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1. Introduction

We take Ω a polygonal open subset of R
d (d = 2 or 3), and we study the problem

{
−∆u + div(vu) + bu = L in Ω,
u = 0 on ∂Ω (1.1)

with the following hypotheses on the data:

∃p > d such that v ∈ (Lp(Ω))d ,
b ∈ Lr(Ω) with r > 1 if d = 2 and r = 3

2 if d = 3 , b ≥ 0 a.e. on Ω ,
L ∈ H−1(Ω).

(1.2)

Of course, solutions to (1.1) are taken in a weak sense, that is to say




u ∈ H1
0 (Ω) ,∫

Ω

∇u · ∇ϕ −
∫

Ω

uv · ∇ϕ +
∫

Ω

buϕ = 〈L, ϕ〉H−1(Ω),H1
0 (Ω) , ∀ϕ ∈ H1

0 (Ω). (1.3)

Existence and uniqueness of a solution to (1.3) have already been proved in [3] (see also [4] for nonlinear
problems).

Our purpose is to prove the convergence of a finite volume discretization of (1.1). Finite volume methods
have been widely used to approximate solutions to convection-diffusion equations, either using structured or
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unstructured grids (see for example [2, 5, 6, 8, 9]). The grids we consider here are the same as in [5], that is to
say grids made of convex polygonal control volumes with some geometrical properties (see the next section).

There are two main originalities in the work we present here. First, we consider elliptic problems which are
not necessarily coercive, because it is not supposed that 1

2div(v) + b is nonnegative. Moreover, the regularity
we have taken on the velocity v is minimal (that is, just enough for (1.3) to make sense — in previous papers
on the finite volume discretization of convection-diffusion equations, the convection velocity is in general C1-
continuous, see e.g. [5] or [9]); considering a non-regular convection velocity is a first step toward the treatment
of coupled systems, in which v comes from the resolution of another partial differential equation.

The second originality concerns the right-hand side: here too, we consider a datum with minimal regularity
(that is, in the dual space of the energy space associated to the equation — previous papers take in general
a right-hand side in L2(Ω)); in fact, H−1(Ω) is a natural space for right-hand sides of convection-diffusion
equations.

In the next section, we define the finite volume scheme used to discretize (1.1), and we state the main
convergence result of this paper; since we consider data v and L which lack of regularity (with respect to
previous works), we present a new way to discretize them, using what we call “half-diamonds”. We also give,
in this section, technical results useful to the rest of the paper. In Section 3, we prove a priori estimates on
the solutions to our finite volume discretization of (1.1); the problem being noncoercive, obtaining estimates on
these solutions is not straightforward: we must adapt the techniques of [3] to the discrete setting. Along with
the compactness results of [5], these a priori estimates allow us, in Section 4, to prove our main result, that is
to say existence and uniqueness of the approximate solutions and their convergence toward the solution of (1.3);
to prove the convergence result with our irregular data, we approximate them by regular data and adapt then
known techniques (see [5], for example). In the last section, we present a modified scheme which consists in
discretizing the data v and L using another method (based on the “full-diamonds”); comparing this scheme to
the one of Section 2, we easily obtain the convergence of the associated approximate solutions.

2. Definition of the scheme and main result

Definition 2.1. An admissible mesh T of Ω is a finite family of polygonal open convex subsets of Ω (the
“control volumes”), together with a finite family E of disjoint subsets of Ω contained in affine hyperplanes (the
“edges”) and a family P = (xK)K∈T of points in Ω such that:

(i) Ω =
⋃

K∈T K;
(ii) each σ ∈ E is a non-empty open subset of ∂K for some K ∈ T ;
(iii) by denoting EK = {σ ∈ E | σ ⊂ ∂K}, ∂K = ∪σ∈EK σ for all K ∈ T ;
(iv) for all K 6= L in T , either the (d− 1)-dimensional measure of K ∩L is null, or K ∩L = σ for some σ ∈ E ,

that we denote then σ = K|L;
(v) for all K ∈ T , xK ∈ K;
(vi) for all σ = K|L ∈ E , the line (xK , xL) intersects and is orthogonal to σ;
(vii) for all σ ∈ E , σ ⊂ ∂Ω ∩ ∂K, the line which is orthogonal to σ and going through xK intersects σ.

The size of the mesh is then defined by size(T ) = supK∈T diam(K) (where diam(K) is the diameter of K).
We denote by meas(K) the Lebesgue measure of K ∈ T . The unit normal to σ ∈ EK outward to K is denoted
by nK,σ.

We define Eint = {σ ∈ E | σ 6⊂ ∂Ω} and Eext = E\Eint. If σ ∈ E , m(σ) is the (d − 1)-dimensional measure of
σ; if σ = K|L ∈ Eint, dσ is the Euclidean distance between the points (xK , xL) and dK,σ denotes the distance
between xK and σ; if σ ∈ Eext ∩ EK , dσ = dK,σ is the distance between xK and σ. The transmissivity through
an edge σ is τσ = m(σ)

dσ
. We denote by γ the (d − 1)-dimensional measure on the edges of the mesh.

If K ∈ T and σ ∈ EK , the “half-diamond” 4K,σ is defined by 4K,σ = {txK + (1 − t)x , t ∈ [0, 1] , x ∈ σ}.
It will be useful to notice that meas(4K,σ) = m(σ)dK,σ

d .
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The following quantity measures the “regularity” of the mesh:

reg(T ) = inf
K∈T

(
inf

σ∈EK

dK,σ

dσ

)
·

If T is an admissible mesh, and under Hypothesis (1.2), we can define the finite volume discretization of (1.1).
We first write

L = f + div(G) , with f ∈ L2(Ω) and G ∈ (L2(Ω))d.

It is well-known that any element of H−1(Ω) can be written this way; in fact, in models of physical problems,
the right-hand side naturally appears in this form, see e.g. [7], and there is thus no trouble to define the following
scheme (this is also why we have kept f , which can be taken, from a theoretical point of view, null).

The finite volume discretization consists in integrating the equation −∆u + div(vu) + bu = f + div(G) on a
control volume K: with some integrates by parts, we formally obtain

∑
σ∈EK

−
∫

σ

∇u · nK,σ dγ +
∑

σ∈EK

∫
σ

uv · nK,σ dγ +
∫

K

bu =
∫

K

f +
∑

σ∈EK

∫
σ

G · nK,σ dγ.

By letting uK be an approximate value of u on the control volume K, we must then discretize each term of this
relation. To this aim, we denote, for K ∈ T and σ ∈ EK ,

vK,σ =

(
1

meas(4K,σ)

∫
4K,σ

v

)
· nK,σ , bK =

1
meas(K)

∫
K

b ,

fK =
1

meas(K)

∫
K

f and GK,σ =

(
1

meas(4K,σ)

∫
4K,σ

G

)
· nK,σ

(2.1)

(these are, respectively, approximate values of v · nK,σ on σ, of b on K, of f on K and of G · nK,σ on σ), and
the finite volume scheme is written

∀K ∈ T ,
∑

σ∈EK

FK,σ +
∑

σ∈EK

m(σ)vK,σuK,σ,+ + meas(K)bKuK = meas(K)fK +
∑

σ∈EK

m(σ)GK,σ , (2.2)

∀K ∈ T , ∀σ ∈ EK , FK,σ = −m(σ)
dK,σ

(uσ − uK) , (2.3)

∀σ = K|L ∈ Eint , FK,σ + m(σ)vK,σuK,σ,+ − m(σ)GK,σ = −(FL,σ + m(σ)vL,σuL,σ,+ − m(σ)GL,σ) ,

∀σ ∈ Eext , uσ = 0 ,
(2.4)

∀σ = K|L ∈ Eint , uK,σ,+ = uK if vK,σ ≥ 0 , uK,σ,+ = uL otherwise,
∀σ ∈ Eext ∩ EK , uK,σ,+ = uK if vK,σ ≥ 0 , uK,σ,+ = 0 otherwise.

