodes (see Fig. 10-right).
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Figure 10. Double rarefaction wave (left) and double shock wave (right) with EOS in T3.

7.2.4. 3-shock waves

We now investigate some 3-shock waves. Recall that one advantage here is that the 1-wave will be a “ghost”
wave, and therefore will generate a much smaller amount of error, which might hide deficiencies occurring in
shock waves when focusing on the standard shock tube apparatus. Hence, we first introduce initial conditions
as follows:

UL = UR +
((

1
ρR

− 1
ρ2

)
(PL − PR)

)0.5

, ρL = 4.0, CL = ψL = 1,

UR = 0, ρR = 1.0, CR = ψR = 1,
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with PR = 100000, ρ2 = 2 and PL > PR solution of:

2ρ2ρR(e(PL, ρ2) − e(PR, ρR)) = (PL + PR)(ρ2 − ρR).

Intermediate states indexed 1, 2 agree with UL = U1 = U2, PL = P1 = P2, ρL = ρ1.
The error in L1 norm is given in Figure 11. The finer mesh contains 160000 nodes and the coarser mesh 100

cells. In the range of sufficiently coarse meshes (from 100 up to 10000 cells), the error in L1 norm for the density
varies as h1/2. We notice anyway, that the rate of convergence for both velocity and pressure is approximately 1
for meshes with 100 up to 10000 cells, but the error remains stationary (w.r.t. mesh size) for meshes containing
more than ten thousand nodes. This obviously means that some –indeed small value– O(1) error is present
in the solution close to the 3-shock wave. An ambiguous point is that it may only be exhibited when using
mesh refinement which involves much more cells than one may afford in practice, and which is also seldomly
investigated by developers. The counterpart in a 3D framework would require more than 1012 cells. This implies
in practice that the hybrid scheme should not be disregarded. We will come back to similar comments below.

We turn now to different initial conditions where densities and pressures are much higher:

UL = UR +
((

1
ρR

− 1
ρ2

)
(PL − PR)

)0.5

, ρL = 320.0, CL = ψL = 1,

UR = 0, ρR = 80.0, CR = ψR = 1,

with PR = 8000000, ρ2 = 160 and PL > PR solution of:

2ρ2ρR(e(PL, ρ2) − e(PR, ρR)) = (PL + PR)(ρ2 − ρR).

We have plot here the error in L1 norm in Figure 12. Similar comments as previous ones still hold here, and
the rate of convergence for the conservative scheme is clearly 1

2 for the density, the pressure and the velocity.
This is due to the fact that the local amount of error around the contact discontinuity for pressure and velocity
is so high that it inhibits rate 1 to be set. Once again, the error with the modified scheme becomes stationary
when meshes involve more than 104 cells.

Remark. In any case, it confirms that EOS in T2 and EOS in T3 should be distinguished, at least from
a theoretical point of view. The occurrence of a true non conservative product H(W )∂xU in the governing
equation of φ3 inhibits the convergence towards the right solution, and this can only be seen on very fine meshes
(105 cells). These results are in agreement with scalar results obtained by Hou and Le Floch [24].

7.3. Chemkin database

We focus here on EOS provided in [32] and investigated in [10, 11]. The internal energy is a polynomial
function in terms of the local temperature T. ρe = rµ0ρ+ (µ1 − 1)P +

∑
2≤n≤k µn

Pn

(rρ)n−1
,

P = rρT.

Straightforward decomposition yields:

ρe = φ1(ρ, P, C, ψ) + φ2(P,C, ψ) + φ3(ρ, P, C, ψ),

φ1(ρ, P, C, ψ) = rµ0ρ+ (µ1 − 1)P,

φ2(P,C, ψ) = 0,

φ3(ρ, P, C, ψ) =
∑

2≤n≤k µn
Pn

(rρ)n−1
·
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Figure 12. Error in L1 norm for
conservative and hybrid scheme.

