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MOTION WITH FRICTION OF A HEAVY PARTICLE ON A MANIFOLD
APPLICATIONS TO OPTIMIZATION

ALEXANDRE CABOT!

Abstract. Let ® : H — R be a C? function on a real Hilbert space and ¥ C H x R the manifold
defined by ¥ := Graph (®). We study the motion of a material point with unit mass, subjected to stay
on ¥ and which moves under the action of the gravity force (characterized by g > 0), the reaction force
and the friction force (v > 0 is the friction parameter). For any initial conditions at time ¢t = 0, we prove
the existence of a trajectory x(.) defined on R4. We are then interested in the asymptotic behaviour
of the trajectories when t — +00. More precisely, we prove the weak convergence of the trajectories
when @ is convex. When ® admits a strong minimum, we show moreover that the mechanical energy
exponentially decreases to its minimum.
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INTRODUCTION

Let H be a real Hilbert space, with scalar product and corresponding norm respectively denoted by (., .) and
|.|. Let ® : H — R be a function of class C? and X C H x R the manifold defined by ¥ := Graph (®). In this
paper, we study the motion of a material point with unit mass, subjected to stay on ¥ and which moves under
the action of the gravity force (characterized by g > 0), the reaction force and the friction force (y > 0 is the
friction parameter). A simple application of the Fundamental Principle of Dynamics leads to the system

g+ (V2@ (x(t).#(t), &(1))
1+ [V (z(t)?

(MPM) () +~i(t) + V(z(t)) = 0

((MPM) means “Mechanical Particle Motion”). We know experimentally that, because of the friction, the
(MPM) system is dissipative and the trajectory z(.) tends toward a local minimum of ®. Moreover the
velocity 4(.) and the gradient V®(z(.)) tend to zero. The (MPM) system can be studied in the classical
framework of the theory of dissipative systems (see, for example, Hale [5] and Haraux [6]).
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The main interest in Optimization of the (M PM) system is that it gives a mechanical interpretation of the
classical Heavy Ball with Friction system

(HBF) i(t) +vi(t) + Vo(z(t) =0 (7> 0).

Indeed, since we are interested in the asymptotic behaviour of z(.), we notice that V®(z) and (V2®(z).i, %)
are negligible and (M PM) then reduces to (HBF'). It is worth pointing out that, in a series of recent papers,
most of the convergence results known in the case of the steepest descent, have been proved to be also valid in
the case of the (HBF') system. To quote only some of them, when ® is convex, Bruck’s theorem [4] known for
the steepest descent, has been extended by Alvarez [1] to the case of the (HBF') system. Under additionnal
assumptions (for example, if ® admits a strong minimum), Bolte [3] has obtained the exponential decay of the
energy associated to (HBF).

Our main purpose in this paper is to extend well-known results for the (HBF’) system (cf. Attouch-Goudou-
Redont [2]) to the (M PM) system: we then rediscover some results suggested by our mechanical intuition. We
stress the fact that, even if these results are intuitive from a mechanical point of view, their mathematical study
is quite involved.

The paper is organized as follows. In Section 1, we precisely set the mechanical problem and we show how
the F.P.D. leads to the (M PM) system. In Section 2, we establish some global existence results (Th. 2.1). In
Section 3, we are interested in the asymptotic behaviour of the trajectories when the potential ® is convex. We
first have a general result of weak convergence (Th. 3.1) and then, by reinforcing the assumptions on ®, we
obtain the exponential decay of the energy along the trajectories (Th. 3.4).

1. THE MECHANICAL PROBLEM

Let us consider a real Hilbert space H, with scalar product (.,.) and a mapping ® : H — R, of class C2.
Given a material point M of mass m which moves on the manifold defined by ¥ := Graph (®), r(t) € H x R
denotes the position of M at time ¢:

a0 o
r(t) = ( B(x(t)) > when z(t) € H.

According to the fundamental principle of the dynamics, F.P.D. in short, the motion of M is governed by the
equation:

mi=G+F + R, (1)

the second member of this equality being the sum of the forces which are applied to M:

—mg
e A force of friction of viscous type: this force is opposed to the movement of the particle (friction), and is

e The gravity force G = 0 )

proportional to the speed (viscous friction): F =)\ ¢7(t), where Ay > 0 is the friction coefficient.

e The reaction R of the surface (3), which expresses that the particle does not penetrate into () : R =R7

where 7 is the outwards unitary normal to (X) at M.