(2.5)

Equations (2.2–2.5) are a linear system in (uK)K∈T and (uσ)σ∈E , but thanks to (2.4) (which describes the
conservativity of the fluxes), we can eliminate the unknowns (uσ)σ∈E , so that (2.2–2.5) can be considered as a
linear system of size Card(T ), with unknowns (uK)K∈T .

We naturally identify the set R
Card(T ) to the set X(T ) of functions defined a.e. on Ω and constant on each

control volume K ∈ T .



708 J. DRONIOU AND T. GALLOUËT

Our main result is the following.

Theorem 2.1. If T is an admissible mesh, then there exists a unique solution to (2.2–2.5). Moreover, let
α > 0; denoting by uT ∈ X(T ) the solution to (2.2–2.5), uT converges in Lq(Ω), for all q < 2d

d−2 , to the unique
solution of (1.3), as size(T ) → 0 with reg(T ) ≥ α.

Remark 2.1. We will not use, to prove this theorem, the existence of a solution to (1.3). The finite volume
method allows, as usual, to prove the existence of a solution to the continuous problem.

Remark 2.2. In dimension d = 2, the regularity we suppose on v is minimal in order for all the terms in (1.3)
to make sense (see the Sobolev imbeddings in [1]). But, if d = 3, the minimal regularity on the convection
velocity would be: v ∈ (L3(Ω))3; in fact, cutting v in two parts (one small in (L3(Ω))3, the other in (L∞(Ω))3 —
see [3] for the reasoning in the continuous case), we could also prove Theorem 2.1 under this minimal hypothesis
on v. However, for the legibility of the following proofs, we prefer to suppose Hypothesis (1.2).

2.1. Technical results

To prove this existence, uniqueness and convergence result, we first search for a priori estimates on the
solutions to (2.2–2.5). These estimates are obtained via the following discrete H1

0 norm.

Definition 2.2. If T is an admissible mesh and vT = (vK)K∈T ∈ X(T ), we define

||vT ||1,T =

(∑
σ∈E

τσ(DσvT )2
)1/2

,

where DσvT = |vK − vL| if σ = K|L ∈ Eint and DσvT = |vK | if σ ∈ Eext ∩ EK .

Notice that this norm takes into account a boundary condition “vT = 0 on ∂Ω”, since we have defined
DσvT = |vK | if σ ⊂ ∂Ω (this comes down to consider that functions of X(T ) are defined on R

N and are null
outside Ω).

The following proposition sums up a few useful properties of the norm || · ||1,T .

Proposition 2.1.
(i) (Discrete Poincaré inequality) If T is an admissible mesh and vT ∈ X(T ), then

||vT ||L2(Ω) ≤ diam(Ω)||vT ||1,T (where diam(Ω) is the diameter of Ω).
(ii) (Discrete Sobolev inequality) If T is an admissible mesh and 0 < ζ ≤ reg(T ), then there exists C only

depending on (Ω, ζ) such that, for all q ∈ [1, 2d
d−2 [, for all vT ∈ X(T ), ||vT ||Lq(Ω) ≤ Cq||vT ||1,T .

(iii) (Discrete Rellich Theorem) If (Tn)n≥1 is a sequence of admissible meshes such that size(Tn) → 0 and if
vn ∈ X(Tn) is such that (||vn||1,Tn)n≥1 is bounded, then (vn)n≥1 is relatively compact in L2(Ω) and any
adherence value in L2(Ω) of (vn)n≥1 belongs to H1

0 (Ω).

For a proof of these properties, see [5].
The following discrete integrate by parts formula will be quite useful in the sequel.

Lemma 2.1. Let T be an admissible mesh and uT = (uK)K∈T satisfy (2.2–2.5). Then, for all ϕT =
(ϕK)K∈T ∈ X(T ), we have

∑
σ∈E

τσ(uK − uL)(ϕK − ϕL) +
∑
K∈T

meas(K)bKuKϕK =
∑
K∈T

meas(K)fKϕK

+
∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕK − ϕL) +

∑
σ∈E

m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(ϕK − ϕL) ,

(2.6)

where we have denoted σ = K|L if σ ∈ Eint and uL = uL,σ,+ = vL,σ = dL,σ = GL,σ = ϕL = 0 if σ ∈ Eext ∩ EK .
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Proof of Lemma 2.1. We notice that, thanks to (2.4), the quantity aK,σ = FK,σ + m(σ)vK,σuK,σ,+ −m(σ)GK,σ

is conservative, that is to say, if σ = K|L ∈ Eint, then aK,σ = −aL,σ.
Multiplying (2.2) by ϕK and summing on the control volumes K ∈ T , we have

∑
K∈T

∑
σ∈EK

aK,σϕK +
∑
K∈T

meas(K)bKuKϕK =
∑
K∈T

meas(K)fKϕK .

Using the conservativity of aK,σ and gathering by edges, we deduce

∑
σ∈E

aK,σ(ϕK − ϕL) +
∑
K∈T

meas(K)bKuKϕK =
∑
K∈T

meas(K)fKϕK (2.7)

where σ = K|L if σ ∈ Eint and ϕL = 0 if σ ∈ Eext ∩ EK .
Let us now compute the (aK,σ)K∈T , σ∈EK . If σ = K|L ∈ Eint, then (2.3) and (2.4) give uσ; indeed, divid-

ing (2.4) by m(σ), we have

− uσ

dK,σ
+

uK

dK,σ
+ vK,σuK,σ,+ − GK,σ =

uσ

dL,σ
− uL

dL,σ
− vL,σuL,σ,+ + GL,σ,

that is, noticing that dσ = dK,σ + dL,σ,

dσ

dK,σdL,σ
uσ =

uK

dK,σ
+

uL

dL,σ
+ vK,σuK,σ,+ + vL,σuL,σ,+ − GK,σ − GL,σ,

which gives

uσ =
dL,σ

dσ
uK +

dK,σ

dσ
uL +

dK,σdL,σ

dσ
(vK,σuK,σ,+ + vL,σuL,σ,+ − GK,σ − GL,σ) .

With this value of uσ, we obtain

aK,σ = −m(σ)
dK,σ

(
dK,σ

dσ
uL − dK,σ

dσ
uK

)
− m(σ)dL,σ

dσ
(vK,σuK,σ,+ + vL,σuL,σ,+ − GK,σ − GL,σ)

+m(σ)vK,σuK,σ,+ − m(σ)GK,σ

= τσ(uK − uL) + m(σ)
(

dK,σ

dσ
vK,σuK,σ,+ − dL,σ

dσ
vL,σuL,σ,+

)

−m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
.

Note that this equality is also valid if σ ∈ Eext ∩ EK , providing that we define uL = uL,σ,+ = vL,σ = GL,σ =
ϕL = 0 in this case.