We may simply compute the speed of acoustic waves as:

c2 =
γ̂P

ρ
= rT

µ1 +
∑

2≤n≤k nµnT
n−1

µ1 − 1 +
∑

2≤n≤k nµnT n−1
·

The whole algorithm only requires updating the cell pressure pn+1
i = P̃n+1

i at the end of the time step as follows:

P̃n+1
i =

(ρe)n+1
i − µ0r(ρ)n+1

i − (φ3)n+1
i

µ1 − 1
·

Remark. Note that unlike when using the basic Godunov or VFRoe-ncv schemes, this only requires an algebraic
manipulation and does not require any Newton procedure to compute Pn+1

i in each cell as a solution of:

(ρe)(Pn+1
i , ρn+1

i ) = En+1
i − Qn+1

i Qn+1
i

(2ρ)n+1
i

which results in a great decrease of the computational CPU time.

We refer to [11] which provides data of initial conditions used herein. The computations (Fig. 13) have been
obtained using present approximate Godunov scheme VFRoe-ncv with (τ, U, P ) variables. Other computations
with help of Roe approximate Riemann solver are given in [12]. Details concerning entropy are briefly recalled
in Appendix B of [19].

7.4. Tabulated EOS

For arbitrary non analytic EOS, we now define the decomposition of the EOS in the class T1 and T3. This may
be achieved defining some function d1(P ) = P

γ1−1 , which is close enough to the real state law. The constant γ1
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Figure 13. Shock tube using Chemkin database – coarse mesh.

is computed introducing some least square minimization process:


φ1(ρ, P, C, ψ) =

P

γ1 − 1
,

φ2(P,C, ψ) = 0,

φ3(ρ, P, C, ψ) = ρe− P

γ1 − 1
·

Thus the redundent equation which is computed reads:

∂

∂t
φ3(P, ρ, C, ψ) + U

∂

∂x
φ3(P, ρ, C, ψ) +

(
ρe+ P − ρc2

γ1 − 1

)
∂U

∂x
= 0.

7.4.1. Influence of decomposition

We examine very briefly below whether some discrepancy in the decomposition implies some loss of accuracy,
or in other words try to evaluate the stability of the overall method w.r.t. to the choice of the decomposition.
Assume for instance that the real EOS reads (ρe) = P

γ1−1 . Imagine that some –on purpose– error occurs in the
process in such a way that the decomposition yields:


φ1(ρ, P, C, ψ) =

P

γ2 − 1
,

φ2(P,C, ψ) = 0,

φ3(ρ, P, C, ψ) = P

(
1

γ1 − 1
− 1
γ2 − 1

)
,

where of course both constants are distinct. Despite from its simplicity, we first note that the resulting hybrid
scheme does not compute the same approximation of the internal energy than the fully conservative scheme.
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Figure 14. Perfect gas EOS: approximate decomposition.

7.4.2. Approximate decomposition

We set here ε = 0.1 and: 
φ1(ρ, P, C, ψ) = (1 − ε)

P

γ1 − 1
,

φ3(ρ, P, C, ψ) = ε
P

γ1 − 1
·

When focusing on the standard Sod shock tube problem which involves one 3-shock wave, and using meshes
with up to 40000 nodes, the error in L1 norm has been plotted in Figure 14. While linear rate of convergence
is achieved when using the correct decomposition (velocity (squares), pressure (triangles up), density (circles)),
and thus the fully unmodified conservative scheme (see also [18]), the measured error associated with the
hybrid scheme (velocity (diamonds), pressure (triangles down), density (stars)) diminishes much slower on finer
meshes. Actually, detailed qualitative investigations around the numerical shock locations show that both are
separated by an O(1) length, which can hardly be seen unless the mesh contains more than 10000 nodes, which
is seldomly examined in pratice of course. This result confirms investigation of EOS in T3 (Van der Waals)
described previously. This is also confirmed in a “continuous” way by the next numerical experiment.

7.4.3. Wrong decomposition

We set here ε = 1, thus:

φ1 = 0 and φ3 =
P

γ1 − 1
·

Updating the cell pressure at the end of the time step is performed through:

Pn+1
i = (γ1 − 1)(φ3)n+1

i .

We provide below some comparison of both approximations, using a coarse mesh with two hundred nodes and
a fine mesh with 10000 nodes. It obviously appears that the hybrid scheme no longer converges towards the
correct solution (Fig. 15). Actually zooming the approximate solution provided by schemes with 5000 and
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Figure 15. Perfect gas EOS: correct and wrong decomposition – coarse (left) and fine mesh (right).
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Figure 16. Perfect gas EOS: correct and wrong decomposition – finer mesh (zoom).

