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STABILITY OF FLAT INTERFACES DURING SEMIDISCRETE
SOLIDIFICATION
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Abstract. The stability of flat interfaces with respect to a spatial semidiscretization of a solidification
model is analyzed. The considered model is the quasi-static approximation of the Stefan problem with
dynamical Gibbs–Thomson law. The stability analysis bases on an argument developed by Mullins
and Sekerka for the undiscretized case. The obtained stability properties differ from those with re-
spect to the quasi-static model for certain parameter values and relatively coarse meshes. Moreover,
consequences on discretization issues are discussed.

Mathematics Subject Classification. 65M12, 65M60.

Received: August 27, 2001. Revised: March 4, 2002.

1. Introduction and motivation

The quasi-static approximation of the Stefan problem with dynamical Gibbs–Thomson law is considered. This
is a free boundary problem, which models solidification from a pure, possibly supercooled liquid. Flat interfaces
moving with appropriate constant velocity constitute “stationary” solutions. These solutions are unstable
under certain conditions and are then examples of so-called morphological or Mullins-Sekerka instabilities; see
e.g. the books Alexiades and Solomon [1] (Sect. 2.4.G), Gurtin [10] (Sect. 18.2), the review articles Langer [11],
Sekerka [15], and the references therein. The purpose of this article is to investigate the stability of flat interfaces
for certain spatial discretizations of the afore-mentioned problem. Moreover, consequences of the obtained results
on the choice of the discrete spaces and the solver, on a priori error estimates, and on the interpretation of
practical simulations are discussed.

In order to motivate such investigation, we recall the isotropic modified Stefan problem in 2d and some recent
results concerning its numerical solution.

Let Ω ⊂ R
2 be a bounded domain occupied by a pure substance that may be in solid (superscript s) or liquid

(superscript l) phase. For any time t, the domain Ω is decomposed in a solid part Ωs(t), a liquid part Ωl(t),
and a separating interface Γ(t). We associate the normal n, the normal velocity V , and the curvature κ of the
interface Γ with this decomposition. The normal n is pointing into the liquid and the curvature κ is positive, if
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the solid is convex. The jump across the interface Γ with sign convention ‘l’− ‘s’ is denoted by [[·]]ls. Moreover,
the strictly positive constants k and c are the thermal conductivity and the specific heat (for simplicity, we
suppose that these quantities coincide for solid and liquid). Finally, β > 0 is the kinetic coefficient and γ > 0
the solid-liquid surface tension. The (scaled) temperature field θ and the phase distribution (Ωs,Γ,Ωl) of the
domain are governed by the equations

cθt − div(k∇θ) = 0 in Ωs(t) and Ωl(t), (1.1a)

V + k [[∂nθ]]
l
s = 0 on Γ(t), (1.1b)

βV + γκ+ θ = 0 on Γ(t), (1.1c)

which are subject to suitable boundary and initial conditions; see e.g. Gurtin [10] (Sect. 17.3.2) and Visintin [19]
(Sect. IV.2). Note the following implicit assumption in the dynamical Gibbs–Thomson law (1.1c): the temper-
ature field θ has no jump across the free boundary Γ.

Schmidt [14], see also Bänsch and Schmidt [3], proposed and tested a method for the numerical solution
of problem (1.1) with adaptive finite elements. Allowing that both the kinetic coefficient β and the surface
tension γ depend smoothly on the normal n, simulations of dendritic growth were performed in 2d and 3d.
Among others things, it was observed that on coarse meshes secondary side branching takes places, while it
does not take place (or may appear at a later time) on finer meshes [14] (Fig. 4.5). Related effects were observed
by Fried [9]. In contrast to the parametric approach used in [3, 14], Fried relies on a finite element level-set
method for a anisotropic variant of the forced mean curvature flow (1.1c).

The fact that the secondary side branching disappears with refining suggests that the observed branching is
a numerical artefact. However, if this is true, there is missing an explanation of the secondary side branching on
coarse meshes. Such an explanation may be provided by stability analyses of the continuous and (semi)discrete
problems.

In [18] the author investigated a semidiscrete finite element method that has the same structure as the ap-
proach of [3,14]. Error estimates for approximations to the temperature field θ, the phase distribution (Ωs,Γ,Ωl),
the normal n, the normal velocity V , and the curvature κ are established in 2d. They cover the case in which
both the kinetic coefficient β and the surface tension γ depend smoothly on the normal n. For example, it holds

sup
]0,T [

‖θh − θ‖L2(Ω) ≤ Ch, (1.2)

where h ≤ h∗ denotes the uniform meshsize, θh is the discrete temperature field, and C is a constant not
depending on h. The proof does not allow a realistic estimation of C’s size. However, it sheds some light on
the geometric properties of the exact solution that determine C’s size [18] (Rem. 3.1).

It is reasonable to suppose the following: a necessary condition for a moderate size of C is that the stability
properties of problem (1.1) and its (semi)discretization are “similar”. In this sense, stability analyses of both
problems provide a further contribution to a qualitative understanding of C’s size. Furthermore, they may
indicate whether or not C has to depend on T .

In what follows, we consider the quasi-static approximation of problem (1.1), i.e. the case with c = 0. This
approximation seems to be appropriate if the interface moves slowly with respect to the time-scale of (1.1a).
In Section 2 we investigate the stability of flat interfaces by adapting an argument [12] by Mullins and Sekerka
to the case of a bounded domain Ω and kinetic undercooling in the Gibbs-Thomson law (1.1c). The spatial
discretization is introduced in Section 3. The interface Γ is represented as a graph of a finite element function
and the temperature field θ is approximated by time-depending isoparametric finite elements. In Section 4 we
perform the semidiscrete counterpart of Section 2. We compare the results obtained in the continuous and
the semidiscrete case and discuss consequences in Section 5. Finally, we show in Section 6 that the results in
Section 4 correspond to a (linearized) stability analysis in the classical sense.
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2. Flat interfaces in the continuous case

We start by presenting the continuous problem which will be considered in the sequel (hereafter, “continuous”
often means “non-discrete”). Then, we introduce some stationary solutions and investigate their stability by
following an argument due to Mullins and Sekerka [12].

Let Ω := I × J with I := ]0, 2π[ and J := ]−1, 1[ and denote the outer normal of Ω by ν. We shall write
z = (x, y) ∈ Ω and use the letter D to denote the (partial) derivative with respect to x or y. Moreover, let V̂ ,
θs, θl ∈ R and T , k, β, γ > 0 as well as uinit : I → R be given.

Problem 2.1 (Continuous problem). Find

u : I × [0, T [ → R and θ : Ω × [0, T [ → R

such that there holds, for all t ∈ ]0, T [,

−∆θ = 0 in Ωs(t) and Ωl(t), (2.1a)

V + V̂ + k [[∂nθ]]
l
s = 0 on Γ(t), (2.1b)

β(V + V̂ ) + γκ+ θ = 0 on Γ(t), (2.1c)

as well as

θ(x,−1, t) = θs, θ(x, 1, t) = θl for all x ∈ I, (2.1d)

∂νθ(0, y, t) = 0, ∂νθ(2π, y, t) = 0 for all y ∈ J , (2.1e)

Du(0, t) = 0, Du(2π, t) = 0, (2.1f)

|u(x, t)| < 1 for all x ∈ I, (2.1g)

and, for all x ∈ I,

u(x, 0) = uinit(x). (2.1h)

Hereafter,

Ωs(t) := {z = (x, y) ∈ Ω | y < u(x, t)},
Ωl(t) := {z = (x, y) ∈ Ω | y > u(x, t)},

Γ(t) := graphu(·, t) := {z = (x, y) ∈ Ω | y = u(x, t)}

for all t ∈ [0, T [, and

n(z, t) :=

(−Du(x, t), 1)√
1 + |Du(x, t)|2 , V (z, t) :=

∂tu(x, t)√
1 + |Du(x, t)|2 ,

κ(z, t) :=
−D2u(x, t)(

1 + |Du(x, t)|2)3/2

for all z = (x, y) ∈ Γ(t), t ∈ ]0, T [.
Equations (2.1a–2.1c) restate equations (1.1) with c = 0 in a frame that moves in vertical direction with

constant speed V̂ . The conditions for the temperature on the (originally moving) boundary are given as follows:
on the horizontal walls the temperature is determined by two heaters at temperatures θs and θl, while the
vertical walls are isolated. The free boundary Γ(t), which is supposed to be a graph over I, has normal contact
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with the vertical walls, but does not touch the horizontal walls. The initial interface Γ(0) is given as the graph
of the function uinit.