Using this expression in (2.7), we obtain the desired formula. 2

3. A PRIORI estimates

We prove here some a priori estimates on the solution to (2.2–2.5). As already said, we adapt the methods
of [3] to the discrete setting; however, the estimation of the convection term (the noncoercive part of the
equation) requires new ideas, to take advantage of the upwind choice in (2.5).
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3.1. Estimate on ln(1 + |uT |)
Proposition 3.1. Let T be an admissible mesh. If (uK)K∈T is a solution to (2.2–2.5), then

|| ln(1 + |uT |)||21,T ≤ 2||f ||L1(Ω) + 2d
(
|| |G| ||L2(Ω) + || |v| ||L2(Ω)

)2
,

where |X | denotes the Euclidean norm of a vector X ∈ R
d.

Proof of Proposition 3.1.

Step 1: A preliminary estimate.

Let ϕ(s) =
∫ s

0
dt

(1+|t|)2 . Applying Formula (2.6) to (ϕK)K∈T = (ϕ(uK))K∈T , and since ϕ is bounded by 1
and bKuKϕ(uK) ≥ 0 for all K ∈ T , we have

∑
σ∈E

τσ(uK − uL)(ϕ(uK) − ϕ(uL)) ≤
∑
K∈T

meas(K)|fK |

+
∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(uK) − ϕ(uL))

+
∑
σ∈E

m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(ϕ(uK) − ϕ(uL)) (3.1)

(with the notation σ = K|L if σ ∈ Eint and uL = uL,σ,+ = vL,σ = dL,σ = GL,σ = ϕ(uL) = 0 if σ ∈ Eext ∩ EK).
We have

∑
K∈T

meas(K)|fK | ≤
∑
K∈T

∫
K

|f | = ||f ||L1(Ω). (3.2)

Using the Cauchy-Schwarz inequality, we can write

∣∣∣∣∣
∑
σ∈E

m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(ϕ(uK) − ϕ(uL))

∣∣∣∣∣
≤
(∑

σ∈E
m(σ)dσ

(
dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)2
)1/2(∑

σ∈E
τσ(ϕ(uK) − ϕ(uL))2

)1/2

. (3.3)

Since
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)2

≤ 2 dK,σ

dσ
G2

K,σ+2 dL,σ

dσ
G2

L,σ (we have used the fact that dK,σ

dσ
and dL,σ

dσ
are bounded

by 1), gathering by control volumes, we have

∑
σ∈E

m(σ)dσ

(
dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)2

≤ 2
∑
K∈T

∑
σ∈EK

m(σ)dK,σG2
K,σ.

But, for all K ∈ T and all σ ∈ EK , by Jensen’s inequality and since meas(4K,σ) = m(σ)dKσ

d , we have
m(σ)dK,σG2

K,σ ≤ d
∫
4K,σ

|G|2. Using the fact that {4K,σ , K ∈ T , σ ∈ EK} is (up to a set of null Lebesgue
measure) a partition of Ω, we deduce

∑
σ∈E

m(σ)dσ

(
dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)2

≤ 2d
∑
K∈T

∑
σ∈EK

∫
4K,σ

|G|2 = 2d|| |G| ||2L2(Ω). (3.4)
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ϕ being nondecreasing and Lipschitz-continuous with Lipschitz constant 1, we have (ϕ(uK)−ϕ(uL))2 ≤ (uK −
uL)(ϕ(uK) − ϕ(uL)); (3.3) and (3.4) give then

∣∣∣∣∣
∑
σ∈E

m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(ϕ(uK) − ϕ(uL))

∣∣∣∣∣
≤

√
2d || |G| ||L2(Ω)

(∑
σ∈E

τσ(uK − uL)(ϕ(uK) − ϕ(uL))

)1/2

. (3.5)

Now, we need to estimate the terms of (3.1) coming from the discretization of the convection part of (1.1). We
first notice that, if σ ∈ Eext ∩ EK ,

(
dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(uK) − ϕ(uL)) = −dK,σ

dσ
vK,σuK,σ,+ϕ(uK) ≤ 0.

Indeed, if vK,σ ≥ 0, this last term is −dK,σ

dσ
vK,σuKϕ(uK), which is nonpositive since sϕ(s) ≥ 0 for all s ∈ R; if

vK,σ < 0, this last term is null (because uK,σ,+ = 0 in this case). Thus,

∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(uK) − ϕ(uL))

≤
∑

σ∈Eint

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(uK) − ϕ(uL)). (3.6)

Let σ = K|L ∈ Eint and denote

Λ =
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(uK) − ϕ(uL)) , A =

∣∣∣∣dL,σ

dσ
vL,σ

∣∣∣∣ and B =
∣∣∣∣dK,σ

dσ
vK,σ

∣∣∣∣ .
We separate the cases:

• If vK,σ and vL,σ are nonnegative, then Λ = (AuL − BuK)(ϕ(uK) − ϕ(uL)) is, by item (i) of Lemma 3.1
below, bounded from above by 0 if uKuL ≤ 0 and by |A − B| inf(|uL|, |uK |)|ϕ(uK) − ϕ(uL)| otherwise.

• If vK,σ and vL,σ are negative, then Λ = (−AuK +BuL)(ϕ(uK)−ϕ(uL)) = (BuL−AuK)(ϕ(uK)−ϕ(uL)) is
once again bounded from above by 0 if uKuL ≤ 0 and by |A−B| inf(|uL|, |uK |)|ϕ(uK)−ϕ(uL)| otherwise.

• If vK,σ ≥ 0 and vL,σ < 0, then Λ = −(A + B)uK(ϕ(uK) − ϕ(uL)) is, by item (ii) of Lemma 3.1 below,
bounded from above by 0 if uKuL ≤ 0 and by (A + B) inf(|uL|, |uK |)|ϕ(uK) − ϕ(uL)| otherwise.

• If vK,σ < 0 and vL,σ ≥ 0, then Λ = (A + B)uL(ϕ(uK) − ϕ(uL)) = −(A + B)uL(ϕ(uL) − ϕ(uK)) is, as
before, bounded from above by 0 if uKuL ≤ 0 and by (A + B) inf(|uK |, |uL|)|ϕ(uL) − ϕ(uK)| otherwise.

In either case, we notice that Λ ≤ 0 if uKuL ≤ 0 and that Λ ≤ (A+B) inf(|uK |, |uL|)|ϕ(uK)−ϕ(uL)| otherwise;
thus, by denoting A = {σ = K|L ∈ Eint | uKuL > 0}, (3.6) gives

∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(uK) − ϕ(uL))

≤
∑
σ∈A

m(σ)
(

dL,σ

dσ
|vL,σ| +

dK,σ

dσ
|vK,σ|

)
inf(|uK |, |uL|)|ϕ(uK) − ϕ(uL)|.
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Since dK,σ

dσ
and dL,σ

dσ
are bounded by 1, we obtain

∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(uK) − ϕ(uL))

≤
(

2
∑
σ∈A

m(σ)dσ

(
dL,σ

dσ
v2

L,σ +
dK,σ

dσ
v2

K,σ

))1/2(∑
σ∈A

τσ inf(|uK |, |uL|)2(ϕ(uK) − ϕ(uL))2
)1/2

. (3.7)

Gathering by control volumes, and using Jensen’s inequality, we can write

∑
σ∈A

m(σ)dσ

(
dL,σ

dσ
v2

L,σ +
dK,σ

dσ
v2

K,σ

)
≤
∑
K∈T

∑
σ∈EK

m(σ)dK,σ

meas(4K,σ)

∫
4K,σ

|v|2.

Since m(σ)dK,σ

meas(4K,σ) = d and {4K,σ , K ∈ T , σ ∈ EK} is (up to a set of null Lebesgue measure) a partition of Ω,
we deduce

∑
σ∈A

m(σ)dσ

(
dL,σ

dσ
v2

L,σ +
dK,σ

dσ
v2

K,σ

)
≤ d || |v| ||2L2(Ω). (3.8)

For all σ = K|L ∈ A, since uKuL > 0, item (iii) of Lemma 3.1 gives

inf(|uK |, |uL|)2(ϕ(uK) − ϕ(uL))2 ≤ (uK − uL)(ϕ(uK) − ϕ(uL)).

