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ERROR ESTIMATES FOR THE NUMERICAL APPROXIMATION OF
A DISTRIBUTED OPTIMAL CONTROL PROBLEM GOVERNED BY
THE VON KARMAN EQUATIONS

GOURANGA MALLIK!, NEELA NATARAJY* AND JEAN-PIERRE RAYMOND?

Abstract. In this paper, we discuss the numerical approximation of a distributed optimal control
problem governed by the von Karman equations, defined in polygonal domains with point-wise control
constraints. Conforming finite elements are employed to discretize the state and adjoint variables. The
control is discretized using piece-wise constant approximations. A priori error estimates are derived
for the state, adjoint and control variables. Numerical results that justify the theoretical results are
presented.
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1. INTRODUCTION

Consider the distributed control problem governed by the von Karman equations defined by:

uléllijild J(W,u)  subject to (1.1a)
A%y = [, 2] + f+Cu  in 12, (1.1b)

APpy = —%[1/}17%] in £, (1.1c)
wlzo,%:Oandwgzo,%:Oml@Q, (1.1d)

where ¥ = (11, %2) and the components 1, and 1), denote the displacement and Airy-stress respectively, A%y :=
Pozza T 2Peayy + Pyyyy, the von Karmén bracket [1, x| := NwaXyy + Nyy Xz — 20wy Xay and v is the unit outward
normal to the boundary 92 of the polygonal domain 2 C R2. The load function f € H~1(§2), for w C £,
C € L(L?*(w), L?(£2)) is the extension operator defined by

Cu(z) =u(z) ifrew, and Cu(z)=0 ifzrdw.
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The cost functional J(¥,u) is defined by
1 2 - 2

with a fixed regularization parameter o > 0, Wy = (1h14,124) is the given observation for ¥ and U,q C L?(w) is
a non-empty, convex and bounded admissible space of controls defined by

Ud = {u € L*(w) : uq < u(x) <uy for almost every z in w}, (1.3)

Ug, Up € R, uq < up are given.

Let us first discuss the results available for the state equations, for a given u € L?(w). For results regarding
the existence of solutions, regularity and bifurcation phenomena of the von Karmén equations we refer to
[1-4, 12, 22] and the references therein. It is well known [4] that in a polygonal domain 2, for given f € H~1(£2),
the solution of the biharmonic problem belongs to H3(£2) N H**7(£2), where v € (1, 1], referred to as the index
of elliptic regularity, is determined by the interior angles of (2. Note that when (2 is convex, v = 1 and the
solution belongs to HZ(2) N H3(2). It is also stated in [4] that similar regularity results hold true for von
Karmén equations, that is, solutions 1,12 belong to HZ(£2) N H*t7(£2). However, we give the details of the
arguments of this proof in this paper.

Due to the importance of the problem in application areas, several numerical approaches have been attempted
in the past for the state equation. The major challenges of the problem from the numerical analysis point of view
are the facts that the system under consideration is semilinear and the higher order nature of the equations.
In [7, 27, 28], the authors consider the state equation with homogeneous boundary conditions and study the
approximation and error bounds for nonsingular solutions. The convergence analysis has been studied using
conforming finite element methods in [7, 24], nonconforming finite element methods in [25], C° interior penalty
method [6], the Hellan-Hermann-Miyoshi mixed finite element method in [27, 29] and a stress-hybrid method
in [28], respectively.

For the numerical approximation of the distributed control problem defined in (1.1a)—(1.1d), not many results
are available in literature. The paper [21] discusses conforming finite element approximation of the problem
defined in convex domains without control constraints and when the control is defined over the whole domain {2,
whereas [18] discusses an abstract framework for a class of nonlinear optimization problems using a Lagrange
multiplier approach. For results on optimal control problems of the steady-state Navier-Stokes equations and
quasi-linear equations with and without control constraints, many references are available, see for example,
[8, 10, 13, 19, 20] to mention a few. Employing a post processing of the discretized control w, [17, 26] establish a
super convergence result for the control variable for the second-order and fourth-order linear elliptic problems. In
this paper, we discuss the existence of solutions of conforming finite element approximations of local nonsingular
solutions of the control problem and establish a priori error estimates. The contributions of this paper are

(i) error estimates for the state and adjoint variables in the energy norm and that for the control variable
in the L? norm, under realistic regularity assumptions for the exact solution of the problem defined in
polygonal domains under the assumption that the source function f € H=1(2),

(ii) a guaranteed quadratic convergence result in convex domains for a post processed control [26] constructed
by projecting the discrete adjoint state into the admissible set of controls,

(iii) error estimates for state and adjoint variables in lower order H! and L? norms,
(iv) numerical results that illustrate all the theoretical estimates.

Throughout the paper, standard notations on Lebesgue and Sobolev spaces and their norms are employed.
The standard semi-norm and norm on H*({2) (resp. W*P(§2)) for s > 0 are denoted by |- |5 and || - ||s (resp.
||s,p and || - ||s,p ). The standard L? inner product is denoted by (-,-). We use the notation H*(§2) (resp. L?(£2))
to denote the product space H*(£2) x H*(§2) (resp. LP(£2) x LP({2)). The notation a < b means there exists a
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generic mesh independent constant C' such that a < Cb. The positive constants C appearing in the inequalities
denote generic constants which do not depend on the mesh-size.

The rest of the paper is organized as follows. The weak formulation and some auxiliary results needed for
the analysis are described in Section 2. The state and adjoint variables are discretized and some intermediate
discrete problems along with error estimates are established in Section 3. In Section 4, the discretization of
the control variable is described and the existence and convergence results for the fully discrete problem are
established. This is followed by derivation of the error estimates for the state, and adjoint and control variables
in Section 5. The post processing of control for improved error estimates and lower order estimates for state
and adjoint variables are also derived. Section 6 deals with the results of numerical experiments. The discrete
optimization problem is solved using the Primal-dual active set strategy, see for example [30]. The state and
adjoint variables are discretized using Bogner-Fox-Schmit finite elements and the control variable is discretized
using piecewise constant functions. The post-processed control is also computed.

The analysis that we do in Sections 2 and 3 and several results stated there are very close to what is done
in [10] for the Navier-Stokes system. However, many of the proofs in our paper are based on results specific to
the von Kdrmén equations. This is why we have to adapt several results from [10] to our setting.

2. WEAK FORMULATION AND AUXILIARY RESULTS

In this section, we state the weak formulation corresponding to (1.1a)—(1.1d) in the first subsection and
present some auxiliary results in the second subsection. This will be followed by the derivation of first order
and second order optimality conditions for the control problem in the third subsection.

2.1. Weak formulation

The weak formulation corresponding to (1.1a)—(1.1d) reads:

. " et 2.1
(w,u)%l{fnxyad (W,u) subject to 2.12)
AW, @) + B(7,7,2) = (F + Cu, ), (2.1b)

for all ® € V, where V :=V x V with V := HZ(£2). For all £ = (£,&5),A = (A1,X2), D = (p1,92) €V,

A(A7 é) = a‘(Ala @1) + a’(A27 %02)a
B(E,)\,@) = b(£17>‘2>5‘71) + b(£27>‘1»¥71) - b(£17>\1»¥72)7

() v~ (5 ) =) e eno s

and for all n, x,p € V,

1
a(n, x) ::/QD%:DQde, b(n, x> ¢) ::§/Qcof(D2n)Dx~Dsodx~

For consistency, when scalar controls @, v, v, and so on, are involved in calculations with vector functions we

shall use, without necessarily mentioning that, u = (g), v = (8), Vi = (%), and so on.

Remark 2.1. Note that

/ [7, X]pdz = 7/ cof (D®*n) Dy - Dpdx, Vn,x € H*(2) and ¢ € H3(2). (2.2)
2 o)
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The relation also holds true under assumptions, say when (a) n € H*7(82), x € H*(2), p € HY(2); (b)
n € H%(2), x € H3(02), p € H¢(£2), 0 < € < 1/2. This can be established by proceeding similar to the proof
of Lemma 2.2 [6].

The form b(-,-,-) is derived using the divergence-free rows property [14]. Since the Hessian matrix D?n is
symmetric, cof(D?n) is symmetric. Consequently, b(-,-,-) is symmetric with respect to the second and third
variables, that is, b(n, €, ¢) = b(n, ¢, &). Moreover, since [, -] is symmetric, b(-, -, ) is symmetric with respect to
all the variables. Also, B(:,-,-) is symmetric in the first and second variables due to the symmetry of b(-, -, ).

The Sobolev space V is equipped with the norm defined by

1
20, == (e300 +102130)F VO =(p1,02) €V,

where |<p|§79 = / D?*¢ : D*pdx, for all p € V.
fe)

In the sequel, for s > 0, the product norms defined on H*(£2) and L?({2) are denoted by |-, and ||,
respectively.

The following properties of boundedness and coercivity of A(-,-) and boundedness of B(-,-,-) hold true:
VE, NP eV,

A€ D) < [I€ll, 121l (2.3)
A&,€) = €l and -
[B(&,A, @) < Cyll€ll, I, 121, - (2.5)

The definition of B(:,,-), the symmetry of b(-,-,-) and the Sobolev imbedding yields [24]

1=l 160, 12, V= € HE/(Q) and 6,8 € V.,
B(2.0.9) < { IZ]ay, 161, 2], V= € HZ9(2) and 6,8 € V, (2.6)
1=l 1€, 2], V= €V,0€H™*(Q) and d eV,

”| 24~

1] denotes the elliptic regularity index. The above estimates are also valid if v is replaced by any
that is

where v € (

1
2
Yo € (1/277)3

|B(Z,0,2)| < Cy ||1= el Il , (2.7)

o4+

for all v9 € (1/2,7).
We now prove another boundedness result which will be also needed later.

Lemma 2.2. For =,0,9 € V, there holds
IB(Z,6,8) < CAZN, 100, I9],. . 0<e<1/2 (2.8)
Proof. 1t is enough to prove that

/Q cof (D*€)D0 - Dpdz < C, €l 10l Iy, VE.0.0€ V.

For 0 < € < 1/2, we have

/rz cof (D?¢) DO - Dpda < ||cof (D?¢) || 1D 12/ ) I1DPN 12/ -0y ()
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< Cellgll; ol ol e -
The last inequality follows from the imbeddings
HY(02) — L¥<(2), H(2) < L¥=9(2) for 0 < e < 1/2.
The proof is complete. O

2.2. Some auxiliary results
Define the operator A € L(V,V’) by

<Aw,(p> — AW, d) YO, DEV,
\ZRY
and the nonlinear operator B from V to V' by

<B(W),di>v/ L= Bwe) vwpeV.