Let us mention the following results on local existence and uniqueness of classical solutions of related (β = 0,
V̂ = 0) problems: Escher and Simonett [6, 7], Chen et al. [4], and the references therein.

The flat interface

u0(x, t) = 0 (2.2a)

for all x ∈ I, t ∈ [0, T [ and the temperature field

θ0(z, t) = −βV̂ +

{
psy, y ≤ 0,
ply, y ≥ 0

(2.2b)

for all z = (x, y) ∈ Ω, t ∈ [0, T [ with

ps := −(θs + βV̂ ) and pl := θl + βV̂ (2.3)

constitute a stationary solution of Problem 2.1, iff

V̂ = −k(pl − ps), (2.4)

that is

(1 + 2βk)V̂ = −k(θs + θl). (2.5)

Next, supposing that condition (2.5) holds, we investigate the stability of the flat interfaces (2.2a) and their
corresponding temperature fields (2.2b) in a linearized way.

To this end, set vm(x) := cos
(

m
2 x
)
, x ∈ I, for all m ∈ N0. The sequence (vm)m satisfies

−D2vm =
m2

4
vm in I, Dvm(0) = 0 = Dvm(2π)

and is a complete orthogonal system for the Hilbert space L2(I). In particular,

L2(I) = span{vm | m ∈ N0}L2(I). (2.6)

Fix λ ∈ Λ := {m2/4 | m ∈ N0} and let vλ be a corresponding mode or eigenfunction, e.g. the corresponding
element from the sequence (vm)m. We consider Problem 2.1 with the perturbed initial value

uinit = δvλ, (2.7)

where |δ| is small. We will construct a corresponding approximate solution. To this end, we try the separation
ansatz

uδ(x, t) = ε(t)vλ(x) (2.8a)

for all x ∈ I and t ∈ [0, T [, where the function ε : [0, T [ → R has to be determined. In order to make also an
ansatz for the temperature field, we introduce the auxiliary functions ws

λ, w
l
λ : J → R by

ws
λ(y) :=



y + 1, λ = 0,

e
√

λy

1 − e−2
√

λ
− e−

√
λy

e2
√

λ − 1
, λ > 0,
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and

wl
λ(y) :=



−y + 1, λ = 0,

e−
√

λy

1 − e−2
√

λ
− e

√
λy

e2
√

λ − 1
, λ > 0.

They satisfy

−D2ws
λ = −λws

λ in J , ws
λ(0) = 1, ws

λ(−1) = 0,

−D2wl
λ = −λwl

λ in J , wl
λ(0) = 1, wl

λ(1) = 0.

Writing

θδ(z, t) = −βV̂ +

{
psy +Asε(t)vλ(x)ws

λ(y), y < uδ(x, t),
ply +Alε(t)vλ(x)wl

λ(y), y > uδ(x, t)
(2.8b)

for all z = (x, y) ∈ Ω and t ∈ [0, T [, we have to determine the real valued constants As and Al in addition to ε;
recall the definition of ps and pl in (2.3). Note that θδ is not necessarily continuous.

One immediately verifies that (uδ, θδ) satisfies the bulk equations (2.1a) and the boundary conditions (2.1e,
2.1f); condition (2.1d) is a consequence of (2.1g) and the latter is true if |ε| is sufficiently small on [0, T ] which
will in turn be fulfilled for small |δ|. Therefore, the unknowns As, Al, and ε have to be determined from the
Stefan condition (2.1b), the Gibbs–Thomson law (2.1c), the continuity of θδ across Γδ(t) = graphuδ(·, t), and
the initial condition (2.1h). However, in general, the first three conditions cannot be fulfilled by the ansatz (2.8)
exactly. We thus replace these conditions by corresponding approximate ones. Doing so, we use the Landau
symbol O(·) to indicate a term that is bounded by a constant times the given argument; the constant may
depend on data, As, Al, and λ (also through ws

λ, wl
λ, and vλ), but not on δ. Straight-forward calculations yield

the following; see also Alexiades and Solomon [1] (Sect. 2.4.G) or Gurtin [10] (Sect. 18.2).
Provided (2.5), the Stefan condition (2.1b) holds up to terms which are of order O(ε2) +O(|ε̇ε|), iff

ε̇(t) = kWλ

[
As +Al

]
ε(t) (2.9)

for all t ∈ [0, T [. Hereafter, Wλ := Dws
λ(0) = −Dwl

λ(0) > 0. For later purposes, note that integrating by parts
and the properties of ws

λ yield

Wλ =
∫ 0

−1

|Dws
λ|2 + λ|ws

λ|2 ≤
∫ 0

−1

|Dw|2 + λ|w|2 (2.10)

for all w ∈ H1(]−1, 0[) with w(−1) = 0 and w(0) = 1; an analogue statement holds for the other auxiliary
function wl

λ.
The Gibbs–Thomson law (2.1c), where the temperature θδ is evaluated from the solid, holds up to O(ε2) +

O(|ε̇ε|)-terms, iff

βε̇(t) = −[γλ+ ps +As
]
ε(t) (2.11a)

for all t ∈ [0, T [. Similarly, the Gibbs–Thomson law (2.1c), where the temperature θδ is evaluated from the
liquid, holds up to O(ε2) +O(|ε̇ε|), iff

βε̇(t) = −[γλ+ pl +Al
]
ε(t) (2.11b)

for all t ∈ [0, T [.
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The ordinary differential equations (2.9) and (2.11) can be satisfied instantaneously only if

βkWλ

[
As +Al

]
= −[γλ+ ps +As

]
= −[γλ+ pl +Al

]
.

This is fulfilled for (recall (2.4) and Wλ > 0)

As = −γλ+ ps + βWλV̂

1 + 2βkWλ
, (2.12a)

Al = −γλ+ pl − βWλV̂

1 + 2βkWλ
, (2.12b)

which leads to

ε(t) = δeµt (2.12c)

with

µ =
kWλ

1 + 2βkWλ

(−2γλ− pl − ps
)

(2.12d)

for all t ∈ [0, T [. Finally, note that we have |ε| ≤ |δ|eµT on [0, T ].
We summarize:

Theorem 2.1 (Approximate continuous solutions). Fix an eigenvalue λ ∈ Λ of −D2 with natural boundary
conditions, let vλ be a corresponding mode, and suppose that (2.5) holds.
Then ansatz (2.8) with (2.12) provides a family (θδ, uδ)δ such that

• if |δ| is sufficiently small, the functions θδ and uδ satisfy (2.1a, 2.1d–2.1h) with initial value uinit = δvλ,
• for δ → 0, the functions θδ and uδ are continuous apart from an O(δ2)-jump of θδ across the free boundary

and they satisfy, for all t ∈ [0, T [,

Vδ + V̂ + k

[[
∂θδ

∂nδ

]]l

s

= O(δ2) on Γδ(t),

β(Vδ + V̂ ) + γκδ + θδ = O(δ2) on Γδ(t),

where θδ in the last identity can be evaluated from the solid or the liquid and Vδ, nδ, Γδ, and κδ are defined
in an analogue way to V , n, Γ, and κ. Here O(δ2) indicates terms that are bounded by δ2 times a constant
depending on data, λ, and the choice of vλ.