Using this and (3.8) in (3.7), we finally obtain

∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(uK) − ϕ(uL))

≤
√

2d || |v| ||L2(Ω)

(∑
σ∈E

τσ(uK − uL)(ϕ(uK) − ϕ(uL))

)1/2

. (3.9)

Gathering (3.2, 3.5) and (3.9) in (3.1), we get

∑
σ∈E

τσ(uK − uL)(ϕ(uK) − ϕ(uL))

≤ ||f ||L1(Ω) +
√

2d
(
|| |G| ||L2(Ω) + || |v| ||L2(Ω)

)(∑
σ∈E

τσ(uK − uL)(ϕ(uK) − ϕ(uL))

)1/2

,

which gives, thanks to Young’s inequality,

∑
σ∈E

τσ(uK − uL)(ϕ(uK) − ϕ(uL)) ≤ 2||f ||L1(Ω) + 2d
(
|| |G| ||L2(Ω) + || |v| ||L2(Ω)

)2
. (3.10)
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Step 2: Estimate on ln(1 + |uT |).
We notice that, for all s ∈ R, ln(1 + |s|) =

∫ s

0
sgn(t) dt

1+|t| . Thus, for all (x, y) ∈ R
2, by the Cauchy-Schwarz

inequality and since ϕ is nondecreasing,

(ln(1 + |x|) − ln(1 + |y|))2 =
(∫ x

y

sgn(t) dt

1 + |t|

)2

≤ |x − y|
∣∣∣∣
∫ x

y

dt

(1 + |t|)2

∣∣∣∣ = |x − y||ϕ(x) − ϕ(y)| = (x − y)(ϕ(x) − ϕ(y)).

Using this bound in (3.10), we deduce the desired estimate on ln(1 + |uT |). 2

It remains to state and prove the following technical result, which has been used in the course of the preceding
proof. This lemma shows the usefulness of the upwind choice in (2.5): thanks to the first two items of the lemma,
the upwind choice allows to reduce the estimate on the discrete convection term to the cases uKuL > 0; these
cases are then, thanks to item (iii), bounded by the discrete diffusion term.

Lemma 3.1. Let ϕ(s) =
∫ s

0
dt

(1+|t|)2 ·
(i) Let A and B be nonnegative real numbers and (x, y) ∈ R

2. If xy ≤ 0, then

(Ax − By)(ϕ(y) − ϕ(x)) ≤ 0

and, if xy > 0, then

(Ax − By)(ϕ(y) − ϕ(x)) ≤ |A − B| inf(|x|, |y|)|ϕ(y) − ϕ(x)|.

(ii) Let (x, y) ∈ R
2. If xy ≤ 0, then

−y(ϕ(y) − ϕ(x)) ≤ 0

and, if xy > 0, then

−y(ϕ(y) − ϕ(x)) ≤ inf(|x|, |y|)|ϕ(y) − ϕ(x)|.

(iii) Let (x, y) ∈ R
2. If xy > 0, then

inf(|x|, |y|)2(ϕ(y) − ϕ(x))2 ≤ (y − x)(ϕ(y) − ϕ(x)).

Proof of Lemma 3.1. The first two items are only consequences of the nondecreasingness of ϕ and of the fact
that sϕ(s) ≥ 0 for all s ∈ R.

Consider (i). Suppose first that xy ≤ 0. Up to a permutation of x and y, there is no loss of generality if we
assume that x ≤ 0. If x = 0, then (Ax − By)(ϕ(y) − ϕ(x)) = −Byϕ(y) ≤ 0. If x < 0, then y ≥ 0 > x and, A
and B being nonnegative, we have By ≥ 0 ≥ Ax, thus Ax − By ≤ 0; ϕ being nondecreasing, we deduce that
(Ax − By)(ϕ(y) − ϕ(x)) ≤ 0.

Suppose now that xy > 0. Up to a permutation of x and y, we can suppose that |x| ≤ |y|. We have then

(Ax − By)(ϕ(y) − ϕ(x)) = (A − B)x(ϕ(y) − ϕ(x)) + B(x − y)(ϕ(y) − ϕ(x)).

ϕ being nondecreasing, the second term of the right-hand side of this equality is nonpositive, and we obtain
thus (Ax − By)(ϕ(y) − ϕ(x)) ≤ (A − B)x(ϕ(y) − ϕ(x)) ≤ |A − B| |x| |ϕ(y) − ϕ(x)| as desired.

Let us now study the second item. If xy ≤ 0, then either x = 0, or y = 0, or x < 0 < y or y < 0 < x. In the
first case, −y(ϕ(y) − ϕ(x)) = −yϕ(y) ≤ 0; in the second case, −y(ϕ(y) − ϕ(x)) = 0; in the third case, −y ≤ 0
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and ϕ(y)−ϕ(x) ≥ 0 so that the result holds; in the fourth case, −y ≥ 0 but ϕ(y)−ϕ(x) ≤ 0 and the result still
holds. Assume now that xy > 0; the result is obvious if |y| = inf(|x|, |y|), so that we can take |y| ≥ |x|; then
either 0 < x ≤ y or y ≤ x < 0. In both cases, the nondecreasingness of ϕ easily gives −y(ϕ(y)− ϕ(x)) ≤ 0, and
the desired inequality is thus satisfied.

To prove the third item, we notice that, since ϕ is C1-continuous on R, there exists θ ∈ [x, y] such that
ϕ(y) − ϕ(x) = ϕ′(θ)(y − x). Using the fact that ϕ is nondecreasing, we obtain

inf(|x|, |y|)2(ϕ(y) − ϕ(x))2 ≤ inf(|x|, |y|)2
(1 + |θ|)2 |y − x| |ϕ(y) − ϕ(x)|

≤ inf(|x|, |y|)2
(1 + |θ|)2 (y − x)(ϕ(y) − ϕ(x)).

But, since x and y have the same sign and θ ∈ [x, y], we have inf(|x|, |y|) ≤ |θ|, and the result is thus a
consequence of the previous inequality. 2

3.2. Estimate on ||uT ||1;M

Theorem 3.1. Let T be an admissible mesh, 0 < ζ ≤ reg(T ) and M be an upper bound of || |v| ||Lp(Ω). There
exists C > 0 only depending on (Ω, p, M, ζ) such that, if uT is a solution to (2.2–2.5), then

||uT ||1,T ≤ C(||f ||L2(Ω) + || |G| ||L2(Ω)).

Proof of Theorem 3.1. (2.2–2.5) being a linear system, proving a bound on uT whenever

||f ||L2(Ω) + || |G| ||L2(Ω) ≤ 1 (3.11)

is enough to prove the theorem in the general case.
We denote, for k > 0, Tk(s) = max(−k, min(s, k)) and Sk(s) = s − Tk(s).

Step 1: estimate on Sk(uT ).

