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STABILITY OF THE ALE SPACE-TIME DISCONTINUOUS GALERKIN
METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS IN

TIME-DEPENDENT DOMAINS†

Monika Balázsová1, Miloslav Feistauer1,∗ and Miloslav Vlasák1

Abstract. The paper is concerned with the analysis of the space-time discontinuous Galerkin method
(STDGM) applied to the numerical solution of nonstationary nonlinear convection-diffusion initial-
boundary value problem in a time-dependent domain. The problem is reformulated using the arbitrary
Lagrangian–Eulerian (ALE) method, which replaces the classical partial time derivative by the so-called
ALE derivative and an additional convective term. The problem is discretized with the use of the ALE-
space time discontinuous Galerkin method (ALE-STDGM). In the formulation of the numerical scheme
we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion
terms and interior and boundary penalty. The nonlinear convection terms are discretized with the
aid of a numerical flux. The main attention is paid to the proof of the unconditional stability of the
method. An important step is the generalization of a discrete characteristic function associated with
the approximate solution and the derivation of its properties.
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1. Introduction

Most of the results on the solvability and numerical analysis of nonstationary partial differential equations
(PDEs) are obtained under the assumption that a space domain Ω is independent of time t. However, problems
in time-dependent domains Ωt are important in a number of areas of science and technology. We can mention,
for example, problems with moving boundaries, when the motion of the boundary ∂Ωt is prescribed, or free
boundary problems, when the motion of the boundary ∂Ωt should be determined together with the solution of
the PDEs in consideration. This is particularly the case of fluid-structure interaction (FSI), when the flow is
solved in a domain deformed due to the coupling with an elastic structure.

There are various approaches to the solution of problems in time-dependent domains as, for example, fictitious
domain method, see [43], or immersed boundary method, see [10]. A very popular technique is the arbitrary
Lagrangian–Eulerian (ALE) method based on a suitable one-to-one ALE mapping of the reference domain Ωref

onto the current configuration Ωt. It is usually applied in connection with conforming finite element space
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discretization and combined with the time discretization by the use of a backward difference formula (BDF).
From a wide literature we mention, e.g., the works [22, 39, 41, 42]. This method is analyzed theoretically for
linear parabolic convection-diffusion initial-boundary value problems. Paper [35] investigates the stability of the
ALE-conforming finite element method. In [4,36] error estimates for the ALE-conforming finite element method
are derived.

In the numerical solution of compressible flow, it is suitable to apply the discontinuous Galerkin method
(DGM) for the space discretization. It is based on piecewise polynomial approximations over finite element
meshes, in general discontinuous on interfaces between neighbouring elements. This method was applied to the
solution of compressible flow first in [8] and then in [9]. It enables us to get a good resolution of boundary and
internal layers (including shock waves and contact discontinuities) and has been used for the solution of various
types of flow problems, see [19,26,32]. Theory of the space discretization by the discontinuous Galerkin method
is a subject of a number of works. We cite only some of them: [2, 3, 13, 18, 21, 34, 38, 40, 46, 47, 52]. It is also
possible to refer to the monograph [20] containing a number of references.

In the cited works, the time discretization is carried out with the aid of the BDF of the first or second order.
One possibility to construct a higher order method in time is the application of the DGM in time. This technique
uses a piecewise polynomial approximation in time, in general discontinuous at discrete time instants that form
a partition in a time interval. This method was used for time discretization combined with conforming finite
elements for the space discretization of linear parabolic equations in [1, 17,23–25,48–50].

By the combination of the DGM in space and time we get the space-time discontinuous Galerkin method
(STDGM). This method was theoretically analyzed in [7, 14, 20, 29, 33, 53]. In [28, 44], the BDF-DGM and
STDGM is applied to linear and nonlinear dynamic elasticity problems. One of the advantages of the STDGM
is the possibility to use different meshes on different time levels.

The mentioned methods have also been extended to the numerical solution of initial-boundary value problems
in time-dependent domains using the ALE method. The ALE method combined with the space DGM and BDF
in time (ALE-DGM-BDF) was applied with success to interaction of compressible flow with elastic structures
in [15, 30, 37, 44]. In [16], the ALE-STDGM is applied to the simulation of flow induced airfoil vibrations and
the results are compared with the ALE-DGM-BDF approach. It appears that the ALE-STDGM is more robust
and accurate. Here we can cite the important work [51] dealing with the space-time DGM to the solution of
inviscid compressible flows. The approach in this paper consideres the time variable equivalent to the space
variables and uses meshes formed by space-time four-dimensional elements. It allows to use different meshes in
different time slabs. This paper also discusses the relation of the presented technique with the ALE method. The
method analyzed in the following parts of our paper consideres time and space variables separately in contrast
to [51]. Moreover, we deal with a problem containing diffusion, which should be analogy to the compressible
Navier-Stokes equations.

The ALE-time discontinuous Galerkin semidiscretization of a linear parabolic convection-diffusion problem is
analyzed in [11,12]. Both papers assume that the transport velocity is divergence free and consider homogeneous
Dirichlet boundary condition. In [11], the stability of the ALE-time DGM is proved and [12] is devoted to
the error estimation. Papers [5, 6] are concerned with the stability analysis of the ALE-STDGM applied to
a linear convection-diffusion initial-boundary value problem, and to the case with nonlinear convection and
diffusion, respectively. In both cases nonhomogeneous Dirichlet boundary conditions and piecewise linear DG
time discretization are used.

In the present paper we extend the results from [5]. We deal with the stability analysis of the ALE-STDGM
with arbitrary polynomial degree in space as well as in time, applied to a scalar nonstationary nonlinear
convection-diffusion problem equipped with initial condition and nonhomogeneous Dirichlet boundary con-
dition. This problem can be considered as a simplified prototype of the compressible Navier-Stokes system. The
ALE-STDGM analyzed here corresponds to the technique used in [16,28] for the numerical simulation of airfoil
vibrations induced by compressible flow. (The construction of the ALE mapping is described very briefly. It is
hidden in the computer program.)
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We present here a new formulation of the problem and technique of theoretical analysis in contrast to [5].
In [5] we proved the unconditional stability of the ALE-STDGM with arbitrary polynomial degree in space,
but only linear approximation in time. Moreover, in [5] the standard ALE method prescribed globally in the
whole time interval was used (see also [11, 12, 22, 35, 36, 39, 41]). In the present paper we apply a different ALE
technique that can use different meshes with different numbers of elements in different time levels. We assume
that the ALE mapping is prescribed for each time slab separately.

In the analysis presented in this paper it was necessary to overcome a number of various difficult obstacles.
An important tool in our theory is the concept of the discrete characteristic function introduced in [17] in
the framework of the time DGM applied to a linear parabolic problem. In [7, 14] the discrete characteristic
function was generalized in connection with the STDGM for nonlinear parabolic problems in fixed domains. An
important new and original result contained in the present paper is the extension of the discrete characteristic
function and the proof of its properties in the case of the ALE-STDGM in time-dependent domains. On the
basis of a technical analysis we obtain an unconditional stability of this method represented by a bound of the
approximate solution in terms of data without any limitation of the time step in dependence on the size of the
triangulations.

In Section 2 we formulate the continuous problem. Section 3 is devoted to the ALE space-time discretization.
We describe here triangulations, ALE mappings and introduce important function spaces and concepts. Then
an approximate solution is defined. Section 4 deals with the stability analysis. First some auxiliary results are
presented. Then we introduce important estimates and the generalized concept of the discrete characteristic
function. An important part is devoted to the derivation of its properties. Finally, the last part presents the
proof of unconditional stability of the ALE-STDGM.

2. Formulation of the continuous problem

In what follows, we shall use the standard notation L2(ω) for the Lebesgue space, W k,p(ω), Hk(ω) = W k,2(ω)
for the Sobolev spaces over a bounded domain ω ⊂ IRd, d = 2, 3, and the Bochner spaces L∞(0, T ;X) with a
Banach space X and

W 1,∞(0, T ;W 1,∞(Ωt)) =
{
f ∈ L∞(0, T ;W 1,∞(Ωt)); df/dt ∈ L∞(0, T ;W 1,∞(Ωt))

}
,

where df/dt denotes here the distributional derivative.
If X is a Banach (Hilbert) space, then its norm (scalar product) will be denoted by ‖ · ‖X ((·, ·)X). By | · |X

we denote a seminorm in X. For simplicity we use the notation ‖ · ‖L2(ω) = ‖ · ‖ω, (·, ·)L2(ω) = (·, ·)ω and
‖ · ‖L2(∂ω) = ‖ · ‖∂ω.

We shall be concerned with an initial-boundary value nonlinear convection-diffusion problem in a time-
dependent bounded domain Ωt ⊂ IRd, where t ∈ [0, T ], T > 0: Find a function u = u(x, t) with x ∈ Ωt, t ∈ (0, T )
such that

∂u

∂t
+

d∑
s=1

∂fs(u)
∂xs

− div(β(u)∇u) = g in Ωt, t ∈ (0, T ), (2.1)

u = uD on ∂Ωt, t ∈ (0, T ), (2.2)
u(x, 0) = u0(x), x ∈ Ω0. (2.3)

We assume that fs ∈ C1(IR), fs(0) = 0,

|f ′s| ≤ Lf , s = 1, . . . , d, (2.4)
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where the constant Lf does not depend on u. Moreover we assume that function β is bounded and Lipschitz-
continuous:

β : R→ [β0, β1], 0 < β0 < β1 <∞, (2.5)
|β(u1)− β(u2)| ≤ Lβ |u1 − u2| ∀u1, u2 ∈ R. (2.6)

Problem (2.1)–(2.3) can be reformulated with the aid of the so-called arbitrary Lagrangian–Eulerian (ALE)
method. A standard ALE formulation is based on an ALE mapping prescribed globally in the whole time
interval [0, T ]. It is based on a regular one-to-one ALE mapping of the reference configuration Ωref onto the
current configuration Ωt:

At : Ωref → Ωt, X ∈ Ωref → x = At(X) ∈ Ωt, t ∈ [0, T ]. (2.7)

Usually it is assumed that Ωref = Ω0, as in cf., e.g., [5, 11, 12, 22, 35, 36, 39, 41]. However, in this case it is
impossible to use different space partitions in different time slabs, which allows the STDGM. Therefore, we shall
proceed as is described in the next section.