We may read Theorem 2.1 in the following way. The initial value uinit = 0 is perturbed in direction of
the mode vλ with order δ. But instead of determining the exact solution with respect to the perturbed initial
value, we give an approximate solution which solves Problem 2.1 up to terms of order δ2. Since the order of
these terms is higher than the perturbation of the initial value, one may hope that, for δ → 0, the approximate
solution captures the stability of the considered perturbation; compare also with Section 6. This interpretation,
together with (2.6), suggests that the amplification rate µ in (2.12d) sheds some light on the stability properties
of the stationary solution (2.2).

We postpone a more detailed discussion of formula (2.12d) to Section 5. Here, we just recall that an
investigation of µ’s sign indicates: undercooling of the liquid (pl < 0) and superheating of the solid (ps < 0) are
destabilizing, while surface tension γ > 0 stabilizes for modes corresponding to big eigenvalues λ.
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3. Semidiscretization

In this section we introduce a spatial discretization of Problem 2.1 with the help of finite elements. The
discrete counterpart of the function u is continuous and piecewise polynomial, while the discrete temperature
field is constructed by means of moving (or time-depending isoparametric) elements with an underlying tensor
product structure.

We first derive a weak formulation of Problem 2.1, which is suitable for finite elements; compare with [3,
5, 14, 18]. Let χ : Ω → R be a test function with χ|I×∂J=0. Multiplying the bulk equations (2.1a) with kχ,
integrating over Ωs(t) and Ωl(t), integrating by parts, using the boundary conditions (2.1e) and the Stefan
condition (2.1b) yields ∫

Ω

k∇θ · ∇χ =
∫
I

( ∂tu√
1 + |Du|2 + V̂

)
χ(u)

√
1 + |Du|2. (3.1)

Hereafter, χ(u) is defined by χ(u)(x) := χ
(
x, u(x)

)
, x ∈ I.

Similarly, let ϕ : I → R be a test function. Multiplying the Gibbs-Thomson law (2.1c) with ϕ, integrating
over I, using κ = −D(Du/√1 + |Du|2), integrating by parts the principal term, and using the boundary
conditions (2.1f) gives

β

∫
I

∂tu√
1 + |Du|2ϕ+ γ

∫
I

Du√
1 + |Du|2Dϕ = −

∫
I

[
θ(u) + βV̂

]
ϕ. (3.2)

It remains to choose discrete spaces in the weak equations (3.1) and (3.2); as usual, we shall use the subscript
h to indicate discrete quantities.

We first introduce those for the weak Gibbs-Thomson law (3.2). Let q ∈ N and Xh be the space of Lagrange
elements of order q over some fixed partition of I, i.e. the space of continuous functions that are piecewise
polynomial of degree less than or equal to q. We may number the nodes of Xh in the following way:

0 = x0 < x1 < · · · < xI−1 < xI = 2π.

The nodal basis for Xh is given by the functions ϕi ∈ Xh, i = 0, . . . , I, with

ϕi(xm) = δi,m :=

{
1, if i = m,

0, otherwise
for m = 0, . . . , I.

We turn to the discrete spaces for the weak bulk equation (3.1). To this end, we first construct a tensor product
space. One factor is the space Xh, the other one is the space Yh of Lagrange elements of order r over some fixed
partition of J which vanish in ∂J . We suppose that the point 0 ∈ J is the common boundary of two elements
of Yh and number its nodes in the following way:

−1 < yJ < · · · < y0 = 0 < y1 < · · · < yJ < 1.

The nodal basis for Yh is denoted by (ψj)j=J,...,J . As announced, we define the tensor product space

Zh(0) := Xh ⊗ Yh, (3.3)

which has the basis (χ̂ij)ij , where

χ̂ij(z) :=
(
ϕi ⊗ ψj

)
(x, y) = ϕi(x)ψj(y)

for z = (x, y) ∈ Ω, i = 0, . . . , I, and j = J, . . . , J .



580 A. VEESER

Next, we construct a map from Ω to Ω, which will depend on the discrete free boundary; with the help of
this map and the space Zh(0) we shall define the discrete test space for the weak bulk equation (3.1). To this
end, let y∗ := y−r and y∗ := yr denote the endpoints of the union of the two elements containing the point
y0 = 0. Furthermore, we set

ωmax :=
1
2

min{−y∗, y∗} > 0 (3.4)

and define the function

g(·;ω) : J → J , y 7→




ω +
y∗ − ω

y∗
y, if y ∈ [y∗, 0],

ω +
y∗ − ω

y∗
y, if y ∈ [0, y∗],

y, elsewhere,

(3.5)

which depends on the parameter ω ∈ [−ωmax, ωmax]. Moreover, we introduce the following subset

Bh :=
{
ϕh ∈ Xh | ‖ϕh‖0,∞;I := sup

I
|ϕh| < ωmax

}
, (3.6)

of Xh and define

G(·;wh) : Ω → Ω, z = (x, y) 7→ (
x, g
(
y;wh(x)

))
(3.7)

for wh ∈ Bh. Both maps g(·;ω) and G(·;wh) are bijections for the allowed parameters values; their inverses
are denoted by g−1(·;ω) and G−1(·;wh), respectively. All four maps are Lipschitz continuous. Furthermore,
G(·;wh), wh ∈ Bh, satisfies

G
(I × [−1, y∗];wh

)
= I × [−1, y∗],

G
(I × [y∗, y∗];wh

)
= I × [y∗, y∗], G

(I × {0};wh

)
= graphwh

G
(I × [y∗, 1];wh

)
= I × [y∗, 1].

Finally, for wh ∈ Bh, we define the discrete space

Zh(wh) :=
{
χ̂h ◦G(wh)−1 | χ̂h ∈ Zh(0)

}
(3.9)

by using the abbreviation G(wh)−1 := G−1(·;wh). Note that, thanks to G(·; 0) = idΩ, the definition (3.9) is
consistent with the one in (3.3). A basis for Zh(wh) is given by χ̂ij ◦G(wh)−1, i = 0, . . . , I, j = J, . . . , J .

Let the discrete initial interface be given as graph of a function uh,init ∈ Bh and define

θb(z) := θl 1 + y

2
+ θs 1 − y

2

for all z = (x, y) ∈ Ω. In the next section we will investigate stability properties of the following semidiscrete
version of Problem 2.1.

Problem 3.1 (Semidiscrete problem). Find

uh : [0, T [ → Xh and θh : [0, T [ → θb +
{
χ ∈ H1(Ω) | χ|I×∂J = 0

}
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such that there holds, for all t ∈ ]0, T [,

uh(t) ∈ Bh, (3.10a)

θ(t) ∈ θb + Zh

(
uh(t)

)
, (3.10b)

and

∫
Ω

k∇θh · ∇χh =
∫
I

( ∂tuh√
1 + |Duh|2

+ V̂
)
χh(uh)

√
1 + |Duh|2 (3.10c)

β

∫
I

∂tuh√
1 + |Duh|2

ϕh + γ

∫
I

Duh√
1 + |Duh|2

Dϕh = −
∫
I

[
θh(uh) + βV̂

]
ϕh (3.10d)

for all χh ∈ Zh

(
uh(t)

)
and ϕh ∈ Xh, as well as

uh(0) = uh,init. (3.10e)

Later (see Theorem 6.1), we will show that, for sufficiently small T > 0 and uh,init ∈ Bh, the semidiscrete
Problem 3.1 admits a unique solution.