Let k > 0. We use (2.6) with ϕK = Sk(uK); since (Sk(uK) − Sk(uL))2 ≤ (uK − uL)(Sk(uK) − Sk(uL)) (Sk

is nondecreasing and Lipschitz-continuous with 1 as Lipschitz constant) and bKuKSk(uK) ≥ 0 (Sk(s) has the
same sign as s), we get

∑
σ∈E

τσ(Sk(uK) − Sk(uL))2 ≤
∑
K∈T

meas(K)fKSk(uK)

+
∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(Sk(uK) − Sk(uL))

+
∑
σ∈E

m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(Sk(uK) − Sk(uL)). (3.12)

By means of the Cauchy-Schwarz inequality, the discrete Poincaré inequality and (3.11), we have

∣∣∣∣∣
∑
K∈T

meas(K)fKSk(uK)

∣∣∣∣∣ ≤
(∑

K∈T
meas(K)f2

K

)1/2(∑
K∈T

meas(K)(Sk(uK))2
)1/2

≤ ||f ||L2(Ω)||Sk(uT )||L2(Ω)

≤ diam(Ω)||Sk(uT )||1,T . (3.13)
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The Cauchy-Schwarz inequality, associated to (3.4) and (3.11), gives

∑
σ∈E

m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(Sk(uK) − Sk(uL))

≤
(∑

σ∈E
m(σ)dσ

(
dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)2
)1/2(∑

σ∈E
τ(σ)(Sk(uK) − Sk(uL))2

)1/2

≤
√

2d||Sk(uT )||1,T . (3.14)

We bound now the convection term, beginning with

∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(Sk(uK) − Sk(uL))

≤
(∑

σ∈E
m(σ)dσ

(
dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)2
)1/2

||Sk(uT )||1,T . (3.15)

Since dK,σ/dσ ≤ 1 and dL,σ/dσ ≤ 1, gathering by control volumes and using Hölder’s inequality (with p/2 > 1
and p/(p − 2)), we find

∑
σ∈E

m(σ)dσ

(
dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)2

≤ 2
∑
σ∈E

m(σ)dσ

(
dL,σ

dσ
v2

L,σu2
L,σ,+ +

dK,σ

dσ
v2

K,σu2
K,σ,+

)

≤ 2
∑
K∈T

∑
σ∈EK

m(σ)dK,σv2
K,σu2

K,σ,+

≤ 2

(∑
K∈T

∑
σ∈EK

m(σ)dK,σ |vK,σ|p
) 2

p

×
(∑

K∈T

∑
σ∈EK

m(σ)dK,σ |uK,σ,+|
2p

p−2

) p−2
p

. (3.16)

But, by Jensen’s inequality,

m(σ)dK,σ |vK,σ|p ≤ m(σ)dK,σ

meas(4K,σ)

∫
4K,σ

|v|p = d

∫
4K,σ

|v|p

so that, since {4K,σ , K ∈ T , σ ∈ EK} is (up to a set of null Lebesgue measure) a partition of Ω,

∑
K∈T

∑
σ∈EK

m(σ)dK,σ |vK,σ|p ≤ d|| |v| ||pLp(Ω) ≤ dMp. (3.17)

On the other hand,

∑
K∈T

∑
σ∈EK

m(σ)dK,σ|uK,σ,+|
2p

p−2 =
∑
K∈T

|uK |
2p

p−2
∑

σ∈EK

m(σ)d(K, σ)



716 J. DRONIOU AND T. GALLOUËT

where
• d(K, σ) = dK,σ if σ = K|L ∈ Eint satisfies vK,σ ≥ 0 and vL,σ ≥ 0;
• d(K, σ) = dK,σ + dL,σ = dσ if σ = K|L ∈ Eint satisfies vK,σ ≥ 0 and vL,σ < 0;
• d(K, σ) = dL,σ if σ = K|L ∈ Eint satisfies vK,σ < 0 and vL,σ < 0;
• d(K, σ) = 0 if σ = K|L ∈ Eint satisfies vK,σ < 0 and vL,σ ≥ 0;
• d(K, σ) = dK,σ if σ ∈ Eext ∩ EK satisfies vK,σ ≥ 0;
• d(K, σ) = 0 if σ ∈ Eext ∩ EK satisfies vK,σ < 0.

In either case, we have d(K, σ) ≤ dσ ≤ dK,σ

ζ , so that

∑
K∈T

∑
σ∈EK

m(σ)dK,σ |uK,σ,+|
2p

p−2 ≤ 1
ζ

∑
K∈T

|uK |
2p

p−2
∑

σ∈EK

m(σ)dK,σ ≤ d

ζ
||uT ||

2p
p−2

L
2p

p−2 (Ω)
(3.18)

(we have used
∑

σ∈EK
m(σ)dK,σ = d meas(K)).

(3.16, 3.17) and (3.18) together give

(∑
σ∈E

m(σ)dσ

(
dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)2
)1/2

≤
√

2d
1
p + p−2

2p

ζ
p−2
2p

M ||uT ||
L

2p
p−2 (Ω)

. (3.19)

Since |uT | ≤ k + |Sk(uT )|, (3.15) entails

∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(Sk(uK) − Sk(uL))

≤ C1k||Sk(uT )||1,T + C1||Sk(uT )||
L

2p
p−2 (Ω)

||Sk(uT )||1,T (3.20)

where C1 only depends on (Ω, p, M, ζ) (a dependence on Ω takes into account a dependence on d).
But p > d, so that 2p

p−2 < 2d
d−2 . Let q ∈] 2p

p−2 , 2d
d−2 [ (the choice of such a q only depends on (d, p)). Since

Sk(uT ) = 0 outside Ek = {x ∈ Ω | |uT (x)| ≥ k}, the Hölder inequality and the discrete Sobolev inequality give

||Sk(uT )||
L

2p
p−2 (Ω)

≤ meas(Ek)
p−2
2p − 1

q ||Sk(uT )||Lq(Ω) ≤ C2meas(Ek)
p−2
2p − 1

q ||Sk(uT )||1,T

where C2 only depends on (Ω, q, ζ) (i.e. on (Ω, p, ζ)). (3.20) leads then to

∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(Sk(uK) − Sk(uL))

≤ C3k||Sk(uT )||1,T + C3meas(Ek)
p−2
2p − 1

q ||Sk(uT )||21,T (3.21)

where C3 only depends on (Ω, p, M, ζ).
Gathering (3.13, 3.14) and (3.21) in (3.12), we obtain

||Sk(uT )||21,T ≤ (diam(Ω) +
√

2d + C3k)||Sk(uT )||1,T + C3meas(Ek)
p−2
2p − 1

q ||Sk(uT )||21,T . (3.22)

But, by Tchebycheff’s inequality, the discrete Poincaré inequality and Proposition 3.1, we have

meas(Ek) = meas({x ∈ Ω | ln(1 + |uT (x)|) ≥ ln(1 + k)}) ≤
|| ln(1 + |uT |)||2L2(Ω)

(ln(1 + k))2
≤ C4

(ln(1 + k))2
,
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where C4 only depends on (Ω, p, M). Thus, since p−2
2p − 1

q > 0, we can find k0 only depending on (Ω, p, M, ζ)

such that C3meas(Ek0)
p−2
2p − 1

q < 1
2 and (3.22) allows to write

||Sk0(uT )||1,T ≤ 2(diam(Ω) +
√

2d + C3k0) = C5 (3.23)

with C5 only depending on (Ω, p, M, ζ).

Step 2: estimate on Tk0(uT ) and conclusion.