For simplicity of notation, the duality pairing <~, > is denoted by <', >
A\ZAY

In the sequel, the weak formulation (2.1b) will also be written as
VeV, AV +BWY)=F+Cuin V' (2.9)

Note that the nonlinear operator B(¥) can also be expressed in the form

BW) = ~[0n ] )

@)= ( o

It is easy to verify that, for all ¥ € V, the operator B'(¥) € £(V,V’)! and its adjoint operator B'(¥)* €
L(V, V') satisfy

<B'(¢)5,gb> —2B(W, £, &) VEDEV, (2.10)

<B’(LP)*£,Q§> —2B(U,$,6) VEDEV. (2.11)
Moreover, B” € L(V x V, V') satisfies
<B"(w, 5),@> —2B(W,£,8) YU DeV. (2.12)
Theorem 2.3 (Existence [12, 22]). For given u € L?(w), the problem (2.1b) possesses at least one solution.

The linearization of (2.1b) around ¥ in the direction £ is given by

L¢ = At + B (D)¢.

IThe same notation ’ is used either to denote the dual of a space or the Fréchet derivative of an operator, but the context helps

to clarify its precise meaning.
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Definition 2.4 (Nonsingular solution). For a given u € L?(w), a solution ¥ of (2.1b) is said to be regular if
the linearized form is nonsingular. That is, if <L£, Q5> =0 for all ® € V, then £ = 0. In that case, we will also
say that the pair (¥, u) is a nonsingular solution of (1.1b)—(1.1c).

Remark 2.5. The dependence of ¥ with respect to u is made explicit with the notation ¥, whenever it is
necessary to do so.

Lemma 2.6 (Properties of A~'). The following properties hold true:

(i) A7t e L(V',V).
(ii) A~ e L(HYR),H*(2)NV),y € (1/2,1] is the elliptic reqularity index.
(iii) A~ € LOHT(Q), H2=9(2)) for all 0 < e < 1/2.

Proof. The statement (i) follows from the Lax-Milgram Lemma. The statement (ii) follows from the regularity
result for biharmonic problem (see [4]). Now (iii) follows from (i) and (ii) by interpolation. O

In the next lemma, we obtain a priori bounds for any solution ¥ of (2.1b).

Lemma 2.7 (An a priori estimate). For f € H-1(2) and u € L*(w), any solution ¥ of (2.1b) belongs to
H2t7(92), v € (1/2,1] being the elliptic reqularity index, and satisfies the a priori bounds

17l < U1 + llullz2w)), (2.13a)
1@y, <€ <||f||311 HllullZe ) + A2y + lullZo ) + I1Fll-1 + Hu||L2(oJ)) : (2.13b)

Proof. From the scalar form of (2.1b), we obtain,
a(ir, 1) = / [h1, olerdr + (f + Cu, 1) Vo1 €V, (2.14)
Q

a(P2, p2) = *% /9[7/11,77/11]502dz Vo € V. (2.15)

Choose @1 = 1 in (2.14) and w2 = 19 in (2.15), use the result /[wl,zﬁg]wldx = / [th1, ¢1]adz and the
Q Q

definition of a(:,-) to obtain

113 +20w2l3 < [IFl-1ll¥rlly + lull 22 21 lo.

An application of Poincaré inequality leads to (2.13a).
It is already proved in [4] that (2.1b) admits a solution in H?(2). From (2.8), it follows that

B0, @)| < Cc |@I3 |2l 4. for 0< e <1/2,
Thus B(¥) belongs to H™*~¢(2) and |B(¥)|_,_, < C- |||u7\||§ From Lemma 2.6 (iii), it follows that
2
02031y < Ce (I3 + 4+ 1111 ) -

Next using (2.7), we obtain

IBW@) -1 < Cl¥llysy ey 1%l -



ERROR ESTIMATES FOR THE CONTROL OF VON KARMAN EQUATIONS 1143
Combining this estimate with Lemma 2.6(ii), we finally obtain the required result (2.13b). O

Note that ¥ € H2t7(£2) is already observed in [4], but the arguments are not completely given there and
hence we have given a complete proof for clarity.
The implicit function theorem yields the following result, see [10].

Theorem 2.8. Let (V,4) € V x L*(w) be a nonsingular solution of (2.1b). Then there exist a neighbourhood
O(a) of i in L*(w), a neighbourhood O(¥) of ¥ in V, and a mapping G from O(a) to O(¥) of class C*°, such
that, for all u € O(a), ¥, = G(u) is the unique solution in O(¥) to (2.9). The operator G'(u) = (A+ B'(¥,))~!
is uniformly bounded from a smaller neighbourhood into a smaller neighbourhood. ( These smaller neighbourhoods
are still denoted by O(u) and O(¥) for notational simplicity.) Moreover, if G'(u)v =: z, € V and G"(u)v? =:
w €V, then z, and w satisfy the equations

Az, + B (¥,)z, = Cv in V/, (2.16)
Aw + B (¥, )w + B (zy,2,) =0 in V', (2.17)

and (A+ B'(¥,)) is an isomorphism from 'V into V' for all u € O(a).
Also, the following holds true:

[A+B @)cevvy <C A+ B (W) Hieov vy <C Yu e Oa),
lzoll2 < G (W)l 2(r2(w), m2(2) 0] L2 (0)-

Lemma 2.9 (A priori bounds for the linearized problem). The solution z, of the linearized problem (2.16)
belongs to H2T7(82), v € (1/2,1] being the elliptic regularity indez, and satisfies the a priori bound

Izoll24, < Cllvlizz(w)-

Proof. From Theorem 2.8, we know that there exists C' > 0 such that ||z,||2 < C for u € O(a). Now rewriting
(2.16) in the form

Az, = Cv — B'(¥,)z,, (2.18)
and using Theorem 2.8 and (2.13b), we obtain, for u € O(u)
1B'(Zu)zo]| -1 < C 1 Pullyyy 2olly < Cllvlz2w)-

Since A(+,-) is bounded and coercive, a use of Lemma 2.6(ii) and the above result in (2.18) leads to the required
regularity result [4]. O

The next lemma is an easy consequence of the a priori bounds in Lemma 2.7.

Lemma 2.10. Let (¥, ) be a nonsingular solution of (2.1b), as defined in Theorem 2.8. Let (uy) be a sequence
in O(u) weakly converging to @ in L*(w). Let W, be the solution to equation (2.1b) in O(¥) corresponding to
ug. Then, (¥, )k converges to W in V.

2.3. Optimality conditions

In this subsection, we discuss the first order and second order optimality conditions for the optimal control
problem.
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Definition 2.11 (Local solution of the optimal control problem [10]). The pair (¥,u) € V x Uqq is a local

solution of (2.1) if and only if (¥, u) satisfies (2.1b) and there exist neighbourhoods O(¥) of ¥ in 'V and O()
of 4 in L?(w) such that J(¥,u) < J(¥,u) for all pairs (¥,u) € O(¥) x (Usa N O(4)) satisfying (2.1b).

The existence of a solution of (2.1) can be obtained using standard arguments of considering a minimizing
sequence, which is bounded in V x L?(w), and passing to the limit [21, 23, 30]. ~

For the purpose of numerical approximations, we consider only local solutions (¥, @) of (2.1) such that the

pair is a nonsingular solution of (2.9). For a local nonsingular solution chosen in this fashion, we can apply
Theorem 2.8 and modify the control problem (2.1) to

inf  j(u), 2.19
wev o 1@ (2.19)

where j : Uyqg N O(@) — R is the reduced cost functional defined by j(u) := J(G(u),u) and G(u) = ¥, =

(14, ¥2,) € V is the unique solution to (2.1b) as defined in Theorem 2.8. Then, @ is a local solution of (2.19).
Since G is of class C* in O(u), j is of class C> and for every u € O(#) and v € L?(w), it is easy to compute

J'(u)v = / (C*014 + au) vdz, (2.20a)

w

7 (u)? :/Q(|zv\2+[[zv,zv]]-9u) d:c—i—oz/ |2 da, (2.20D)

where z,, = (214, 22,) is the solution of (2.16),

(20, 2,]] == —2 B(z,) = ( 2([z10, 220 ) |

_[Zlv7 Zlv]
[-,-] being the von Kdrmdn bracket, @, = (614, 602,) € V is the solution of the adjoint system and
[[Zva z'u]] : Qu = 2[211)7 ZZv]elu - [211)7 Zlv}GQu'

The adjoint system is given by

A%0) — [au, Oru) + [Y1u, 02u) = Y1 — 1 in 2, (2.21a)

A%05 — (P14, 014] = oy — Poqg  in 12, (2.21b)
_g 9 _ _o 9% _

0, =0, 5 0 and 6, =0, 5 0 on O0f2. (2.21¢)

As for the case of the state equations, the adjoint equations in (2.21) can also be written equivalently in an
operator form as

OuEV A*O, + B (W,)O, =0, —¥; in V, (2.22)

with the operator (A* + B'(¥,)*) being an isomorphism from V into V' (see Thm. 2.8). The first order optimality
condition j'(@)(u — @) > 0 for all u € U,y translates to

/(C*é+aﬁ)~(ufﬁ)dx >0 VYu=(u,0), u € Uy,
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where @ = (@,0) and © = (0y,60,) being the adjoint state corresponding to a local nonsingular solution (¥,u) €
V X Ugq of (2.1), or equivalently in a scalar form as

/ (C*61 + at) (u—1u)dz >0 Yu € Ugq.

The optimality system for the optimal control problem (2.1) can be stated as follows:
AW, D)+ B(¥,¥,®) = (F+Cu,®) V&€V (State equations) (2.23a)
A(D,0) +2B(W,®,0) = (¥ —W¥;,d) V&V (Adjoint equations) (2.23b)

(C*@ + ati,u — 0)

L2(w) 2 0 Vu= (u,0), u € Uy, (Firstorder optimality condition). (2.23¢)

The optimal control % in (2.23c) has the representation for a.e. z € {2 :

(&) = Ty ) (—iC*@l(x)) , (2.24)

where the projection operator 7, ) is defined by 7, 4)(g) := min{b, max{a, g}}.

Remark 2.12. Since C is the extension operator by zero to {2\ w, C* appearing in (2.24) is nothing but the
multiplication by x.. Thus C*6|,, belongs to C%!(w), but in general C*© does not belong to C%!(§2), unless
2 =w.

Remark 2.13. The optimality conditions in (2.23) can also be derived with the help of a Lagrangian for the
constrained optimization problem (2.1) defined by

L(W,u,0)=JW,u) — (A(¥,0)+ B(¥,¥,0) — (F + Cu,0)) VYW, u,0)xV xUsxV.
For the error analysis for this nonlinear control problem, second order sufficient optimality conditions are

required. We now proceed to discuss the second order optimality conditions.
Define the tangent cone at @ to Uyq as

€U, () = {u € L*(w) : u satisfies (2.25)},
with

u(z) e R if a(z) € (ug,up),
u(z) >0 ifa(z) =u,
u(z) <0 if a(x)

, (2.25)

U
Up

The function C*#; + ati or C*6 + aii in the vector form, is used frequently in the analysis. Introduce the
notation

d(r) =C*01 + ati, = € w.