We conclude this section with a remark on the use of moving (or time-depending isoparametric) elements
for the temperature field. On the one hand, this has the disadvantage that the semidiscrete solution concept
may breakdown (even for a more sophisticated use of moving elements) although there is no break down in the
continuous solution. But, on the other hand, there is the following advantage with regard to our purposes. The
discrete space Zh

(
uh(t)

)
allows for a jump in the discrete heat flow across the moving support of the right-hand

side in the weak bulk equation (3.10c). Discretizations with time-independent elements as in [3,14,18] does not
exhibit this property. However, the continuous (i.e. non-discrete) heat flow jumps across the moving support
of the right-hand side in (3.1). In view of this observation, one may expect that the semidiscrete Problem 3.1
with moving elements has a better chance to mimic the stability properties of the continuous Problem 2.1 than
other (semi)discretizations with time-independent elements.

4. Flat interfaces in the semidiscrete case

The flat interfaces (2.2a) and their corresponding temperature fields (2.2b) with (2.5) are solutions of the
semidiscrete Problem 3.1, too. This offers the possibility to investigate the stability of these stationary solutions
in the context of the semidiscrete Problem 3.1 and then to compare the results with those in the continuous
case. The first step is carried out in this section, while the second one will be done in the next section.

We take the approach of Section 2 as a guideline. Let us consider the operator −D2
h : Xh → Xh which is

defined by means of the Riesz representation theorem as follows: for vh ∈ Xh, let −D2
hvh be the unique element

in Xh with

∫
I
(−D2

hvh)ϕh =
∫
I
DvhDϕh

for all ϕh ∈ Xh. The operator −D2
h is symmetric (with respect to the L2(I)-scalar product) and positive

semidefinite. Consequently, its spectrum Λh is real and nonnegative and appropriately chosen eigenfunctions
constitute an orthonormal basis of Xh ⊂ L2(I). Let vh,λ be such an eigenfunction and denote its corresponding
eigenvalue by λ.
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Similar to Section 2, we consider Problem 3.1 with the perturbed initial value

uh,init = δvh,λ,

where |δ| is small. The counterpart of (2.8a) is the ansatz

uh,δ(x, t) = εh(t)vh,λ(x) (4.1)

for all x ∈ I and t ∈ [0, T [, where the function εh : [0, T [ → R will be determined later. For the ansatz of the
semidiscrete temperature, we introduce the discrete counterparts of ws

λ and wl
λ. Setting

Y s
h := {ψh|[−1,0] | ψh ∈ Yh} and Y l

h := {ψh|[0,1] | ψh ∈ Yh},

we define ws
h,λ ∈ Y s

h and wl
h,λ ∈ Y l

h by

ws
h,λ(0) = 1,

∫ 0

−1

Dws
h,λDψh + λws

h,λψh = 0

for all ψh ∈ Y s
h with ψh(0) = 0 and

wl
h,λ(0) = 1,

∫ 1

0

Dwl
h,λDψh + λwl

h,λψh = 0

for all ψh ∈ Y l
h with ψh(0) = 0, respectively (since λ ≥ 0, the functions ws

h,λ and wl
h,λ exist and are uniquely

determined). Note that there holds

∫ 0

−1

Dws
h,λDψh = −λ

∫ 0

−1

ws
h,λψh +W s

h,λψh(0) (4.2a)

and ∫ 1

0

Dwl
h,λDψh = −λ

∫ 1

0

wl
h,λψh −W l

h,λψh(0) (4.2b)

for all ψh ∈ Y s
h and ψh ∈ Y l

h, respectively, with

W s
h,λ :=

∫ 0

−1

Dws
h,λDψ0 + λws

h,λψ0 and W l
h,λ := −

∫ 1

0

Dwl
h,λDψ0 + λwl

h,λψ0

(recall that ψ0 is the basis function corresponding to the node 0 ∈ J ). Note also that (4.2a), the Cauchy-Schwarz
inequality, ws

h,λ(0) = 1, and ws
h,λ(−1) = 0 imply

W s
h,λ =

∫ 0

−1

|Dws
h,λ|2 + λ|ws

h,λ|2 ≥
∫ 0

−1

Dws
h,λ = 1; (4.3a)

similarly, one obtains

W l
h,λ = −

∫ 1

0

|Dwl
h,λ|2 + λ|wl

h,λ|2 ≤ −
∫ 1

0

|Dwl
h,λ| ≤

∫ 1

0

Dwl
h,λ = −1. (4.3b)



STABILITY DURING SEMIDISCRETE SOLIDIFICATION 583

Finally, let us observe that, similarly to (2.10),

W s
h,λ =

∫ 0

−1

|Dws
h,λ|2 + λ|ws

h,λ|2 ≤
∫ 0

−1

|Dwh|2 + λ|wh|2 (4.4)

for all wh ∈ Y s
h with wh(0) = 1 and an analogue statement for wl

h,λ hold.
Using the functions ws

h,λ, wl
h,λ and supposing conditions (2.5) and (3.10a), we write

θh,δ(z, t) := −βV̂ +



psy +As

hεh(t)vh,λ(x)ws
h,λ

(
g−1
(
y;uh,δ(x, t)

))
, if y < uh,δ(x, t),

ply +Al
hεh(t)vh,λ(x)wl

h,λ

(
g−1
(
y;uh,δ(x, t)

))
, if y > uh,δ(x, t),

(4.5)

for all z = (x, y) ∈ Ω and t ∈ [0, T [, where, apart from εh, the constants As
h and Al

h are to be determined. Note
that θh,δ does not verify condition (3.10b) necessarily. However, there holds

θh,δ(x,±1, t) = θb(x,±1)

for all x ∈ I thanks to (2.3). In addition,

(
θh,δ(t) − θb

) ◦G(x, y;uh,δ(t)
)

= −βV̂ + psg
(
y;uh,δ(x, t)

)
+As

hεh(t)vh,λ(x)ws
h,λ(y)

− θl

2

[
1 + g

(
y;uh,δ(x, t)

)]− θs

2

[
1 − g

(
y;uh,δ(x, t)

)]
,

and

g
(
y;uh,δ(x, t)

)
=



y, if y ∈ [−1, y∗],

uh,δ(x, t) + y − uh,δ(x, t)
y∗

y, if y ∈ [y∗, 0]

for all t ∈ [0, T [, x ∈ I, and y ∈ [−1, 0] as well as similar formulas for all y ∈ [0, 1]. Therefore, since uh,δ(t),
vh,λ ∈ Xh and ws

h,λ ∈ Y s
h , wl

h,λ ∈ Y l
h, the only missing point for (3.10b) is the continuity across graphuh,δ(t),

the discrete free boundary. The latter one is given, iff

ps +As
h = pl +Al

h. (4.6)

Next, we investigate the discrete bulk equations (3.10c) and the semidiscrete Gibbs-Thomson law (3.10d) as
to determine As

h, Al
h, and εh. In this section we use a variant OV (·;·) of the Landau symbol to indicate a

linear functional in the second argument whose norm in the dual of the normed vector space V is bounded by
a constant times the first argument; the constant may depend on data, As

h, Al
h, λ, the choice of vh,λ, and the

discrete spaces Xh and Yh. In this regard it is convenient to endow Zh(t) := Zh

(
uh,δ(t)