Classically, @ (z) = 1 ( ~Ve() ) Let us project (1) on H
V14 [Ve(2)[? 1
mit = —Api — —— VD (a). 2)

VIF Vo ()2
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FIGURE 1.

We still have to determine the amplitude R of the reaction of the surface (X). For that purpose, let us project (1)
on T

__mg g
1+ |VO(z)|?

An easy computation shows that

o i(t) ) — i(t)

") = ( (VD(a(t)), i (1)) ) = ( (V20 (a (1)) (1), (1)) + (VO(x(t)), (1)) )
which implies

(V29 ()i, )

V1+|Vo(z)]2

Combining (3) and (4), we find R = m(g + (V2®(z).i,%)). Injecting this expression of R in equa-
T

(i, ') = (4)

tion (2), we obtain

mi + \pd + (g + (V2®(z).0, &) V() =0

_m
1+ [VO(z)|2
Let us now divide by m and define v = Ay /m: we finally obtain the (M PM) system

(g+ (V2®(z).i, %))

VP
( ) Etadd 1+ |[Vo(z)_

Vo(z) =0

(“Mechanical Particle Motion”). Let us notice that the “Heavy Ball with Friction” system

(HBF)  &+~i+gV®(z)=0



508 A. CABOT

is an approximation of the (M PM) system, where one considers that

o |V®(z)| is negligible with respect to 1.

o (V2®(x).4, 1) is negligible with respect to g.
The main key tool for studying (M PM) is the existence of a natural Lyapounov function: the mechanical
energy E(t) = %|7"(t)|2 + g P(x(t)).

2. GLOBAL EXISTENCE

Let H be a real Hilbert space. Let us consider a mapping ® : H — R which satisfies the following conditions

® is of class C> on H
(H) { @ is bounded from below on H
V2® is Lipschitz continuous on the bounded subsets of H.

Let us consider the second order system in H

(g+ (V2®(z).0, %))

VP
( R N [ ESIE

Vo (z) = 0.

We can define along every trajectory of (M PM) its mechanical energy by
1. )
B(t) = 5 (120" + (VO(2(t)), 2(1))*) + g (x(t)-

The central result of this section is given by the following theorem.

Theorem 2.1. Let us assume that ® : H — R satisfies the assumptions (H) and that the parameters v and g
are positive. Then, the following properties hold:

(i) for all (zo,20) in H x H, there exists a unique solution x(.) of (MPM) defined on the whole interval
[0, +00], which is of class C? on [0, +o00|, and which satisfies the initial conditions z(0) = ¢ and #(0) = .

(i) for every trajectory x(.) of (M PM), the corresponding energy E(t) is decreasing on [0, +o00[ and bounded
from below, and hence converges to some real value E,. Moreover,

& € L>(0,+o0; H) N L*(0, +o00; H).
(iii) Assuming moreover that x(.) is bounded, then we have
L] lithJroo l’(t) =0 and 1imt*>+oo ﬂf(t) = 0,

o limy oo VO(2(t)) =0 and limy— 1 o P(x(t)) = B,
g

Proof of Theorem 2.1.

Proof of (i). The system (M PM) can be written as a first order system in H x H:
Y = F(Y)

with

(9 + (V2®(u).v,v))
14+ |V®(u)?

V() = (a(t),&(t)" and Flu,0) = (v, —90- V@(u))t. (5)
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For Yy = (zo,40)! given in H x H, the Cauchy-Lipschitz theorem and hypothesis (H) ensure the existence of a
unique local solution to the problem:

{ Y = F(Y)' (©)

Let z(.) denote the corresponding maximal solution which is defined on some interval [0, Typax| With 0 < Tipax <
+00. In order to prove that Ti,.x = +00, let us show that #(.) is bounded.