Associated with d, we introduce another cone 6, C 6y, ,(u) defined by

©a = {u € L*(w) : u satisfies (2.26) } ,
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with
u(z) = 0if d(z) # 0,
u(z) > 0if d(z) = 0 and u(x) = uq, (2.26)
u(r) <0if d(z) = 0 and u(x) = up.

By the definition of d, we have

(z)v(z)dz Yo € L*(w).

b\
=
S~—
S
I
e
|

Moreover, if we choose v € €y, the optimality condition (2.23c) yields d(z)v(x) = 0 for almost all z € w.
The following theorem is on second order necessary optimality conditions. The proof is on similar lines of
the proof of Theorem 3.6 in [10] and hence skipped.

Theorem 2.14. Let (¥, %) be a nonsingular local solution of (2.1). Then
" (@)v* >0 Vv € Cy. (2.27)

The optimality condition (2.27) is equivalent to

/Q(\m + (20, 2,]] - O) dx+a/w|v\ dz >0,

for all v € €, where © = O(u) is the associated adjoint state and z, = 7, (1) is the solution to (2.16).

Theorem 2.15 (Second order sufficient condition). Let (7, u) be a nonsingular local solution of (2.1) and let
O = O(u) be the associated adjoint state. Assume that

/ﬂuzv‘ +[[zv,zu]]-@)dx+a/|v| dz >0

w

for allv € €, v # 0. Then, there exist € > 0 and p > 0 such that, for all u € Uyq satisfying, together with ¥,
_ =12
we have
J@,a) + & (fu—al? v, —0||*) < I
(¥, u) + 9 lw— 72 + | I7) < J(@u,w).

Remark 2.16. Theorem 2.15 is a result of similar type as in ([9], Thm. 2.3). However seeing that it is an
immediate consequence of ([9], Thm. 2.3) is not obvious. Indeed, when ([9], Thm. 2.3) is applied to optimal
control of PDE, as it is done in (][9], Sects. 3-5), this requires further developments.

Proof of Theorem 2.15. Here, we follow the lines of the proof in ([10], Thm. 3.8). However, since we need the
H?*7(0) regularity for the state variables and some passages to the limit in equations are different from those
in ([10], Thm. 3.8), we repeat the main steps of the proof for the convenience of the reader.

We argue by contradiction. Let (W, ug))r be a sequence satisfying (2.1b) with uy € Uyq, such that

1

Jur — @l|72() + [|% — @H‘Q S 2

(2.28)
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and
1 e o
J(¥,u) + z (||Uk — al|72 gy + || @ — || ) > J (P, ug). (2.29)

Set
U — U &pk—!p

R R L

Note that (¥} ) is bounded in H27(£2), see (2.13b). Clearly, Hvk||%2(w) + llz&l* = 1 and the pair (2, vy,) satisfies

the equation

1 - 1
Az + 5B (D)), + 5B/ (¥)z = Cvi in V. (2.30)

Following the proof of Lemma 2.9, we can verify that ||zx||,,., < Cllvk[|r2(.), With a constant C' independent of
k. By passing to the limit (up to a subsequence) in (2.30), we can prove that
z, — z in H*™(), zx — z in V,v, — v in L*(w),

and z = Z,, that is, z is the solution of (2.16) associated with v, and for ¥, = ¥j.
Now we verify that v € ;. With (2.29), we have
Pr J(W + prpzy, @+ prvg) — J (P, 1)

k Pk
1 _
= — / (2(!? — Lpd) + pkzk) - zpdx + %/ (2’(] + pkvk) vpdx.
02 w

2

By passing to the limit as k — oo and using (2.28), we obtain

/(!l:/—wd)-zvdx—l—a/fwdng
2

w

which yields / d(z)v(x)dz < 0. The last condition implies that v € €.

Making a second order Taylor expansion of J at (¥, ), we have

w) + Op J (U, ) ppzy + OuJ (¥, 1) prop

J (W, ug) =J (&,
1 _
5/ |u7k—!I/|2dx+%/ lug — ul*d.

Thus with (2.29), we can write

1
(00 T )+ 0,77 / 22 + & /|vk| dx< = (2.31)
k

Also,

Op J (W, 1)z, + Oy (¥, ) vy, / (W — W) - zpdx + a/ tvgde,
0] w
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and using the adjoint state ©, we obtain
_ _ 1 - =
/ (W—![/d) -dexz @-Cvkdx— 5(6’(%)(% —Lp),@>.
Q Q

Thus,

1
Pk

Since d(z)vg(x) > 0, with (2.31), we have

_ 2
—(B/(z1)zk, O) +/ |z,|*da + a/ ok |2dz < T
2 w

By passing to the inferior limit, we have

/Q(Hm]]-éﬂzl?) dx+a/w\v\2dx§0.

L 0w, w) + 0,7 (T, W) = pik /Q d(z)vpde — %(B’(Zk)zk,@).

Since v € € and due to our assumption about the sufficient second order optimality condition, we have v = 0.
Since (vy)x converges to 0 weakly in L?(w), z = 0. By passing to the superior limit in the inequality satisfied

by (zg, vk ), we have

alimsup/ o |2 dz < 0.

k—oc0

Thus lim / |vg|?d2 = 0, and we have a contradiction with lokll72 () + IZ& 172y = 1. The proof is complete.
k—oo [,

Note that the second order optimality condition

[ (@l + (5] -0)dsa [ oPas >0,

for all v € Cy is equivalent to j”(@)v? >0 Vv € €.
As in [10], we reinforce the above condition by assuming that

5@ > 6 ([0l + 1Zl2()) Vo€ €,
where
%y = {v e L*(w): (2.33) is satisfied } ,
with

v(z) =0if |d(z)| > T,
v(z) > 0if |d(z)|] < 7 and @(z) = u,
v(z) <0if |[d(z)| <7 and u(x) =u

)
)

b

O

(2.32)

(2.33)
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and Z, is the solution of (2.16) with v = @.

Theorem 2.17 (Thm. 3.10 of [10]). The condition (2.27) is equivalent to (2.32).

3. DISCRETIZATION OF STATE AND ADJOINT VARIABLES

In this section, first of all, we describe the discretization of the state variable using conforming finite elements.
This is followed by definition of an auxiliary discrete problem corresponding to the state equation for a given
control u € U,y. We establish the existence of a unique solution and error estimates for this problem under
suitable assumptions. Similar results for an auxiliary problem corresponding to the adjoint variable are proved
next.

3.1. Conforming finite elements

Let 7, be a regular, conforming and quasi-uniform triangulation of {2 into closed triangles, rectangles or
quadrilaterals. Set hy = diam(T), T € T, and define the discretization parameter h := maxre7;, hr. We now
provide examples of two conforming finite elements defined on a triangle and a rectangle, namely the Argyris
and Bogner-Fox-Schmit elements (see Fig. 1).

Definition 3.1 (Argyris element [5, 11]). The Argyris element is a triplet (T, Ps(T'), Xr) where T is a triangle,
P;5(T) denotes polynomials of degree < 5 in both the variables and the set of 21 degrees of freedom X7p is
determined by the values of the unknown functions, its first order and second order derivatives at the three
vertices and the normal derivatives at the midpoints of the three edges of T' (see Fig. 1A).

Definition 3.2 (Bogner-Fox-Schmit element [11]). Let T' € T}, be a rectangle with vertices a; = (2;,y;), ¢ =
1,2,3,4. The Bogner-Fox-Schmit element is a triplet (T,Q3(T),Xr), where Q3(T) denotes polynomi-

als of degree < 3 in both the variables and the set of degrees of freedom Xp is defined by Xp =
2
{p(as), %(ai)v %Z(ai)v 73‘13};(%), 1 <4 <4} (see Fig. 1B).

The conforming C! finite element spaces associated with Argyris and Bogner-Fox-Schmit elements are
contained in C*(2) N H?(£2). Define

_ )
Vi = {v cC' (D) :v|r € Pr VYT €T, with v|gg =0, a%}(,m = 0} C HZ(0),

where

P Ps(T) for Argyris element,
T Qs(T) for Bogner-Fox-Schmit element.

a, ay

FIGURE 1. (A) Argyris element and (B) Bogner-Fox-Schmit element.
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The discrete state and adjoint variables are sought in the finite dimensional space defined by Vy, := Vj X V.
Lemma 3.3 (Interpolant [11]). Let II}, : V. — V}, be the Argyris or Bogner-Fox-Schmit nodal interpolation
operator. Then for ¢ € H*™V(2), with v € (,1] denoting the index of elliptic regularity, it holds:
I = Hnpllm < CR** "™ pllags  form = 0,1,2; (3.1)
Also, if p € HY(R2) forl =4,5,6,
¢ = Mppllm < CRMPIFL D=l for m = 0,1,2,

where k =5 (resp. 3) for the Argyris element (resp. Bogner-Fox-Schmit element).

3.2. Auxiliary problems for the state equations
Define an auxiliary continuous problem associated with the state equation as follows:
Seek ¥,, € V such that
AW, ®d) + B(¥,,¥,,P) =(F+Cu,®) VPeV, (3.2)

where u = (u,0), u € L*(w) is given.
A discrete conforming finite element approximation for this problem can be defined as:
Seek ¥, ;, € V, such that

A(Wu,h,¢h> + B(Wu’mg/u’h,@h) = (F + Cu, ¢h) V&, € V. (33)

For a given u € L?(w), (3.3) is not well-posed in general. The main results of this subsection are stated now.

Theorem 3.4. Let (¥,u) € V x L*(w) be a nonsingular solution of (2.9). Then, there exist py, py > 0 and
hi > 0 such that, for all0 < h < hy and u € B,,(@), (3.3) admits a unique solution in B,, (¥).

Remark 3.5. For p > 0, u € B, (i) means that |[u — @12,y < p. Similarly, ¥ € B,(¥) = ||¥ — @|||2 <p.

Theorem 3.6. Let (V,%) € V x L?(w) be a nonsingular solution of (2.9). Let hy and po be defined as in
Theorem 3.4. Then, for u € B,,(@) and 0 < h < hq, the solutions ¥, and ¥, 1, of (3.2) and (3.3) satisfy the
error estimates:

(@) 19 = Puplly < ChY (b) 1Wu = Punll, < CR*, (3-4)

where v € (1/2,1] denotes the index of elliptic reqularity.