With the k0 obtained in the previous step, using ϕK = Tk0(uK) in (2.6), the fact that (Tk0(uK)−Tk0(uL))2 ≤
(uK − uL)(Tk0(uK) − Tk0(uL)), that bKuKTk0(uK) ≥ 0 and that |Tk0(uK)| ≤ k0, we find

||Tk0(uT )||21,T ≤ k0||f ||L1(Ω) +
∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(Tk0(uK) − Tk0(uL))

+
∑
σ∈E

m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(Tk0(uK) − Tk0(uL)). (3.24)

The Cauchy-Schwarz inequality, (3.4) and (3.11) lead to

∑
σ∈E

m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(Tk0(uK) − Tk0(uL)) ≤

√
2d||Tk0(uT )||1,T . (3.25)

Thanks to the Cauchy-Schwarz inequality and to (3.19), we also have

∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(Tk0(uK) − Tk0(uL)) ≤ C6||uT ||

L
2p

p−2 (Ω)
||Tk0(uT )||1,T

≤
(

C7 + C7||Sk0(uT )||
L

2p
p−2 (Ω)

)
||Tk0(uT )||1,T

where C6 and C7 only depend on (Ω, p, M, ζ) (we have used |uT | ≤ k0 + |Sk0(uT )|). Thanks to the discrete
Sobolev inequality (recall that 2p

p−2 < 2d
d−2 ) and to (3.23), we deduce that there exists C8 only depending

on (Ω, p, M, ζ) such that

∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(Tk0(uK) − Tk0(uL)) ≤ C8||Tk0(uT )||1,T .

This inequality, injected in (3.24) together with (3.25), gives ||Tk0(uT )||1,T ≤ C9 with C9 only depending
on (Ω, p, M, ζ).

Since uT = Tk0(uT ) + Sk0(uT ), we deduce that ||uT ||1,T ≤ C5 + C9, which concludes this proof. 2

4. Proof of the existence, uniqueness and convergence result

Proof of Theorem 2.1. The existence of a unique solution to (2.2–2.5) is an immediate consequence of the
estimate of Theorem 3.1: indeed, if f = G = 0, then this theorem shows that any solution to (2.2–2.5) is null,
that is to say that the square matrix defining this linear system is invertible.
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Let us now prove the convergence result.
Since the solution to (1.3) is unique (see [3]), it is sufficient to prove that, for any sequence of admissible

meshes (Tn)n≥1 such that size(Tn) → 0 and reg(Tn) ≥ α, we can extract a subsequence (still denoted (Tn)n≥1)
such that the solution uTn to (2.2–2.5) (with Tn instead of T ) converges to the solution of (1.3).

Take such a sequence (Tn)n≥1. Thanks to Theorem 3.1 and to item (iii) of Proposition 2.1, we see that, up to
a subsequence, we can suppose that uTn → u in L2(Ω), for some u ∈ H1

0 (Ω); by the discrete Sobolev inequality,
(uTn)n≥1 is also bounded in Lq(Ω) for all q < 2d

d−2 , so that Vitali’s Theorem gives the convergence of (uTn)n≥1

to u in Lq(Ω) for all q < 2d
d−2 .

We are now going to prove that u is a solution to (1.3), which is enough, as noticed above, to conclude the
proof of the theorem.

To simplify the notation, we forget the index n.
Of course, it is sufficient to prove that u satisfies the equation of (1.3) for all ϕ ∈ C∞

c (Ω). Take such a ϕ.
Using (2.6) with ϕK = ϕ(xK), we have

∑
σ∈E

τσ(uK − uL)(ϕ(xK ) − ϕ(xL)) +
∑
K∈T

meas(K)bKuKϕ(xK)

=
∑
K∈T

meas(K)fKϕ(xK) +
∑
σ∈E

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(xK) − ϕ(xL))

+
∑
σ∈E

m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(ϕ(xK ) − ϕ(xL)) (4.1)

(with ϕ(xL) = 0 whenever σ ∈ Eext ∩ EK).

Step 1: convergence of the diffusion and the lower order terms.

The convergence proof in [5] immediately gives

∑
σ∈E

τσ(uK − uL)(ϕ(xK) − ϕ(xL)) →
∫

Ω

∇u · ∇ϕ ,
∑
K∈T

meas(K)bKuKϕ(xK) →
∫

Ω

buϕ

and
∑
K∈T

meas(K)fKϕ(xK) →
∫

Ω

fϕ
(4.2)

as size(T ) → 0 (in fact, to prove the convergence of
∑

K∈T meas(K)bKuKϕ(xK), we must slightly adapt the
method of [5], since b is constant in this reference).

Step 2: convergence of the term involving G.

Let us study the convergence of
∑

σ∈E m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(ϕ(xK ) − ϕ(xL)). We first notice that,

for size(T ) small enough, since ϕ has a compact support in Ω, this sum is reduced to Eint; we take, from now
on, size(T ) satisfying this property.

Fix ε > 0 and take H ∈ (C1(Ω))d such that || |G − H | ||L1(Ω) ≤ ε; let, for K ∈ T and σ ∈ EK , HK,σ =(
1

meas(4K,σ)

∫
4K,σ

H
)
· nK,σ.
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By regularity of ϕ and gathering by control volumes, we write
∣∣∣∣∣
∑

σ∈Eint

m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(ϕ(xK) − ϕ(xL))

−
∑

σ∈Eint

m(σ)
(

dK,σ

dσ
HK,σ − dL,σ

dσ
HL,σ

)
(ϕ(xK) − ϕ(xL))

∣∣∣∣∣
≤ C1

∑
σ∈Eint

m(σ)dσ

(
dK,σ

dσ
|GK,σ − HK,σ| +

dL,σ

dσ
|GL,σ − HL,σ|

)

≤ C1

∑
K∈T

∑
σ∈EK

m(σ)dK,σ |GK,σ − HK,σ|

≤ C1d
∑
K∈T

∑
σ∈EK

∫
4K,σ

|G − H | ≤ C1dε (4.3)

where C1 only depends on ϕ.
By regularity of H and ϕ, we have

∣∣∣∣∣
∑

σ∈Eint

m(σ)
(

dK,σ

dσ
HK,σ − dL,σ

dσ
HL,σ

)
(ϕ(xK ) − ϕ(xL))

−
∑

σ∈Eint

(
dK,σ

dσ

∫
σ

H · nK,σ dγ − dL,σ

dσ

∫
σ

H · nL,σ dγ

)
(ϕ(xK ) − ϕ(xL))

∣∣∣∣∣
≤ C2

∑
σ∈Eint

m(σ)dσ

(
dK,σ

dσ
size(T ) +

dL,σ

dσ
size(T )

)
≤ C2 d meas(Ω)size(T ) (4.4)

where C2 only depends on (H, ϕ).
Gathering by control volumes and noticing that nK,σ = −nL,σ whenever σ = K|L ∈ Eint, we can moreover

write

∑
σ∈Eint

(
dK,σ

dσ

∫
σ

H · nK,σ dγ −dL,σ

dσ

∫
σ

H · nL,σ dγ

)
(ϕ(xK) − ϕ(xL)) =

∑
K∈T

ϕ(xK)
∑

σ∈EK∩Eint

∫
σ

H · nK,σ dγ

=
∑
K∈T

ϕ(xK)
∫

∂K\∂Ω

H · nK,σ dγ.

