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CONVERGENCE OF THE SCHRODINGER-POISSON SYSTEM TO THE EULER
EQUATIONS UNDER THE INFLUENCE OF A LARGE MAGNETIC FIELD
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Abstract. In this paper, we prove the convergence of the current defined from the Schrédinger-
Poisson system with the presence of a strong magnetic field toward a dissipative solution of the Euler
equations.
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1. INTRODUCTION

We consider in this paper the behavior of electrons moving on a positive charged background influenced by a
very strong magnetic field. We describe this phenomenon from a quantum point of view. This model describes
a magneto-active plasma where the velocities of the particles are small compared to the speed of light (to use
the electrostatic approximation) and where the magnetic field is very strong (like in the magneto-sphere). The
equations satisfied by the wave functions are a variation from the Schrédinger-Poisson system. They depend on
three parameters, the Planck constant (h > 0), the permittivity of the system (¢ > 0) and the strength of the
magnetic field.

We deal with the asymptotic limit which corresponds to the case when the magnetic field is very strong, the
Planck constant and the permittivity are both very small (implying that the electron density is quasi-equal to
the ion density). As Brenier in [2], who studied the quasi-neutral limit of the Vlasov—Poisson system (with and
without external magnetic field), we obtain at the limit that the curl of the potential involved in the system is
a dissipative solution of the Euler equations in the sense of P.-L. Lions.

In [11], we also studied the same asymptotic limit in the case of the Schrédinger—Poisson system without
magnetic field and obtained that the electron current converges to a dissipative solution to the Euler equations.
Those results are a rigorous justification of the composition of two different asymptotic processes which already
have been independently studied in [8,9] and [5] for the semi-classical limit and, as mentioned above, in [2] for
the quasi-neutral limit.
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1.1. Presentation of the system

We write the Schrodinger equation describing the motion of electrons on a charged background submitted to
an external magnetic field B = curl A. In this case (¢f. [4]), the quantum Hamiltonian is given by

1 1
H,=—[P —qAP? = — (P?> + qAP + qPA + ¢*A?
¢ = 5 -1P — a4 2m( +qAP + qPA + ¢*A?),
where P is the operator defined by P = %V.
This problem is initially stated in R3. Since we neglect the third component of the velocity and the dependence
of the two first ones with respect to the vertical variable, our study is set in R2. In the following, for Z € R2,
we denote by +Z the vector

We choose a potential A = f%, which corresponds to a vertical magnetic field. Let us notice that A commutes
with P because V (;—f) = 0. Assuming ¢ = m = 1, the Schrédinger equation ¢h0p) = Hyyp becomes in our
setting
h? ih ||?
i hO, ¢ ZAYE _L.V e_ e —p
? t¢ + 92 ¢ +2€( T )w 8€2¢

where 9 is a wave function.
In this paper, we consider a superposition of states (instead of a pure state) where each state k € Z?2 has a
weight Ay > 0 and we add the effect of the electric field. Finally, we deal with an electron density given by

p(t) = > Mt o)y (¢, @) (1.1)

kez?

where the wave functions satisfy the equation

ihO, e h2AE ihl \V4 € |$|2 67166 1.2
oy, + = ¢k+2—g(ﬂf' )%*@%*géf)% (1.2)
coupled with the Poisson equation

p° =0 — Ag°. (1.3)

Here, the ion density 6°(z) € L>(R?) satisfies

(14 |z|)6 is in L*(R?) N L*(R?),

0<6°(x) <1, (1.4)

6°(z) = 1 if 2 €] — R®; R°[%, (1.5)

0° () = 0 if z € RY\] — R® — 7%, R° +~°[%, (1.6)
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where (R®) C R%, (R?) =¥ 400, and () CRL,  (9°) ==20. Under this form, (6°) converges in D' (R?) to 1
and its derivatives to 0. This is important because we need at the limit a uniform density 6 so that V- (6v) =0
when V-v = 0. Moreover, in the existence proof, we need some integrability properties for 6° which are certainly
true if §° is compactly supported.

An adaptation of some results of [1] and [3] enables us to show the existence of a solution of the system (1.2,
1.3) for a fixed e. We skip the index ¢ to present the existence result.