10000 cells enables to check that the number of nodes between the two locations of 3 shock waves doubles when
refining the mesh by two (Fig. 16). This is confirmed by computations on finer meshes. Of course the error still
seems to be negligible on coarse meshes. Results are here in agreement with [24].

8. A blend scheme

We propose the following overall strategy, which relies on tuning of both the original conservative scheme to
deal with fine meshes, and the above mentioned scheme to benefit from pure representation of moving contact
discontinuities on coarse meshes. It simply requires some parametric function in order to switch from one
scheme to the other when the mesh is refined, and of course when complex EOS are considered. Thus, the cell
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Figure 17. Van der Waals EOS: error in L1 norm – 3-shock wave.

pressure which will be used in practice will be pn+1
i :

Pn+1
i = P

(
ρn+1

i , en+1
i , Cn+1

i , ψn+1
i

)
,

pn+1
i = α(h)Pn+1

i + (1 − α(h))P̃n+1
i .

where P̃n
i is given in (28), and h stands for the mean mesh size. For given EOS in T1 P

n
i = P̃n

i , thus the choice
α(h) has no influence. Moreover, α(h) = 0 should be used for EOS in T2. Otherwise, if the EOS is not in
T1 ∪ T2, α(h) should comply with: {

α(h) = 1 if h ≤ h0,

α(h) = 0 if h ≥ h1,

for given mesh sizes h0 < h1 provided by user.
In practice, standard conservative schemes correspond to the formal choice h0 = h1 = +∞, whereas the

so-called hybrid scheme corresponds to h0 = h1 = 0. Numerical tests reported above suggest some practical
values. A first natural idea is to minimize the error in L1 norm on any mesh, which is of interest for industrial
purposes. Some way to achieve that is to define h0 as the mesh size for which the error of the conservative
scheme is equal to the error of its hybrid modification, and h1 as the mesh size beyond which the error for the
non conservative scheme remains constant. This of course would require computing both schemes and even more
the error, which obviously is out of reach in practice. A practical example is given below (see Fig. 17), which
consists in computing approximations of Euler equations with Van der Waals EOS and initial condition such
that a strong 3-shock wave develops. We have chosen here a linear path to connect h0 = 10−4 and h1 = 1/200
through α(h) = h1−h

h1−h0
in the interval (h0, h1). The error in L1 norm is decreasing, but certainly not optimal,

since both h0 and h1 are upper bounds of optimal values which are approximately for that case hopt
0 = 10−5

and hopt
1 = 10−4. Another point is that the choice of the path α(h) only influences the accuracy in the inner

range (h0, h1), which does not seem to be important in practice, at least in a multidimensional framework, due
to the fact that 3D industrial meshes contain at most a few million cells, which corresponds to a characteristic
mesh size h = 1/100 in a one dimensional frame, and thus is obviously greater than h1.
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9. Conclusion

This paper is devoted to the computation of Euler equations in a one-dimensional framework, with arbitrary
equation of state, assuming the internal energy depends on pressure and density variables, but also on concen-
trations of some species and a colour function. It has been shown that when focusing on exact or adequate
approximate Godunov solvers, one needs to distinguish three different classes of EOS. One thus needs to com-
pute some redundent information (from a continuous point) in order to cope with the second and third class.
Actually, one needs first to decompose the internal energy into three terms which respectively belong to the
three classes. Afterwards, one needs to compute an extra (respectively two) equation(s) when some contribution
occurs in the second or third class (respectively in both second and third class) in the decomposition.

Some schemes have been proposed to compute the latter non conservative governing equations in addition to
the first five conservative equations associated with total mass, mass of species, total momentum, total energy
and colour function. Thus pure unsteady contact discontinuities are very well predicted on coarse meshes when
using the so-called hybrid scheme. We now may sum up the main results.