We proceed to establish several results which will be essential to prove Theorem 3.4. The proof of Theorem 3.6
follows from the error estimates for the approximation of von Karmén equations using conforming finite element
methods; see [7, 24].

3.2.1. An auziliary linear problem and discretization

For a given g = (g1,92) € V', let T € L(V', V) be defined by Tg := € = (§1,&) € V where £ solves the
system of biharmonic equations given by:

A’ =g in 2, (3.5a)
A2§2 = g2 in Q, (35b)
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9 _ 4 and £ =0, 982 _ ) on 002, (3.5¢)

a=0.5- o

Equivalently, £ € V solves A(§,?) = (g,P)y,,,, VPEV.

Also, let T, € L(V', V},) be defined by Trg := &;,, where &, € V}, solves the discrete problem
A€, Pn) = (8, Pn )y vy YPh € Vi (3.6)
Lemma 3.7 (A bound for T},). There exists a constant C > 0, independent of h, such that
I Thll v vy < C.

Proof. The definition of Tj,g along with coercivity property of the bilinear form A(-,-) lead to the required
result. O

Lemma 3.8 (Error estimates [5]). Let & and &;, solve (3.5) and (3.6) respectively. Then it holds:

€ —€nll, < Cn7llgll -, Vg € HT'(£2), (3.72)
€ —&nll, < CR* llgll_, Vg € HT'(92), (3.7b)

v € (1/2,1] being the index of elliptic reqularity. That is, |(T —Tr)gll, < ChY||g|l_, and |(T —Th)g|, <
Ch* Il ;-

Remark 3.9. When g = (g), we denote T'g (resp. Trg) as Tg (resp. T1g), purely for notational convenience.

3.2.2. A nonlinear mapping and its properties
Define a nonlinear mapping .4 : V x L?(w) — V by

N (W,u) =¥+ T[B@) — (F+Cu)], u=(u,0).

Now A (¥,u) = 0 if and only if (¥, u) solves (2.9); that is, A + B(¥) =F +Cu in V'
Similarly, define a nonlinear mapping .44 : V x L?(w) — V by

M (T u) =0 +TL[BWP) — (F + Cu)], u=(u,0).

Note that, 47, (¥,u) = 0 if and only if ¥ € V}, and ¥ = ¥, , solves (3.3).
The derivative mapping dg A (¥, u) (resp. dp N5 (¥, u)) € L(V) is defined by

Oy N (U, u)(®) = &+ T[B' (W)d] b e V.

(resp. Qg N, (W, u)(P) = @ + T, [B'(¥)P] VP € V.)
With definitions of nonsingular solution (see Def. 2.4), the linear mapping T and the derivative mapping
Op N (¥, u), we obtain the following result, the proof of which is skipped.

Lemma 3.10 ([10]). If (¥,u) € V x L*(w) is a nonsingular solution of (2.1b), then Og.A (¥,u) is an
automorphism in V. The converse also holds true.
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We want to establish that if (¥, @) is a nonsingular solution, then the derivative mapping 9y .4(-,-) is an
automorphism in V, with respect to small perturbations of its arguments. That is, if |||W - LD|”2 and [lu —a|| £z w)
are small enough, then Oy A% (¥, u) is an automorphism in V. The next two lemmas will be useful in proving
this result.

Lemma 3.11. Let ¥ € V be a nonsingular solution of (2.9). Then, Ve > 0, 3h. > 0 such that
IT[B'(#)] = ThlB' (@)lcevy <€ VW€ By, (9), (3-8)

whenever 0 < h < he.

Proof. For a fixed z € V, let T[B'(¥)z] =: 0(¥) € V and T},[B'(¥)z] =: 6,,(¥) € V},. Then (¥) and 6, (¥),
respectively solve

AOD),8) = (B (0)2.9),, , = 2B(F,2,8) VdeV, (3.9)
A(Bh@),éh) = <BI(W)Z,¢]—L>V/7V = QB(@,Z,@}Z) Vo, € V. (310)

Let 05,(¥) € V), be the solution to the intermediate problem defined by

A(Gh(@),éh) = <B/(J/)Z,¢h>v, v = 2B(@7Z,@h) V@h S Vh. (311)
The triangle inequality yields

o) - 610l < [1605) — 0,001, + 64(7) - 0,1 12)
To estimate the first term in the right hand side of (3.12), consider (3.9) and (3.11); use the facts that V), C 'V,
the error (0(¥) — 0;,(¥)) is orthogonal to V}, in the energy norm, the coercivity of A(:,-), the interpolation
estimate given in Lemma 3.3 and the fact that ¥ € H*t7(£2) to obtain

o) ~ 6,011, < n |0, < o |8, (3.13

From definition of B'(¥)z, (2.6) and the fact that B(-,-,-) is symmetric in first and second variables, it follows
that

(7 |(B'(Z)z,2)]
B (v = -
18’ (#)z]| _, = sup I,
< |2B(¥,z, )|
= e,
Sl 2, - (3.14)
A substitution of (3.14) in (3.13) leads to
ll6@) - 6n(@)||, < Cr || 2], Izl - (3.15)

To estimate the second term on the right hand side of (3.12), subtract (3.10) and (3.11), choose @}, = 0,(¥) —
0, (¥), use (2.4) and (2.5) to obtain

161 (#) — 0 (@), < C[|& — ||, Iz, - (3.16)
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A use of (3.15) and (3.16) in (3.12) leads to the required result, when h, and p, are chosen sufficiently small. [

The next lemma is a standard result in Banach spaces and hence we refrain from providing a proof.

Lemma 3.12. Let X be a Banach space, A € L(X) be invertible and B € L(X). If |A = Bllzx) <
/A7 z(x), then B is invertible. If ||A — Bllzx) < 1/(2[|A7 | 2(x)) then |B7|zox) < 2[[ A7 2x)

The following theorem is a consequence of Lemmas 3.11 and 3.12.

Theorem 3.13 (Invertibility of 9y, (¥, u)). Let (¥,u) € V x L*(w) be a nonsingular solution of (2.1b). Then,
there exist hg > 0 and pg > 0 such that, for all0 < h < hy and all ¥ € B, (¥), S4(¥,u) is an automorphism
m V and

10w N (@, 0) M 2wy < 20004 (F,0) | £v).-

in Lemma 3.11.

Proof. Choose hg := he, pg := pe and € = 2||(9\p=/‘/(@,1ﬁ)71”£(v)

For every 0 < h < hg and for all ¥ € B, (¥), the definitions of the derivatives of g4, Oy 4}, and (3.8) yield
180 A (¥, ) — Bp M (P, u)l vy = |TIB'(F)] = TulB' (D)]l| vy < e

Now, an application of Lemma 3.12 yields the required result. O
We now proceed to provide a proof Theorem 3.4, which is the main result of this subsection.

Proof of Theorem 3.4. We follow the lines of the proof in ([10], Thm. 4.8). But due to our estimates the factor
h in the majorizations is replaced by hA7.

Let (¥,u) € V x L?(w) be a nonsingular solution of (2.9).

We need to establish that there exist p;,p2 > 0 and hy > 0 such that, for all 0 < h < hy and u € B2 (a),
(¥, 1) = 0 admits a unique solution in B, (¥).

Let po and hg be the positive constants as defined in Theorem 3.13. For p < pg, h < hg and u € B,2(a),
define a mapping ¥4 (-,u) : B,(¥) — V by

G, u) =V — [Du M (T, 0)] " A (P, ).

Any fixed point of ¥(-,u) is a solution of the discrete nonlinear problem .45, (¥,u) = 0. In the next two steps,
we establish that (i) ¢(-,u) maps B,(¥) into itself; and (ii) ¢(-,u) is a strict contraction, if p is small enough.

Step 1: The definition of ¢4(-,u), an addition of the zero term .4 (¥, %), an addition and subtraction of an
intermediate term and the Taylor’s Theorem yield

|12, ) = |, = [[(@ — &) — (Do A0 (7, @) A (2, )
< |10 AT, )] { (B A (T, W) (F — F) — [ () — A (T, )]} ]
+ || Bo A, @) A (F,7) — A (T, W], - (3.17)

A use of Theorem 3.13, Taylor formula for the second expression in the first term of the right hand side
of (3.17) along with the fact that the expression for the derivative dy is independent of u yields for ¥; =
U+t(W—"), 0<t<l,

@) -7, < C ‘ Oy M (B, 0)| (T — T — /0 Oy My (T ) (T — D)

+C || (@, a) — A, W), -

2
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With definitions of A7(+,-) and A3(+,-), and the triangle inequality in the above expression, we obtain

1
I# @) -2, <c /0 105 A44(F, @)] = 0w A (21, W), dt x| =

+ Cl[(T = Tw)(BW) = F)||, + CI(T ~ Tn)(Ca)l,
+ C |||Th(Cfl — Cu)|||2 =T+ T +T5+ Ty (3.18)

We now estimate the terms T} to Ty. With the definition of dg 44 (-, ), Lemma 3.7, the definition of B'(-) and
(2.5), it yields

00 N (W, 1) — D N (¥ + t (¥ — ), u)|lzvy = |Th(B (¥ + (¥ —¥))) — Th(B' (@)l vy

<C|w-v| (3.19)

I

A use of the facts that ¥ € H>*7(2), BW) e H (), f€e H (), and F = (f

0>’ along with (3.7) lead to an

estimate for Ty as
T = 1) (B@) = F)||, < CRY(| 2|5 + 1l z-1¢2)), (3.20)
where v € (1/2,1] is the elliptic regularity index. Since % € L?(w), T3 can also be estimated using (3.7) as
I(T" = Tw)(Cu)ll, < Ch™|[ul L2 () (3.21)
The boundedness of T}, from Lemma 3.7 leads to
I7%(Cu — Cu)l, < CfICa - Cul] < Clla — ullL2 (). (3.22)
The substitutions of (3.19)-(3.22) in (3.18) yield

() — ], < O + 7).

. s\ 1/ N
Choose p; < min {po, %}, p2 = p3, and hy = min {h(l,/”, (%) } For all 0 < h < hy and all u € By, (u),
¢ (¥,u) is a mapping from Bj, (W) into itself.