The transformation of the partial differential equation (2.1) into the ALE form is based on the following
concepts. We introduce the domain velocity

z̃(X, t) =
∂

∂t
At(X), z(x, t) = z̃(A−1

t (x), t), t ∈ [0, T ], X ∈ Ωref , x ∈ Ωt, (2.8)

and define the ALE derivative Dtf = Df/Dt of a function f = f(x, t) for x ∈ Ωt and t ∈ [0, T ] as

Dtf(x, t) =
D

Dt
f(x, t) =

∂f̃

∂t
(X, t), (2.9)

where f̃(X, t) = f(At(X), t), X ∈ Ωref , and x = At(X) ∈ Ωt. The use of the chain rule yields the relation

Df

Dt
=
∂f

∂t
+ z · ∇f, (2.10)

which allows us to reformulate problem (2.1)–(2.3) in the ALE form: Find u = u(x, t) with x ∈ Ωt, t ∈ (0, T )
such that

Du

Dt
+

d∑
s=1

∂fs(u)
∂xs

− z · ∇u− div(β(u)∇u) = g in Ωt, t ∈ (0, T ), (2.11)

u = uD on ∂Ωt, t ∈ (0, T ), (2.12)
u(x, 0) = u0(x), x ∈ Ω0. (2.13)

3. ALE-space time discretization

In the time interval [0, T ] we consider a partition 0 = t0 < t1 < · · · < tM = T and set τm = tm −
tm−1, Im = (tm−1, tm), Im = [tm−1, tm] for m = 1, . . . ,M , τ = maxm=1,...,Mτm. We assume that τ ∈ (0, τ),
where τ > 0. The space-time discontinuous Galerkin method (STDGM) has an advantage that on every time
interval Im = [tm−1, tm] it is possible to consider a different space partition (i.e. triangulation) – see, e.g. [14,20].
Here we also use this possibility for the application of the STDGM in the framework of the ALE method. It
allows us to consider an ALE mapping separately on each time interval [tm−1, tm) for m = 1, . . . ,M and the
resulting ALE mapping in [0, T ] may be discontinuous at time instants tm, m = 1, . . . ,M − 1. This means that
one-sided limits A(tm−) 6= A(tm+) in general. Similarly the same may hold for the approximate solution. This
means that we deal with a new generalized ALE technique based on the STDGM. To this end, we introduce
the following notation.
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3.1. ALE mappings and triangulations

For every m = 1, . . . ,M we consider a standard conforming triangulation T̂h,tm−1 in Ωtm−1 , where h ∈ (0, h)
and h > 0. This triangulation is formed by a finite number of closed triangles (d = 2) or tetrahedra (d = 3) with
disjoint interiors. We assume that the domain Ωtm−1 is polygonal (polyhedral). Further, for each m = 1, . . . ,M
we introduce a one-to-one ALE mapping

Am−1
h,t : Ωtm−1

onto−→ Ωt for t ∈ [tm−1, tm), h ∈ (0, h). (3.1)

We assume that Am−1
h,t is in space a piecewise affine mapping on the triangulation T̂h,tm−1 , continuous in

space variable X ∈ Ωtm−1 and in time t ∈ [tm−1, tm) and Am−1
h,tm−1

= Id (identical mapping). Hence, we assume
that all domains Ωt are polygonal (polyhedral). For every t ∈ [tm−1, tm) we define the conforming triangulation

Th,t =
{
K = Am−1

h,t (K̂); K̂ ∈ T̂h,tm−1

}
in Ωt. (3.2)

This means that every domain Ωtm−1 represents a reference configuration for the ALE mapping Am−1
t with

t ∈ Im. It is important that this mapping is not an approximation of some regular mapping of Ω0 onto Ωt, as
is standard in other works.

At t = tm we define the one-sided limit Am−1
h,tm−, introduce the triangulation

Th,tm− = {Am−1
h,tm−(K̂); K̂ ∈ T̂h,tm−1} in Ωtm

and suppose that
Am−1
h,tm

(
Ωtm−1

)
= Ωtm . (3.3)

We have Th,tm−1 = T̂h,tm−1 , but in general, Th,tm− 6= T̂h,tm .
As we see, for every t ∈ [0, T ] we may have a family {Th,t}h∈(0,h) of triangulations of the domain Ωt.

Triangulations T̂h,tm−1 and T̂h,tm have different structure and, in general, different number of cells. Triangulations
Th,t and Th,tm− have the same structure as T̂h,tm−1 for t ∈ [tm−1, tm], but starting from T̂h,tm the structure of
Th,t for t ∈ [tm, tm+1], may be different from the structure of Th,t for t ∈ [tm−1, tm].

In what follows, for the sake of simplicity, we use the notation At for the ALE mapping defined in
⋃M
m=1 Im

so that

At(X) = Am−1
h,t (X) for X ∈ Ωtm−1 , t ∈ Im, m = 1, . . . ,M, h ∈ (0, h). (3.4)

The symbolA−1
t will denote the inverse toAt. This means thatA−1

t : Ωt
onto−→ Ωtm−1 for t ∈ Im, m = 1, . . . ,M .

3.2. Discrete function spaces

In what follows, for every m = 1, . . . ,M we consider the space

Sp,m−1
h =

{
ϕ ∈ L2(Ωtm−1); ϕ|K̂ ∈ P

p(K̂) ∀ K̂ ∈ T̂h,tm−1

}
, (3.5)

where p ≥ 1 is an integer and P p(K̂) is the space of all polynomials on K̂ of degree ≤ p. Now for every t ∈ Im
we define the space

St,p,m−1
h =

{
ϕ ∈ L2(Ωt); ϕ ◦ Am−1

h,t ∈ S
p,m−1
h

}
. (3.6)

It is possible to see that

St,p,m−1
h =

{
ϕ ∈ L2(Ωt); ϕ|K ∈ P p(K) ∀K ∈ Th,t

}
. (3.7)
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Of course, Stm,p,m−1
h 6= Sp,mh in general.

Further, let p, q ≥ 1 be integers. By P q(Im;Sp,m−1
h ) we denote the space of mappings of the time interval Im

into the space Sp,m−1
h which are polynomials of degree ≤ q in time. We set

Sp,qh,τ =

{
ϕ; ϕ

(
Am−1
h,t (X), t

)
=

q∑
i=0

ϑi(X) ti, ϑi ∈ Sp,m−1
h , X ∈ Ωtm−1 , t ∈ Im, m = 1, . . . ,M

}
. (3.8)

An approximate solution of problem (2.11)–(2.13) and test functions will be elements of the space Sp,qh,τ . By
Dt we denote the ALE derivative defined by (2.9) for t ∈

⋃M
m=1 Im.

3.3. Some notation and important concepts

Over a triangulation Th,t, for each positive integer k, we define the broken Sobolev space

Hk(Ωt, Th,t) = {v; v|K ∈ Hk(K) ∀K ∈ Th,t},

equipped with the seminorm

|v|Hk(Ωt,Th,t) =

 ∑
K∈Th,t

|v|2Hk(K)

1/2

,

where | · |Hk(K) denotes the seminorm in the space Hk(K).
By Fh,t we denote the system of all faces of all elements K ∈ Th,t. It consists of the set of all inner faces

FIh,t and the set of all boundary faces FBh,t: Fh,t = FIh,t ∪ FBh,t. Each Γ ∈ Fh,t will be associated with a unit

normal vector nΓ. By K
(L)
Γ and K

(R)
Γ ∈ Th,t we denote the elements adjacent to the face Γ ∈ FIh,t. Moreover,

for Γ ∈ FBh,t the element adjacent to this face will be denoted by K(L)
Γ . We shall use the convention, that nΓ is

the outer normal to ∂K(L)
Γ .

If v ∈ H1(Ωt, Th,t) and Γ ∈ Fh,t, then v
(L)
Γ and v

(R)
Γ will denote the traces of v on Γ from the side of

elements K(L)
Γ and K

(R)
Γ , respectively. We set hK = diamK for K ∈ Th,t, h(Γ) = diam Γ for Γ ∈ Fh,t and

〈v〉Γ = 1
2

(
v

(L)
Γ + v

(R)
Γ

)
, [v]Γ = v

(L)
Γ − v(R)

Γ , for Γ ∈ FIh,t. Moreover, by ρK we denote the diameter of the largest
ball inscribed into K ∈ Th,t.

3.4. Discretization

First we introduce the space semidiscretization of problem (2.11)–(2.13). We assume that u is a sufficiently
smooth solution of our problem. If we choose an arbitrary but fixed t ∈ (0, T ), multiply equation (2.11) by a
test function ϕ ∈ H2(Ωt, Th,t), integrate over any element K and finally sum over all elements K ∈ Th,t, then
for t ∈ Im we get

∑
K∈Th,t

∫
K

Du

Dt
ϕdx+

∑
K∈Th,t

∫
K

d∑
s=1

∂fs(u)
∂xs

ϕdx (3.9)

−
∑

K∈Th,t

∫
K

d∑
s=1

zs
∂u

∂xs
ϕdx−

∑
K∈Th,t

∫
K

div(β(u)∇u)ϕdx =
∑

K∈Th,t

∫
K

gϕdx.

Applying Green’s theorem to the convection and diffusion terms, introducing the concept of a numerical flux
and suitable expressions mutually vanishing, after some manipulation we arrive at the identity

(Dtu, ϕ) +Ah(u, ϕ, t) + bh(u, ϕ, t) + dh(u, ϕ, t) = lh(ϕ, t), (3.10)
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where the forms appearing here are defined for u, ϕ ∈ H2(Ωt, Th,t), θ ∈ IR and cW > 0 in the following way

ah(u, ϕ, t) :=
∑

K∈Th,t

∫
K

β(u)∇u · ∇ϕdx (3.11)

−
∑

Γ∈FIh,t

∫
Γ

(〈β(u)∇u〉 · nΓ [ϕ] + θ 〈β(u)∇ϕ〉 · nΓ [u]) dS

−
∑

Γ∈FBh,t

∫
Γ

(β(u)∇u · nΓ ϕ+ θβ(u)∇ϕ · nΓ u− θβ(u)∇ϕ · nΓ uD) dS,

Jh(u, ϕ, t) := cW
∑

Γ∈FIh,t

h(Γ)−1

∫
Γ

[u] [ϕ] dS + cW
∑

Γ∈FBh,t

h(Γ)−1

∫
Γ

uϕdS, (3.12)

JBh (u, ϕ, t) := cW
∑

Γ∈FBh,t

h(Γ)−1

∫
Γ

uϕdS, (3.13)

Ah(u, ϕ, t) := ah(u, ϕ, t) + β0 Jh(u, ϕ, t), (3.14)

bh(u, ϕ, t) := −
∑

K∈Th,t

∫
K

d∑
s=1

fs(u)
∂ϕ

∂xs
dx (3.15)

+
∑

Γ∈FIh,t

∫
Γ

H(u(L)
Γ , u

(R)
Γ ,nΓ) [ϕ] dS +

∑
Γ∈FBh,t

∫
Γ

H(u(L)
Γ , u

(L)
Γ ,nΓ)ϕdS,

dh(u, ϕ, t) := −
∑

K∈Th,t

∫
K

d∑
s=1

zs
∂u

∂xs
ϕdx = −

∑
K∈Th,t

∫
K

(z · ∇u)ϕdx, (3.16)

lh(ϕ, t) :=
∑

K∈Th,t

∫
K

gϕdx+ β0 cW
∑

Γ∈FBh,t

h(Γ)−1

∫
Γ

uD ϕdS. (3.17)

Let us note that in integrals over faces we omit the subscript Γ of 〈·〉 and [·]. We consider θ = 1, θ = 0
and θ = −1 and get the symmetric (SIPG), incomplete (IIPG) and nonsymmetric (NIPG) variants of the
approximation of the diffusion terms, respectively.

In (3.15), H is a numerical flux with the following properties:
(H1) H(u, v,n) is defined in R2 × B1, where B1 = {n = (n1, . . . , nd) ∈ Rd; |n| = 1}, and is Lipschitz-
continuous with respect to u, v: there exists LH > 0 such that

|H(u, v,n)−H(u∗, v∗,n)| ≤ LH(|u− u∗|+ |v − v∗|), for allu, v, u∗, v∗ ∈ R.