)
, t ∈ [0, T [, with the

norm

Zh(t) 3 χh 7→ ‖χh‖1,∞;Ω := sup
Ω

|χh| + sup
Ω

|∇χh|, (4.7a)

and Xh with the norm

Xh 3 ϕh 7→ ‖ϕh‖1,2;I :=
(‖ϕh‖2

0,2;I + ‖Dϕh‖2
0,2;I

)1/2
, (4.7b)

where ‖ · ‖0,2;I denotes the norm of L2(I).
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In order to derive a counterpart of (2.9), we split the discrete temperature field

θh,δ = θ0h,δ + θ1h,δ

into the parts

θ0h,δ(z, t) := −βV̂ +

{
psy, if y < uh,δ(x, t),
ply, if y > uh,δ(x, t),

and

θ1h,δ(z, t) := εh(t)vh,λ(x)

{
As

hw
s
h,λ

(
g−1
(
y;uh,δ(x, t)

))
, if y < uh,δ(x, t),

Al
hw

l
h,λ

(
g−1
(
y;uh,δ(x, t)

))
, if y > uh,δ(x, t)

(4.8)

for all z = (x, y) ∈ Ω and t ∈ [0, T [. Let t ∈ [0, T [ and χh ∈ Zh(t). Integrating by parts, χh|I×∂J = 0,
∂νθ

0
h,δ|∂I×J = 0, and (2.4) yield

∫
Ω

k∇θ0h,δ · ∇χh =
∫
I
V̂ χh(uh,δ)

√
1 + |Duh,δ|2 +OZh(t)(ε2h;χh) (4.9)

in t. The analogue identity for θ1h,δ is more involved. By changing variables, see e.g. [8] (Sect. 3.3, Th. 2), and
using the chain rule, e.g. [20] (Sect. 2.2.2), we obtain

∫
Ω

k∇θ1h,δ · ∇χh =
∫

Ω

k∇[θ1h,δ ◦G(uh,δ)
] · ∇[χh ◦G(uh,δ)

]
(4.10)

+
∫

Ω

k∇[θ1h,δ ◦G(uh,δ)
] · ∇[χh ◦G(uh,δ)

](
JG(uh,δ) − 1

)
+
∫

Ω

k∇[θ1h,δ ◦G(uh,δ)
] · (∇χh) ◦G(uh,δ)

[
E −DG(uh,δ)

]
JG(uh,δ)

+
∫

Ω

k(∇θ1h,δ) ◦G(uh,δ)
[
E −DG(uh,δ)

] · (∇χh) ◦G(uh,δ)JG(uh,δ)

=:
∫

Ω

k∇[θ1h,δ ◦G(uh,δ)
] · ∇[χh ◦G(uh,δ)

]
+ Rh,δ(χh),

where E denotes the matrix of the identity in R
2 and JG(uh,δ) := | detDG(uh,δ)|. Let us check that the first

term on the right-hand side of (4.10) is convenient for our purposes. Note that

θ1h,δ

(
G(z;uh,δ(t)

)
, t) = εh(t)vh,λ(x)

{
As

hw
s
h,λ(y), if y < 0,

Al
hw

l
h,λ(y), if y > 0

(4.11)
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for all z = (x, y) ∈ Ω. Assuming for a moment that χh ◦ G(uh,δ) = ϕh ⊗ ψh with ϕh ∈ Xh and ψh ∈ Yh and
using (4.2a), we observe

∫
I×]−1,0[

k∇[θ1h,δ ◦G(uh,δ)
] · ∇[χh ◦G(uh,δ)

]

= kAs
hεh

∫
I

∫ 0

−1

∂x(vh,λ ⊗ ws
h,λ)∂x(ϕh ⊗ ψh) + ∂y(vh,λ ⊗ ws

h,λ)∂y(ϕh ⊗ ψh)

= kAs
hεh

(∫
I
Dvh,λDϕh

∫ 0

−1

ws
h,λψh +

∫
I
vh,λϕh

∫ 0

−1

Dws
h,λDψh

)

= kAs
hεh

(
λ

∫
I
vh,λϕh

∫ 0

−1

ws
h,λψh − λ

∫
I
vh,λϕh

∫ 0

−1

ws
h,λψh

+W s
h,λψh(0)

∫
I
vh,λϕh

)

= kW s
h,λA

s
hεh

∫
I
vh,λϕhψh(0) = kW s

h,λA
s
hεh

∫
I
vh,λχh(uh,δ).

Since both sides of this identity depend linearly on χh, it holds in general. Similarly, we derive∫
I×]0,1[

k∇[θ1h,δ ◦G(uh,δ)
] · ∇[χh ◦G(uh,δ)

]
= −kW l

h,λA
l
hεh

∫
I
vh,λχh(uh,δ)

with the help of (4.2b). Summing the last two identities gives
∫

Ω

k∇[θ1h,δ ◦G(uh,δ)
] · ∇[χh ◦G(uh,δ)

]
= k

(
W s

h,λA
s
h −W l

h,λA
l
h

)
εh

∫
I
vh,λχh(uh,δ).

Therefore, noting that ∫
I

∂tuh,δ√
1 + |Duh,δ|2

χh(uh,δ)
√

1 + |Duh,δ|2 = ε̇h

∫
I
vh,λχh(uh,δ),

we obtain that∫
Ω

k∇[θ1h,δ ◦G(uh,δ)
] · ∇[χh ◦G(uh,δ)

]
=
∫
I

∂tuh,δ√
1 + |Duh,δ|2

χh(uh,δ)
√

1 + |Duh,δ|2

holds, iff

ε̇h = k
[
W s

h,λA
s
h −W l

h,λA
l
h

]
εh.

So, we need to show that Rh,δ(χh) in (4.10) is OZh(t)(ε2h;χh). To this end, we derive further properties of G in
the region I × [y∗, y∗]. It holds

DG
(
x, y;uh,δ(t)

)
=

(
1 0

εh(t)
(
1 − y

y∗

)
Dvh,λ(x) 1 − εh(t)vh,λ(x)

y∗

)

for almost all (x, y) ∈ I × ]y∗, 0[ and a similar (replace y∗ by y∗) formula for almost all (x, y) ∈ I × ]0, y∗[. Let
us suppose that condition (3.10a) holds. This will be true for small |δ|; see (4.15c) below. Then (3.4) and (3.6)
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imply the following estimates almost everywhere in Ω:

JG
(
uh,δ(t)

) ≤ 3
2
,

∣∣JG(uh,δ(t)
)− 1

∣∣ ≤ 2
ωmax

‖vh,λ‖0,∞;I εh(t),∥∥DG(uh,δ(t)
)∥∥ ≤ c

(
ωmax, ‖vh,λ‖1,∞;I

)
, (4.12)∥∥E −DG

(
uh,δ(t)

)∥∥ ≤ c
(
ωmax, ‖vh,λ‖1,∞;I

)
εh(t),

where ‖ · ‖ is the matrix norm induced by | · |. Combing this with the formulas (4.8) and (4.11) for θ1h,δ yields
the desired result that Rh,δ(χh) in (4.10) is OZh(t)(ε2h;χh). Taking into account also (4.9), we therefore showed
that the discrete bulk equation (3.10c) holds up to terms of order OZh(t)(ε2h;χh), iff

ε̇h = k
[
W s

h,λA
s
h −W l

h,λA
l
h

]
εh. (4.13)

It remains to deal with the semidiscrete Gibbs-Thomson law (3.10d). Since

β

∫
I

∂tuh,δ√
1 + |Duh,δ|2

ϕh = βε̇h

∫
I
vh,λϕh +OXh

(|ε̇hεh|;ϕh),

γ

∫
I

Duh,δ√
1 + |Duh,δ|2

Dϕh = λγεh

∫
I
vh,λϕh +OXh

(ε2h;ϕh),

and

lim
y↗uh,δ(x,t)