Step 2: Let ¥1,%; € B;, (¥), 0<h < hy and u € B, (). The definition of the mapping ¢(-,u) and standard
calculations lead to

I (@1, w) =4 (T, w)ll, = || 91 — W2 — (Do M (@, W) 7 {0 (P2, 1) — A (T, u)

= ‘H[&p%(@,u)]—l {a&pm(@,u)(% — W) — /01 Op Ny (W + (W) — W), u) (P — %)dt}

(3.23)

Now a use of Theorem 3.13 and a repetition of arguments used in (3.19) lead to the result that, there exists a
positive constant C' independent of p; and h such that

I (1, u) — 4 (W2, u)ll, < C3. (3.24)
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/v
A choice of p; = min {po, %, ﬁ}, p2 = p3, and hy = min {h(l)/w, (2%) } leads to the result that for all
2

0<h<hyandue B,,(a), 9(-,u) is a strict contraction in B, (¥).
This concludes the proof of Theorem 3.4. O

We have established that, for 0 < h < hy, u € B,,(a), (¥, u) = 0 admits a unique solution ¥, ; €
B, () N Vy,. Also, Oy M, (P p,w) is an automorphism in V. Hence, the mapping G, : By, (i) — B, (¥) NV},
defined by Gy (u) = W, ;, satisfies A7, (G (w), u) = 0. The implicit theorem yields that G}, is of class C™ in the
interior of the ball.

This fact, along with Theorem 3.6 yields the following lemma.

Lemma 3.14. For u, 4 € Bp,(u), 0 < h < hy, the solutions ¥, and Wy to (3.2) and (3.3), with controls
chosen as u and U respectively, satisfy

19 = Wanlly < CW7 + [lu = @l L2(w));

v € (1/2,1] being the elliptic regularity index.
Proof. The triangle inequality yields

1% — @an

lo < 1% = Punlly + 1Pun — Panll, - (3.25)
Theorem 3.6 yields the estimate for the first term on the right hand side of (3.25) as

19 = @unll, < CRT.
From the expression A7, (Gr(u),u) = 0 and the definition of .47, we obtain

G (u)(v) = (00 N5 (o, w)] ™ T (Cv),

where v = (8) and u belongs to the interior of B, (u).

Hence Lemma 3.7 and Theorem 3.13 yield
19un = @anlly = 1Gn(u) = Gr(@)l,

1
| / (D0 M (W ), u)]~ T (Clu — )

2

with u; = 4 4 t(u — 4). A substitution of the estimate in (3.25) yields the required result.
O
3.3. Auxiliary discrete problem for the adjoint equations
Define an auxiliary continuous problem associated with the adjoint equations as follows:
Seek ©, € V such that
A(D,0,) + 2B, 8,0,) = (¥, — Wy, &) VSV, (3.27)

where ¥, € V is the solution of (3.2) and ¥, is given. A conforming finite element discretization for (3.27) is
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defined as:
Seek O, 1, € Vj, such that

A(@h, Qu,h) + 2B(¥v’u,h,@h, Qu,h) = (g/u,h — Q’d,@h) V&, € V. (328)
The main results of this subsection will be on the existence of solution of the discrete adjoint problem in (3.28)

and its error estimates. They are stated now.

Theorem 3.15. Let (¥,4) € V x L?(w) be a nonsingular solution of (2.9). Then, there exist 0 < p3 < pa and
hs > 0 such that, for all0 < h < hs and u € B, (@), (3.28) admits a unique solution.

Theorem 3.16. Let (¥,u) € V x L*(w) be a nonsingular solution of (2.9). Then, for u € B,, (i) and 0 < h <
hs, the solutions @, and O 1, of (3.27) and (3.28) satisfy the error estimates:

(a) [|Bu — Ou,n

|, <CRY (b)) [|8u —Ounll, < Ch*, (3:29)
where v € (1/2,1] denotes the index of elliptic reqularity.

3.8.1. A linear mapping and its properties
As in the case of the derivative mapping defined in the previous subsection for state equations, define the

linear mapping Fy (resp. Fw ) € L(V) by

Fy(®) =&+ T[B (P)*d] VeV,

(vesp. Py p(®) = & + T, [B'(¥)*P] Vb € V)

where B/(¥)* is the adjoint operator corresponding to B'(¥) (see (2.11)).
The next lemma is easy to establish and hence the proof is skipped.

Lemma 3.17. The mapping Fy is an automorphism in V if and only if ¥ € V is a nonsingular solution of
(2.1b).

Proof of Theorem 5.15. Proceeding as in the proof of Theorem 3.13, we can assume that h is chosen so that,
forall 0 < h < hg and all ¥ € B, (¥), Zw p is an automorphism in V. In particular, by using Lemma 3.14, there
exist 0 < hg < hg and 0 < p3 < po such that, for all 0 < h < hz and all u € B, (a), fguyhﬂh is an automorphism

in V and

y‘;ul,h,hHﬁ(v) <2[Z; o)

We can also assume that Zy, is an automorphism in V for all u € B, (u).

Now we establish that ©,,, € V}, is a solution of (3.28) if and only if Zy, , n(Oun) = Ny, where n;, € Vy,
satisfies Th, (Wy.p — Ya) = 0y, '

With definitions of .#y, , » and the operator Tj, it yields

LQ.Wuyh,h(@u,h) =M, < @u,h + Th [B/(g/u,h)*gu,h] =M

= A(Oun, Pn) + (B (W) Ouny ) = (Yu,h — Ya, Pn) VPy € V.

ARV

That is, O, € V), solves (3.28). O
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Proof of Theorem 3.16. The problem under consideration being linear, it is straight forward to obtain the

required estimates. We will sketch the steps of the proof.
The space Vy, is a subspace of V and hence (3.27) holds true for test functions in Vy,.
The definition of Fy, , r, and of the continuous and discrete adjoint problems lead to

Fwy 0 (Ou = Oun) = Fu, . 1 (Ou) = Fu, .1 (Oun)

= Oy + Th[B Wy n) Oul — T (P, — ¥a)
=Ty —Uy) —TB (W) Ou) + Th[B (Wu,n)*Ou] — T (P, — Ya)

= T(Wu — wu,h) + (T — Th)(!pu,h -, — B/(Wu,h)*@u) + T[Bl(!pu,h)*@u — B/(Wu)*@u]

Since Fy, , » is an automorphism in Vj,, the boundedness of 1" leads to

|||9u - Qu,h

SN = Yurlly + 1T = Thll 1¥un — a — B (Pu,n) O,
+ ”B/(Wu,h - Wu)*Qqu/.

I

A use of Theorem 3.6(a) and Lemma 3.8 leads to the first estimate in (3.29).
To establish the second estimate in (3.29), define an auxiliary problem and its discretization.
For all g € H1(£2), let Xg € V and X, j, € V}, be the solutions to the equations

Alxg, @) + 2B(y, Xy, B) = (g,8) VB E V.
A(Xg.n>Pn) +2B(Vu, Xg 1 Pr) = (8, Pn) VP € V.

(3.30)
(3.31)

The well-posedness of (3.30) implies that H{XgMz S llgll_; and H‘Xg}”%W < lgll_;- By proceeding as in the proof

of (a), we can establish that

lIxe = Xenll, < ChY lIgll_, ,

where the constant C' depends on ||#||,, and v € (1/2,1] is the index of elliptic regularity.
From (3.27) and (3.28), it follows that

A(Sph, e, — quh) + 2B(Wu,¢h, @u) — 2B(Wu7h,€ph, Qu,h) = (g/u — W%h,@h) for all @5, € Vy,.
Choose ¢ = O, — O, , in (3.30) and an adjustment of terms yield

(gv Qu - 9u,h) = A(Xg - Xg,hu Qu - 9u,h) + 2B(Wua Xg - Xg,hv Qu - 9u,h)
+ 2B(Wu7 Xeg,hs Oy — u,h) + A(Xg,ha Oy — 8u,h)-

Choose @), = X 5, in (3.33) and combine with (3.34) to obtain

(8,00 — Oun) = AlXg — Xg.h» Ou — Ou) + 2B(Wu, Xg — Xg.h» Ou — Ou)
+2B(Wyp — P, Xg,h> Oun) + (Pu — Yun, Xg,h)
= A(Xg — Xg,hs Ou — Oun) + 2B(Vu; Xg — Xg,h» Ou — Ou,n)
+ 2B(Wun — Yu, Xg.h — Xgr Oun) + 2B(Xgn — Xgs Ykt — Pus Ou)
+ (Yu — Yu,hs X 1)

(3.32)

(3.33)

(3.34)

(3.35)
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A choice of g = —A(O, — O,,1,) in the above equation (3.35) and then integration by parts, and a use of
boundedness properties (2.3), (2.5) and (2.6) lead to

160 = Ounll < lIxe — Xanll, 100 — Ounlly + ¥ — Tl !ngH!M + 1Zn — Pl | xg.nl
S lIxe = xenll, 100 = Ounlly + 1%0n — Zull, [l
1P — Pl [ Xg — Xgo | + 1un — Pull || xgl] - (3.36)

|||xg|||2+7 < ||©u — Oupll;- This, and estimates (3.32), part (a) of (3.29) and part (b) of (3.4) lead to part
(b) estimate of (3.29). O

Note that |g]l_; = [|©u — Ounll;, and the well posedness of (3.30) implies |||Xg|||2 < 1@y = Ounll; and

As for the case of the state equations (see Lem. 3.14), we have the following result.
Lemma 3.18. Foru, 4 € B,,(u), 0 < h < hg, the solutions ©,, and Oy}, to (3.27) and (3.28) with corresponding
controls chosen as u and U respectively, satisfy
16w = Ounll, < C(RY + [Ju — il L2(w)),

v € (1/2,1] being the elliptic regularity index.

4. CONTROL DISCRETIZATION

First we describe the discretization of the control variable and then formulate the fully discrete problem. This
is followed by existence and convergence results for the discrete problem. We make the following assumptions:

(A1) Let w C {2 be a polygonal domain.
(A2) Assume that T restricted to w yields a triangulation for .

Note that the above assumptions are not very restrictive in practical situations. In case w is not a polygonal
domain, it can be approximated by a polygonal domain. The second assumption can be realized easily by
choosing an initial triangulation appropriately.

Set

Unyaa = {u € L*(w) : ulr € Py(T), ug < u< uy forall T € Ty}

The discrete control problem associated with (2.1) is defined as follows:
min J (@, up) subject to (4.1a)
(Yn,un) €V XUn,ad

AWy, D) + B(Yn, ¥n, Pp) = (F + Cuy, Pp,), (4.1b)

for all @, € Vy,.
Recall that (¥, uy,) satisfies (4.1b) if and only if

J%L(Wh, up) = 0. (4.2)
We aim to study the existence of local minima of (4.1) which approximate the local minima of (2.1). This

can be established for nonsingular local solutions of (4.1).
The following lemma is crucial in establishing the existence of solution of (4.1) in Theorem 4.3.



ERROR ESTIMATES FOR THE CONTROL OF VON KARMAN EQUATIONS 1159

Lemma 4.1. Let (¥,u4) € V x L*(w) be a nonsingular solution of (2.1). If u, € B,, (1) and up — u weakly,
then W, n converges to ¥, in H?(£2), where py > 0, defined in the proof of Theorem 3.4 denotes the radius of
the ball B,, (@) such that the discrete state equation (3.3) admits a unique solution, when the mesh parameter
h, is chosen sufficiently small.