(H2) H is consistent: H(u, u,n) =
∑d
s=1 fs(u)ns, u ∈ R, n ∈ B1,

(H3) H is conservative: H(u, v,n) = −H(v, u,−n), u, v ∈ R, n ∈ B1.
In what follows, in the stability analysis we shall use the properties (H1) and (H2). (Assumption (H3) is

important for error estimation, but here it is not necessary.)
For a function ϕ defined in

⋃M
m=1 Im we denote

ϕ±m = ϕ(tm±) = lim
t→tm±

ϕ(t), {ϕ}m = ϕ(tm+)− ϕ(tm−), (3.18)

if the one-sided limits ϕ±m exist.
Now we define an ALE-STDG approximate solution of problem (2.11)–(2.13).
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Definition 3.1. A function U is an approximate solution of problem (2.11)–(2.13), if U ∈ Sp,qh,τ and∫
Im

(
(DtU,ϕ)Ωt

+Ah(U,ϕ, t) + bh(U,ϕ, t) + dh(U,ϕ, t)
)

dt (3.19)

+ ({U}m−1, ϕ
+
m−1)Ωtm−1

=
∫
Im

lh(ϕ, t) dt ∀ϕ ∈ Sp,qh,τ , m = 1, . . . ,M,

U−0 ∈ S
p,0
h , (U−0 − u0, vh) = 0 ∀vh ∈ Sp,0h . (3.20)

(For m = 1 we set {U}m−1 = {U}0 := U+
0 − U

−
0 with U−0 given by (3.20)).

The ALE-STDG numerical method (3.19)–(3.20) was applied in [16, 44] to the numerical simulation of a
compressible flow in time-dependent domains and fluid-structure interaction.

4. Analysis of the stability

In what follows we shall be concerned with the numerical solution of the ALE problem (2.11)–(2.13) by the
space-time discontinuous Galerkin method. In the theoretical analysis a number of various constants will appear.
Some important constants in main assertions will be denoted by CL1, C

∗
L1, C

∗∗
L1, etc. in Lemma 4.1, CL2, etc.

in Lemma 4.2, etc. and CT1, C
∗
T1, CT2, C

∗
T2, etc. in Theorems 4.1, 4.2, etc. Further, we use special notation

of constants appearing in properties of various structures, e.g. Lf , Lβ , LH , cR, etc. Inside proofs, constants are
denoted locally by c, c1, c2, c

∗ etc. The aim of this notation is to increase the readability of the paper and to
show the relations between individual theorems and lemmas.

4.1. Some auxiliary results

As was mentioned in Section 3.1, for each t ∈ [0, T ] we consider a system of triangulations {Th,t}h∈(0,h). We
assume that these systems are uniformly shape regular. This means that there exists a positive constant cR,
independent of K, t and h such that

hK
ρK
≤ cR for all K ∈ Th,t, h ∈ (0, h), t ∈ [tm−1, tm], (4.1)

τm ≤ τ ∈ (0, τ), m = 1, . . . ,M.

By (Am−1
h,t )−1 we denote the inverse to the mapping Am−1

h,t . The symbols
dAm−1

h,t

dX and
d(Am−1

h,t )−1

dx denote

the Jacobian matrices of Am−1
h,t and (Am−1

h,t )−1, respectively. The entries of
dAm−1

h,t

dX and
d(Am−1

h,t )−1

dx are con-
stant on every element K̂ ∈ T̂h,tm−1 and K ∈ Th,t, respectively. Moreover, we define the Jacobians J(X, t) =

det
dAm−1

h,t (X)

dX , X ∈ Ωtm−1 , and J−1(x, t) = det
d(Am−1

h,t (x))−1

dx , x ∈ Ωt. The Jacobians J and J−1 are piecewise
constant over T̂h,tm−1 and Th,t, respectively. The constant value of J on K̂ ∈ T̂h,tm−1 and of J−1 on K ∈ Th,t
will be denoted by JK̂ and J−1

K , respectively. Of course, these terms depend on t and, hence, JK̂ = JK̂(t) and
J−1
K = J−1

K (t).
In what follows, we assume that

Am−1
h,t ∈W

1,∞(Im;W 1,∞(Ωtm−1)), m = 1, . . . ,M, h ∈ (0, h) (4.2)

and
(Am−1

h,t )−1 ∈W 1,∞(Im;W 1,∞(Ωt)), m = 1, . . .M, h ∈ (0, h). (4.3)

Obviously, we have J ∈ W 1,∞(Im;L∞(Ωtm−1)), J−1 ∈ W 1,∞(Im;L∞(Ωt)). Since Am−1
h,tm−1

is the identical
mapping and, hence, J(X, tm−1) = 1, we assume that there exist constants C−J , C

+
J > 0 such that the Jacobians
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satisfy the conditions

C−J ≤ J(X, t) ≤ C+
J , X ∈ Ωtm−1 , t ∈ Im, m = 1, . . . ,M, h ∈ (0, h), (4.4)

(C+
J )−1 ≤ J−1(x, t) ≤ (C−J )−1, x ∈ Ωt, t ∈ Im, m = 1, . . . ,M, h ∈ (0, h).

Finally, there exist constants C−A , C
+
A > 0 such that∥∥∥∥∥dAm−1

h,t (X)
dX

∥∥∥∥∥ ≤ C+
A , X ∈ Ωtm−1 , t ∈ Im, m = 1, . . . ,M, h ∈ (0, h), (4.5)∥∥∥∥∥d(Am−1

h,t )−1(x)
dx

∥∥∥∥∥ ≤ C−A , x ∈ Ωt, t ∈ Im, m = 1, . . . ,M, h ∈ (0, h), (4.6)

where ‖ · ‖ is the matrix norm induced by the Euclidean norm | · | in IRd.
The above assumptions imply the following properties of the domain velocity: There exists a constant cz > 0

such that

|z(x, t)|, |divz(x, t)| ≤ cz for x ∈ Ωt, t ∈ (0, T ). (4.7)

Under assumption (4.1), the multiplicative trace inequality and the inverse inequality hold: There exist
constants cM , cI > 0 independent of v, h, t and K such that

‖v‖2L2(∂K) ≤ cM
(
‖v‖L2(K) |v|H1(K) + h−1

K ‖v‖
2
L2(K)

)
, (4.8)

v ∈ H1(K), K ∈ Th,t, h ∈ (0, h), t ∈ [0, T ],

and

|v|H1(K) ≤ cI h−1
K ‖v‖L2(K), v ∈ P p(K), K ∈ Th,t, h ∈ (0, h), t ∈ [0, T ]. (4.9)

In the space H1(Ωt, Th,t) we define the norm

‖ϕ‖DG,t =

 ∑
K∈Th,t

|ϕ|2H1(K) + Jh(ϕ,ϕ, t)

1/2

. (4.10)

Moreover, over ∂Ω we define the norm

‖uD‖DGB,t =

cW ∑
Γ∈FBh,t

h(Γ)−1

∫
Γ

|uD|2 dS

1/2

=
(
JBh (uD, uD, t)

)1/2
. (4.11)

If we use ϕ := U as a test function in (3.19), we get the basic identity∫
Im

(
(DtU,U)Ωt

+Ah(U,U, t) + bh(U,U, t) + dh(U,U, t)
)

dt (4.12)

+ ({U}m−1, U
+
m−1)Ωtm−1

=
∫
Im

lh(U, t) dt.

In what follows we need to estimate each term in (4.12). These estimates are summarized in Section 4.2. The
skipped proofs can be found in [5]. They are based on the multiplicative trace inequality (4.8), inverse inequality
(4.9), Young’s inequality and assumptions (2.5) on the function β.
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These estimates, apart from another, produce a problematic term
∫
Im
‖U‖2Ωtdt, which we need to estimate in

terms of data. To overcome this difficulty we generalize the concept of discrete characteristic function in time-
dependent domains. In Theorem 4.1 we prove the continuity of the previously defined discrete characteristic
function in ‖ · ‖Ωt and ‖ · ‖DG,t norms.

Then, in Theorems 4.2 and 4.3 we apply estimates from Section 4.2 to the basic identity (4.12). In Lemmas
4.6–4.10 we estimate similar terms in Section 4.2, but the test function (second variable) is replaced by the
discrete characteristic function. Using these lemmas and properties of the discrete characteristic function proved
in Theorem 4.1, we finally estimate the problematic term

∫
Im
‖U‖2Ωtdt in terms of data in Theorem 4.4.

Using this key result from Theorem 4.4 and the discrete Gronwall inequality from Lemma 4.11, the uncon-
ditional stability of the method is proved in Theorem 4.5.

4.2. Important estimates

Here we estimate the forms from (4.12). The proofs can be carried out in a similar way as in [5]. For a
sufficiently large constant cW we obtain the coercivity of the diffusion and penalty terms.

Lemma 4.1. Let

cW ≥
β2

1

β2
0

cM (cI + 1) for θ = −1 (NIPG), (4.13)

cW ≥
β2

1

β2
0

cM (cI + 1) for θ = 0 (IIPG), (4.14)

cW ≥
16β2

1

β2
0

cM (cI + 1) for θ = 1 (SIPG). (4.15)

Then ∫
Im

(ah(U,U, t) + β0 Jh(U,U, t)) dt ≥ β0

2

∫
Im

‖U‖2DG,t dt− β0

2

∫
Im

‖uD‖2DGB,t dt. (4.16)

Further, we estimate the convection terms and the right-hand side form:

Lemma 4.2. For each k1, k2, k3 > 0 there exists a constant cb, cd > 0 such that we have∫
Im

|bh(U,U, t)|dt ≤ β0

2k1

∫
Im

‖U‖2DG,tdt+ cb

∫
Im

‖U‖2Ωtdt, (4.17)∫
Im

|dh(U,U, t)|dt ≤ β0

2k2

∫
Im

‖U‖2DG,t dt+
cd

2β0

∫
Im

‖U‖2Ωt dt, (4.18)∫
Im

|lh(U, t)|dt ≤ 1
2

∫
Im

(
‖g‖2Ωt + ‖U‖2Ωt

)
dt (4.19)

+
β0k3

2

∫
Im

‖uD‖2DGB,t dt+
β0

2k3

∫
Im

‖U‖2DG,t dt.

Finally we need to estimate the term with the ALE derivative:
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Lemma 4.3. It holds that∫
Im

(DtU,U)Ωt dt ≥ 1
2

(
‖U−m‖2Ωtm − ‖U

+
m−1‖2Ωtm−1

− cz
∫
Im

‖U‖2Ωt dt
)
, (4.20)

(
{U}m−1, U

+
m−1

)
Ωtm−1

=
1
2

(
‖U+

m−1‖2Ωtm−1
+ ‖{U}m−1‖2Ωtm−1

− ‖U−m−1‖2Ωtm−1

)
, (4.21)∫

Im

(DtU,U)Ωt dt+
(
{U}m−1, U

+
m−1

)
Ωtm−1

(4.22)

≥ 1
2
‖U−m‖2Ωtm +

1
2
‖U+

m−1‖2Ωtm−1
− cz

2

∫
Im

‖U‖2Ωtdt−
(
U−m−1, U

+
m−1

)
Ωtm−1

.