We first observe that equation (M PM) and the regularity assumptions on ® automatically imply that x(.)
is C? on [0, Tinax|. By differentiation of E(t), we obtain

E(t) = (&, %) + (VO(z), &) (VO(x), &) + (VB(x), ) (V2D(2).%, &) + g (VO(x), &)
= (&,d + (VO(z), 2)V(2)) + (VO (x), i) (V2P (x).4, &) + g (VO (), &) -

(g+H (V2 O(2).%,4)) \VZi)

Since & = —y& — THVa @)

(z), one has

g+ (V20(z).2,1))
14+ |Ve(x)|?
+ (VO®(z), 2 (V2®(z).2, &) + g (VO(x), 1) -

E(t) = = (|¢]* + (VO(2), 2)?) — ( (VO(x),)(1 + |[Ve(x)|*)

After simplifications, we find
E@t) =~ (|3]* + (V®(x),3)?) . (7)

Thus, the function E(.) is decreasing and for all ¢t € [0, Tmax|, E(t) < E(0). Equivalently,

1. 1 .
SO + 5 (VB((0), £(1) + g B(x(1)) < E(0). (8)
Since ® is bounded from below, we obtain that

sup |z(t)] := C < 4o0.
t€[0,Tmax|

It is a standard argument to derive from such an estimation, that Ti,.x = +00.
Indeed, let us argue by contradiction, and assume that Ti,.x < +00. We have

jz(t) —z(t")| < Clt = 1],

and since Tiax < 400, limy,7n 2(t) := 2 exists. So, z(.) and &(.) are bounded on [0, Tinax[, and by equation

max

(MPM), &(.) is bounded too on this interval. So lim;_,7, . #(f) = T exists. But, applying again the local

existence theorem with initial data (e, o), We can extend the maximal solution to a strictly larger interval,
which is a clear contradiction. So, Tiax = 400, which completes the proof of (i).

Proof of (ii). We already proved that E(.) is decreasing. Since ® is bounded from below, and since E(t) >
g ®(z(t)), the energy E(.) is also bounded from below. As a consequence, lim;_ o E(t) = Eo exists, with
E € R. Using (8), and the fact that ® is bounded from below, we obtain that, for all ¢ > 0

%|:b(t)|2 < E(0) — ginf ®.
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Hence,
& € L*(0,+o0; H).

From (7), we derive that, for all 0 <t < 400

/umeslw@—E@y
0 Y

Since E(t) decreases to Fo, as t increases to +00, we obtain that

+o0 1
| ks < 2(B0) - B,
0 v

and i € L*(0, +oo; H).

Proof of (iii). We now assume that x is bounded. We have proved in (ii) that & is bounded; therefore
equation (M PM) and the fact that V® and V2® are bounded on the bounded subsets of H imply that & is
bounded.

Let us now observe that the function h(t) := &(t) satisfies both

he L?(0,400; H) and h e L®(0,+00; H).

According to a classical result, these two properties imply: lim;, ;oo h(t) = 0.

Let us now prove that lim;_, ;o #(t) = 0. Let us first prove this result in the simpler case where ® is of
class C3, then we shall see how one can adapt this argument when @ is only of class C2.
Returning to equation (M PM), since ® is C?, the solution z is C3. By differentiating the equation we obtain

4 yi = f(t) (9)
with

o d [(g+ (V2D(2).2, &)
f)=-5 EENABIE Vo(z)| .

Since, by assumption, V®, V2®, V3® are bounded on the bounded subsets and since z, & and & are bounded,
one can easily verify by differentiating f that there exists C' > 0 such that |f(¢)| < C'|&(¢)| for all ¢ > 0. Using
now lim;_, 4 &(t) = 0, we finally obtain

lim f(t) =0. (10)

t——+o0

If we set z = &, equation (9) becomes: Z+~vz = f. After integration of this equation it is easy to verify that (10)
implies convergence of z(t) = Z(t) to 0 as t — +oc.

When @ is not C, we have to adapt the preceding argument. The idea is to replace the derivative %, which
a priori makes no sense, by a differential quotient. We refer to Attouch-Goudou-Redont [2], proof of Theorem 3.1.
Since limy— 4o ©(t) = limy_ 4o &(t) = 0, it is now clear in view of (M PM) that lim;_, o V®(x(t)) = 0.