Proof. Let (up)n be a sequence in By, (1) N U,q converging weakly to u. The result (2.13b) in Lemma 2.7 yields
that ¥, and ¥,, belong to H**7(£2) and are bounded in H2*7(£2). Thus, there exists a subsequence (still
denoted by the same notation) such that

w,, — ¥ in H2(02),
@,, — ¥ in H2(0).

Note that ¥, satisfies

A(!puha@) + B(Wuhawuh’é) = <F + Cuh’@>V’ v Ve e V.

By passing to the limit, we have ¥ = ¥,,. That is, ¥,, — ¥, in H*(£).
Now a combination of this convergence result with Theorem 3.6, along with the triangle inequality and the
fact that uy, is bounded yield that W,, , converges to ¥, in H?((2). O

Corollary 4.2. A result analogous to Lemma 4.1 holds true for the convergence of the solutions of the continuous
and discrete adjoint problems as well. That is, for a nonsingular solution (¥,%) € V x L?(w) of (2.9), if
up, € By, (@) and up, = u weakly in L*(w), then O (up) converges to O, in H?(£2), where ps > 0 is as defined
in Theorem 3.15.

The next theorem states the existence of at least one solution of the discrete control problem stated in (4.1)
and the convergence results for the control and state variables. The proof is skipped as it can be derived by
following the proof of Theorem 4.11 in [10]).

Theorem 4.3. Let (7, u) € V x L*(w) be a nonsingular solution of (2.1). Then there exists hy > 0 such that,
for all 0 < h < ha, (4.1) has at least one solution. If furthermore (¥, ) is a strict local minimum of (2.1), then
for all0 < h < ha, (4.1) has a local minimum (Py, ap) in a neighborhood of (¥,a) and the following results hold:

}lllgr%)jh(ﬂh) = j(a), I'ILILI%J la — ﬂh”L?(w) =0 and }IZILI%) |||@ - @h”|2 =0,

where ju(n) = A (Pn, an).

Let (¥, 1) be a nonsingular strict local minimum of (2.1) and { (¥, @n) }h<n, be a sequence of local minima of
problems (4.1) converging to (¥, u) in V x L?(w) , with @, € B, (), where h3 and p3 are given by Theorem 3.15.
Then every element @, from a sequence {@p, }n<p, is a local solution of the problem with a discrete reduced cost
functional

min jh(u) = %(Wu,hau)a (43)

u€Un,ad

where ¥, , = G (u).
In the next lemma, we establish the optimality condition for the discrete control problem and the uniform
convergence of the controls.
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Lemma 4.4. Let 6y, be a solution to problem (4.3), and let ¥, ©), € V), denote the corresponding discrete

state and adjoint state. Then uy, = (%h) satisfies

/(C*@h + auy) - (up, —ap)de >0 for all u, = (%h) , up € Up qd- (4.4)

Also, i U — Upl| ooy = 0.
50, hlg})”u Up|lpoe (W) =0

Proof. For the first part, we use the optimality condition for the reduced discrete cost functional. That is,

j;l(’l]h)(uh — ’ﬁh) = /(C*élh + Oéﬂh)(uh — ﬂh)dx >0,

w

from which the required result (4.4) follows.
From (4.4), we can express the discrete control as the projection of the adjoint variable on [u,,up]. That is,

_ 1 i
Uh|T = Mg uy) <_04|T|/T(C th)(:v)d:v> .

For x € T, the projection formula for the continuous control in (2.24), the mean value theorem and the Lipschitz
continuity of the projection operator yield

|an () — afz)| <

7 L€t = 2t @)

€ ) — (€))]

[(C*01n)(zr) — (C*O1)(xr)| + |(C*01) (xr) — (C*61) ()|
¢ (llen =6l +ler — i)

C([|6n =6l + 1)

IN A

IN

for some xp € T, and the result follows from the Sobolev imbedding result together with Lemma 3.18 and
Theorem 4.3. 0

5. ERROR ESTIMATES

In this section, we develop error estimates for the state, adjoint and control variables.

Let (¥,u) be a nonsingular strict local minimum of (2.1) satisfying the second order optimality condition
in Theorem 2.15 (or equivalently (2.32)). Let {(¥, @) }n<n, be a sequence of local minima of problems (4.1)
converging to (¥, ) in V x L?*(w) , with @, € B,, (i), where hg and p3 are given by Theorem 3.15. Since h < hg
and Uy, € B,, (@), Uy, is a local minimum of (4.3).

First we state a lemma which is essential for the proof of the main convergence result in Theorem 5.2. For a
proof see ([10], Lems. 4.16 and 4.17).

Lemma 5.1.

(a) Let the second order optimality condition (2.32) hold true. Then, there exists a mesh size hy with 0 <
hy < hg such that

6 0 0 o
§||12 - ﬂhH%z(w) < (j'(u) — 7' (up)) (w —up) YO < h < hy. (5.1)
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(b) There exist a mesh size hs with 0 < hs < hy and a constant C > 0 such that, for every 0 < h < hy, there
exists uy, € Uy qq satisfying

() " (@) (@ —up) =0 (i) |u — uj ]| L () < Ch. (5.2)

The following theorem establishes the convergence rates for control, state and adjoint variables.

Theorem 5.2. Let (¥,u) be a nonsingular strict local minimum of (2.1) and {(¥y,un)}h<ns be a solution
to (4.1) converging to (¥,u) in V x L*(w), for a sufficiently small mesh-size h with iy, € B,,(u), where p3
is given in Theorem 3.15. Let © and O}, be the corresponding continuous and discrete adjoint state variables,
respectively. Then, there exists a constant C > 0 such that, for all 0 < h < hy, we have

(i) |z — anllL2@w) < Ch (i) ||& — |, < CRY (i) [|© — 6|, < Ch7,

v € (1/2,1] being the index of elliptic reqularity.
Proof. For 0 < h < hs, from (5.1), we have

S 3y < ((8) — 5 () ()
= () — ) E— ) + G ) — ' (50)) 5 — ). (5.9

We now proceed to estimate the two terms in the right hand side of (5.3). From first order optimality conditions
for continuous and discrete problems, we have

J'(uw)(up —u) >0, gy (an)(uy, —ap) > 0.

Also, 0 < gy (up)(uy, — un) = jp (un)(uy, — a) + jp,(an) (@ — up) holds.
For @y, € B,,(u), the above expressions, (3.29), stability of the continuous adjoint solution and (5.2) lead to

- / (€ (o — 1) + (@ — 1) (uf, — B)dz

< C([|6n = || + llan — llr2w)) lup — ll 22w

< Ch([|6n — O, || + [|Om, — O] + llan — ullL2(w))

< Ch (R + ||un — Ul 12(w)) - (5.4)

The estimate (3.29) yields

(n(@n) = 5" (n)) (@ — tp) = /(C*(ém — 01 (un)) + o(an — un))(u — up)de

< C||&n — O, || 1z — unl L2 ()
< ChQ'YH’ﬁ—ﬂhHL%w). (5.5)

A substitution of the expression (5.4)—(5.5) in (5.3) along with the Young’s inequality yields the first required
estimate.

A use of the control estimate (¢) in Lemmas 3.14 and 3.18 yield the required estimates for state and adjoint
variables in (i4) and (ii¢) respectively. This concludes the proof. O
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5.1. Post processing for control

A post processing of control helps us to obtain improved error estimates for control. Also, error estimates for
the state and adjoint variables in H! and L? norms are derived. Recall the assumptions (A1) and (A2) on w
and 7 as described in Section 4.

Definition 5.3 (Interpolant). The projection P}, is the bounded linear operator from the space of piecewise-
continuous functions over T, to the space of piecewise-constant functions over 7T, defined by

(Pux)(x) =x(8:) Vo €T €Ty,
where S; denotes the centroid of the triangle T;. When P}, is applied to a vector valued function, the image is

understood component-wise.

Definition 5.4 (Post processed control). The post processed control iy, is defined as:

Un () = Ty u) (—;(C*Hh,l)($)> ; (5.6)

where 6, is the discrete adjoint variable corresponding to the control .

Let 7,} = 773’1 U 7;3’2 denote the union of active and inactive set of triangles contained in w, where @(z)
satisfies

U@=u, onT; w=wu, onT (in the active part Thl’l),

Ug < U <wup onT (in the inactive part 7;3’2),

and 773 :=Tn \ T;}, the set of triangles, where @ takes the value u, (resp. up) as well as values greater than u,
(resp. lesser than uy). Let 2} = int (UTeThl T) (where the notation int denotes the interior) be the uncritical
part and let Q,IL’l and 9’11,2 be the union of the triangles in the active and inactive parts, respectively. That
. 1 _ 1,1 1,2 . 1,1 _ . 1,2 _ . 2 _

is, 2, = int (Qh uf2, ) with (2,"" = int (UTGT;JT), 2,7 =int (UTG’T}LI'ZT>‘ Define §2;; = int (UT6T3T> as
the critical part of 7j,. We make an assumption on £27, the set of critical triangles which is fulfilled in practical

cases [15]:

(A3) Assume |27] = Z |T| < Ch, for some positive constant C' independent of h.
TeT?

2= Y IT| < Ch, (5.7)

TeT?

for some positive constant C' independent of A. This implies that the mesh domain of the critical cells is
sufficiently small.

Use the splitting 2 = 2} U 22, to define a discrete norm || - || for the control as
a7 = a2 ap) + Nallwroo o2y -

2 _ 2 _
where |||U\||H2(n}1) = E ||UH%{2(T) and |\|U\||W1woo(ng) = E ||UH%V1100(T)-
TCR)L TR
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Lemma 5.5 (Numerical integration estimate). Lemma 3.2 [26] Let g be a function belonging to H*(T;) for all
i in a certain index set I. Then, there holds :

| (0t - a(5))ae| < CH* VI glacry ()

where S; denotes the centroid of T;.
Also, the following result can be established using scaling arguments.

Lemma 5.6 (Scaling results). For u € WH°(T;) (resp. H*(T;)) with T; € Ty,
|t — Pril| oo (1) < Chlltllwr.o (), (resp. |t —Prllor, < Chlla|g2(r,))- (5.9)

Theorem 5.7. Let Uy ) and ¥p,qn be solutions of (3.3) with respect to control 4 and post processed control
Pru, respectively. Then the following error estimate holds true:

1% = ¥p,anll < Ch?|lall5.