θh,δ(x, y, t) = −βV̂ + εh(t)
[
ps +As

h

]
vh,λ(x),

the semidiscrete Gibbs-Thomson law (3.10d), where the discrete temperature field θh,δ is evaluated from the
solid, holds up to OXh

(ε2h + |ε̇hεh|;ϕh), iff

βε̇h = −[λγ + ps +As
h

]
εh. (4.14a)

Similarly, equation (3.10d), where the discrete temperature field θh,δ is evaluated from the liquid, holds up
OXh

(ε2h + |ε̇hεh|;ϕh), iff

βε̇h = −[λγ + pl +Al
h

]
εh. (4.14b)

The system (4.13) and (4.14), which has the same structure as (2.9) and (2.11), is solved uniquely by

As
h = − γλ+ ps − βW l

h,λV̂

1 + βk(W s
h,λ −W l

h,λ)
, (4.15a)

Al
h = − γλ+ pl − βW s

h,λV̂

1 + βk(W s
h,λ −W l

h,λ)
, (4.15b)

εh(t) = δeµht (4.15c)

with

µh := k

(
W s

h,λ −W l
h,λ

)
(−γλ) +W l

h,λp
l −W s

h,λp
s

1 + βk(W s
h,λ −W l

h,λ)
(4.15d)
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for all t ∈ [0, T [. These quantities are well-defined because of (4.3). Moreover, recalling (2.4), we observe
that (4.15a) and (4.15b) are consistent with (4.6) and so condition (3.10b) holds provided (3.10a). Therefore,
we have proved the following semidiscrete counterpart of Theorem 2.1.

Theorem 4.1 (Approximate semidiscrete solutions). Fix an eigenvalue λ ∈ Λh of −D2
h with (discrete) natural

boundary conditions, let vh,λ be a corresponding eigenfunction, and suppose that (2.5) holds.
Then ansatz (4.1), (4.5) with (4.15) provides a family (θh,δ, uh,δ)δ such that

• if |δ| is sufficiently small, then θh,δ and uh,δ satisfy (3.10a), (3.10b), and (3.10e) with uh,init = δvh,λ.
• for δ → 0, the functions θh,δ and uh,δ fulfill

∫
Ω

k∇θh,δ · ∇χh =
∫
I

( ∂tuh,δ√
1 + |Duh,δ|2

+ V̂
)
χh(uh,δ)

√
1 + |Duh,δ|2 + OZh(t)(δ2;χh)

and

β

∫
I

∂tuh,δ√
1 + |Duh,δ|2

ϕh + γ

∫
I

Duh,δ√
1 + |Duh,δ|2

Dϕh = −
∫
I

[
θh(uh,δ) + βV̂

]
ϕh + OXh

(δ2;ϕh)

for all χh ∈ Zh(t) := Zh

(
uh,δ(t)

)
, ϕh ∈ Xh, and t ∈ [0, T [. Here OV (δ2; ·) indicates a linear functional on V

whose norm, see (4.7), is bounded by δ2 times a constant depending on data, λ, the choice of vh,λ, and the
discrete spaces Xh and Yh.

As in the continuous case, one expects that the amplification rate µh in (4.15d) indicates the stability of the
corresponding discrete mode. It is worthwhile to mention that this will be confirmed in Section 6; compare
Corollary 6.1 and Remark 6.1.

5. Comparison and Discussion

In this section we compare and illustrate the results obtained in the continuous (Sect. 2) and in the semidis-
crete (Sect. 4) case. We then discuss consequences on discretization issues. Finally, supposing that the results
essentially carry over to discretizations of the modified Stefan problem (1.1), we comment on the two motivating
issues of the introduction.

5.1. Comparing µh with µ – part 1

We start with some theoretical considerations concerning the formulae (2.12d) and (4.15d) for the amplifica-
tion rates µ and µh, respectively. For the sake of simplicity, we restrict ourselves to the case that the partition
of J is symmetric with respect to 0, i.e. J = −J and y−j = yj for j = 1, . . . , J . Then W s

h,λ = −W l
h,λ and so

(4.15d) simplifies to

µh =
kWh,λ

1 + 2βkWh,λ

(−2γλ− pl − ps
)

(5.1)

with Wh,λ := W s
h,λ. This corresponds to (2.12d) apart from the replacement of Wλ by Wh,λ and the fact that

λ is taken from Λh instead of Λ. In particular, µh and µ — interpreted as functions of λ ∈ R
+
0 — change sign

in the same point. Note also that the sign of µh in (5.1) depends only (through λ) on Xh, while its absolute
value depends on both discrete spaces Xh and Yh.

In what follows, it is convenient to number the elements of the spectra Λ and Λh according to their size:

0 ≤ λ0 ≤ · · · ≤ λm ≤ · · · and 0 ≤ λh,0 ≤ · · · ≤ λh,I ,
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respectively. Evaluating (2.12d) and (5.1) for a fixed data set then yields the sequences (µm)m∈N0 and (µh,m)I
m=0,

respectively. Let m ∈ {0, . . . , I}. The Minmax principle yields

λm ≤ λh,m;

compare with e.g. [17] ((23), Chap. 6). Therefore, the monotonicity of the function R
+
0 3 λ 7→Wλ, the identity

in (4.3a), and (2.10) imply

Wh,λh,m
≥Wλm .

Consequently, we have the following: if µm ≤ 0, then −2γλm − pl − ps ≤ 0 and so −2γλh,m − pl − ps ≤ 0 as
well as

µh,m ≤ µm ≤ 0.

In other words: if a continuous mode is “stable”, then its semidiscrete counterpart (if it exists) is also stable
and decays faster.

It remains to discuss the effect of the spatial discretization for continuous modes with

λm ≤ λcrit := −p
l + ps

2γ
·

5.2. Comparing µh with µ – part 2

If a continuous mode is “unstable”, that is µm > 0, then a comparison of µm and µh,m is more delicate: the
increasing of the quotient in (5.1) may be compensated by the decreasing of the term between the parentheses.
Alternatively, we illustrate what happens with an example, where µm and µh,m are computed numerically. To
this end, we fix data to be

k = 1, β = 0.01, γ = 5 · 10−5, θl = −0.5, θs = 0, (5.2)

which implies that the liquid is undercooled and all the latent heat flows into it.
We start by visualizing the relationship between λm and µm. Figure 1 (left-hand side) depicts µm versus

λm for 0 ≤ m ≤ 150. We observe that the most “unstable” continuous modes are around λ = 1332.25 with
maximal amplification rate µmax ≈ 9.8.

Next, we analyze the relationship between µh,m and λh,m for various choices of Xh and Yh.
Linear elements (q = r = 1) on uniform partitions with step size hI ≈ 0.042 (that is dimXh = 151) and

hJ = 0.01 have been used for the right-hand side of Figure 1. We observe that the “unstable” continuous
modes close to λ = 5000 have stable discrete counterparts. Moreover, similarly to the continuous case, the most
unstable discrete modes are around λ = 1360.64 with maximal discrete amplification rate µmax ≈ 9.85.