Let us define the following Hilbert spaces

X = {r = (Ym)mez2|Ym € L*(R?), Vm and Y Apllvm|[F2m2) < oo} ,

m=1

H= {v‘(%V%A% 2|y, |2V, |2*y) € LQ(RQ)}

with their associated norms

ITIR = D Al 1yl [22ze).

m=1

VI = I3 @) + 1A 2@y + N2l 22y + 121VAZ g2) + 212 @),

Y = {F = (7m)m622

Ym € H, Ym and Z Al Y| 13 < oo,}

m=1

with the norm

oo
||F||§’ = Z Am”’)’m“%—[
m=1

and finally, if 4 : R2 — R,

- {I‘GY‘/RQ(Qn(F))de}

where n(T') = Y0 A |ym|*

m=1
The following existence result holds.

Proposition 1.1. Under the following assumptions,
~ the function 0 is in L>(R?) and (1 + |z|)6 is in L'(R?) N L*(R?),
— the initial data are smooth enough, i.e. (o x)rezz €Y,

there exists a unique solution to (1.2-1.3) (Yx)rezz € C([0,00),Y) N C([0,00), X) and (Y1(t))gezz € Y for
each time t.

The proof of Proposition 1.1 is very similar to the proof of the existence result in [1] for the pure electrostatic
case. The main differences are the following.

First, the definition of the space H is different because of the shape of the operator. Indeed, we need that
|z|V~ and |x|*y belong to L?(R?). This implies some additional computations which can be found in [11].
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Moreover, we don’t get directly that the conservation of energy gives a time independent bound for |[4|| g1 (2.
However, we obtain using the equation that
d 15 15 £ N J_x £ !
 IhVYEllze + [llzgllz2) < ClIRVYE +io—9ille < C°.

It implies (see [1]) that

16| Lo +[IV6F||Lo + [|AG7||Le < By + Eat®, for 1 <p < oo
with Ey and Es two constants depending only on #° and on the initial energy. That gives us as in [1] the
existence result for global solutions.

Remark 1.1. It is probably possible to obtain additional regularity for the solution 1 when the initial data
are smooth, but this question is not addressed in this work.

We will use this result for any e. Let us note that since the ion densities 6° are in L>°(R?) and are compactly
supported, the first assumption is satisfied.

1.2. Formal analysis

In this section, we use the Wigner transform to motivate formally the obtained result. Let us introduce
weh(t, x &) = (th)_d/ Z)\ke_i%'zw,i (t,m + E) o), (t,x - E) dz,
R 2 2

the Wigner transform for the system and let us operate a change of variable

L

We(ta I’,g) = We(tﬂ 1',5) with 5: g + 2_6
The new function W (t, z; §~) satisfies

- - - 1, ~ - 1~ -
OWE + & VaWe+ -2 Ve 4 —K = We =0

and
A¢€ _ pe — 9
with
= nt { _if. (¢€(tvx+w)_¢€(tam_ﬂ))
K(t = &y 2 273
and

Flta) = [ (10.6)
Denoting J¢(t,z) the new current defined by

Fe(ta) = [ & (n0,€)
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we obtain the following equations

Pt +V-J =0,

0,z (t, 7) /gzgja e (t @ g) dé + = (ijf(t,:c) - aiqba(t,x)ﬁe(t,x)).

Therefore, we obtain formally, when € goes to zero that

J=—ptVe,
and
p—1=A¢.
Those equations are nothing but the incompressible Euler system written for w = curlu = p— 1, u = —+V¢

since we have

Ow + V - (uw) = 0,

V-u=0.

1.3. Main result

Theorem 1.2. Let T > 0 and J° = —-V® be a divergence free vector in L*(R?). For any e > 0, let 6° be the
ion density of charge characterized by (1.4—1.6), and let us consider, for any e, h and each state k, the wave
functions 15, solutions to (1.2, 1.8) with initial data in'Y. Moreover, we assume that

/]R S Ml (0,2)] dx—/ 0 (a (1.7)

keZ?

/ V6°(0,2) — (J°(a)) Pda 20, (18)
RQ
2
M hwkomﬂ—wk( z)| =00, (1.9)
kez?

Then, up to a subsequence, (—-V¢¢) converges in C°([0,T); D'(R?)) to a dissipative solution of the Euler
equations with J° as initial datum.