Proof. Consider the perturbed auxiliary problem:
Seek € € V that solves

Az, &)+ B(Yan,z,€) + B(z,Pp,an,&) = Yanr —¥Yp,an,2) VzeV. (5.10)

Its discretization is given by:
Seek §;, € V}, that solves

A(zn, &) + B(Wan,zn, &) + B(zn, Yp,an,8n) = Wan — Ypoah:2n) VZp € V. (5.11)

The above equation (5.11) can be written in the operator form as
A&, + B (Wan) €, + %B/(!«ppha,h — Y n) &, =Yn — ¥Yp,an in Vi (5.12)
Note that (3.26) and (5.9) lead to
1970, = Tanll, < ClPra — |2y < Ch. (5.13)

The invertibility of A* + B'(¥z,)*, Lemma 3.12 and (5.13) lead to well-posedness of (5.11). Choose z; =
U — ¥p,an in (5.11) and simplify the terms to obtain

1% — ¥p,anl® = AWan — Up,an, €,) + BWan, an. )
- B(W'Phﬂ,hawphﬁ,fhsh)' (514)

Note that ¥y j, and ¥p, 5,5, satisfy the following discrete problems:

AW n, Prn) + BWan, Yan, Pn) = (F+Cu, ) VP, € Vy,
A(WP;LE,}L,@h) + B(WP’Lﬂ7h’WP}La7h7¢h) = (F—|— C('Phﬁ),@h) V&, € Vy,.
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Subtract the above two equations to obtain
AWan — Yp,a.n: Pn) + B(Wan, Yan, Pn) — B¥p,a,n, Up,an: Pn) = (C(a — Pyit), §p).
Choose @, = &, in the above equation and use (5.14) to obtain
14, = Tpanl® = (Cla—Pyu), &)

Consider

/Q (@-Pun)-&de = 3 (0= Puit,€,(5)), + (0 — Prit &, — ,(5))z,)-

1
z T.co)

A use of (5.8) along with the result |€,(S;)|VT; = [|€,(Si)llor; < |€xllo.1; for the first term leads to

/Q (@—Py0) - &de < CL* Y alluzcry) (1€nllo,r + 1€n 2 cry))

1
h T;C 2}

< CH? g2 3 1€nl 2oy -

Also, consider

/Q (@=Ppa)-&de = > (a—Puu, &),

2
h T;C8232

Enllzos(a2) > Tl

T:iCTy

< [l — Ppif| Lo (02)

The assumption (A3), the estimate (5.9) and Sobolev imbedding result in the above equation lead to

/ (@ — Ppu) - &,dz < Ch? |”ﬂ"|W1,oo(be) ”|€h”|H2(Q§) :
Q

2
h

A combination of (5.16) and (5.17) yields
[ @-Pa) g < CHali el
2ru03
Now we estimate [|€,]|,. Let £ (resp. Lp) : V — V be defined by

L) 1= x+ 5 TIB @an) X + 5718 @p, )X

1 * 1 *
(resp. Ln(x) == x + §Th[B/(%,h) x] + §Th[Bl(!pPhﬁ,h) xJ)-
The auxiliary perturbed problem and its discretization (5.10) and (5.11) can now be expressed as

L&) =TWan—Pp,ah),
Ln(&n) =Th(Pan —Pp,an)-

(5.15)

(5.16)

(5.17)

(5.18)
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From the above characterization, it follows that
Ln(§—&,) = Ln(§) — Ln(&)
1 1
=&+ §Th[8/(@3,h)*§] + §Th (B (@p,a,1)* €] — Th(Yan — Yp,a,n)

(T —T)[B' (¥p,a,n)"El.

= (T = D)W~ Wpya) — 5T~ T)[B W)€

The invertibility of £ and Lemma 3.8 lead to

1€ —&le S 7 (1200 = Ppyanll + 1€l ) - (5.19)

Combine (5.18) and (5.19), and use triangle inequality together with the estimate for [|£[|, and [|€]|, , to obtain

(Cu—"Pnu),§,) = / C(a —Pyu) - &, dw < CR2||ally 1¥an — Pp,anl- (5.20)

Q2ru03
This and (5.15) lead to the required estimate

1% = ¥p,anll < Ch?|lall5.

Following the proof of the above theorem, the next result holds immediately.

Corollary 5.8. Let Wy, 1, and ¥p, g be the solutions of (3.3) with the control 4y and the post processed control
Pra, respectively. Then the following error estimate holds true:

1, .n — ¥p,anll < CR?||al|7

The discrete post processed adjoint problem can be stated as:
Find Op, 4, € V), such that

Ln(Pn, Op,an) = AP, Op,an) + 2BWan, Pn, Op,an) = @p,an — Y4, Pn) VP, € Vi, (5.21)

Lemma 5.9. Let Oy, be solution of (3.28) with the control & and Op, g, be the solution of (5.21). Then the
following error estimate holds true:

18a.n = Op,anll < Ch?|lalls.

Proof. The discrete adjoint problem (3.28) can be written as

Ly (P, Oun) := A(Ph, Oun) + 2B n, Ph,Oun) = Wan —¥a,Pn) VP, € Vi, (5.22)

The subtraction of (5.22) and (5.21) leads to

Ly (Ph, Oun —Op,an) = Pan — Yp,ah Pn). (5.23)

We consider a well-posed auxiliary problem:
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Find x;, € V}, such that

Ln(Xp: Pr) = (Ou,n — Op,a,n, Pn) VOn € Vy (5.24)

with the a priori bound | x|l < C|Oar — Op,anl. Choose &5, = x;, in (5.23) and &, = Oz — Op,a,n in
(5.24) to obtain

1€, = Opanl” = (Fah = Tpyans Xa)- (5.25)
The Cauchy-Schwarz inequality, Poincaré inequality, well-posedness of (5.24) and Theorem 5.7 lead to

1€a.n — Op,anll < Cll¥an — p,anl < Ch?|ally.

This completes the proof. O

Choose the load function in (5.22) as ¥y, », — ¥y, proceed as in the proof of Lemma 5.9 and use Corollary 5.8
to obtain the next result.

Corollary 5.10. Let Oy, be solution of (3.28) with respect to control iy, and Op, ap be the solution of (5.21).
Then the following error estimate holds true:

l6n — Op,an|| < CR a5

Lemma 5.11 (A variational inequality [26], (3.15)). The post processed control Pru satisfies the variational
imequality

|Pra — ahH%?(w) < C(Ph@_ — O, 1y, — Pru). (5.26)

The proof of the next lemma is standard (for example [17, 26]). However, we provide a proof for the sake of
completeness.

Theorem 5.12 (Convergence rate at centroids). Under the assumption (A3), the estimate
||ﬂh - Pha||L2(w) < ChP

holds true with § = min{2v,2}, v € (1/2,1] being the index of elliptic regularity.

Proof. A use of (5.26) and simple manipulations lead to

||l hu_ fLh||2[2 w S, (; hc Oﬁha uih ; hui)
(w)
= (F},é — @7 u, — Fhi) + (@ — @'Ph@h? u, — Phﬁ) + (é'phﬂ,h — éh, u, — Phﬁ). (521)

The first term is estimated using the fact that @, — Ppu is a constant in each T € T; and hence,

(P10 — 0,5 — Prit) = 3 (a(Si) — Pa(S1) / (Ph6 — O)da.

Ti€Th T

Since O|r, € H%(T;), a use of (5.8) in the above equation and a priori bound of © from (2.23a)—(2.23b) as
€1, < CUFI + llall + llyal) lead to

(Phé — é, uy, — Phﬁ) < Oh2||ﬂh — Phﬂ”L?(w) |||é”‘2 . (5.28)
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The triangle inequality, Lemma 5.9, Poincaré inequality and (3.29) yield
6 = ©p,an]|| < CH® (5.29)

with = min{2+, 2}. The equation (5.29), and Cauchy-Schwarz inequality leads to the estimate for the second
term of (5.27) as

‘(é — @’Pha7h7 uy, — ’P}Lﬁ)‘ < Chﬁnﬂh — 'Phﬂ”]ﬂ(w). (5.30)
The Cauchy-Schwarz inequality and Corollary 5.10 lead to the estimate for the last term of (5.27) as
(@_phﬁ,h — éh, a, — Ppu) < ChﬁHah — PhaHLQ(w)~ (5.31)

A use of the estimates (5.28)-(5.31) in (5.27) leads to the required estimate. O

Theorem 5.13 (Estimate for post-processed control). The following estimate for post-processed control holds
true:

1@ — | L2y < CRP,
where @ is the optimal control and 1y, is the post-processed control defined in (5.6), and 8 = min{2y, 2}.
Proof. The Lipschitz continuity of the projection operator 7, .,] and triangle inequality yield
o 1 . L
1% = @nll 2 w) < 17fug ) (= ZC701) = Mg ) (= =C70n2) | < C'[|© = On|
< C(||© = Oranll + |z = Onl)-

Now (5.29) and Corollary 5.10 lead to the required result. O

Theorem 5.14. Let Wy, and ¥p, 4.5 be solution of (3.3) with respect to control @ and post processed control
Pru, respectively. Then the following error estimate holds true:

1 — p,anll, < CH2all;.
Proof. Consider the perturbed auxiliary problem: Seek & € V that solves
Az, &) + B(Wa,h,zyﬁ) + B(Z#I’Pha,mﬁ) = _<A(Wa,h - %?ha,h)a Z) VzeV. (5-32)
Its discretization is given by: Seek &, € V}, that solves
A(zp, &) + B(Wan,zn, &) + B(zn, Yp,un. &) = —(AWan — Yp,an), zn) Vzp € Vi, (5.33)
The above equation (5.33) can be written in the operator form as
Ay, + B (Tg,n)"&), + %B/(W’Phﬂ,h = Yan) & = —Th(AWan — ¥p,a,n) in V. (5.34)
Note that (3.26) and (5.9) lead to

1¥%,a,n = Panlly < ClPrt — | p2(w) < Ch. (5.35)
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The invertibility of A* + B'(¥z;,)*, Lemma 3.12 and (5.35) lead to well-posedness of (5.33). Choose z;, =
U — ¥p,an in (5.33) and simplify the terms to obtain

”? = A(lpﬂ,h - WP;Lﬂ,ha €h) + B(Wﬁ,hv Wﬁ,h) gh) - B(W'P;Lﬁ,hv !pphﬂ,ha €h)' (536)

1%, — ¥P,an
Note that ¥y j, and ¥p, g 5, satisfy the following discrete problems:

A(Wfawh,éh) =+ B(Lpﬂ’h, Lpg’h,éh) = (F + Cﬁ,@h) V&, € Vh,
AWp,an:Pn) + B, an ¥p,an, Pn) = (F+ CPru, @) VP, € V.