It is instructive to consider the effect of coarsening (enlarging the meshsize) of Xh and of Yh separately.
We first consider the effect of a relatively coarse Xh, that is the relatively coarse spatial discretization on

and parallel to the interface. In the left-hand side of Figure 2 we used the same data as in the right-hand side
of Figure 1 apart from hI ≈ 0.085 (that is dimXh = 75) instead of hI ≈ 0.042. Remarkably, all discrete modes
are unstable in the coarse case. This is consistent with the following theoretical consideration: The inverse
estimate ‖Dϕh‖0,2;I ≤ Cqh

−1
I ‖ϕh‖0,2;I implies

λ =
‖Dvh,λ‖2

0,2;I
‖vh,λ‖2

0,2;I
≤ C2

qh
−2
I

for any λ ∈ Λh, where the constant Cq depends only on the polynomial degree q of the discrete space Xh.
Consequently, if hI > Cq

√−2γ/(pl + ps), then µh > 0 for all λ ∈ Λh. In other words: if hI is not small with
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Figure 1. Stability of continuous and semidiscrete modes for data (5.2).
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Figure 2. The effect of coarse Xh and coarse Yh for data (5.2).

respect to the quotient of surface tension and “effective” undercooling or superheating, then all discrete modes
are unstable.

We next discuss the effect of a relatively coarse Yh, that is a relatively coarse spatial discretization orthogonal
to the interface. We compare again with the right-hand side of Figure 1 and replace hJ = 0.01 by hJ = 0.1 in
the right-hand side of Figure 2. As expected, Yh has no effect on the sign of the discrete amplification rate µh,
that is the stability of the discrete mode. However, the absolute value of µh, that is how fast a discrete mode
grows or decays, depends on Yh. For the coarse Yh, the most unstable modes are around λ = 1660.54 with
µh,max ≈ 12.9. This faster growth is consistent with (4.4) and the fact that Wh,λ = W s

h,λ enters in (5.1) in a
monotone way.

One may wonder if higher order polynomials, i.e. q > 1 or r > 1, in the definition of Xh and Yh lead
to better results. Their use for Xh does not offer a meaningful improvement for the same dimension of Xh;
compare the left-hand side of Figure 2 with the left-hand side of Figure 3, where Xh is the space of continuous
quadratic elements with step size hI ≈ 0.17. However, the fact that (4.4) is a discretization of the smooth
minimization (2.10) suggests that the use of higher order polynomials for Yh is advantageous. In fact, the
right-hand sides of Figures 2 and 3 reveal that, for the same dimension of Yh, quadratic elements lead to better
stabilities properties that linear ones: in the case of Figure 3 (right-hand side) the most unstable modes are
around λ = 1660.54 with µh,max ≈ 11.8.
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Figure 3. The effect of quadratic Xh and quadratic Yh for data (5.2).

We may summarize as follows: If the spatial discretization along the interface does not contain enough
degrees of freedom, the semidiscrete Problem 3.1 is “completely unstable” (while the continuous Problem 2.1
has many stable modes). If the spatial discretization orthogonal to the interface is not fine enough (regarding
grid and ansatz spaces), the most unstable modes of the semidiscrete Problem 3.1 may grow much faster that
those of the continuous Problem 2.1.

5.3. Consequences

We continue by discussing consequences on discretization issues of the preceding results.
A first consequence concerns the discretization uh,init ∈ Xh of the initial value uinit. To simplify the discussion,

let us neglect other discretization effects by supposing momentarily that uh is the exact solution of the continuous
problem, where the initial value uinit is replaced by uh,init. Then Section 2 suggests that the choice of uh,init

is a delicate matter: in order to obtain a “discrete” solution uh that is meaningful with respect to the original
initial value uinit, the error uh,init − uinit should have quite small contributions of unstable modes; in the case
of Figure 1 (left-hand side) one has ε(2) ≈ 32 for λ = 1332.25 and δ = 10−7. In general, this requires a certain
fineness of the discrete space Xh and an appropriate choice therein.

Even for relatively fine choices of Xh and Yh a situation as in the right part of Figure 1 (right-hand side) can
occur. Consequently, the approximate solution of the semidiscrete Problem 3.1 has to be done with care such
that the errors in unstable modes are quite small. For otherwise, “unnecessary” instabilities may develop. This
is especially important, if Yh is relatively coarse: in the case of Figure 2 (right-hand side) one has εh(1.5) ≈ 25
for λ = 1660.54 and δ = 10−7.

We recommend – regardless of the resulting convergence speed (which may be affected by additional non-
regular source terms) – higher order polynomials for Yh, because they lead to better stability properties.

5.4. Further remarks

The above stability analyses seem to capture the essential aspects of the coupling of the Stefan condition (1.1b)
and the Gibbs-Thomson law (1.1c). One may therefore suppose that the obtained results essentially carry over
to unperturbed solutions differing from flat interfaces and to similar models as the modified Stefan problem (1.1).
This is supported by the following facts:
• Continuous stability analyses for growing spherical interfaces yield similar results, see e.g. [11] (Sect. III.B).
• Also flat interfaces of the modified Stefan problem (1.1) exhibit similar stability properties; see the more

involved analysis [16] by Strain who reformulates (1.1) in terms of a history-dependent singular integral
equation for the normal velocity V of the interface.
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The observation concerning the jump of the discrete heat flow (see the end of Section 3) suggests that the
stability properties of other (semi)discretizations, e.g. those in [3, 14, 18], are less close to the continuous
stability properties.

Keeping this in mind, an explanation of the secondary side branching observed in Schmidt [14] (Fig. 4.5) as
numerical instabilities seems to be reasonable. However, in order to decide whether or not the continuous model
exhibits secondary side branching, one should increase the simulation time T , since the “continuous” secondary
side branching may appear at a later time. Moreover, one expects the constant C in (1.2) of moderate size,
only if the meshsize is small with respect to the quotient of surface tension and “effective” undercooling or
superheating. Finally, a dependence of C on T is indicated by the fact that the continuous “unstable” modes
are not resolved exactly in the discrete spaces in general.

6. Classical stability for semidiscrete flat interfaces

In this section we show that the analysis for the semidiscrete Problem 3.1 in Section 4 corresponds to a
classical (linearized) stability analysis of flat interfaces. This correspondence is established in two steps: first,
taking advantage of β > 0, we rewrite the semidiscrete Problem 3.1 as an initial value problem of the form:

U̇ = F(U) in ]0, T [, U(0) = U0. (6.1)

Hereafter, U = (U0, . . . , UI) : [0, T [ → R
I+1 is the time-dependent coefficient vector defined by

uh(t) =
I∑

m=0

Um(t)ϕm (6.2)

for all t ∈ [0, T [. Second, we calculate the eigenvalues of F ′(0) in terms of data and the eigenvalues of the
operator −D2

h. As a side effect of the reformulation (6.1), we also obtain existence and uniqueness of the
semidiscrete Problem 3.1 for sufficiently small T > 0.

In order to reformulate the semidiscrete Problem 3.1, we fix partitions of I and J and use the notation
introduced in Section 3. For W = (W0, . . . ,WI) ∈ R

I+1, we set

Q(W ) :=
(
1 +

∣∣∑I
i=0WiDϕi

∣∣2)1/2

,

MI(W ) :=
(MI

i,m(W )
)
i,m=0,...,I

with MI
i,m(W ) := β

∫
I

ϕm

Q(W )
ϕi,

SI(W ) :=
(SI

i,m(W )
)

i,m=0,...,I
with SI

i,m(W ) := γ

∫
I

Dϕm

Q(W )
Dϕi,

RI(W ) :=
(RI

i (W )
)

i=0,...,I
with RI

i (W ) := −
∫
I

[
θb(
∑I

m=0Wmϕm) + βV̂
]
ϕi.

Moreover, we introduce the time-dependent coefficient vector Θ = (Θmn)mn : [0, T [ → R
(I+1)J , J := −J+J+1,

by the identity

θh(t) − θb =
I∑

m=0

J∑
n=J

Θmn(t)χ̂mn ◦G(uh(t)
)−1 (6.3)

for all t ∈ [0, T [. Here, we used the following convention: Θmn(t) denotes the
(
m(J + 1) + n− J

)
th component

of the vector Θ(t), while, for example, MI
i,m(W ) indicates the entry in the ith row and mth column of the
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matrix MI(W ). In addition, we define

MI := MI(0), P := (Pi,mn)i,m=0,...,I;n=J,...,J with Pi,mn := δi,mδn,0.