Remark 1.3. As in [2], we consider that J is a dissipative solution of the Euler equations with J° as the initial
datum if, for all smooth divergence free compactly supported vector v(¢,x), and for almost every time,

/|J(t,:c) —o(t,z)Pde < /|J0(:c) —0(0,2)|?dz exp </0t 2||d(v(9))||d9>

+ 2/01t exp (/t 2||d(v(9))||d9) (/ A@)(s,2) - (v — J)(s,x)dx) ds,  (1.10)
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where d(v) is the symmetric part of Dv = 9djv;, ||d(v(t))]| is the supremum on z of the spectral radius of
d(v)(t,z) and

A(w) = 0w +v - Vo. (1.11)
In the second section, we establish the equations which are satisfied by the density, the current and the energy.

Then, in Section 3, we give the proof of Theorem 1.2, which is mainly based on the modulated energy method
introduced in [2]. Finally, we build an example of well-prepared initial data.

2. EQUATIONS OF CONSERVATION

2.1. Conservation of mass and total momentum

We define the current J¢ from the density p° using the equation

dipf + divJe =0, (2.1)
and we obtain
~ Lx
JE=J+ —)p° 2.2
+ 5o (2.2)
with J¢ defined by
JE(t,x) = ApIm (hvwz(t, )y (t, x)) . (2.3)
k

Equation (2.3) is the classical form of the current when there is no magnetic field (see [10] for instance). It is
important to note that the classical relation d;p° + divJ® = 0 does not hold here.

Remark 2.1. The difference between J¢ and J¢ must be understood like the difference between impulsion
and total momentum. Indeed, J¢ corresponds to a real physical quantity (cf. [4]). Assumption (1.9) can be
interpreted as an hypothesis on the initial velocity or kinetic energy.

Proposition 2.2. The current J¢ satisfies the following equation in the distributional sense

1 -
(Ve + )

~ J‘:L' —_ —e J'IL’—&
0;J = — Z};Akv : Khwz + iQ—EwZ) ® <hV¢k - i2—€¢k>} +
(2.4)
h2 E_E —€ e 5 —€
+ zk: AV (Z (Al/fkl/)k + APy + 2V - Vq/’k)) ;
which means

- ‘lx c —c .Lf—E 1 5 5 7e
/v-atJE :Z)\k/dv: <hv¢;+22—gwk> ® <th/;k ZQ—Ewk> +g/’u~(—p Vo ++ J°)
k

for all divergence free test function v € D(]0, T[xR?).

Remark 2.3. We use the compact notations

N =
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Proof. We compute 9;J¢ using (1.2) and obtain

0.7 — Zxk{ (4 (avii + ATt + 2901 V5 ) - 10V (V50|
(2.5)
= 1 1 Lo
S Llge = (L. e _ = e € el S
+ J (tz-V)J EV¢p+258tp.
Moreover, we define
Lo
=> MV Khwz +z’2—€w;§) (hvwk wkﬂ .
k
It follows that
YA va 1 ta € € ta 1 L 1. e
L :;)\kv: (hwk@hwk) +5V: <?®J +J ®?> +4—€2V: (tz @ xp%).
Then we have
e € L:L' s TE 1 1 ge 1 1 € 1 5 J_x L:L' G
ES I NT ) 1 i
=3 NV (hvwkeahwk) ot
because the conservation of mass (2.1) implies
L, .t Lo
25 (leJ + 2— Vp ) = —2—€8tp .
This computation gives us equation (2.4) from (2.5) because

N
0T+ MV Khwk +i— ¢k> ® <w@; - 22—:%)]
k

5 — € 1+ 1 141 /1p L
o +%:Akv: (hVeiBhVEL ) + oo o+ o (Fa V) I o (2—5) - o

( PV + J€)+Z>\kv<h

2

ml»—n

(Awid; + ATLYE + 2995 vm))
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2.2. Conservation of energy

The energy of the system is the following

2

dz + 1/ |Vo© (t, x)|*dz,

1 L
“>nge }wwz(t,z) itu(t,a)
k

and satisfies:
Proposition 2.4. Energy H® remains constant with respect to time.

The proof of this proposition is given in Section 5.

3. PROOF OF THEOREM 1.2

3.1. Definition of the modulated energy

Proposition 3.1. For all divergence free test function v, we define a modulated energy
- 13 e 7 1 e . e — 7 1 —=€ . —¢ 1
t) = Zk:)\kg/ <hv¢k 5 zy, Wﬁ’k) <hv¢k 5 Ty, JF“Wk) + §/|V(¢ -
with *VW = v. The function HE(t) satisfies
d -~ 7 . —e 7 —e . —¢
G Hit) = —¢ / ;Ak dv : (hw,i + Q—Eszz - szi) ® (hwk — Q—Ewk +zvz/;k>

+ /dv;vwf\p)@th\p)

- E/A(U) (pv = J°) +/6’EUV¢€ —|—/A(v) (v + Vo).