We complete the proof of (iii) by noticing that, since

E(t) = %|:E(t)|2 + %(V@(x(t), i) + g®(x(t)) = Esx ast — +oo
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10

FIGURE 2. A trajectory of the (MPM) system with ®(z1,72) = (223 + 23 — 2122)/50 —
COS T'1 COS % +1, 2o = (10,-10), o = (—5,5),y=1, g = 1.

and since #(t) — 0 as ¢t — 400, we have that

E
im ®(x(t) = — - O
Jm @) = —

Corollary 2.2. Under the hypotheses of Theorem 2.1, additionally assume that ® is coercive, i.e. ‘ ‘lim O(x) =
r|—+o0

+o00. Then x is bounded and the conclusions of Theorem 2.1 hold.
Proof of Corollary 2.2. It is enough to observe that inequality (8) gives

£,
(@) = —

This majorization on ®(x(t)) and the coerciveness of ® imply that the trajectory z(.) remains bounded. O

Remark. When there is no effect of gravity (¢ = 0), the situation is quite different from the previous one. The
(M PM) system then reduces to

(V2®(z).2,3)

. . B(x) — 0
Pt Tovene YW =0
and the energy function E(t) = 1 (|2(t)|* + (V®(x(t)),4(t))?) then verifies the following decay law

E(t) = = (|2 + (VO(2(1),4(1))%) = —27 B(t).

Consequently, the energy E exponentially decreases to 0: E(t) = E(0)e~2?" and in particular

l&(t)] < /2 E(0)e "
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Then, we obviously have |i| € L'(0,+00) and there exists some xo, € H such that the trajectory z(.) strongly
converges to Too. Let us note that, in general, when g = 0, we do not have lim;_, ; o V®(2(¢)) = 0 and a fortiori
Vo(x) # 0.

3. ASYMPTOTIC BEHAVIOUR IN THE CONVEX CASE

3.1. A general result of weak convergence

In this section, H is a Hilbert space, ® : H — R is a convex function which is C?, with V2® Lipschitz
continuous on the bounded sets of H, and which satisfies: ® is bounded from below and S = argmin ® # ().

Alvarez has proved in [1] that each trajectory of the (HBF') system, in the convex case, weakly converges to
a global minimum of ®. We have the same result for the (M PM) system.

Theorem 3.1. Let us assume that ® : H — R satisfies the assumptions (H). We additionnaly assume that ®

is convexr and argmin ® # 0. For all zo € H, @9 € H, let = be the unique solution of the (M PM) system

(g +(V20(2).2, 7))
1+ [V®(x)[?

.Z‘(O) = X, I(O) = I.Q.

T4k + Vo(x)=0

Then, we have
(a) Estimations of the energy decay:

(i) E(.) —gmin® € L'(0, +00).
(i) limy— 4o t(E(t) —gmin®) =0 and as a consequence

lim #(®(2(t)) —min®) =0 and  lim t|@(¢)]* =0.

t—+o0 t—+o0

(b) Convergence of the trajectory: there exists Too € argmin® such that x(t) — oo weakly in H as
t — +o0.

Proof of Theorem 3.1.

Proof of (a) — (¢). Like in the study of the (HBF) system (c¢f. Alvarez [1]), we introduce the function
h(t) := %|z(t) — 2|, where z € argmin ®. Let us set

k(t) = h(t) +7h(t) = (i(t), 2(t) — 2) + %Ifﬂ(t) — 2|

The functions h and k are closely linked because, as we will see later, h vanishes at infinity. A simple computation
yields

k(t) = () + (#() + 7@ (), 2(t) - 2) -
Since x(.) is solution of (M PM),

g+ (V2®(x(t).4(t), £(t)))
1+ [V (z(t)]

k() = |2 — ¢ (VO (a(t)), (t) — 2)-

By convexity of @,

D(2) — @(2(t) = (VO(x(t)), 2 — (1))
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and
(V2@(x(t)).4(t), 2 (t)) = 0,
which yields

9

T veEEyp 2E®) —min®) < (1), -

k(t) +

In particular, we have k(t) < |&(t)[?, i.e. ki € L'(0,400). Since k is bounded from below, limy_, ;o k() exists
and hence the map x is bounded. Since V& is bounded on the bounded sets of H, there exists M > 0 such that
[V®(x(t))| < M for all t > 0. Setting C = ﬁ and recalling that E = (|| + (V@ (), %)?) + g ®(z), (11)
gives

k(t) + C(E(t) — g min ®) <

S, (12)

Let us now integrate (12) on [0, ¢]

k(t) —k(0)+C /0 (E(s) —g min®)ds < ;/0 |(s)|* ds.