Proof. We start with the first inequality. We have∫
Im

(DtU,U)Ωt dt =
∫
Im

∑
K∈Th,t

(DtU,U)K dt. (4.23)

By virtue of relation (3.2), the Reynolds transport theorem (see, e.g. [27] or [1]) and relation (2.10), we get

d
dt

∫
K

U2(x, t) dx =
∫
K

(
∂U2(x, t)

∂t
+ z(x, t) · ∇(U2(x, t)) + U2(x, t)div z(x, t)

)
dx (4.24)

=
∫
K

(
2U(x, t)

(
∂U(x, t)
∂t

+ z(x, t) · ∇U(x, t)
)

+ U2(x, t)div z(x, t)
)

dx

= 2(DtU,U)K + (U2,div z)K .

Expressing (DtU,U)K , summing over K ∈ Th,t and integrating over Im together with assumption (4.7) yield∫
Im

(DtU,U)Ωt dt =
1
2

∫
Im

d
dt

∫
Ωt

U2 dx dt− 1
2

∫
Im

(U2,div z)Ωt dt (4.25)

≥ 1
2
‖U−m‖2Ωtm −

1
2
‖U+

m−1‖2Ωtm−1
− cz

2

∫
Im

‖U‖2Ωt dt,

which gives (4.20).
Further, by a simple manipulation we find that

2(U+
m−1 − U

−
m−1, U

+
m−1)Ωtm−1

= ‖U+
m−1‖2Ωtm−1

+ ‖{U}m−1‖2Ωtm−1
− ‖U−m−1‖2Ωtm−1

,

which immediately implies (4.21).
Concerning inequality (4.22), from (4.25) we get∫

Im

(DtU,U)Ωtdt+
(
{U}m−1, U

+
m−1

)
Ωtm−1

=
1
2
‖U−m‖2Ωtm −

1
2
‖U+

m−1‖2Ωtm−1
− 1

2

∫
Im

(U2,div z)Ωtdt+ ‖U+
m−1‖Ωtm−1

− (U−m−1, U
+
m−1)Ωtm−1

≥ 1
2

(
‖U−m‖2Ωtm + ‖U+

m−1‖2Ωtm−1
− cz

∫
Im

‖U‖2Ωtdt
)
−
(
U−m−1, U

+
m−1

)
Ωtm−1

,

which proves the lemma. �



2338 M. BALÁZSOVÁ ET AL.

4.3. Discrete characteristic function

In our further considerations, the concept of a discrete characteristic function will play an important role,
which is generalized to time-dependent domains.

For m = 1, . . . ,M we use the following notation: U = U(x, t), x ∈ Ωt, t ∈ Im will denote the approximate
solution in Ωt, and Ũ = Ũ(X, t) = U(At(X), t), X ∈ Ωtm−1 t ∈ Im denotes the approximate solution transformed
to the reference domain Ωtm−1 .

For s ∈ Im we denote Ũs = Ũs(X, t), X ∈ Ωtm−1 , t ∈ Im, the discrete characteristic function to Ũ at a point
s ∈ Im. It is defined as Ũs ∈ P q(Im;Sp,m−1

h ) such that∫
Im

(Ũs, ϕ)Ωtm−1
dt =

∫ s

tm−1

(Ũ , ϕ)Ωtm−1
dt ∀ϕ ∈ P q−1(Im;Sp,m−1

h ), (4.26)

Ũs(X, tm−1
+) = Ũ(X, tm−1

+), X ∈ Ωtm−1 . (4.27)

The existence and uniqueness of the discrete characteristic function satisfying (4.26) and (4.27) is proved in
the monograph [20]. Further, we introduce the discrete characteristic function Us = Us(x, t), x ∈ Ωt, t ∈ Im to
U ∈ Sp,qh,τ at a point s ∈ Im:

Us(x, t) = Ũs(A−1
t (x), t), x ∈ Ωt, t ∈ Im. (4.28)

Hence, in view of (3.8), Us ∈ Sp,qh,τ and for X ∈ Ωtm−1 we have

Us(X, tm−1+) = U(X, tm−1+). (4.29)

In what follows, we prove some important properties of the discrete characteristic function. Namely, we prove
that the discrete characteristic function mapping U → Us is continuous with respect of the norms ‖ · ‖L2(Ωt)

and ‖ · ‖DG,t. In the proof we use a result from [7] for the discrete characteristic function on a reference domain:
There exists a constant c̃(1)

CH > 0 depending on q only such that∫
Im

‖Ũs‖2Ωtm−1
dt ≤ c̃

(1)
CH

∫
Im

‖Ũ‖2Ωtm−1
dt, (4.30)

for all m = 1, . . . ,M and h ∈ (0, h).

Lemma 4.4. There exist constants C∗L4, C
∗∗
L4 > 0 such that

C∗L4 h(Γ̂)−1 ≤ h(Γ)−1 ≤ C∗∗L4 h(Γ̂)−1 (4.31)

for all Γ̂ ∈ Fh,tm−1 ,Γ = At(Γ̂) ∈ Fh,t and all t ∈ Im, m = 1, . . . ,M, h ∈ (0, h).

Proof. We use the relation between Γ and Γ̂ and the properties (4.5) and (4.6) of the mappings At and A−1
t .

We also take into account that Γ̂ ⊂ K̂ for some K̂ ∈ T̂h,tm−1 , Γ ⊂ K = At(K̂) ∈ Th,t and that the Jacobian

matrices dAt
dX and dA−1

t

dx are constant on K̂ and K, respectively. Then we can write

h(Γ) = diam(Γ) = max
x,x∗∈Γ

|x− x∗| = max
X,X∗∈Γ̂

|At(X)−At(X∗)|

≤ max
X∈Γ̂

∥∥∥∥dAt(X)
dX

∥∥∥∥ max
X,X∗∈Γ̂

|X −X∗| ≤ C+
A max
X,X∗∈Γ̂

|X −X∗| = C+
A h(Γ̂).

Similarly, we get h(Γ̂) ≤ C−A h(Γ). These inequalities immediately imply (4.31) with C∗L4 = (C+
A )−1 and

C∗∗L4 = C−A . �
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Theorem 4.1. There exist constants C∗T1, C
∗∗
T1 > 0 such that∫

Im

‖Us‖2Ωt dt ≤ C∗T1

∫
Im

‖U‖2Ωt dt (4.32)∫
Im

‖Us‖2DG,t dt ≤ C∗∗T1

∫
Im

‖U‖2DG,t dt (4.33)

for all s ∈ Im, m = 1, . . . ,M and h ∈ (0, h).

Proof. We begin with the proof of the first inequality. We have

‖Us(t)‖2Ωt =
∫

Ωt

|Us(x, t)|2 dx =
∫

Ωt

|Ũs(A−1
t (x), t)|2 dx

=
∫

Ωtm−1

|Ũs(X, t)|2J(X, t) dX ≤ C+
J

∫
Ωtm−1

|Ũs(X, t)|2 dX

= C+
J ‖Ũs(t)‖

2
Ωtm−1

Integrating over Im and using (4.30) and (4.4), we obtain∫
Im

‖Us(t)‖2Ωt dt ≤ C+
J

∫
Im

‖Ũs(t)‖2Ωtm−1
dt

≤ C+
J c̃

(1)
CH

∫
Im

‖Ũ(t)‖2Ωtm−1
dt

= C+
J c̃

(1)
CH

∫
Im

(∫
Ωtm−1

|Ũ(X, t)|2 dX

)
dt

= C+
J c̃

(1)
CH

∫
Im

(∫
Ωtm−1

|U(At(X), t)|2 dX

)
dt

= C+
J c̃

(1)
CH

∫
Im

(∫
Ωt

|U(x, t)|2J−1(x, t) dx
)

dt

≤ C+
J c̃

(1)
CH(C−J )−1

∫
Im

(∫
Ωt

|U(x, t)|2 dx
)

dt

= C+
J c̃

(1)
CH(C−J )−1

∫
Im

‖U(t)‖2Ωt dt.

Setting C∗T1 = C+
J c̃

(1)
CH(C−J )−1, we get (4.32).

Now we pay our attention to the proof of the second inequality in the theorem. From the definition of the
DG-norm we have∫

Im

||Us||2DG,t dt =
∫
Im

∑
K∈Th,t

|Us|2H1(K) dt+
∫
Im

 ∑
Γ∈FIh,t

cW
h(Γ)

∫
Γ

[Us]2 dS

dt (4.34)

+
∫
Im

 ∑
Γ∈FBh,t

cW
h(Γ)

∫
Γ

|Us|2 dS

 dt,

where FIh,t = {Am−1
h,t (Γ̂); Γ̂ ∈ FIh,tm−1

} and similarly FBh,t = {Am−1
h,t (Γ̂); Γ̂ ∈ FBh,tm−1

}.
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Further, we estimate each term on the right-hand side of (4.34). From [20], relation (6.161), it follows that∑
K̂∈T̂h,tm−1

∫
Im

|Ũs(t)|2H1(K̂)
dt ≤ c̃(2)

CH

∑
K̂∈T̂h,tm−1

∫
Im

|Ũ(t)|2
H1(K̂)

dt, (4.35)

with a constant c̃(2)
CH > 0 depending on q only. For simplicity let us denote

Bt = Bt(X) =
dAm−1

h,t (X)
dX

, B−1
t = B−1

t (x) =
d(Am−1

h,t )−1(x)
dx

·

Then it follows from (4.5) and (4.6) that ‖Bt‖ ≤ C+
A and ‖B−1

t ‖ ≤ C−A .
Now, for K ∈ Th,t, K = At(K̂) with K̂ ∈ T̂h,tm−1 , using that ‖Bt|K̂‖ and ‖B−1

t |K̂‖ are constant, we have

|Us(t)|2H1(K) =
∫
K

|∇Us(x, t)|2 dx =
∫
K

∣∣∣∇Ũs(A−1
t (x), t)

∣∣∣2 dx (4.36)

≤
∫
K̂

∣∣∣B−1
t |K∇Ũs(X, t)

∣∣∣2 J(X, t) dX ≤ (C−A )2C+
J |Ũs(t)|

2
H1(K̂)

.

The summation over all K ∈ Th,t, integration over Im, the use of (4.35), (4.4), the Fubini and the substitution
theorem imply that∫

Im

∑
K∈Th,t

|Us(t)|2H1(K) dt ≤ (C−A )2C+
J

∫
Im

∑
K̂∈T̂h,tm−1

|Ũs(t)|2H1(K̂)
dt (4.37)

≤ (C−A )2C+
J c̃

(2)
CH

∫
Im

 ∑
K∈Th,t

∫
K

|∇U(t)|2‖Bt‖2J−1
K dx

 dt

≤ c1

∫
Im

∑
K∈T h,t

|U(t)|2H1(K) dt

= c1

∫
Im

|U(t)|2H1(Ωt,Th,t) dt,

where c1 := (C−A )2C+
J (C−J )−1c̃

(2)
CH(C+

A )2.
Now we turn our attention to the term∫

Im

 ∑
Γ∈FIh,t

cW
h(Γ)

∫
Γ

[Us]2 dS

 dt.