Subtract the above two equations to obtain
A(Wan — Ypyan, Pn) + B(Yan, Yan, Pr) — B(Wp,ah, ¥p,an, Pn) = (C(a — Pyru), Pp).
Choose @, = &, in the above equation and use (5.36) to obtain

15,0 — Tp,anll; = (Ca—Pr),&,). (5.37)

Now proceed as in the proof of Theorem 5.7 to obtain the required estimate. O
Following the proof of the above theorem, the next result holds immediately.

Corollary 5.15. Let Wy, », and ¥p, a1 be the solutions of (3.3) with the control 4y and the post processed
control Pru, respectively. Then the following error estimate holds true:

1%, 1 = ¥p,anl, < CR?[all5.

The discrete post processed adjoint problem can be stated as:
Find ©p, 4.5 € Vi, such that

Ln(Ph, Op,an) = AP, Op,an) + 2BWan, Pn, Op,an) = @p,an — Ya, Pn) VP, € Vi, (5.38)

Lemma 5.16. Let Og, be solution of (3.28) with the control @ and Op, g, be the solution of (5.38). Then the
following error estimate holds true:

1€a,n — Op,anll, < Ch? |l

Proof. The discrete adjoint problem (3.28) can be written as

ﬁh(qjh, th) = A(@h, Qﬁ,h) + QB(wﬂ,h,th, Qﬁ,h) = (W@h — wd,@h) V&, € V. (539)

The subtraction of (5.39) and (5.38) leads to

Ly (@n,Cun — Op,an) = Wan — ¥p,an, Pn)- (5.40)

The proof is similar to that of Lemma 5.9 except for the change that in place of (5.24), we consider the following
well-posed auxiliary problem: Find x; € V}, such that

ﬁh(xh,@h) = (—A(Qa)h — ephg’h),@h) V&, € 'V, (541)

with the a priori bound [[x;[l, < C||-AOan — Op,an)ll_; < ClOan — Or,anll,- O



ERROR ESTIMATES FOR THE CONTROL OF VON KARMAN EQUATIONS 1169

Corollary 5.17. Let Oy, be solution of (3.28) with respect to control iy, and Op, s be the solution of (5.38).
Then the following error estimate holds true:

165 = Opanll, < CH*|alls.

Theorem 5.18 (H' and L?-estimates for state and adjoint variables). Let (¥,u) € V x L*(w) be a nonsingular
solution of (2.9). Let W and ¥, be solutions of (2.1) and (4.1) respectively, and © and Oy, be the solutions of
the corresponding adjoint problems. For sufficiently small h, the following estimates hold true:

() |2 = ll, < On*Y, |6 = Onl], < Cr™.
(0) |7 =l < Ch*, |6 - On| < Ch*.

Proof. The triangle inequality, Theorems 3.6 and 5.14 and Corollary 5.15 lead to
1 = @l < 119 — B ll, + 1 — Zranl, + [Fmyns — ], < O
Similarly, the triangle inequality, Theorems 3.16 and 5.16 and Corollary 5.17 lead to
16— 6ull, < 16 ~ Gunll, + 18 — Opanll + [Orran — €, < Ch¥
This completes the proof of part (a). Part (b) follows easily. O

6. NUMERICAL RESULTS

In this section, we present two numerical examples to illustrate the theoretical estimates obtained in this
paper. The discrete optimization problem (4.1) is solved using the primal-dual active set strategy [30]. The
state and adjoint variables are discretized using Bogner-Fox-Schmit finite elements and the control variable
is discretized using piecewise constants. Further, the post-processed control is computed with the help of the
discrete adjoint variable. Let the [th level error and mesh parameter be denoted by e; and h;, respectively. The
lth level experimental order of convergence is defined by

61 :=log(er/e1-1)/log(hi/Ty—1).

The errors and numerical orders of convergence are presented for both the examples.

Example 6.1. Let the computational domain be 2 = (0,1)? and C = I, w = £2. A slightly modified version of
(1.1a)—(1.1d) is constructed in such a way that that the exact solution is known. This is done by choosing the
state variables 1,15 and the adjoint variables 6,60, as

1 = Py = sin?(wx) sin®(my), 0 = O = 22> (1 — x)*(1 —y)?,

and the control 4 as u(x) = m_750,—50] ( ) where the regularization parameter « is chosen as 107°.

1lp
The source terms f, f and observation Q_/ (Y14, ¥24) are then computed using
f=A%1 — [1,00] —a, f=A%n+= [1/)1,7#1} and
Pra =1 — A%01,  aq = by — A%05 + [%/11, 61].

The errors and orders of convergence for the numerical approximations to state, adjoint and control variables
are shown in Tables 1 and 2.
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TABLE 1. Errors and orders of convergence for the state, adjoint, control and post processed
control variables in Example 6.1.

N h/ho |||@*@h“|2 0 |||é*éh|||2 o ||ﬂ*ﬂh|| 0 Hﬂ*lzl,h” 0

36 2-1 1.60389465 — 0.00479710 - 46.72538744  — 0.68424095 -~

196 272 0.41295628 1.957 0.00121897 1.976 25.52270587 0.872 0.37526702 0.866
900 273 0.10369078  1.993 0.00030420  2.002 12.92074925 0.982 0.11011474 1.768
3844  27% 0.02592309 1.999 0.00007602  2.000 6.53425879  0.983 0.02846417 1.951
15876 27°  0.00648563 1.998 0.00001900  2.000 3.27120390  0.998 0.00717641 1.987
64516 276  0.00161877 2.002 0.00000475 1.999 1.63710571  0.998 0.00179764 1.997

TABLE 2. H! and L? errors and orders of convergence for the state and adjoint variables in

Example 6.1.
N Who |9 -l o |7 — @] o [le=6ull, & [lo=6nll 4
36 2-10.06403252 — 0.80432845E—2 — 0.24927604E—3 — 0.37036191E—4 -
196 272 0.01290311 2.311 0.17586110E—2 2.193 0.05657690E—3 2.139 0.08441657E—4 2.133
900 272 0.00315079 2.033 0.04899818E—2 1.843 0.01386737E—3 2.028 0.02134139E—4 1.983
3844 27%  0.00077657 2.020 0.01226971E—2 1.997 0.00345918E—3 2.003 0.00537248E—4 1.989
15876 275  0.00019514 1.992 0.00312879E—2 1.971 0.00086273E—3 2.003 0.00134258E—4 2.000
64516 27% 0.00004781 2.029 0.00075095E—2 2.058 0.00021657E—3 1.994 0.00033748E—4 1.992

In all the tables, hg = 1/ v/2 is the initial mesh size and N denotes the number of degrees of freedom. Since {2
is convex, we have the index of elliptic regularity v = 1. The numerical convergence rates with respect H'! and L?
norms for the state and adjoint variables are quadratic as predicted theoretically. Linear orders of convergence
for the control variable and quadratic order of convergence for the post-processed control are obtained and this
confirms the theoretical results established in Theorem 5.13.

Example 6.2. Let {2 be the non-convex L-shaped domain 2 = )2\ ( -1,0)) and C =1, w = £2.
We consider a problem with the exact singular solution borrowed from [16] in polar coordmates The state and
adjoint variables ¥ = (¢1,45) and O = (6, 0,) are given by

1 =1y =0 =0y = (r?cos? O — 1)(r*sin? 0 — )2r1+'yg%w(9)

where w = 2%, and v ~ 0.5444837367 is a non-characteristic root of sin®(yw) = 7% sin®*(w) with

gyw(0) = (7i 1 sin ((y — Dw) — 5 i T sin (v + 1)w)> X (cos (v —1)8) — cos ((v + 1)9))
1

— (’y — sin ((y — 1)6) — ,yi | sin ((y + 1)0)) X (COS (v = Dw) —cos ((v + 1)w)).

The exact control @ is chosen as u(x) = T_go0,—s50] (fégl (x)), where @ = 1073, The source terms f, f and the
observation ¥, = (Y14, 1¥24) are computed as in the previous example. The errors and orders of convergence for
the numerical approximations to state, adjoint and control variables are shown in Tables 3 and 4. Since {2 is
non-convex, we expect only 1/2 < v < 1 as predicted by the theoretical results. Note that only suboptimal orders
of convergence are attained for the state and adjoint variables in the energy, H! and L? norms. However, we
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TABLE 3. Errors and orders of convergence for the state, adjoint, control and post-processed
control variables in Example 6.2.

N h/ho || =@, & |6 =6, & @ — un| o @ — || o

36 21 9.81990941 — 7.47714482 - 242.759537 - 34.2926324 -

164 272 2.95442143 1.732 2.82045689  1.406 116.204133 1.062 9.72134519 1.818
708 273 1.41082575 1.066 1.35893052  1.053 61.137057  0.926 5.29868866 0.875
2948 24 0.82993102 0.765 0.82022205 0.728 31.226881 0.969 2.54226401 1.059
12036 27° 0.54373393 0.610 0.54214544  0.597 15.691309  0.992 1.17813556 1.109
48644 276 0.36837935 0.561 0.36796971  0.559 7.860646 0.997 0.55275176 1.091

TABLE 4. H! and L? errors and orders of convergence for the state and adjoint variables in

Example 6.2.

N hfho [Tl & o=l & l0=6ull, & flO=6n]

36 21 1.10962279 - 0.26602624 - 0.46789881 - 0.05277374 -

164 272 (0.15147063 2.872 0.02879033 3.207 0.11399788 2.037 0.01813025 1.5414

708 273 0.06196779 1.289 0.01416231 1.023 0.04533146 1.330 0.00982844  0.883
2948  27%  0.02244196 1.465 0.00484927 1.546 0.02080671 1.123 0.00479517  1.035
12036 275 0.00895880 1.324 0.00178338 1.443 0.00970478 1.100 0.00226287  1.083
48644 276 0.00405435 1.143 0.00080248 1.152 0.00455562 1.091 0.00106533  1.086

observe a linear order of convergence for the control variable and 2 rate of convergence for the post-processed
control and this confirms the theoretical results established in Theorem 5.13.

7. CONCLUSIONS

In this paper, an attempt has been made to establish error estimates for state, adjoint and control variables
for distributed optimal control problems governed by the von Kédrméan equations defined over polygonal domains.
The convergence results in energy, H' and L? norms for state and adjoint variables are derived under realistic
regularity assumptions on the exact solution of the problem. Also, the convergence results in L? norm for
the control variable and a post processed control are established. The results of the numerical experiments
confirm the theoretical error estimates. The extension of the analysis to nonconforming finite element methods,
say piecewise quadratic Morley finite elements or C° interior penalty methods is quite attractive from the
implementation perspective. However, for the control problem, the nonconformity of the Morley finite element
space or C? interior penalty methods offers a lot of challenges in a straight forward extension of the theoretical
error estimates. We are currently working on this problem.
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