Since ϕ = 0 on the control volumes K ∈ T such that ∂K ∩ ∂Ω 6= ∅, we have in fact

∑
σ∈Eint

(
dK,σ

dσ

∫
σ

H · nK,σ dγ − dL,σ

dσ

∫
σ

H · nL,σ dγ

)
(ϕ(xK) − ϕ(xL))

=
∑
K∈T

ϕ(xK)
∫

∂K

H · nK,σ dγ

=
∑
K∈T

ϕ(xK)
∫

K

div(H)
size(T )→0−→

∫
Ω

ϕdiv(H) = −
∫

Ω

H · ∇ϕ, (4.5)

the convergence being a consequence of the regularity of ϕ and H .
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We also remark that

∣∣∣∣
∫

Ω

H · ∇ϕ −
∫

Ω

G · ∇ϕ

∣∣∣∣ ≤ C3ε, (4.6)

where C3 only depends on ϕ.
Gathering (4.3–4.5) and (4.6), we deduce that

lim sup
size(T )→0

∣∣∣∣∣
∑

σ∈Eint

m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(ϕ(xK ) − ϕ(xL)) −

(
−
∫

Ω

G · ∇ϕ

)∣∣∣∣∣ ≤ (C1d + C3)ε

for all ε > 0 and, since C1 and C3 only depend on ϕ, this gives

∑
σ∈Eint

m(σ)
(

dK,σ

dσ
GK,σ − dL,σ

dσ
GL,σ

)
(ϕ(xK ) − ϕ(xL)) → −

∫
Ω

G · ∇ϕ (4.7)

as size(T ) → 0.

Step 3: convergence of the convective term.

It remains to study the convergence of the term in (4.1) coming from the convection, that is to say∑
σ∈Eint

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(xK) − ϕ(xL)) (the sum is reduced to Eint because size(T )

has been chosen small enough).
Take ε > 0 and w ∈ (C1(Ω))d such that || |v − w| ||L2(Ω) ≤ ε. Let, if K ∈ T and σ ∈ EK , wK,σ =(

1
meas(4K,σ)

∫
4K,σ

w
)
· nK,σ. We have, by regularity of ϕ,

∣∣∣∣∣
∑

σ∈Eint

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(xK ) − ϕ(xL))

−
∑

σ∈Eint

m(σ)
(

dL,σ

dσ
wL,σuL,σ,+ − dK,σ

dσ
wK,σuK,σ,+

)
(ϕ(xK) − ϕ(xL))

∣∣∣∣∣
≤ C1

∑
σ∈Eint

m(σ)dσ

(
dL,σ

dσ
|vL,σ − wL,σ| |uL,σ,+| +

dK,σ

dσ
|vK,σ − wK,σ| |uK,σ,+|

)

≤ C1

∑
K∈T

∑
σ∈EK

m(σ)dK,σ |vK,σ − wK,σ| |uK,σ,+|

≤ C1

(∑
K∈T

∑
σ∈EK

m(σ)dK,σ(vK,σ − wK,σ)2
)1/2(∑

K∈T

∑
σ∈EK

m(σ)dK,σ(uK,σ,+)2
)1/2

(C1, which only depends on ϕ, is the same constant as before). The same way we have obtained (3.18), we can
prove that

∑
K∈T

∑
σ∈EK

m(σ)dK,σ(uK,σ,+)2 ≤ d

ζ
||uT ||2L2(Ω) ≤ C4
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where C4 only depends on (Ω, p, || |v| ||Lp(Ω), ζ) (we use here Th. 3.1 and the discrete Poincaré inequality to
obtain a bound on uT in L2(Ω)). Moreover, by Jensen’s inequality,

∑
K∈T

∑
σ∈EK

m(σ)dK,σ(vK,σ − wK,σ)2 ≤
∑
K∈T

∑
σ∈EK

m(σ)dK,σ

4K,σ

∫
4K,σ

|v − w|2 = d|| |v − w| ||2L2(Ω) ≤ dε2.

Thus, we have

∣∣∣∣∣
∑

σ∈Eint

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(xK ) − ϕ(xL))

−
∑

σ∈Eint

m(σ)
(

dL,σ

dσ
wL,σuL,σ,+ − dK,σ

dσ
wK,σuK,σ,+

)
(ϕ(xK ) − ϕ(xL))

∣∣∣∣∣
≤ εC1

√
C4d. (4.8)

By regularity of w and ϕ, and gathering by control volumes, we find C5 only depending on w and ϕ such that

∣∣∣∣∣
∑

σ∈Eint

m(σ)
(

dL,σ

dσ
wL,σuL,σ,+ − dK,σ

dσ
wK,σuK,σ,+

)
(ϕ(xK) − ϕ(xL))

−
∑

σ∈Eint

(
dL,σ

dσ

∫
σ

w · nL,σ dγ uL,σ,+ − dK,σ

dσ

∫
σ

w · nK,σ dγ uK,σ,+

)
(ϕ(xK) − ϕ(xL))

∣∣∣∣∣
≤ C5

∑
σ∈Eint

m(σ)dσ

(
dL,σ

dσ
size(T )|uL,σ,+| +

dK,σ

dσ
size(T )|uK,σ,+|

)

≤ C5size(T )
∑
K∈T

∑
σ∈EK

m(σ)dK,σ |uK,σ,+|.

Once again we can prove, the same way we have obtained (3.18), that
∑

K∈T
∑

σ∈EK
m(σ)dK,σ |uK,σ,+| ≤

d
ζ ||uT ||L1(Ω), which is bounded by C6 only depending on (Ω, p, || |v| ||Lp(Ω), ζ). Thus we get

∣∣∣∣∣
∑

σ∈Eint

m(σ)
(

dL,σ

dσ
wL,σuL,σ,+ − dK,σ

dσ
wK,σuK,σ,+

)
(ϕ(xK) − ϕ(xL))

−
∑

σ∈Eint

(
dL,σ

dσ

∫
σ

w · nL,σ dγ uL,σ,+ − dK,σ

dσ

∫
σ

w · nK,σ dγ uK,σ,+

)
(ϕ(xK) − ϕ(xL))

∣∣∣∣∣
≤ C5C6size(T ). (4.9)

Denoting by wK,σ =
∫

σ
w · nK,σ dγ, uσ = dL,σuL,σ,++dK,σuK,σ,+

dσ
and noticing that wK,σ = −wL,σ whenever

σ = K|L ∈ Eint, we can write

∑
σ∈Eint

(
dL,σ

dσ

∫
σ

w · nL,σ dγ uL,σ,+ −dK,σ

dσ

∫
σ

w · nK,σ dγ uK,σ,+

)
(ϕ(xK) − ϕ(xL)) =

−
∑

σ∈Eint

wK,σuσ(ϕ(xK ) − ϕ(xL)).
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Gathering by control volumes (and since wK,σ = −wL,σ if σ = K|L ∈ Eint), this gives

∑
σ∈Eint

(
dL,σ

dσ

∫
σ

w · nL,σ dγ uL,σ,+ −dK,σ

dσ

∫
σ

w · nK,σ dγ uK,σ,+

)
(ϕ(xK) − ϕ(xL)) =

−
∑
K∈T

∑
σ∈EK∩Eint

wK,σuσϕ(xK) = −
∑
K∈T

∑
σ∈EK

wK,σuσϕ(xK) (4.10)

(recall that size(T ) is small enough so that ϕ(xK) = 0 whenever Eext ∩ EK 6= ∅).
The technique is then the same as in [5]: we decompose∑

K∈T

∑
σ∈EK

wK,σuσϕ(xK) =
∑
K∈T

∑
σ∈EK

wK,σ(uσ − uK)ϕ(xK) +
∑
K∈T

∑
σ∈EK

wK,σuKϕ(xK). (4.11)

Since
∑

σ∈EK
wK,σ =

∫
K div(w), by convergence of uT to u in L2(Ω) and by regularity of ϕ, we have

∑
K∈T

∑
σ∈EK

wK,σuKϕ(xK) =
∑
K∈T

uKϕ(xK )
∫

K

div(w) −→
∫

Ω

uϕdiv(w) (4.12)

as size(T ) → 0. We also have

∣∣∣∣∣
∑
K∈T

∑
σ∈EK

wK,σ(uσ − uK)ϕ(xK) −
∑
K∈T

∑
σ∈EK

(uσ − uK)
∫

σ

w · nK,σϕdγ

∣∣∣∣∣
≤ C1size(T )|| |w| ||C(Ω)

∑
K∈T

∑
σ∈EK

m(σ)|uσ − uK |.