For simplicity we assume that d = 2. In Appendix A we briefly describe the proof for d = 3. We use estimate
(6.162) from [20], which implies that

∫
Im

 ∑
Γ̂∈FIh,tm−1

cW

h(Γ̂)

∫
Γ̂

[Ũs]2 dSΓ̂

 dt ≤ c2
∫
Im

 ∑
Γ̂∈FIh,tm−1

cW

h(Γ̂)

∫
Γ̂

[Ũ ]2 dSΓ̂

 dt. (4.38)

(Here dSΓ̂ denotes the element of the arc Γ̂. Similarly we use the notation dSΓ.)
Now we consider the relation Γ = At(Γ̂), Γ̂ ∈ FIh,tm−1

, and introduce a parametrization of Γ̂:

Γ̂ = BΓ̂
m−1([0, 1]) = {X = BΓ̂

m−1(υ); υ ∈ [0, 1]}.
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Then an element of Γ̂ can be expressed as

dSΓ̂ = |(BΓ̂
m−1)′(υ)|dυ, υ ∈ [0, 1].

These relations imply that

Γ = {x = At(BΓ̂
m−1(υ)); υ ∈ [0, 1]}

dSΓ =
∣∣∣∣dAtdX

(BΓ̂
m−1(υ))(BΓ̂

m−1)′(υ)
∣∣∣∣ dυ, υ ∈ [0, 1].

The term (BΓ̂
m−1)′(υ) is a tangent vector to Γ̂ at the point BΓ̂

m−1(υ). It follows from the properties of the
mapping At that the values of

dAt
dX

(BΓ̂
m−1(υ))(BΓ̂

m−1)′(υ)

are identical from the sides of both elements K(L)

Γ̂
and K(R)

Γ̂
adjacent to Γ̂. Then we can use the above relations,

inequalities (4.31), (4.5), and write∫
Γ

1
h(Γ)

[Us]2dSΓ =
∫ 1

0

1
h(Γ)

[Us(At(BΓ̂
m−1(υ)))]2

∣∣∣∣dAtdX
(BΓ̂
m−1(υ))(BΓ̂

m−1)′(υ)
∣∣∣∣ dυ (4.39)

≤
∫ 1

0

1
h(Γ)

[Ũs(BΓ̂
m−1(υ))]2

∥∥∥∥dAt
dX

(BΓ̂
m−1(υ))

∥∥∥∥︸ ︷︷ ︸
≤C+

A

∣∣∣(BΓ̂
m−1)′(υ)

∣∣∣ dυ

≤ C+
A

∫
Γ̂

C∗∗L4

h(Γ̂)
[Ũs]2dSΓ̂.

From (4.38) and (4.39) we get

∫
Im

 ∑
Γ∈FIh,t

cW
h(Γ)

∫
Γ

[Us]2 dSΓ

 dt ≤ c2C+
AC
∗∗
L4

∫
Im

 ∑
Γ̂∈FIh,tm−1

cW

h(Γ̂)

∫
Γ̂

[Ũ ]2 dSΓ̂

 dt. (4.40)

Further, for Γ = At(Γ̂), where Γ̂ ∈ FIh,tm−1
, we consider the parametrization

Γ = {x = BΓ
t (υ); υ ∈ [0, 1]},

Γ̂ = {X = A−1
t (BΓ

t (υ)); υ ∈ [0, 1]},

dSΓ̂ =
∣∣∣∣dA−1

t

dx
(BΓ
t (υ))(BΓ

t )′(υ)
∣∣∣∣ dυ.

Then, by (4.6), ∫
Γ̂

[Ũ ]2 dSΓ̂ =
∫ 1

0

[Ũ(A−1
t (BΓ

t (υ)))]2︸ ︷︷ ︸
[U(BΓ

t (υ))]2

∣∣∣∣dA−1
t

dx
(BΓ
t (υ))(BΓ

t )′(υ)
∣∣∣∣ dυ

≤
∫ 1

0

[U(BΓ
t (υ))]2

∥∥∥∥dA−1
t

dx
(BΓ
t (υ))

∥∥∥∥︸ ︷︷ ︸
≤C−A

∣∣(BΓ
t )′(υ)

∣∣ dυ

≤ C−A

∫ 1

0

[U(BΓ
t (υ))]2|(BΓ

t )′(υ)|dυ

= C−A

∫
Γ

[U ]2 dSΓ.
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Substituting back to (4.40) and using (4.31), we find that

∫
Im

 ∑
Γ∈FIh,t

cW
h(Γ)

∫
Γ

[Us]2 dSΓ

 dt ≤ c3

∫
Im

 ∑
Γ∈FIh,t

cW
h(Γ)

∫
Γ

[U ]2 dS

 dt, (4.41)

where c3 = c2C
+
AC
∗∗
L4(C∗L4)−1C−A .

Similarly we can prove the inequality

∫
Im

 ∑
Γ∈FBh,t

cW
h(Γ)

∫
Γ

|Us|2 dSΓ

 dt ≤ c4
∫
Im

 ∑
Γ∈FBh,t

cW
h(Γ)

∫
Γ

|U |2 dS

 dt. (4.42)

Finally, (4.37), (4.41) and (4.42) imply (4.33) with C∗∗T1 = max{c1, c3, c4}. �

4.4. Proof of the unconditional stability

Theorem 4.2. There exists a constant CT2 > 0 such that

‖U−m‖2Ωtm − ‖U
−
m−1‖2Ωtm−1

+ ‖{U}m−1‖2Ωtm−1
+
β0

2

∫
Im

‖U‖2DG,tdt (4.43)

≤ CT2

(∫
Im

‖g‖2Ωtdt+
∫
Im

‖uD‖2DGB,tdt+
∫
Im

‖U‖2Ωtdt
)
.

Proof. From (4.12), by virtue of (4.20), (4.16), (4.17), (4.18), (4.21) and (4.19), after some manipulation we get

‖U−m‖2Ωtm − ‖U
−
m−1‖2Ωtm−1

+ ‖{U}m−1‖2Ωtm−1
+ β0

(
1− 1

k1
− 1
k2
− 1
k3

)∫
Im

‖U‖2DG,tdt

≤
∫
Im

‖g‖2Ωtdt+ β0(1 + k3)
∫
Im

‖uD‖2DGB,tdt+
(
cz + 1 +

cd
β0

+ 2cb

)∫
Im

‖U‖2Ωtdt.

Hence, choosing k1 = k2 = k3 = 6, we get (4.43) with CT2 = max{1, 7β0, cz + 1 + cd/β0 + 2cb}. �

Theorem 4.3. There exist constants C∗T3, C
∗∗
T3 > 0 such that for any δ1 > 0 we have

‖U−m‖2Ωtm + ‖U+
m−1‖2Ωtm−1

+
β0

2

∫
Im

‖U‖2DG,tdt (4.44)

≤ C∗T3

∫
Im

‖U‖2Ωtdt+ C∗∗T3

∫
Im

(
‖g‖2Ωt + ‖uD‖2DGB,t

)
dt+

2
δ1
‖U−m−1‖2Ωtm−1

+ 4δ1‖U+
m−1‖2Ωtm−1

.

Proof. From (3.19), by virtue of (4.22), (4.16), (4.17), (4.18), (4.21) and (4.19), we get

‖U−m‖2Ωtm + ‖U+
m−1‖2Ωtm−1

+ β0

(
1− 1

k1
− 1
k2
− 1
k3

)∫
Im

‖U‖2DG,tdt

≤
∫
Im

‖g‖2Ωtdt+ β0(1 + k3)
∫
Im

‖uD‖2DGB,tdt

+
(

1 + cz + 2cb +
cd
β0

)∫
Im

‖U‖2Ωtdt+ 2
(
U−m−1, U

+
m−1

)
Ωtm−1

.

Using Young’s inequality for the term 2(U−m−1, U
+
m−1) and setting k1 = k2 = k3 = 6, we get (4.44), where

C∗T3 = 1 + cz + 2cb + cd/β0 and C∗∗T3 = max{1, 7β0}. �
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We introduce the following notation:

tm−1+l/q = tm−1 + τm
l

q
,

Um−1+l/q = U(tm−1+l/q), l = 0, . . . , q.

Lemma 4.5. There exist constants C∗L5, C
∗∗
L5 > 0 such that for m = 1, . . . ,M we have

q∑
l=0

‖Um−1+l/q‖2Ωtm−1+l/q
≥ C∗L5

τm

∫
Im

‖U‖2Ωtdt, (4.45)

‖U+
m−1‖2Ωtm−1

≤ C∗∗L5

τm

∫
Im

‖U‖2Ωtdt. (4.46)

Proof. Using the equivalence of norms in the space of polynomials of degree ≤ q, for p(t) = Ũ(X, t), t ∈ Im,
and any fixed X ∈ Ωtm−1 , we have

q∑
l=0

Ũ2
(
X, tm−1+l/q

)
≥ Lq
τm

∫
Im

Ũ2(X, t) dt,

Ũ2
(
X, t+m−1

)
≤ Mq

τm

∫
Im

Ũ2(X, t) dt,

where the constants Lq, Mq > 0 were introduced in [20], Section 6.2.3.2. Integrating over Ωtm−1 and using
Fubini’s theorem, we get

q∑
l=0

∫
Ωtm−1

|Ũ
(
X, tm−1+l/q

)
|2dX ≥ Lq

τm

∫
Ωtm−1

(∫
Im

|Ũ(X, t)|2dt
)

dX

=
Lq
τm

∫
Im

(∫
Ωtm−1

|Ũ(X, t)|2dX

)
dt.

Analogously we find that∫
Ωtm−1

|Ũ
(
X, t+m−1

)
|2 dX ≤ Mq

τm

∫
Im

(∫
Ωtm−1

|Ũ(X, t)|2dX

)
dt.

Now the substitution X = A−1
t (x), where X ∈ Ωtm−1 , x ∈ Ωt, relation Ũ(A−1

t (x), t) = U(x, t) and (4.4)
imply that

q∑
l=0

‖Um−1+l/q‖2Ωtm−1+l/q

≥ C−J
q∑
l=0

∫
Ωtm−1+l/q

|U(x, tm−1+l/q)|2J−1(x, tm−1+l/q) dx

≥ Lq
τm

C−J

∫
Im

(∫
Ωtm−1

|Ũ(X, t)|2dX

)
dt

=
Lq
τm

C−J

∫
Im

(∫
Ωt

|Ũ(A−1
t (x), t)|2J−1(x, t) dx

)
dt

≥ Lq
τm

(C+
J )−1C−J

∫
Im

‖U‖2Ωtdt.
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Hence, we get (4.45) with C∗L5 = Lq(C+
J )−1C−J .

Further, since x = Atm−1(X) = X and, thus, Ũ(X, t+m−1) = U(x, t+m−1), using the substitution theorem and
(4.4), we obtain

‖U+
m−1‖2Ωtm−1

=
∫

Ωtm−1

|Ũ
(
X, t+m−1

)
|2dX

≤ Mq

τm

∫
Im

(∫
Ωtm−1

|Ũ(X, t)|2dX

)
dt

≤ C∗∗L5

τm

∫
Im

‖U‖2Ωtdt,

where C∗∗L5 = Mq(C−J )−1. �

In what follows, because of simplicity, we use the notation Ũ ′ = ∂Ũ
∂t and do not write the arguments X and

t in integrals.