Supposing (6.2) and (6.3), the discrete Gibbs-Thomson law (3.10d) is equivalent with

MI(U)U̇ + SI(U)U = −MIPΘ + RI(U) (6.4)

in ]0, T [.
Next, we give an analogue equivalence for the discrete bulk equation (3.10c). To this end, we define

B :=
{
W = (W0, . . . ,WI) ∈ R

I+1 |∑I
i=0Wiϕi ∈ Bh

}
and, for W = (W0, . . . ,WI) ∈ B,

G−1(W ) := G−1
(∑I

i=0Wiϕi

)
,

SΩ(W ) :=
(SΩ

ij,mn(W )
)

i,m=0,...,I;j,n=J,...,J

with SΩ
ij,mn(W ) :=

∫
Ω

∇[χ̂mn ◦ G−1(W )
] · ∇[χ̂ij ◦ G−1(W )

]
,

RΩ(W ) :=
(RΩ

ij(W )
)

i=0,...,I;j=J,...,J

with RΩ
ij(W ) :=

∫
I
V̂ ϕiδj,0Q(W ) −

∫
Ω

∇θb · ∇
[
χ̂ij ◦ G−1(W )

]
.

Then, again supposing (6.2) and (6.3), condition (3.10a) is equivalent to

U(t) ∈ B (6.5)

for all t ∈ ]0, T [ and the discrete bulk equation (3.10c) is equivalent to

SΩ(U)Θ = PTMIU̇ + RΩ(U) (6.6)

in ]0, T [, where PT is the transpose of P .
It remains to “decouple” the system (6.4), (6.6). We first observe that MI(U) is symmetric, positive definite

(recall β > 0) and thus invertible. So we may write

U̇ = −MI(U)−1
[SI(U)U + MIPΘ −RI(U)

]
and use this in (6.6) to obtain

[SΩ(U) + Z(U)
]
Θ = −PTMIMI(U)−1

[SI(U)U −RI(U)
]
+ RΩ(U)

with

Z(W ) := PTMIMI(W )−1MIP

for all W ∈ B. Both matrices SΩ(W ) and Z(W ) are symmetric. Moreover, SΩ(W ) is positive definite and
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Z(W ) is positive semidefinite. Consequently,
[SΩ(U) + Z(U)

]−1
exists and we may write

Θ =
[SΩ(U) + Z(U)

]−1
(
−PTMIMI(U)−1

[SI(U)U −RI(U)
]
+ RΩ(U)

)
, (6.7a)

U̇ = F(U), (6.7b)

where, for W ∈ B,

F(W ) := −MI(W )−1
(
E −MIP[SΩ(W ) + Z(W )

]−1PTMIMI(W )−1
)
·

· [SI(W )W −RI(W )
]
+ MI(W )−1MIP[SΩ(W ) + Z(W )

]−1RΩ(W ).

We summarize:

Lemma 6.1 (Reformulation as ODE). Suppose that (6.2), (6.3), and

uh,init =
I∑

m=0

Um
0 ϕm

hold. Then uh and θh solve the semidiscrete Problem 3.1, if U and Θ satisfy (6.5), the decoupled equations (6.7),
and U(0) = (U0

0 , . . . , U
I
0 ).

Since F : B → R
I+1 is continuously differentiable, the theorem of Picard-Lindelöf, see e.g. [2, (7.6)], ensures

that (6.7b) has a unique solution for some time.

Theorem 6.1 (Existence and uniqueness of semidiscrete solutions). Suppose that uh,init ∈ Bh. Then the semi-
discrete Problem 3.1 admits a unique solution on [0, T [, if T > 0 is sufficiently small.

A flat interface that moves with velocity V̂ satisfying (2.5) along the y-axis corresponds to the stationary
solution U(t) ≡ 0 of (6.7b). In order to perform a classical linearized stability analysis of such flat interface, we
thus have to determine the eigenvalues of F ′(0), the Jacobian matrix of F in 0 ∈ R

I+1. Theorem 4.1 implies:

Corollary 6.1 (Linearized stability analysis). Suppose that (2.5) holds. Then the matrix F ′(0) has the same
eigenvectors as the generalized eigenvalue problem

SIV = λMIV, (6.8)

where SI := SI(0) and MI are the stiffness and mass matrix belonging to the partition of I, respectively.
Moreover, the eigenvalue of F ′(0) corresponding to the eigenvalue λ of (6.8) (or the operator −D2

h with discrete
natural boundary conditions) is

k

(
W s

h,λ −W l
h,λ

)
(−γλ) +W l

h,λp
l −W s

h,λp
s

1 + βk(W s
h,λ −W l

h,λ)
· (6.9)

Proof. Let (λ, V λ) with V λ = (V λ
0 , . . . , V

λ
I ) ∈ R

I+1 be an eigenpair of (6.8). Then, (λ, vh,λ) with vh,λ :=∑I
m=0 V

λ
mϕm is an eigenpair of −D2

h with discrete homogeneous Neumann boundary conditions. For T > 0
fixed and δ sufficiently close to 0, let (θh,δ, uh,δ) be the corresponding approximate solution of the semidiscrete
Problem 3.1 defined by (4.1, 4.5), and (4.15). Moreover, define U δ = (U δ

0 , . . . , U
δ
I ) : [0, T [ → R

I+1 and
Θδ = (Θδ

mn)mn : [0, T [ → R
(I+1)J by the identities

uh,δ =
I∑

m=0

U δ
mϕm, θh,δ − θb =

I∑
m=0

J∑
n=J

Θδ
mnχ̂mn ◦G(uh,δ)−1.
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We test (3.10c) and (3.10d) with the basis function of Xh and Zh

(
G
(
uh,δ(t)

))
and, upon taking into ac-

count (4.12), obtain

MI(U δ)U̇ δ + SI(U δ)U δ = −MIPΘδ + RI(U δ) +O(δ2)

SΩ(U δ)Θδ = PTMIU̇ δ + RΩ(U δ) +O(δ2)

in ]0, T [ as δ → 0. Note that this is also true in [0, T [. We can thus derive

U̇ δ = F(U δ) +O(δ2) (6.10)

in [0, T [ by following the calculations preceding Lemma 6.1. Using F(0) = 0, (6.10) in t = 0, and U δ(t) =
δeµhtV λ, we calculate

F ′(0)V λ = lim
δ→0

F(δV λ) −F(0)
δ

= lim
δ→0

U̇ δ(0) +O(δ2)
δ

= µhV
λ,

which finishes the proof.

Remark 6.1 (Nonlinear stability analysis). Suppose that expression (6.9) is nonzero for all λ ∈ Λh, where Λh

is the spectrum of (6.8) (or −D2
h with (discrete) natural boundary conditions). In this generic case the fixed

point 0 ∈ R
I+1 is hyperbolic and the theorem of Grobman and Hartman, see e.g. [13] (Sect. 2.8), implies that

the response of (6.7b) on small perturbations of the initial value 0 is essentially described by U̇ = F ′(0)U .

Corollary 6.1 and Remark 6.1 imply that the stability of “hyperbolic” semidiscrete flat interfaces can be
investigated by means of the approximate solutions in Theorem 4.1. In particular, we obtain that hyperbolic flat
semidiscrete interfaces whose latent heat completely flows into the undercooled liquid are unstable. Moreover,
the two aforementioned results strongly underline the relevance of the discussion in Section 5.
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