Proof. Differentiating the modulated energy (3.1) with respect to time, we obtain

d . . d €9
q o) = zk:)‘kdt [/ <2h

g —e 1 1
+ SRR + 5 VOS2 - VeF - VU §|v\1:|2)}

. 2
c 1 c he e—€ p—) Tz .
Vi, + Q—ELIT/% 5V (V%?ﬁk - ¢kv¢k) —U P

It can be expressed in term of the energy He? in the following way

d 1

dt 2

w)[?

(2.6)

(3.2)

~ e p— T . 3 e—€ e 1
H () ——H +2Akdt/( 50 (VUL — ViV ) — v 0" + SluPUid - Ve -W+§|W|2)-
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Thanks to Proposition 2.4, we know that the energy is conserved. Therefore, we obtain the following simplified
form for the time derivative of the modulated energy H

d -~ d ~ € 1
—H¢ — _ € . e 2 e € . /] - ‘1,2
i 2(t) i eJ® v+ 2|’U| p° = V¢ VU + 2|V |

E 2 € E € 2 _ . Te _ e |
/2|U| Op® + 2/p O¢|v| €<U,8tJ >’D,’D’ E/J Opv

1
+§ /0t|v|2 — /V(ba . 8tv\11 — <v‘l’;atv¢€>D7D',

since 1V = v.
We compute each term of this identity. First of all

— (VU 9,V ) ppr = /8tA¢€\I/ = —/8tp5\11

= /divjfxlf: f/JE.v\p.

Furthermore, because of equation (2.4) satisfied by dyJ¢, we obtain
Iy = —¢ <u- atj6> - —E/Z)\k dv: ( WV + —Lape ) @ (AVE — - Lags
’ D, D’ p kT oe k koo k

—i—/psv-ch—/v-LjE,

that we transform, using *VV¥ = v and the Poisson equation (1.3), into
{ — i —¢
Iy = s/zijk dv : (hw,i + Q—Elwz) ® <hwk - Q—Eka)

f/va.v(;f Jr/HEvV(,zSE +/J€~v\p.
Moreover,

7/A(,Z58’U : ng)e = /8j8j¢5vi8i¢€ = /@qﬁaajvi&-qﬁa +8j¢6vi8j8i¢5

= /dv:ng)E@VgﬁE.

We have then
£ Z £ —€ 7/ —€
Iy = _E/%:Ak dv : (hwk + 2—;:5%) ® (hwk — Q—E{mpk)

+/dv:V¢€®V¢E+/GEUV¢E+/jE~V\P.
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To obtain equation (3.2), we must study the modulation by v =% V¥ and by V¥ in the two terms of energy
HE® given by (2.6). Let us study the first term

—¢ / ;Ak do : (hw,i + QLEW;) ® (hvwi - 21;9;@;)
— g/;ka : Khwz + %;w;) ® <w@; - 2%%@;)]
— g/zk:)\va : Khwz + 21;9;1/;; - mu;) ® (w@; - 21;:@; + iz@iﬂ

—E/D’UZjE®U—E/D’UIv®ja+5/p6DUZU®U.

The conservation of mass ensures that

fs/Dv:v@)jE = *E/ajvijjvi: g/diVjEM2

fg/atpw?.

Now, we can use the results shown by Brenier in [2] to obtain

/dv:quE@quE=/dv:V(qu—‘I/)®V(<Z>€—\I/)+/DU:V‘I/®V¢E

+/DUZV¢E®V‘I/—/D’UIV‘I/®V\I/.

In [2], it is also shown that

%/p68t|v|2—€/j6-8tU—E/DUZja®v+5/paDU1U®U=E/A(U)-(pEU—jE),

%/at|v|2,/v¢€.at\er/Dv:V\II®V¢)€+/DU:V¢E®V\I/—/Dv:V\P@V\II:/A(vy(erLVéf)E)

so we obtain (3.2) introducing the modulation in (3.3).

Remark 3.2. Since the functions ¥ and v are test functions with compact support, the integrations by parts
do not give any boundary term. And they are well defined because p°(t,), d;p°(t,-),divJ(¢t,-) are in L!(R?),
JE(t,-) € LY(R?,R?), V¢ (t,-) € L°°(R?%,R?) and A¢¢(t,-) € LY(R?).