Passing to the limit when ¢t — 400, we find clearly E(.) — g min® € L(0, +o0).
Proof of (a) — (i4). Since E(.) is non increasing,

t

(E(s) — g min®)ds > =(E(t) — g min®) > 0.

N =+

wm\

Passing now to the limit when ¢ — +o00, one obtains lim; ;o t(E(t) — ¢ min®) = 0. The rest of assertion
(a) — (i7) is straightforward.

Proof of (b). The technique which is used here to prove the convergence of the trajectory has already been
used by Alvarez in [1]. In particular, the Opial lemma plays a central role. For the convenience of the reader,
we recall it.

Lemma 3.2 (Opial). Let H be a Hilbert space and x : [0, +oo[— H be a function such that there exists a non
void set S C H which verifies:

(i) Vt, — 400 with x(t,) — Teo weakly in H, we have o € S.

(ii) Yz € S, limy— 4o |2(t) — 2| exists.

Then, x(t) weakly converges as t — +00 to some element Lo, of S.

We are now going to apply the Opial lemma with S =argmin ® # (). We have to check points (i) and (ii) of
Lemma 3.2.

o Let us assume that w — lim,,—, o z(t,) = Too. We then have liminf,, o ®(z(t,)) > ®(ro) because @
is convex and continuous, hence lower semicontinuous for the weak topology. But, in view of (a) — (i),
limg, 400 P(x(t,)) = min ®. Hence ®(x+) < min ® and therefore xo, € argmin .

e Let us now prove that lim;_, ;o |2(t) — 2| exists. We know that

lim k(¢t) = lm [(&(t),x(t) — 2) + %|x(t) —2z|?|  exists. (13)

t——+oo t——+oo
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On the other hand, z(.) is bounded and from (a)—(4%), lim;—, 4 o0 ©(t) = 0. Consequently lim;_, 4 o0 (&(), z(t)—
z) = 0 and hence, with (13), lim;_ o |2(t) — 2|? exists. This is true for any z € argmin ®, and hence the
Opial lemma applies: there exists zo, € argmin ® such that

w— lim z(t) = To- O
t—+o0

It is worth completing the previous theorem by a strong convergence result when @ is strongly convex.

Proposition 3.3. In addition to the assumptions of Theorem 3.1, let us assume that ® is strongly convex, that
is, for any R > 0, there exists a function Br : RT — RT with Br(t,) — 0 = t, — 0, such that

Va,y € H with |z| < R, |y| < R,
(Ve(z) = V@(y),z —y) > Br(lz — yl). (14)

Then each trajectory x(.) of the (MPM) system is norm convergent as t goes to +o0o to the unique global
minimizer T of ®.

Proof of Proposition 3.3. Let us consider a trajectory z(.) of the (M PM) system. We already know that the
trajectory is bounded. So, there exists some R > 0 such that for all ¢ € [0, 400, |z(t)| < R. Since ® is strongly
convex, it has a unique minimizer Z. Let us write the strong monotonicity property (14) at z and z(t):

(Ve () = Vo(x(t), 7 — x(t)) = Br(|z(t) — 7).
Since V®(z) = 0, it follows that
Br(lx(t) — z|) < [Ve(x(t))] |7 — x(t)]. (15)

From Theorem 2.1, we have lim;— 4. V®(x(t)) = 0. Since z(.) is bounded, it follows from (15) that
lim¢— 4 oo Br(|z(t) — Z|) = 0. From this we deduce that x(t) — Z strongly as ¢t — +oc. O

3.2. Exponential decay of the energy

We have proved in the previous section that, for a convex function ®, the solution z of the (M PM) system
weakly converges to some zo,. We are now going to improve this result when ® admits a strong minimum.
More precisely, under this condition, the energy exponentially decreases to its minimum and the trajectory
of (MPM) strongly converges to its limit. This result has already been proved by Bolte [3] for the (HBF)
system. We use here a quite similar technique.