Lemma 4.6. There exists a constant CL6 > 0 such that∫
Im

(DtU,Us)Ωtdt+ ({U}m−1,Us(t+m−1))Ωtm−1
(4.47)

≥ 1
2

(
‖U(s−)‖2Ωs + ‖U(t+m−1)‖2Ωtm−1

)
− CL6

∫
Im

‖U‖2Ωtdt− (U+
m−1, U

−
m−1)Ωtm−1

.

for any s ∈ Im, m = 1, . . . ,M and h ∈ (0, h).

Proof. By virtue of the definition of the ALE derivative (2.9), the definitions of Ũ , Ũs,Us, the fact that Ũ ′ is a
polynomial of degree ≤ q − 1 in time and the substitution theorem we can write∫

Im

(DtU,Us)Ωtdt =
∫
Im

(
Ũ ′, ŨsJ

)
Ωtm−1

dt (4.48)

=
∫
Im

(
Ũ ′, Ũs

)
Ωtm−1

dt+
∫
Im

(
Ũ ′, Ũs(J − 1)

)
Ωtm−1

dt

=
∫ s

tm−1

(
Ũ ′, Ũ

)
Ωtm−1

dt+
∫
Im

(
Ũ ′, Ũs(J − 1)

)
Ωtm−1

dt

=
∫ s

tm−1

(
Ũ ′, ŨJ

)
Ωtm−1

dt+
∫ s

tm−1

(
Ũ ′, Ũ(1− J)

)
Ωtm−1

dt+
∫
Im

(
Ũ ′, Ũs(J − 1)

)
Ωtm−1

dt

=
∫ s

tm−1

(DtU,U)Ωtdt+
∫ s

tm−1

(
Ũ ′, Ũ(1− J)

)
Ωtm−1

dt+
∫
Im

(
Ũ ′, Ũs(J − 1)

)
Ωtm−1

dt.

Now we estimate the second and third term on the right-hand side. We begin with the third term. The fact
that J is constant on each K̂ ∈ T̂h,tm−1 and the substitution theorem imply that

∣∣∣∣∫
Im

(
Ũ ′, Ũs(J − 1)

)
Ωtm−1

dt
∣∣∣∣ =

∣∣∣∣∣∣∣
∑

K̂∈T̂h,tm−1

∫
Im

(JK̂ − 1)
(∫

K̂

Ũ ′Ũs dX
)

dt

∣∣∣∣∣∣∣
≤

∑
K̂∈T̂h,tm−1

max
t∈Im

|JK̂ − 1|
∫
Im

(∫
K̂

|Ũ ′Ũs|dX
)

dt.
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Using the relation JK̂(tm−1) = 1, we have

max
t∈Im

|JK̂ − 1| ≤
∫ tm

tm−1

|J ′
K̂
|dt ≤ cJτm,

where cJ > 0 is a constant independent of h, τm,m. Then we find that

∑
K̂∈T̂h,tm−1

max
t∈Im

|JK̂ − 1|
∫
Im

∫
K̂

|Ũ ′Ũs|dXdt

≤ cJτm
∑

K̂∈T̂h,tm−1

∫
K̂

((∫
Im

|Ũ ′|2 dt
)1/2(∫

Im

|Ũs|2 dt
)1/2

)
dX.

Now we apply the inverse inequality in time: There exists a constant ĉI such that

(∫
Im

|Ũ ′(X, t)|2 dt
)1/2

≤ ĉI
τm

(∫
Im

|Ũ(X, t)|2 dt
)1/2

(4.49)

holds for every X ∈ Ωtm−1 , τm ∈ (0, τ) and m = 1, . . . ,M .

This inequality, Young’s inequality, Fubini’s theorem, (4.30), substitution theorem and (4.4) imply that

τm
∑

K̂∈T̂h,tm−1

∫
K̂

((∫
Im

|Ũ ′|2 dt
)1/2(∫

Im

|Ũs|2 dt
)1/2

)
dX

≤ ĉI
∑

K̂∈T̂h,tm−1

∫
K̂

(∫
Im

|Ũ |2dt
)1/2(∫

Im

|Ũs|2dt
)1/2

dX

≤ ĉI
2

∑
K̂∈T̂h,tm−1

∫
K̂

(∫
Im

(
|Ũ |2 + |Ũs|2

)
dt
)

dX

=
ĉI
2

∑
K̂∈T̂h,tm−1

∫
Im

(∫
K̂

(
|Ũ |2 + |Ũs|2

)
dX
)

dt

≤ ĉI
2

(1 + c̃
(1)
CH)

∫
Im

‖Ũ‖2Ωtm−1
dt

≤ c∗
∫
Im

‖U‖2Ωtdt,

where c∗ = (C−J )−1ĉI(1 + c̃
(1)
CH)/2. Summarizing the obtained results, we see that we have proved the inequality

∣∣∣∣∫
Im

(
Ũ ′, Ũs(J − 1)

)
Ωtm−1

dt
∣∣∣∣ ≤ c∗cJ ∫

Im

‖U‖2Ωtdt. (4.50)
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Similarly as above we can estimate the second term on the right-hand side of (4.48):∣∣∣∣∣
∫ s

tm−1

(
Ũ ′, Ũ(1− J)

)
Ωtm−1

dt

∣∣∣∣∣ ≤
∫
Im

∣∣∣(Ũ ′, Ũ(1− J))Ωtm−1

∣∣∣dt
≤

∑
K̂∈T̂h,tm−1

max
t∈Im

|1− JK̂ |
∫
Im

∫
K̂

|Ũ ′Ũ |dXdt

≤ cJτm
∑

K̂∈T̂h,tm−1

∫
K̂

((∫
Im

|Ũ ′|2 dt
)1/2(∫

Im

|Ũ |2 dt
)1/2

)
dX.

Now the inverse inequality in time, Young’s inequality, Fubini’s theorem, (4.30) and (4.4) yield the inequality

∣∣∣∣∣
∫ s

tm−1

(
Ũ ′, Ũ(1− J)

)
Ωtm−1

dt

∣∣∣∣∣ ≤ c1
∫
Im

‖U‖2Ωtdt. (4.51)

with c1 = cJ(C−J )−1ĉI/2.
Finally, from (4.48), (4.50), (4.51) and analogy to (4.22), (4.29) putting c2 = c∗cJ + c1 we find that∫

Im

(DtU,Us)Ωtdt+ ({U}m−1,Us(tm−1+))Ωtm−1

≥
∫ s

tm−1

(DtU,U)Ωtdt+ ‖U+
m−1‖2Ωtm−1

− (U−m−1, U
+
m−1)Ωtm−1

− c2
∫
Im

‖U‖2Ωtdt

=
1
2

∫ s

tm−1

(
d
dt

∫
Ωt

U2(x, t)dx
)

dt− 1
2

∫ s

tm−1

(
U2div, z

)
Ωt

dt

+ ‖U+
m−1‖2Ωtm−1

− (U−m−1, U
+
m−1)Ωtm−1

− c2
∫
Im

‖U‖2Ωtdt

=
1
2

(
‖U(s−)‖2Ωs + ‖U+

m−1‖2Ωtm−1

)
− cz

2

∫ s

tm−1

‖U‖2Ωtdt

− c2
∫
Im

‖U‖2Ωtdt− (U−m−1, U
+
m−1)Ωtm−1

,

which implies (4.47) with CL6 = cz/2 + c2. �

In the following lemmas, for simplicity we use the notation U∗l and Ũ∗l for the discrete characteristic functions
to U and Ũ , respectively at the time instant tm−1+l/q.

Lemma 4.7. There exists a constant CL7 > 0 such that

|ah(U,U∗l , t) + β0Jh(U,U∗l , t)| ≤ CL7

(
‖U‖2DG,t + ‖U∗l ‖2DG,t + ‖uD‖2DGB,t

)
(4.52)

for all t, l ∈ Im, m = 1, . . . ,M, h ∈ (0, h).
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Proof. Using the definition of the form ah, the property of the function β, the Cauchy inequality and Young’s
inequality, we get

|ah(U,U∗l , t)| ≤ β1

∑
K∈Th,t

∫
K

(
|∇U |2 + |∇U∗l |2

)
dx (4.53)

+ β1

∑
Γ∈FIh,t

∫
Γ

(
h(Γ)
cW

(
|∇U (L)

Γ |2 + |∇U (R)
Γ |2

)
+

cW
h(Γ)

[U∗l ]2
)

dS

+ β1

∑
Γ∈FIh,t

∫
Γ

(
h(Γ)
cW

(
|∇(U∗l )(L)

Γ |
2 + |∇(U∗l )(R)

Γ |
2
)

+
cW
h(Γ)

[U ]2
)

dS

+ β1

∑
Γ∈FBh,t

∫
Γ

(
h(Γ)
cW
|∇U |2 +

cW
h(Γ)

|U∗l |2
)

dS

+ β1

∑
Γ∈FBh,t

∫
Γ

(
h(Γ)
cW
|∇U∗l |2 +

cW
h(Γ)

|U |2
)

dS

+ β1

∑
Γ∈FBh,t

∫
Γ

|∇U∗l | |uD|dS.

The last term can be estimated using Young’s inequality and the relation h(Γ) ≤ h
K

(L)
Γ

, for each ε > 0 the
last term can be estimated in the following way:

β1

∑
Γ∈FBh,t

∫
Γ

|∇U∗l | |uD| dS ≤ β1ε

2cW
JBh (uD, uD) +

β1

2ε

∑
Γ∈FBh,t

∫
∂K

(L)
Γ

h
K

(L)
Γ
|∇U∗l |

2 dS.

Now we express the first term on the right-hand side of this inequality with the aid of the definition of
the ‖ · ‖DGB,t-norm and to the second term we apply the multiplicative trace inequality (4.8) and the inverse
inequality (4.9). We get

β1

∑
Γ∈FBh,t

∫
Γ

|∇U∗l | |uD| dS ≤ β1ε

2cW
‖uD‖2DGB,t +

β1

2ε
cM (cI + 1)‖U∗l ‖2DG,t. (4.54)

Setting ε := β1
β0
cM (cI + 1) in (4.54) and substituting back to (4.53) we get

|ah(U,U∗l , t)| ≤ β1

∑
K∈Th,t

∫
K

(
|∇U |2 + |∇U∗l |2

)
dx

+ β1

∑
Γ∈FIh,t

∫
Γ

h(Γ)
cW

(
|∇U (L)

Γ |2 + |∇U (R)
Γ |2

)
dS + β1

∑
Γ∈FBh,t

∫
Γ

h(Γ)
cW
|∇U |2 dS

+ β1

∑
Γ∈FIh,t

∫
Γ

h(Γ)
cW

(
|∇(U∗l )(L)

Γ |
2 + |∇(U∗l )(R)

Γ |
2
)

dS

+ β1

∑
Γ∈FBh,t

∫
Γ

h(Γ)
cW
|∇U∗l |2 dS +

β2
1

2β0cW
cM (cI + 1)‖uD‖2DGB,t

+
β0

2
‖U∗l ‖2DG,t + β1 Jh(U∗l ,U∗l , t) + β1 Jh(U,U, t).
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Using the inequality h(Γ) ≤ hK for Γ ⊂ ∂K, we have

|ah(U,U∗l , t)| ≤ β1

∑
K∈Th,t

∫
K

(
|∇U |2 + |∇U∗l |2

)
dx+

β1

cW

∑
K∈Th,t

∫
∂K

hK
(
|∇U |2 + |∇U∗l |2

)
dS (4.55)

+
β2

1

2β0cW
cM (cI + 1)‖uD‖2DGB,t +

β0

2
‖U∗l ‖2DG,t

+ β1 Jh(U∗l ,U∗l , t) + β1 Jh(U,U, t).