3.2. Convergence to the Euler equations

We prove in this section that (—1V¢®) converges in C°([0,7],D’(R?,R?)) to a dissipative solution of the
Euler equations. We first establish a result about the convergence and then we perform some estimates involving
the modulated energy to identify the limit.
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3.2.1. Convergence

Proposition 3.3. The sequence (p°) is compact in C°([0,T]; D'(R?)), (J¢) is bounded in D'(]0, T[xR?), (HE)
converges, up to a subsequence, in L*([0,T]) — w* and (V¢°) converges in C°([0,T]); D' (R?;R?)).

Let us first note that the conservation of energy implies that H=(t) = H¢(0) and assumptions (1.9) and (1.8)
imply that (H¢(0)) converges. Thus, there exists C' independent on ¢ and ¢ such that H¢(t) < C. This inequality
implies that (V¢¢) is bounded independently on ¢ in L>°([0,T]; L?(R?,R?)) and then (p° — 6°) is bounded in
L°([0,T]; H(R?)) since, for all test function v, we have

[0 - - tautoaa

= ‘/A(ﬁe(t,m)v(m)dx

§ C||V’U||L2(R2).

Remark 3.4. The density p° given by (1.1) satisﬁes/pe(t,x)dac = /pE(O, x)dz but /pa(O, x)dz — oo when

€ goes to zero.
Let us now show that (£2.J¢) is bounded in L ([0, T]; (W4 (R2, R?) N L2(R2,R?))").
Indeed, since J* = Z ApIm Khvwk +i— wk) wk}, we have
k

1 =~ ‘lx % %
‘/EEJE codx| < (s/z)\k|hv¢i+l2_€¢i|2> </Z)\k|¢i|2|”|2>
k k

1
< C([[ollyrs + MollZ2) *.

Furthermore, the Poisson equation (1.3), which links p® and ¢°, implies that (p° — 0°)V¢® is bounded in
L>([0,T]; (W™P(R2 R?))) with m — 1 > % because for all g € W™P?(R2,R?),

}/ “(t,x) — 0°(t,x))Vo© (t, x)dx

= ‘/Aq&s(t,x)g(x) -Vo&(t, x)dx

_ ‘ / (Ve (t,z) - V)g(x) - Vo< (t, z)da

— / % V& (t,x) |2divg(:£)d:c

< Cllgllcr ey < Cllgllwm.r,

recalling that m — 1 > 2/p. Additionally, we have
1 z, 1 .J'IL' — —€ .J'IL'—a
Oi(pf —etv - Jo) 4+ (p°V %) Z)\ks V- < : [(hvwaer—gwk) ® <hv¢k12—€¢k>b . (34)

Since ((p° — 0°)V¢©) is bounded in L°°([0, T]; (W™P(R2,R?))’) and since the energy is conserved, identity (3.4)
implies that (8,5 (pE — ELV.jE>> is bounded in L>([0, T]; (W™TLP(R?) N H'(R?))") and then, using Aubin’s
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Lemma locally (cf. appendices of [7] and [6]), (p° — eV - J¢) is compact in C°([0, T]; D'(R?)). Since eV - J& =
O(e2) in C°(]0, T); D'(R2)) we show that (p°) is compact in C°([0,T]; D'(R2)). Since p° = 65 — A¢®, (Vo) is
also compact and then, up to a subsequence, (V¢?) converges in C°([0, T]; D'(R?,R?)). The modulated energy
(H¢) is bounded in L>°([0,T]) and then, up to a subsequence, converges in L>([0,T]) — w.

This concludes the proof of Proposition 3.3.

3.2.2. Identification of the limit

Inequality (3.2) can be written in a weak form in the following way
- [ 02 @t - 20 E:0) < [ 20l E =0+ [ [2A@)et - TNk o) sHe)dtds

—|—/ [A(v) (v+1 V) (t, ) +v0°Ve& (¢, x)] 2(t)dt dz,

where z is a test function belonging to D([0,T7[).

As soon as ¢ is small enough, 6 = 1 on the support of v. We can pass to the limit because (ﬁs) con-
verges in L°([0,T]) — wx, (p°) and (J¢) are bounded in the sense of distributions and (V¢°) converges in
Co([0, T); D' (R2,R?)).