Theorem 3.4. In addition to the assumptions of Theorem 3.1, let us assume that a € H is a strong minimum
of ®, i.e. there exists some a > 0 such that

Vre H, &)—®(a)> alr—al?

Let x be the unique solution of the (MPM) system and E(.) = 5 (|&]* + (V®(x),2)?) 4+ g ®(x) the associated
energy function.

Then, the energy function E(.) exponentially decreases to gmin @, i.e. there exists some C > 0 and § > 0 such
that

0< E(t) —gmin® < Ce .

Moreover, the trajectory x strongly converges to a and satisfies

lz(t) — al* < < e oL
ga
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Proof of Theorem 3.4. Let us recall that the energy function satisfies the following decay law
E(t) = —y (J#@)] + (VO(a(t)),&(1))%) < —v[2(t)[*. (16)

Like in the proof of Theorem 3.1, we denote by k the function

Without any loss of generality, we can assume that a = 0 and ®(a) = 0. The function k then reduces to
k(t) = (&(t), z(t)) + |x(t)|*. In view of (12), there exists C' > 0 such that

i(t) + CE(t) < g|¢(t)|2. (17)

Let us multiply this last inequality by 7 €]0, 277] and add to (16); we obtain
E(t) +nk(t) +nC E(t) < 0. (18)

We now need a claim.

Claim 3.5. There exists some C7 > 0 such that

vt > 0, f% E(t) < k(t) < C E(1).

Proof of Claim 3.5. We first prove that k(t) < C; E(t) for some C; > 0. We classically have, for all 6 > 0,

i 2
k() = (@), 20) + e < Ta + EOE 4 ey
Hence, using ®(z) > afz|?,
041 (0
k() < (e (t) + o

Since E(t) > 3| (t)? + g ®(z(t)), we deduce

0+~ . 2 0+~ 1
b0 < S0 - P (5 - 55):

We now choose 6 sufficiently large to have % > 2—19. Setting then C; = %, we obtain the expected formula.
Let us now prove that k(t) > —% E(t). From the inequality (z(t), &(t)) > —3|z(t)]* — %, we immediately
deduce
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We choose A so as to verify % = n . Then, we have E(t) > A(E(t) + nk(t)) and therefore, in view of (18)
B(t) +nk(t) + 1 C X (E(t) + nk(t)) < 0.
Consequently, setting 6 =nC X and Cy = E(0) + nk(0),
E(t) 4+ nk(t) < Cye™t
Using again Claim 3.5, we find E(t) + nk(t) > (1 — 2) E(t) > @ and finally
0 < E(t) <3Cye™°.

The rest of the theorem is a straightforward consequence of the previous inequality. O

Further remarks — Other possible developments. We stress the fact that, from a numerical point of view,
the system (M PM) is not competitive because of the hessian matrix V2®. Indeed this term is very heavy in
computational time. From a numerical point of view, (M PM) can advantageously been replaced by (HBF),
which is easier to handle.

In the whole paper, we have considered the motion of a material point M. It would be possible to study the
case of a real heavy ball with a positive radius. The mechanical study would be much more complicated but it
would perhaps make appear new interesting terms from the Optimization point of view.

REFERENCES

[1] F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert space. SIAM J. Control Optim. 38
(2000) 1102-1119.

[2] H. Attouch, X. Goudou and P. Redont, The heavy ball with friction method. I The continuous dynamical system. Commun.
Contemp. Math. 2 (2000) 1-34.

[3] J. Bolte, Ezponential decay of the energy for a second-order in time dynamical system. Working paper, Département de
Mathématiques, Université Montpellier II.

[4] R.E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18 (1975) 15-26.

[5] J.K. Hale, Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs, 25. American Mathematical
Society, Providence, RI (1988).

[6] A. Haraux, Systéemes dynamiques dissipatifs et applications. RMA 17, Masson, Paris (1991).

[7] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc.
73 (1967) 591-597.