But uσ is a convex combinaison of (uK , uL) if σ = K|L ∈ Eint, and uσ ∈ {0, uK} if σ ∈ Eext ∩ EK , so that, in
either case, |uσ − uK | ≤ DσuT and∣∣∣∣∣

∑
K∈T

∑
σ∈EK

wK,σ(uσ − uK)ϕ(xK) −
∑
K∈T

∑
σ∈EK

(uσ − uK)
∫

σ

w · nK,σϕdγ

∣∣∣∣∣
≤ C1size(T )|| |w| ||C(Ω)

∑
K∈T

∑
σ∈EK

m(σ)DσuT

≤ 2C1size(T )|| |w| ||C(Ω)

∑
σ∈E

m(σ)DσuT

≤ 2C1size(T )|| |w| ||C(Ω)

(∑
σ∈E

m(σ)dσ

)1/2

||uT ||1,T .

||uT ||1,T being bounded as size(T ) → 0 and
∑

σ∈E m(σ)dσ being constant (it is d meas(Ω)), we deduce that

lim
size(T )→0

(∑
K∈T

∑
σ∈EK

wK,σ(uσ − uK)ϕ(xK) −
∑
K∈T

∑
σ∈EK

(uσ − uK)
∫

σ

w · nK,σϕdγ

)
= 0. (4.13)

We have, gathering by edges and since ϕ = 0 on σ whenever σ ∈ Eext,

∑
K∈T

∑
σ∈EK

uσ

∫
σ

w · nK,σϕdγ =
∑

σ∈Eint

uσ

(∫
σ

w · nK,σϕdγ +
∫

σ

w · nL,σϕdγ

)
= 0
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since nK,σ = −nL,σ if σ = K|L ∈ Eint. Moreover,

∑
K∈T

∑
σ∈EK

uK

∫
σ

w · nK,σϕdγ =
∑
K∈T

uK

∫
K

div(ϕw) −→
∫

Ω

u div(ϕw)

as size(T ) → 0. Thus, (4.13) implies

∑
K∈T

∑
σ∈EK

wK,σ(uσ − uK)ϕ(xK ) −→ −
∫

Ω

u div(ϕw)

as size(T ) → 0. Together with (4.9–4.11) and (4.12), this gives

∑
σ∈Eint

m(σ)
(

dL,σ

dσ
wL,σuL,σ,+ − dK,σ

dσ
wK,σuK,σ,+

)
(ϕ(xK ) − ϕ(xL))

−→ −
∫

Ω

uϕdiv(w) +
∫

Ω

u div(ϕw) =
∫

Ω

uw · ∇ϕ (4.14)

as size(T ) → 0.
By noticing that∣∣∣∣

∫
Ω

uw · ∇ϕ −
∫

Ω

uv · ∇ϕ

∣∣∣∣ ≤ ||u||L2(Ω)|| |v − w| ||L2(Ω)|| |∇ϕ| ||L∞(Ω) ≤ C7ε

where C7 only depends on u and ϕ, (4.8) and (4.14) allow to write

lim sup
size(T )→0

∣∣∣∣∣
∑

σ∈Eint

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(xK) − ϕ(xL)) −

∫
Ω

uv · ∇ϕ

∣∣∣∣ ≤ (C1

√
C4d+C7)ε

for all ε > 0 and with C1, C4 and C7 not depending on ε, that is to say

∑
σ∈Eint

m(σ)
(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)
(ϕ(xK ) − ϕ(xL)) −→

∫
Ω

uv · ∇ϕ (4.15)

as size(T ) → 0.
Gathering (4.2, 4.7) and (4.15) in (4.1), we see that u satisfies the equation of (1.3). 2

5. Another scheme

The scheme of Section 2 is based on a discretization of (1.1) that brings in approximate values of
∫

σ
v·nK,σ dγ

and
∫

σ G · nK,σ dγ based on the values of v and G on a subset of K (the “half-diamond”). The choice of such
approximate values seems to be quite adapted when there is a link between the mesh and v or G: for example,
if v or G is constant on each side of an hyperplane and if we take meshes such that each control volume is on
one side of this hyperplane.

But when there is no relation between v or G and the mesh, the reasons for using the values of v or G only
on K to approximate

∫
σ v · nK,σ dγ or

∫
σ G · nK,σ dγ are not so clear: we could approximate v or G on σ by

some quantity vσ or Gσ, and then consider m(σ)vσ · nK,σ or m(σ)Gσ · nK,σ as a coherent approximate value
of
∫

σ v · nK,σ dγ or
∫

σ G · nK,σ dγ. This is what the following scheme does.
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Let T be an admissible mesh. If σ = K|L ∈ Eint, we define the “full-diamond” around σ by 4σ = 4K,σ∪4L,σ;
if σ ∈ Eext ∩ EK , the “full-diamond” around σ is simply 4σ = 4K,σ. We let then, for K ∈ T and σ ∈ E ,

vσ =
1

meas(4σ)

∫
4σ

v , bK =
1

meas(K)

∫
K

b ,

fK =
1

meas(K)

∫
K

f and Gσ =
1

meas(4σ)

∫
4σ

G.

The new scheme for (1.1) is

∀K ∈ T ,
∑

σ∈EK

FK,σ +
∑

σ∈EK

m(σ)vσ · nK,σuσ,+ + meas(K)bKuK = meas(K)fK +
∑

σ∈EK

m(σ)Gσ · nK,σ , (5.1)

∀K ∈ T , ∀σ = K|L ∈ EK ∩ Eint , FK,σ = m(σ)
dσ

(uK − uL) ,

∀K ∈ T , ∀σ ∈ EK ∩ Eext , FK,σ = m(σ)
dσ

uK ,
(5.2)

∀σ = K|L ∈ Eint , uσ,+ = uK if vσ · nK,σ ≥ 0 , uσ,+ = uL otherwise,
∀σ ∈ Eext ∩ EK , uσ,+ = uK if vσ · nK,σ ≥ 0 , uσ,+ = 0 otherwise.

(5.3)

In fact, we can remark that (5.1–5.3) is exactly (2.2–2.5), provided that we define vK,σ = vσ · nK,σ, GK,σ =
Gσ ·nK,σ and let uK,σ,+ = uσ,+ (for all K ∈ T and all σ ∈ EK). Indeed, in this case, if σ = K|L ∈ Eint, we have
vK,σ = −vL,σ, so that (5.3) is equivalent to (2.5) (with the notation uK,σ,+ = uσ,+), and GK,σ = −GL,σ, so
that (2.4) comes down to FK,σ = −FL,σ (or uσ = 0 if σ ∈ Eext) which, associated to (2.3), is equivalent to (5.2).

Thus, we easily see that the preceding techniques to obtain a priori estimates on the solutions to (2.2–2.5)
give us estimates on the solutions to (5.1–5.3), which proves the existence and uniqueness of the solution to this
problem. The convergence proof also works as before, and we deduce that, if α > 0 is fixed and uT denotes the
solution to (5.1–5.3), then uT converges in Lq(Ω), for all q < 2d

2−d , to the unique solution of (1.3), as size(T ) → 0
with reg(T ) ≥ α.
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