Then for all test function z € D([0,T[), we have

- / Ho(8)2 ()t — 2(0)Hy < / o] | FL, ()= (£)dt + / A@w) (v ++ V) (t, 2)=()dt da,

with H, o = lim._o HZ(0).
Using Gronwall’s Lemma, we obtain

t
59(8) — V()| [3a(ge) < 28,(t) < 28y pexp < / 2||dv<o>||d9>

42 /Ot exp (/t 2||dv(9)||d9) (/ A@)(s,7) - (v ++ Vo) (s, x)dx) ds.

~ 1
Since assumptions (1.8, 1.9) hold, we have H, ¢ = 1irr(1)/ §|V¢)€(O, z) — V(0,2)|*dx.
e—

Moreover, we have
FV(8) = V(O)[72g2y = [IV(9) = V(P)|[72 g2y < liminf |[V(6°) — V()|

< liminf H:(t) = H,(t).

And then, if / |V¢e(0,2) — Veo(x)|*de — 0, —+V¢ is a dissipative solution of the Euler equations with JO =

—1V¢q as an initial condition.

3.3. Construction of an example of well-prepared initial data

3.3.1. Condition on the potential energy

To build an initial condition satisfying assumptions (1.8, 1.9), we consider the case when wy = curl J° belongs
to D(R?%;] — 1,+1[) with [wp = 0, and we pick up & small enough so that ° = 1 on the support of wy. Let ¢o
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be a solution in R? of
A¢O = Wo,

such that J® = —1V¢. Assumption (1.8) can be written as

/|V¢E(O, x) — Veo(x)|*dz — 0.

We also have to assume the global neutrality at the initial time which can be written

/ef(x)dx - /pE(O, 2)dz = 0.

To estimate /|V<Z)€(O, x) — Veo(x)|*dz, we use a result from [1], stating that, if A¢ = f with /f =0, then

Vo2 < Cll|=[fllr + [1f]]22)-
Write f(x) = 6°(z) — p°(0,2) — wo(x). If the global neutrality is satisfied, we have /f(ac)dx = 0 and then

/|V¢a(07$) — Vo (2)Pdz < O(|l|z|fllzr + [1fllz2)*. (3.5)
Let C be the elementary box defined by Cy =|yx — n; yx + n[* with yp = (k1n, kan), k € Z?0N] — ml,a ; #[2, o*
being such that the support of 6° is included in I =] — ;= [? and A\, = n? = |Cy|.

Let 6= and w( be defined by

1
Vo e Cy, 0°7(x) = m o 0% (y)dy,
k

1
Nr) = = dy.

We take

_ 2 Lo -
o @) = ) o= e (~ G exp (i ) iflel <

2" () = 0 elsewhere.

Let us remark that, since 57 (x) = 1 on the support of wg, the function /(657 — w) is well defined, since we
assumed |wp| < 1. We then get

pi" ) = 30 Mwtzet) H 60— e~ ) ol <
k

p5" (x) = 0 elsewhere.
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We have/ PS5 (x)da = /Hs(z)dx and then /f(:v)d:c = 0. Indeed,
R2

J i@ =3 o = [0 -

Iye

= /]R2 (0° — wo)(y)dy = 6% (y)dy.

R2

We want to show that |||z|f||z: +||f||zz2 — 0 when both h and € go to zero. In order to obtain this result, we
perform the following computation.
First of all, we have

it - [ e e (-0l <o (L) sw (21,

because for all y € Cy, (05" — w()(y) = (65" — wi)(yx) and

. 2 _ 2 _
exp <7(:E hy) ) — exp <7(:C hyk) )‘ < Cﬂyselg)s <—|:c ; y|>
Then we write

(2mh) (0" — wi) (y)exp Gt )i dy= | (2xh)~H (05" — wi)(y)exp Gl 7 dy
h - h

I,e

o€

and

dy

[ et - e (-E5) - 0 - we)

< [ 6 - ) - 0 - )@l exp (-0 ) a
Lastly, we use the following estimate
(657 — W) (y) — (6° — wo)(@)] < |7 — w)(y) — (6 — wo)(W)] + (6% — wo)(y) — (6 — wo) ()]
< C(n+ |z = y[) sup(|V(0° — wo)]),

to obtain for |z| <

e o h Vh 77
@) = o <x>—p’<0’$>—wo<$>'fc(w 76 <gs>3h2>’

and |f(z)] = 0if |z > L.
We recall that V¢ ~ % and that

2

/RQ |z — ylexp (%) dy < C(Vh)*.
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Then, we have

1 (vh ’
2 2 77 "7
11z —/|f($)| dr < 0(05)2 (,}/E + e + (gs)3h2>

and

llalflls = [ lallf@)lde < O (? o ﬁ) -

vh U

If we choose o¢ such that | — + — + O )3h2> = (0°)3u(e, h), with u(e, h) © 2790, the estimate (3.5) implies
pyE € 0—6
that assumption (1.8) is satisfied.