Now, applying the multiplicative inequality and the inverse inequality, we can obtain the estimate∑
K∈Th,t

∫
∂K

hK
(
|∇U |2 + |∇U∗l |2

)
dS ≤ cM (cI + 1)

∑
K∈Th,t

(
|U |2H1(Ω) + |U∗l |2H1(Ω)

)
. (4.56)

From (4.55) and (4.56), the definition of the ‖ · ‖DG,t-norm, using the inequality

Jh,(U,U∗l , t) ≤ Jh(U,U, t) + Jh(U∗l ,U∗l , t)

and putting CL7 = max{β0 + β1 + β1cM (cI + 1)/cW , β2
1cM (cI + 1)/(2β0cW )}, we finally get

|ah(U,U∗l , t) + β0 Jh(U,U∗l , t)| ≤
(
β1 +

β1

cW
cM (cI + 1)

)
|U |2H1(Ωt,Th,t)

+ (β0 + β1)Jh(U,U, t) +
(
β1 +

β0

2
+
β1

cW
cM (cI + 1)

)
|U∗l |2H1(Ωt,Th,t)

+ (β0 + β1)Jh(U∗l ,U∗l , t) +
β2

1

2β0cW
cM (cI + 1)‖uD‖2DGB,t

≤ CL7

(
‖U‖2DG,t + ‖U∗l ‖2DG,t + ‖uD‖2DGB,t

)
.

�

Lemma 4.8. For each k1 > 0 there exists a constant cb > 0 such that for the approximate solution U and the
discrete characteristic function U∗l we have the inequality∫

Im

|bh(U,U∗l , t)|dt ≤
β0

2k1

∫
Im

‖U∗l ‖2DG,tdt+ cb

∫
Im

‖U‖2Ωtdt. (4.57)

Proof. It can be proved in a similar way as in the proof of inequality (5.18) from [7]. �

Lemma 4.9. For each k2 > 0 there exists a constant cd > 0 such that the approximate solution U and the
discrete characteristic function U∗l satisfy the inequality∫

Im

|dh(U,U∗l , t)|dt ≤
β0

2k2

∫
Im

‖U‖2DG,t dt+
cd

2β0

∫
Im

‖U∗l ‖2Ωt dt. (4.58)

Proof. By (3.16), (4.7) and the Cauchy and Young’s inequalities,∫
Im

|dh(U,U∗l , t)|dt ≤
β0

2k2

∫
Im

‖U‖2DG,t dt+
c2zk2

2β0

∫
Im

‖U∗l ‖2Ωt dt,

which is (4.58) with cd = c2zk2. �
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Lemma 4.10. For the approximate solution U , the discrete characteristic function U∗l and any k3 > 0 we have∫
Im

|lh(U∗l , t)|dt ≤
1
2

∫
Im

(
‖g‖2Ωt + ‖U∗l ‖2Ωt

)
dt (4.59)

+
β0k3

2

∫
Im

‖uD‖2DGB,t dt+
β0

2k3

∫
Im

‖U∗l ‖2DG,t dt.

Proof. From (3.17), using the Cauchy and Young’s inequality with k3 > 0, we find that

|(g,U∗l ) + β0 cW
∑

Γ∈FBh,t

h(Γ)−1

∫
Γ

uD U∗l dS|

≤ 1
2

(‖g‖2Ωt + ‖U∗l ‖2Ωt) +
β0k3

2
cW

∑
Γ∈FBh,t

h(Γ)−1

∫
Γ

|uD|2 dS

︸ ︷︷ ︸
=‖uD‖2DGB,t

+
β0

2k3
cW

∑
Γ∈FBh,t

h(Γ)−1

∫
Γ

|U∗l |2 dS

︸ ︷︷ ︸
≤ Jh(U∗l ,U

∗
l ,t)≤‖U

∗
l ‖

2
DG,t

,

from which we get (4.59) by integrating both sides over the interval Im. �

Now we prove an important estimate regarding the problematic term
∫
Im
‖U‖2Ωtdt.

Theorem 4.4. There exist constants CT4, C
∗
T4 > 0 such that∫

Im

‖U‖2Ωtdt ≤ CT4τm

(
‖U−m−1‖2Ωtm−1

+
∫
Im

(
‖g‖2Ωt + ‖uD‖2DGB,t

)
dt
)

(4.60)

provided 0 < τm < C∗T4.

Proof. For q = 1, the proof can be carried out similarly as in [5]. Let us assume that q ≥ 2, l ∈ {1, . . . , q − 1}.
From the definition of the approximate solution (3.19) and (3.20) for ϕ := U∗l we get∫

Im

(DtU,U∗l )Ωt dt+
(
{U}m−1, {U∗l }+m−1

)
Ωtm−1

(4.61)

=
∫
Im

(−ah(U,U∗l , t)− β0Jh(U,U∗l , t)− bh(U,U∗l , t)) dt

+
∫
Im

(−dh(U,U∗l , t) + lh(U∗l , t)) dt.

This relation and Lemma 4.6 imply that

1
2

(∥∥∥Um−1+l/q

∥∥∥2

Ωtm−1+l/q

+ ‖U+
m−1‖2Ωtm−1

)
(4.62)

≤
∫
Im

|ah(U,U∗l , t) + β0Jh(U,U∗l , t)| dt+
∫
Im

|bh(U,U∗l , t)|dt

+
∫
Im

|dh(U,U∗l , t)|dt+
∫
Im

|lh(U∗l , t)|dt+
(
U−m−1, U

+
m−1

)
Ωtm−1

+ CL6

∫
Im

‖U‖2Ωt dt ≡ RHS.
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Now we need to estimate the right-hand side of (4.62) from above. Using (4.52), (4.57), (4.58),(4.59) with
k1 = k2 = k3 = 1, (4.47) and Young’s inequality with any δ2 > 0, we get

RHS ≤ c1
∫
Im

(
‖U‖2DG,t + ‖U∗l ‖2DG,t + ‖U∗l ‖2Ωt + ‖U‖2Ωt + ‖g‖2Ωt + ‖uD‖2DGB,t

)
dt

+
‖U−m−1‖2Ωtm−1

δ2
+ δ2‖U+

m−1‖2Ωtm−1
,

where c1 = max{CL9 + β0 + cd/(2β0) + 1/2, cb + CL6}. Now we apply Theorem 4.1 on the continuity of the
discrete characteristic function:∫

Im

‖U∗l ‖2Ωtdt ≤ C
∗
T1

∫
Im

‖U‖2Ωtdt,
∫
Im

‖U∗l ‖2DG,tdt ≤ C∗∗T1

∫
Im

‖U‖2DG,tdt.

Hence,

RHS ≤ c2
∫
Im

(
‖U‖2DG,t + ‖U‖2Ωt + ‖g‖2Ωt + ‖uD‖2DGB,t

)
dt

+
‖U−m−1‖2Ωtm−1

δ2
+ δ2‖U+

m−1‖2Ωtm−1
,

with c2 = c1 max{1 + C∗T1, 1 + C∗∗T1}. Then it follows from (4.62) that

1
2

(∥∥U−m−1+l/q

∥∥2

Ωtm−1+l/q
+ ‖U+

m−1‖2Ωtm−1

)
(4.63)

≤ c2
∫
Im

(
‖U‖2DG,t + ‖U‖2Ωt + ‖g‖2Ωt + ‖uD‖2DGB,t

)
dt+

‖U−m−1‖2Ωtm−1

δ2
+ δ2‖U+

m−1‖Ωtm−1
.

Further, multiplying (4.63) by β0
4c2(q−1) , summing over l = 1, . . . , q − 1 and adding to (4.44), we find that

‖U−m‖2Ωtm +
β0

8c2(q − 1)

q−1∑
l=1

‖U‖2Ωtm−1+l/q
+
(
β0

8c2
+ 1
)
‖U+

m−1‖2Ωtm−1
+
β0

2

∫
Im

‖U‖2DG,tdt

≤ β0

4

∫
Im

‖U‖2DG,tdt+
(
β0

4
+ C∗T3

)∫
Im

‖U‖2Ωtdt

+
(
β0

4
+ C∗∗T3

)∫
Im

(
‖g‖2Ωt + ‖uD‖2DGB,t

)
dt

+
(

β0

4c2δ2
+

2
δ1

)
‖U−m−1‖2Ωtm−1

+
(
β0δ2
4c2

+ 4δ1

)
‖U+

m−1‖2Ωtm−1
.

Setting c3 := min
{

β0
8c2(q−1) ,

β0
8c2

+ 1
}

and rearranging, we get

c3

(
‖U−m‖Ω2

tm
+
q−1∑
l=1

‖U2
m−1+l/q‖

2
Ωtm−1+l/q

+ ‖U+
m−1‖2Ωtm−1︸ ︷︷ ︸

=
∑q
l=0 ‖Um−1+l/q‖2Ωtm−1+l/q

)
+
β0

4

∫
Im

‖U‖2DG,tdt

≤
(
β0

4
+ C∗T3

)∫
Im

‖U‖2Ωtdt+
(
β0

4
+ C∗∗T3

)∫
Im

(
‖g‖2Ωt + ‖uD‖2DGB,t

)
dt

+
(

β0

4c2δ2
+

2
δ1

)
‖U−m−1‖2Ωtm−1

+
(
β0δ2
4c2

+ 4δ1

)
‖U+

m−1‖2Ωtm−1
.
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It follows from inequalities (4.45) and (4.46) that

c3L
∗
q

τm

∫
Im

‖U‖2Ωtdt+
β0

4

∫
Im

‖U‖2DG,tdt

≤
(
β0δ2M

∗
q

4c2τm
+

4δ1M∗q
τm

+
β0

4
+ C∗T3

)∫
Im

‖U‖2Ωtdt

+
(
β0

4
+ C∗∗T3

)∫
Im

(
‖g‖2Ωt + ‖uD‖2DG,t

)
dt+

(
β0

4c2δ2
+

2
δ1

)
‖U−m−1‖2Ωtm−1

.

Setting δ1 = c3L
∗
q

16M∗
q

, δ2 = c3c2L
∗
q

β0M∗
q

, c4 := β0
4c2δ2

+ 2
δ1

, c5 := β0
4 + C∗∗T3 we get

(
c3L
∗
q

2τm
− β0

4
− C∗T3

)∫
Im

‖U‖2Ωtdt+
β0

4

∫
Im

‖U‖2DG,tdt (4.64)

≤ c5
∫
Im

(
‖g‖2Ωt + ‖uD‖2DGB,t

)
dt+ c4‖U−m−1‖2Ωtm−1

.