On the basis of a series of numerical tests including shocks:

1. using discrete L1 measure of error, we have provided numerical evidence that the basic Godunov scheme
and a broad class of approximate Godunov schemes (VFRoe-ncv schemes using Y in (6)) converge towards
the right solution for any of EOS in T1 ∪ T2 ∪ T3 which have been tested (the rate of convergence exhibits
that both U,P converge as h for EOS in T1 –otherwise h

1
2 – towards the right solution, while concentration

or density converge as h
1
2 for any EOS);

2. the new proposal of modified exact or approximate “Godunov” schemes (27) identifies with a classical
conservative formulation when the EOS is in T1, and converges towards the right solution when the EOS
lies in T2, with indeed much increased accuracy on coarse meshes when compared to classical conservative
schemes, (rate of convergence for modified “Godunov” schemes exhibits that both U,P converge as h
towards the right solution – concentration or density still converge as h

1
2 –);

3. the modified exact or approximate “Godunov” schemes (27) enable to reach increased accuracy on coarse
meshes with respect to standard conservative schemes when EOS have a non zero contribution in T3,
though they converge towards wrong shock solutions when using huge mesh refinement (approximately
more than 20000 cells in a 1D framework, which is beyond the commonly used range of meshes, see [11]
and [2]).

This may on the whole motivate the use of the blend scheme (Sect. 8) which benefits from nice approximations
on coarse meshes of the hybrid scheme, and still inherits the property of convergence towards the right solution
on finer meshes. In practice, this will in fact correspond to the use of the hybrid scheme since very few meshes
contain more than (102)3 cells in an industrial computation and none contains more than (2.104)3 cells nowadays.
The hybrid scheme is thus appealing for industrial purposes since it not only enables to increase accuracy on
given (coarse) mesh size, but also enables to reduce CPU time due to the fact that computation of pressure is
usually much faster when computing modified pressure P̃ rather than standard value P (ρn

i , e
n
i , C

n
i , ψ

n
i ). This

is actually the case when applying Chemkin database, which only requires an algebraic calculus instead of a
Newton procedure to compute cell pressure at the end of the time step, but also when dealing with more complex
EOS or tabulated EOS as suggested. It is emphasised that this remark takes into account the fact that two
additional discrete equations for redundent information must be computed.

It seems clear that this work is not only useful in the framework of two-phase flow modelling with help of
single fluid models of the Euler type, but also when retaining the two-fluid two-pressure approach. In an ongoing
work, possible extensions to multidimensional unstructured meshes are investigated.

Appendix A. VFRoe-ncv schemes for systems of conservation laws

This appendix presents the construction of VFRoe-ncv schemes, focusing on systems of conservation laws.
We reduce to the one dimensional case, with regular meshes (the extension to the multidimensional case and to
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unstructured meshes is classical). Following notations introduced in the body of the present paper, we denote
W : R+ × R → R

n the exact solution of the non degenerate hyperbolic system:
∂W

∂t
+
∂F (W )
∂x

= 0,

W (0, x) = W0(x).

Let Φ be a regular invertible function from R
n to R

n and Ψ its inverse. If W is a regular solution of the above
system, then Y = Φ(W ) is solution of

∂Y

∂t
+B(Y )

∂Y

∂x
= 0

where B(Y ) = (DΨ(Y ))−1(DF (Ψ(Y )))(DΨ(Y )).
As mentioned above, VFRoe-ncv schemes are approximate Godunov schemes. Hence, they may be written

in the form

hi

(
Wn+1

i −Wn
i

)
+ δt

(
F

(
Ψ

(
Y ∗

i+1/2

))
− F

(
Ψ

(
Y ∗

i−1/2

)))
= 0.

We describe now the computation of Y ∗
i+1/2. The state Y ∗

i+1/2 corresponds to the exact solution Y ∗ at x = 0 of
the linearized hyperbolic system: 

∂Y ∗

∂t
+B

(
Ŷ

) ∂Y ∗

∂x
= 0,

Y ∗(0, x) =
{
YL = Φ(Wn

i ) if x < 0,
YR = Φ(Wn

i+1) if x > 0,

where Ŷ = (YL + YR)/2. Since Y ∗(t, x) is the solution of a linear system, its computation is classical. Setting
β = x

t , we have Y ∗(t, x) = ϕ(β, YL, YR):

ϕ (β;YL, YR) = YL +
∑

β>�λk

(
t l̃k.(YR − YL)

)
r̃k,

= YR −
∑

β<�λk

(
t l̃k.(YR − YL)

)
r̃k,

where l̃k, λ̃k and r̃k, k = 1, ..., n, are respectively left eigenvectors, eigenvalues and right eigenvectors of ma-
trix B(Ŷ ). Thus, we have

Y ∗
i+1/2 = ϕ(0;YL, YR).
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