3.3.2. Condition on the kinetic energy
Note

175/ 3 A ‘hw};h (0, 2) — iG= ()" (0, x)‘ da

kel,

with G¢(z) = 32.

The second assumption (1.9) will hold if T goes to zero when & goes to zero. We have

=< n [hQ ( ye)  (z _hyk)) G0, 2) (_iGEELyk) (= _hyk)) M0, )

T kel,

267 0,055 0.0) + 1670 P 0,015 0.
— o [ 5 n (e ok + 12 ok e ) + 16 @R ) 0,07 0.,
T ker,

which becomes after simplification,

xr — 2 —€
r=c [ S (16 - @ + 1252 ) it 0.0 0.0

T kel,

Equality G5 (yx) — G5(x) = @ allows us to estimate I and to obtain

1 d 72( *Uk)
I<Ce E Ae(1+ 5—2)/96(30—%) (2wh)™2 dz
kel,
1 1\ en—
SCE )\kh(E-i-—)N h2(€+—) LOO,
s € (09) €

if h = o((0)%¢).
In conclusion, let 0°, ¢ (that we will fix equal to £2) and () be three functions of € which go to zero when
£ goes to zero, we choose h, such that vh = (¢°)37°u(e) to have h = o((0°)2¢) and we choose 7 such that

n = p(e)(0%)* inf (v h2(0%)%).
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4. PROPERTIES OF THE POTENTIAL

We give here the properties of the potential which are necessary for the proof of the conservation of energy.

Proposition 4.1. The parameter ¢ being fized, the potential ¢°(t,-) satisfies the following properties:
#°(t,-) € L°(R?), V¢ (t,-) € L=(R?*) N L*(R?) and 0;V¢°(t,-) € L*(R?).

We recall that ¢°, 6° and p° satisfy (1.3) and that /(96 —p%) =0.

Proof. We use results from [1] stating that
¢ ()] < C (||(|y| +1)(6° = )Ly ee) + Iyl + 1) (6° — PE)HLg(Rz)) :
[Vo© (z)] < C(116° — p°llLame)y + 1165 — |1 (r2))
IV6< 2y < C (Il(6° = o9l Iy ey + 116° = pollzeen) )

Moreover, using the Sobolev injection (WHN(RY) ¢ LI(RY) for g € [N, 0o]), the authors of [1] show that

IN

ol Lo (r2) Z)\m”’)’m”%zp(u@) < C||F||§{1(R2,A)a I<p<oo,

1+ D efl ey ey < 20IT0Zage ) + 111112 2 ),

N

1 e 1 3
A+ TyD2p%ll2 @2y < CUIA + [yDT L2 ®2,0) 2 (V]| Lo (m2,0)) 2,

< C(I(1+ lyDT Iz @20 2 (1T a1 2 ) 2 -

This proves the first two assertions because I' € H!(R?,\) and |y|T' € L2(R? ).
We also have

V06| L2 w2y < C(I] [9l(0ep™ )| L1 (r2) + 10p%|| L2 (R2))-
And equation 9ip° = > A (OrYm ¥ + Ym0, ) implies that
y1@ep) L1 r2y < ClllYIT|] L2 r2 2 [0 || L2(R2,0) < C

since the Schrédinger equation implies that 0;I' € L?(R%, \).
Finally, we get

10:0%] 17282y < ClIOT| L2267 |-

The right term is finite because W™ (R?) C L*>(R?) if % — % <0 (e.g. m=2and p=2) and then p* belongs

to L>°(R?). Indeed ' € L°°(R%, \) because I' € W22(R?, \).