If the condition 0 < τm ≤ C∗T4 := c3L
∗
q

4(
β0
4 +C∗T3)

is satisfied, then β0
4 +C∗T3 ≥

c3L
∗
q

4τm
and from (4.64) we obtain the

estimate

c3L
∗
q

4τm

∫
Im

‖U‖2Ωtdt+
β0

4

∫
Im

‖U‖2DG,t dt ≤ c5
∫
Im

(
‖g‖2Ωt + ‖uD‖2DGB,t

)
dt+ c4‖U−m−1‖2Ωtm−1

,

which implies (4.60). �

The stability analysis will be finished by the application of the following auxiliary lemma.

Lemma 4.11. (Discrete Gronwall inequality) Let xm, am, bm and ym, where
m = 1, 2, . . ., be non-negative sequences and let the sequence am be nondecreasing. Then, if

x0 + y0 ≤ a0,

xm + ym ≤ am +
m−1∑
j=0

bjxj for m ≥ 1,

we have

xm + ym ≤ am
m−1∏
j=0

(1 + bj) for m ≥ 0.

The proof can be carried out by induction, see [20].
Now, if (4.60) is substituted into (4.43), an inequality is obtained, which is a basis of the proof of our main

result about the stability:

‖Um‖2Ωtm − ‖U
−
m−1‖2Ωtm−1

+ ‖{U}m−1‖2Ωtm−1
+
β0

2

∫
Im

‖U‖2DG,m dt (4.65)

≤ (CT2 + CT4 τm)
∫
Im

(‖g‖2Ωt + ‖uD‖2DGB,t) dt+ CT2CT4 τm‖U−m−1‖2Ωtm−1
.
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Theorem 4.5. Let 0 < τm ≤ C∗T4 for m = 1, . . . ,M . Then there exists a constant CT5 > 0 such that

‖U−m‖2Ωtm +
m∑
j=1

‖{Uj−1}‖2Ωtj−1
+
β0

2

m∑
j=1

∫
Ij

‖U‖2DG,t dt (4.66)

≤ CT5

‖U−0 ‖2Ωt0 +
m∑
j=1

∫
Ij

Rt,j dt

 , m = 1, . . . ,M, h ∈ (0, h),

where Rt,j = (CT2 + CT4 τj) (‖g‖2Ωt + ‖uD‖2DGB,t) for t ∈ Ij.

Proof. Writing j instead of m in (4.65),we obtain

‖U−j ‖
2
Ωtj
− ‖U−j−1‖

2
Ωtj−1

+ ‖{U}j−1‖2Ωtm−1
+
β0

2

∫
Ij

‖U‖2DG,t dt

≤
∫
Ij

Rt,j dt+ CT2CT4 τj‖U−j−1‖
2
Ωtj−1

.

Let m ≥ 1. The summation over all j = 1, . . . ,m yields the inequality

‖U−m‖2Ωtm +
m∑
j=1

‖{U}j−1‖2Ωtj−1
+
β0

2

m∑
j=1

∫
Ij

‖U‖2DG,t dt

≤ ‖U−0 ‖2Ω0
+ CT2CT4

m∑
j=0

τj+1‖U−j ‖
2
Ωtj

+
m∑
j=1

∫
Ij

Rt,j dt.

The use of the discrete Gronwall inequality with setting

x0 = a0 = ‖U−0 ‖2Ωt0 , c0 = 0,

xm = ‖U−m‖2Ωtm ,

ym =
m∑
j=1

‖{Uj−1}‖2Ωtj−1
+
β0

2

m∑
j=1

∫
Ij

‖U‖2DG,t dt,

am = ‖U−0 ‖2Ωt0 +
m∑
j=1

∫
Ij

Rt,j dt,

bj = CT2CT4 τj+1, j = 0, 1, . . . ,m,

yield

‖U−m‖2Ωtm +
m∑
j=1

‖{Uj−1}‖2Ωtj−1
+
β0

2

m∑
j=1

∫
Ij

‖U‖2DG,t dt (4.67)

≤

‖U−0 ‖2Ωt0 +
m∑
j=1

∫
j

Rt,j dt

m−1∏
j=0

(
1 + CT2CT4 τj+1

)
.

Finally (4.67) and the inequality 1 + σ < exp(σ) valid for any σ > 0 immediately yield (4.66) with the
constant CT5 := exp(CT2CT4T ). �
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5. Conclusion

This paper is devoted to the stability analysis of the space-time discontinuous Galerkin method applied to
the numerical solution of an initial-boundary value problem for a nonlinear convection-diffusion equation in a
time-dependent domain. The problem is formulated with the aid of a new version of the arbitrary Lagrangian–
Eulerian (ALE) method allowing to use different meshes in different time slabs. In the numerical scheme we
use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion terms and
interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux.
The space discretization uses piecewise polynomial approximations of degree ≤ p with an integer p ≥ 1. For
the discontinuous Galerkin discretization in time we use polynomials of degree ≤ q with q ≥ 1. (We are not
concerned with the case q = 0, which yields the simple backward Euler time discretization.) Main attention
is paid here to the situation when q ≥ 2, which is much more complicated and a special technique based on
the ALE-generalization of the concept of the discrete characteristic function has been applied. This approach
combined with a number of various estimates results in the proof of unconditional stability of the method. The
obtained results represent a theoretical support of the ALE-STDGM developed in [16] for the numerical solution
of compressible Navier-Stokes equations in time-dependent domains and interaction of compressible flow with
elastic structures.

Further step will be the application of derived results to the analysis of error estimates of the ALE-STDGM
in time-dependent domains. Interesting, but very difficult would be the analysis of the ALE-STDGM applied
to singularly perturbed nonlinear problems, generalizing results of papers [45,54].

Appendix A. Proof of estimates (4.41) and (4.42) from the proof of Theorem
4.1 in the 3D case (by Z. Vlasáková)

We introduce a parametrization of Γ̂. Let ∆2 be a reference simplex in R2 (with one vertex being the origin
and all of the other vertices have only one non-zero coordinate equal to 1). Now

Γ = At(Γ̂), Γ̂ ∈ FIh,tm−1
,

Γ̂ = BΓ̂
m−1(∆2) = {X = BΓ̂

m−1(v); v ∈ ∆2},

dSΓ̂ =

∥∥∥∥∥∂BΓ̂
m−1

∂x1
(v)×

∂BΓ̂
m−1

∂x2
(v)

∥∥∥∥∥dx1dx2, v ∈ ∆2,

Γ = {x = At(BΓ̂
m−1(v)); v ∈ ∆2},

dSΓ =

∥∥∥∥∥dAt
dX

(BΓ̂
m−1(v))

∂BΓ̂
m−1

∂x1
(v)× dAt

dX
(BΓ̂
m−1(v))

∂BΓ̂
m−1

∂x2
(v)

∥∥∥∥∥dx1dx2, v ∈ ∆2.

By the symbol × we denote the vector product. The terms ∂BΓ̂
m−1
∂xi (v) are tangent vectors to Γ̂ at the point

BΓ̂
m−1(v). It follows from the properties of the mappingAt that the values of dAt

dX (BΓ̂
m−1(v))∂B

Γ̂
m−1
∂xi (v) are identical

from the sides of both elements K̂Γ̂
L and K̂Γ̂

R adjacent to Γ̂.
In what follows, for the sake of simplicity, by c we denote a generic positive constant independent of h, with

different values at different places. Then we can write∫
Γ

1
h(Γ)

[Us]2dSΓ =
∫

∆2

1
h(Γ)

[Us(At(BΓ̂
m−1(v)))]2∥∥∥∥∥dAt

dX
(BΓ̂
m−1(v))

∂BΓ̂
m−1

∂x1
(v)× dAt

dX
(BΓ̂
m−1(v))

∂BΓ̂
m−1

∂x2
(v)

∥∥∥∥∥ dx1dx2
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≤
∫

∆2

1
h(Γ)

[Ũs(BΓ̂
m−1(v))]2

∥∥∥∥dAt
dX

(BΓ̂
m−1(v))

∥∥∥∥2
∥∥∥∥∥∂BΓ̂

m−1

∂x1
(v)×

∂BΓ̂
m−1

∂x2
(v)

∥∥∥∥∥dx1dx2

≤
∫

Γ̂

c

h(Γ̂)
[Ũs]2dSΓ̂.

Hence,

∫
Im

 ∑
Γ∈FIh,t

cW
h(Γ)

∫
Γ

[Us]2dSΓ

 dt ≤ c
∫
Im

 ∑
Γ̂∈FIh,tm−1

cW

h(Γ̂)

∫
Γ̂

[Ũ ]2dSΓ̂

 dt.

Further for Γ = At(Γ̂), Γ̂ ∈ FIh,tm−1
, we consider the parametrization

Γ = {x = BΓ
t (v); v ∈ ∆2},

Γ̂ = {X = A−1
t (BΓ

t (v)); v ∈ ∆2},

dSΓ =
∥∥∥∥∂BΓ

m−1

∂x1
(v)×

∂BΓ
m−1

∂x2
(v)
∥∥∥∥dv, v ∈ ∆2

dSΓ̂ =
∥∥∥∥dA−1

t

dx
(BΓ
t (v))

∂BΓ
t

∂x1
(v)× dA−1

t

dx
(BΓ
t (v))

∂BΓ
t

∂x2
(v)
∥∥∥∥dv, v ∈ ∆2.

Then ∫
Γ̂

[Ũ ]2dSΓ̂ =
∫

∆2
[Ũ(A−1

t (BΓ
t (v)))]2

∥∥∥∥dA−1
t

dx
(BΓ
t (v))

∂BΓ
t

∂x1
(v)× dA−1

t

dx
(BΓ
t (v))

∂BΓ
t

∂x2
(v)
∥∥∥∥dx1dx2

≤
∫

∆2
[U(BΓ

t (v))]2
∥∥∥∥dA−1

t

dx
(BΓ
t (v))

∥∥∥∥2 ∥∥∥∥∂BΓ
m−1

∂x1
(v)×

∂BΓ
m−1

∂x2
(v)
∥∥∥∥dx1dx2

≤ c
∫

∆2
[U ]2dSΓ.

Together we get

∫
Im

 ∑
Γ∈FIh,t

cW
h(Γ)

∫
Γ

[Us]2dSΓ

 dt ≤ c
∫
Im

 ∑
Γ∈FIh,t

cW
h(Γ)

∫
Γ

[U ]2dSΓ

 dt,

which is the 3D version of (4.41). Similarly we prove (4.42) in the 3D case.
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[5] M. Balázsová and M. Feistauer, On the stability of the space-time discontinuous Galerkin method for nonlinear convection-
diffusion problems in time-dependent domains. Appl. Math. 60 (2015) 501–526.

[6] M. Balázsová and M. Feistauer, On the uniform stability of the space-time discontinuous Galerkin method for nonstationary
problems in time-dependent domains. In: Proc. Conf. ALGORITMY (2016) 84–92.
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[33] M. Feistauer, V. Kučera, K. Najzar and J. Prokopová, Analysis of space-time discontinuous Galerkin method for nonlinear
convection-diffusion problems. Numer. Math. 117 (2011) 251–288.
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