5. PrROOF OF PROPOSITION 2.4

Let (¢¥§)kezz € C([0,T];Y) N C([0,7]; X) be a solution of (1.2) and (1.3),

2 1 2
T 1|z
= [hVYE[* + 2% o L

Lo
hNYL +i—f
‘ wk+z25wk e 4 ¢
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and then
£ 1'2 1 £ £ £
—H E )\det/th/fk hvwk+8/| | Ogp° 2/J‘:c~8t<] +/8tV¢) -Vo¢©. (5.1)

First of all, let us compute the first right-hand side term of (5.1) using the Schrédinger equation (1.2). Note
that 0;V¢° € H-}(R2, \) because (1.2) ensures that 9;%°(t,-) € L2(R2, \) since Ay=(t,-) € L2(R2,\).
We define

d S c —€
= 5N [ vV
k

and we have

=3 Mg (RPOVUE VL) 0 (O V)

H-1,H1

2 —
:__gh[ZAk<( " nusp - h(lx-v)wz+'8%wk+§¢%z);vwk>

H-1 H1

ih 2 1 —-
+ ;)\k <V1/}k; \V4 ( Al/}k — Z—E ( )wk |l‘| 1/) - g(ﬁawk) >H1,H1]

and then, it follows that

P [ 5 (sviati - sviad) + S [ 59 (55 - (9w - vuei)

k
+3 N / V(o) - (Vi - Veid) 5+ S Akh; ((V (- Vi) : VL)
k

H'H-1
& )

+Z)‘kh£ <v (Lac : Vﬁ) ;V¢i)>H,1 m
k ,

- / <% + (;55) divJe — %22%1@ /diV (LIE (Vl/fi : VEZ))
k
_ / <% + (;55) divJe.
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Each of the above integrals are well defined. Indeed, we have

‘Z n [ 29 (BE) - (vt - voidn)
k

< CZMHi Vi || [Vl 2
%

<C (Z el|z - VWHQLa) <Z>\k||¢k||2m>
k k

= Cllz - VYl L2 oyl [¥ll 2 (0

2
X . £
‘/ %dWJ <C (|||$|2¢||L2(A)||A1/)||L2(A) + |l - Vz/’“%2@)) ’

Y / div (“x (Vi - VL))

< 2 V]| Loyl [0 [ 2 ),

|divI® ||z < [9° ] L2 1AYE L2y + VY5720,

and ¢¢(t,-) € L>®(R?), V¢&(¢t,-) € L°°(R?,R?) (see Sect. 4). Moreover, the integration by parts can be performed

because Lz (V - VE;) belongs to L1(R?). We recall that 1) € Y and then for a fixed ¢, the right terms are
finite.

In a second step, we now consider the third right-hand side term in (5.1). We rewrite it under the following
equivalent form using (2.5)

l 1. e _ 1 4., . £ € _i 1. £ €
2/ v 0 J° = Zk:)\kQRe/ x v.(hvwk@ahvwk) 25/ z - Vétp

L [ 1, 1 1 1 1/L |3U|2
- R N O i S SV)JE — = B vk B
+2/x25 2/2€$($v) 5] T Vgl

since Lz - V : (W @ hVy) = La;0;(h20,050,7,).
The previous integrals are well defined thanks to the following upper estimates

Z)\k//lx~VZ (ww;@@hvw;) < el lllz] - Vol L2y,
k

‘ [ w6t < IVl el lson 1 e,

‘/lxu} < ||l$'V¢€||L2(A)||¢E||L2(/\)’

m

'/LCU'(L%V)J < e lPyfl | L2198 L2 + 172 - vT/)E||2L2(A)-
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After simplification, we have

1 £ —€ —€ 5
: / Ly 00° = 3 MeRe / n? (02050, — 05070007 )

k
i € i 1 . € 1 o 1 ie i/J_ £ 1€
+4€/xJ+45/D(x).(J® x) /m882p+2€ x-VpSP
1 € 1 € 1 1 € 1€
== z~J745/z~J+2€/pr¢)

71 1 £ 1€ __ £ 1: J_xe
72—5/ x-Vp°o /¢d1v<25p>.

The last term is finite because

‘/ Lm.vpa ¢€
Finally, we obtain

d rre _ |$|2 £ : € 1 |I|2 5 £ 1z Lx & & &

= / HdivJe — / O AGE §°

< ¢ llpee |17 - Vo©llz oo 197 z2ony-

—/¢fatpf - /atAqu — 0.

We have obtained that the energy H¢ defined by (2.6) does not depend on time and this concludes the proof of
Proposition 2.4.

To justify the sense of each integral of the previous computation, we use again some results of Section 4,
which are V¢*(t,-) € L%(R2,R?), 9, V¢©(t,-) € L*(R%,R?) and the following results

2
‘/ﬁatpE
g
‘/q&sdivje = ‘/q&satps
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